JP2011006652A - Method for producing fatty acid ester - Google Patents

Method for producing fatty acid ester Download PDF

Info

Publication number
JP2011006652A
JP2011006652A JP2009167230A JP2009167230A JP2011006652A JP 2011006652 A JP2011006652 A JP 2011006652A JP 2009167230 A JP2009167230 A JP 2009167230A JP 2009167230 A JP2009167230 A JP 2009167230A JP 2011006652 A JP2011006652 A JP 2011006652A
Authority
JP
Japan
Prior art keywords
fatty acid
reaction
acid ester
reaction tower
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009167230A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kosakata
潔 小坂田
Katsuhiko Tomashino
勝彦 笘篠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ICS Co Ltd
Original Assignee
ICS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ICS Co Ltd filed Critical ICS Co Ltd
Priority to JP2009167230A priority Critical patent/JP2011006652A/en
Publication of JP2011006652A publication Critical patent/JP2011006652A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop a method and an apparatus for obtaining stable quality (especially an acid value) with no catalyst in the production of a fatty acid ester from a raw material of oils and fats and alcohol.SOLUTION: An apparatus (the reactor II) for separating mainly unreacted materials is provided in series with a conventional reactor (the reactor I), so that the separated unreacted materials are circulated and reused.

Description

本発明は、油脂類に含まれるトリグリセリドを主体とするグリセリド及び/又は遊離脂肪酸をアルコールと反応させて、エステル交換及び/又は直接エステル化により脂肪酸エステルを製造するための有用な方法に関するものである。The present invention relates to a useful method for producing a fatty acid ester by transesterification and / or direct esterification by reacting a glyceride mainly composed of triglycerides contained in fats and oils and / or a free fatty acid with an alcohol. .

炭酸ガス排出規制に対応する取り組みの一つとして、化石燃料に代えて植物起源の燃料を利用する試みが盛んであり、植物から得られるパーム油、菜種油等の主体であるトリグリセリドを、アルキルアルコールとのエステル交換反応によって脂肪酸アルキルエステルとすることで軽油と同等のデイーゼル燃料を製造することが実用化されつつある。エステル交換反応については種種の方法が提案されているが、現時点で実用化されているのは化学触媒特に苛性ソーダ或いは苛性カリ等のアルカリ触媒を使用するものが殆どである。(例えば特許文献1、2、3)この方法では、原料中に遊離脂肪酸が存在するとこれがアルカリによって鹸化し、生成物の相分離工程に支障を来たすため、事前にこれを処理するための操作が必要であり、従って、遊離脂肪酸を多く含む原料の使用はコスト面の不利を招きやすい。また、触媒として使用されたアルカリ化合物が副生物のグリセリンと共に排出され、再生使用にはコストが大きすぎるため、実際生産では中和してカリ肥料とする等の工程が付加されているのが現状であって、いずれも生産コストを押し上げる要因となる可能性を持つものである。As one approach to comply with carbon dioxide emission regulations, there are many attempts to use plant-derived fuel instead of fossil fuel. Triglycerides such as palm oil and rapeseed oil obtained from plants are combined with alkyl alcohol. The production of diesel fuel equivalent to light oil is being put into practical use by converting it to a fatty acid alkyl ester by the transesterification reaction. Various methods have been proposed for the transesterification, but at present, most of them use a chemical catalyst, particularly an alkali catalyst such as caustic soda or caustic potash. (For example, Patent Documents 1, 2, and 3) In this method, if a free fatty acid is present in the raw material, it is saponified by alkali, which hinders the phase separation process of the product. Therefore, the use of raw materials containing a large amount of free fatty acids tends to cause a cost disadvantage. In addition, the alkali compound used as a catalyst is discharged together with glycerin as a by-product, and the cost is too high for recycling. Therefore, both have the potential to increase production costs.

このような原料の事前処理・触媒の後処理を省略するため、一つの方向として固体酸触媒或いは固体アルカリ触媒を使用する方法(例えば特許文献4)が検討されているが、触媒のコスト或いは触媒の寿命の点で未だ実用化には至っていない。In order to omit such raw material pretreatment and catalyst posttreatment, a method using a solid acid catalyst or a solid alkali catalyst as one direction (for example, Patent Document 4) has been studied. Has not yet been put to practical use in terms of the lifetime.

同様に触媒の後処理を省略するため、他の方向として、触媒を使用せずに反応を行うことが検討されている。その一つは超臨界状態における化学種の高活性を利用する方法であって(例えば特許文献5,6,7)、超臨界状態のアルコール(メタノールの場合、臨界温度238℃、臨界圧7.9MPaであるので、これ以上の温度・圧力条件下にあるもの)を無触媒で油脂類と反応させ、エステル交換を行うことで目的のアルキルエステルを得ている。反応速度は温度・圧力を上げれば向上するので、連続大量生産も可能と考えられるが、高温・高圧反応であるため、設備投資・ランニングコストの増大は避けられず、操業の安全性についても相当の配慮が必要である。超臨界状態による化学種の活性化に加えて、触媒(多くは固定触媒)を併用して経済的に有利な反応条件を得ようとする試みも提案(例えば特許文献8,9、10、11)されているが、なお相当の高温・高圧を必要とし、固定触媒については上記と同様の難点を残している。この種の方法は未だ実用化検証の段階には至っていない。Similarly, in order to omit the post-treatment of the catalyst, as another direction, it is studied to perform the reaction without using the catalyst. One of them is a method that utilizes the high activity of chemical species in the supercritical state (for example, Patent Documents 5, 6, and 7), and alcohol in the supercritical state (in the case of methanol, a critical temperature of 238 ° C., a critical pressure of 7. Since the pressure is 9 MPa, a target alkyl ester is obtained by transesterification with oils and fats without any catalyst under conditions of temperature and pressure higher than that and performing transesterification. The reaction rate increases with increasing temperature and pressure, so continuous mass production is considered possible, but because it is a high temperature and high pressure reaction, an increase in capital investment and running costs is unavoidable, and there is considerable operational safety. Consideration is necessary. In addition to the activation of chemical species in a supercritical state, an attempt to obtain economically advantageous reaction conditions using a catalyst (mostly a fixed catalyst) is also proposed (for example, Patent Documents 8, 9, 10, 11). However, it still requires considerable high temperature and pressure, and the fixed catalyst still has the same difficulties as above. This kind of method has not yet reached the stage of practical verification.

更に最近では、直接のエステル交換よりも反応の制御がし易く、実際の工業化に適するものとして、トリグリセリドを加水分解し、生成した脂肪酸をアルコールで直接エステル化する2段階法と超臨界条件との組み合わせが提案(12)されているが、工程中における水分の除去の必要性、高温高圧水による装置上の問題等の困難が予想される。また、方法の性質上、工程中で遊離脂肪酸を生じやすく、これが生産効率を阻害する可能性があるのではないかと考えられる。More recently, the reaction is easier to control than direct transesterification, and is suitable for practical industrialization. It is a two-stage process in which triglycerides are hydrolyzed and the resulting fatty acid is directly esterified with alcohol and supercritical conditions. Although a combination has been proposed (12), difficulties such as the necessity of removing moisture during the process and problems on the apparatus due to high-temperature and high-pressure water are expected. In addition, due to the nature of the method, free fatty acids are likely to be produced in the process, and this may possibly impede production efficiency.

本発明者らは、別に常圧下で無触媒若しくは固体触媒のみを用いて反応をおこない、気液接触手段を選ぶことにより、過熱気化メタノールと原料油脂類とを大気圧近傍(0.101〜0.150MPa)・温度350℃以下の条件下で反応させ、反応生成物を過剰の過熱気化アルコールと共に混合気相流として反応容器から取り出し、冷却してアルキルエステルとグリセリンとを逐次若しくは同時に凝縮させて採取することにより良好な収率でエステル燃料を得る方法(特許文献13、14、15、16、17)を提案している。この方法によれば、触媒の混在を考慮する必要が無く、常圧で純度の高いアルキルエステル及びグリセリンを得ることが出来、遊離脂肪酸もケン化を生ずることなく直接エステル化される。アルカリ触媒法に比べて、高反応効率の操業のためには油脂類の温度をより高温(290℃前後)に保つことが望ましく、この場合にはエネルギーコスト・油脂類の劣化に対しての配慮を必要とするが、アルカリ触媒並びにそれに関連して生ずるコスト上昇要因が排除されるため、全体としてアルカリ触媒法以下のコストで実生産が可能であると考える。しかしながらこれまでの実験結果では、製品の酸価を所期の値以下に抑えるためには反応時間を長く設定することを必要とする傾向があり、その改善が必要とされた。
特開平9−235573 特開平10−182518 特開2000−144172 特開2001−302584 特開2000−143586 特開2000−109883 特開2000−204392 特開2001−302584 特開2002−308825 特開2001−226694 特開2003−55299 特開2004−263011 特願2003−436641 特願2004−40565 特願2004−40566 PCT/JP2004/010349 特願2004−231676
The present inventors separately carry out the reaction under normal pressure using only a non-catalyst or a solid catalyst, and select gas-liquid contact means, whereby superheated methanol and raw oils and fats are brought to near atmospheric pressure (0.101-0). .150 MPa) · The reaction is conducted under a temperature of 350 ° C. or less, the reaction product is taken out from the reaction vessel as a mixed gas stream together with excess superheated vaporized alcohol, cooled, and the alkyl ester and glycerin are condensed sequentially or simultaneously. A method (Patent Documents 13, 14, 15, 16, and 17) for obtaining an ester fuel with a good yield by sampling is proposed. According to this method, it is not necessary to consider the mixing of the catalyst, alkyl esters and glycerin having high purity at normal pressure can be obtained, and free fatty acids are also directly esterified without causing saponification. Compared to the alkali catalyst method, it is desirable to keep the temperature of fats and oils higher (around 290 ° C) for operation with high reaction efficiency. In this case, consideration is given to energy costs and deterioration of fats and oils. However, it is considered that the actual production is possible at a cost lower than that of the alkali catalyst method as a whole because the cost increase factor caused by the alkali catalyst and the associated catalyst is eliminated. However, in the experimental results so far, in order to keep the acid value of the product below the desired value, there is a tendency to require a long reaction time, and an improvement thereof is required.
JP-A-9-235573 JP-A-10-182518 JP 2000-144172 A JP 2001-302584 A JP2000-143586 JP2000-109883 JP 2000-204392 A JP 2001-302584 A JP2002-308825 JP 2001-226694 A JP 2003-55299 A JP 2004-263011 A Japanese Patent Application No. 2003-43641 Japanese Patent Application No. 2004-40565 Japanese Patent Application No. 2004-40566 PCT / JP2004 / 010349 Japanese Patent Application No. 2004-231676

本発明においては、無触媒での脂肪酸エステル製造において、主として製品の酸価を改善するための製造方法を開発しようとする。In the present invention, it is intended to develop a production method mainly for improving the acid value of a product in the production of a fatty acid ester without a catalyst.

(1)油脂、脂肪酸若しくはこれらの混合物(以下原料油脂類という)と一価アルコール(以下単にアルコールと言う)とから脂肪酸エステルを製造する目的で、必要な理論化学当量よりも過剰のアルコールを過熱気化アルコール(該アルコールの圧力に対応する沸点よりも高温の状態に保持されたアルコール)の状態で反応に使用し、反応生成物(脂肪酸エステルとグリセリン及び/又は水との混合物)を過熱気化アルコールとの混合気相流(気相の反応生成物と過熱気化アルコールとの混合物若しくはこれに液滴状の反応生成物を伴うもの)として取得する脂肪酸エステルの製造方法において、内部にスタチックミキサ等の気液接触手段を有する管状の第I反応塔及び内部の所要部分に充填物を有する塔状の第II反応塔を設け、第I反応塔の下部から加熱された原料油脂類と過熱気化アルコールとを送入し、該反応塔の上部から送出される、原料油脂類の未反応部分(以下未反応物という)を含む混合気相流を第II反応塔に供給し、反応生生物と過熱気化アルコールとの混合気相流を反応装置IIの上方より採取し、液化して第II反応塔の下部(充填物の存在しない部分)に貯留する未反応物をポンプにより第I反応塔の下部に還流して原料油脂類と共に再度反応工程に供給することを特徴とする脂肪酸エステルの製造方法。
(2)(1)記載の脂肪酸エステルの製造方法において、液化して第II反応塔の下部(充填物の存在しない部分)に貯留する未反応物の温度が、加熱供給される原料油脂類に比して低く比重が大きいことを利用して、ポンプ等の機械的エネルギーの供給なしに還流を行うことを特徴とする脂肪酸エステルの製造方法。
(3)(1)若しくは(2)記載の脂肪酸エステルの製造方法において、複数の第I反応塔を1基の第II反応塔に結合し、各第I反応塔において同時並行的に反応工程を進行させることを特徴とする脂肪酸エステルの製造方法。
(4)(1)〜(3)記載の脂肪酸エステルの製造方法において、第II反応塔から過熱気化アルコールとの混合気相流として取得された反応生成物を冷却し、脂肪酸エステルとグリセリン及び/又は水とを個々に凝縮させて過熱気化アルコールから分離し、比重分離等を行うことなく高純度の脂肪酸エステルとグリセリン又は脂肪酸エステルを取得することを特徴とする、脂肪酸エステルの製造方法。
(1) Superheat excess alcohol beyond the required theoretical chemical equivalent for the purpose of producing fatty acid esters from fats and oils, fatty acids or mixtures thereof (hereinafter referred to as raw oils and fats) and monohydric alcohols (hereinafter simply referred to as alcohols). Used in the reaction in the form of vaporized alcohol (alcohol maintained at a temperature higher than the boiling point corresponding to the pressure of the alcohol), and the reaction product (mixture of fatty acid ester and glycerin and / or water) is superheated vaporized alcohol In a method for producing fatty acid esters obtained as a mixed gas stream (a mixture of a gas phase reaction product and superheated vaporized alcohol or a droplet-like reaction product). A tubular first reaction tower having gas-liquid contact means and a tower-like second reaction tower having a packing in a required portion inside are provided. A mixed gas phase stream containing raw oil and fat heated from the bottom of the tower and superheated vaporized alcohol and containing an unreacted portion (hereinafter referred to as unreacted material) of the raw oil and fat sent from the upper part of the reaction tower Is supplied to the reaction tower II, and a mixed gas phase stream of the reaction living organism and the superheated vapor is collected from above the reaction apparatus II, liquefied, and placed in the lower part of the reaction tower II (part where no packing is present). A method for producing a fatty acid ester, characterized in that unreacted substances to be stored are refluxed to the lower part of the first reaction tower by a pump and supplied to the reaction step again together with raw oils and fats.
(2) In the method for producing a fatty acid ester according to (1), the temperature of the unreacted material which is liquefied and stored in the lower part of the second reaction tower (portion where no packing is present) A method for producing a fatty acid ester, characterized in that reflux is performed without supply of mechanical energy such as a pump by utilizing the fact that the specific gravity is lower than that of the pump.
(3) In the method for producing a fatty acid ester according to (1) or (2), a plurality of first reaction towers are coupled to one second reaction tower, and the reaction steps are simultaneously performed in each first reaction tower. The manufacturing method of the fatty acid ester characterized by making it advance.
(4) In the method for producing a fatty acid ester according to (1) to (3), the reaction product obtained as a mixed gas stream with superheated vapor from the reaction tower II is cooled, and the fatty acid ester and glycerin and / or Alternatively, a method for producing a fatty acid ester is characterized in that water is condensed separately and separated from superheated vaporized alcohol, and high-purity fatty acid ester and glycerin or fatty acid ester are obtained without performing specific gravity separation or the like.

本発明により、無触媒法の利点を保ちつつ、より短い時間で十分低い酸価の製品を得る事が出来、生産効率が向上する。According to the present invention, a product having a sufficiently low acid value can be obtained in a shorter time while maintaining the advantages of the catalyst-free method, and the production efficiency is improved.

送液ポンプを使用して未反応部分を再度反応装置に送る方式の反応装置の概念図である。It is a conceptual diagram of the reactor of the system which sends a non-reacted part to a reactor again using a liquid feed pump. 送液ポンプを使用せず、液の比重差を利用して未反応部分を再度反応装置に送る方式の反応装置の概念図である。It is a conceptual diagram of the reaction apparatus of the system which sends a non-reacted part to a reaction apparatus again using the specific gravity difference of a liquid, without using a liquid feeding pump. 送液ポンプを使用せず、液の比重差を利用して未反応部分を再度反応装置に送る方式の反応装置を複数並列して使用する装置の概念図である。It is a conceptual diagram of the apparatus which uses in parallel a plurality of reaction apparatuses of the type which sends an unreacted part to a reaction apparatus again using the specific gravity difference of a liquid, without using a liquid feed pump. 図3の反応装置に生成物の凝縮分離装置を付加し、原料の供給から製品の取り出しまでを行うための装置の概念図である。FIG. 4 is a conceptual view of an apparatus for adding a product condensation / separation apparatus to the reaction apparatus of FIG. 3 and performing from raw material supply to product removal.

第1の実施形態:第1の実施形態は、課題を解決するための手段(1)に対応するものであって、図1に示すように、内部にスタチックミキサ等の気液接触手段6を有する管状の第I反応塔1及び内部の所要部分に充填物7を有する第II反応塔2を設け、第I反応塔1の下部から原料油脂類加熱装置4によって加熱された原料油脂類13と過熱気化アルコール14とを送入し、該2者の混合物8(気相)を気液接触手段6に通して反応を生ぜしめ、第I反応塔1の上部から過剰の過熱気化アルコールと共に送出される反応生成物と未反応物との混合気相流9を第II反応塔2に供給して充填物7を通過させる。この際、未反応物は液化して塔下部に集められて貯留物11となり、反応生生物と過熱気化アルコールとの混合気相流10は第II反応塔2の上方より採取される。未反応貯留物11は送液ポンプ3により還流12となって還流路5を通って原料油脂類加熱装置4に入り、原料油脂類と共に再度反応工程に供給される。この方法により、特に製品の酸価の点において、従来の方法(第1反応塔のみを使用することに該当する)に比べて生産速度を落とすことなく安定して所期のレベルを得ることが出来るようになった。従来の方法でも未反応部分の流下・再反応が同一塔内で生起していると考えられるが、このような改善が見られることについては、未反応部分の除去を第II反応塔で行うこととしたため、単一塔の場合に比べて、未反応部分が高温に保持される時間が短縮されて熱分解が減少すること、充填物の分留効果により未反応部分除去の精度が向上すること等の可能性が考えられるが、未だ明確には解明されていない。First Embodiment: The first embodiment corresponds to the means (1) for solving the problem, and as shown in FIG. 1, a gas-liquid contact means 6 such as a static mixer is provided inside. A tubular I-stage reaction column 1 and a II-reaction tower 2 having a packing 7 in a required portion inside are provided, and the raw-oil fats 13 heated from the lower part of the I-reaction tower 1 by the raw-oil heating apparatus 4 And the superheated vaporized alcohol 14 are sent, and the mixture 8 (gas phase) of the two is passed through the gas-liquid contact means 6 to cause the reaction, and sent together with the excess superheated vaporized alcohol from the upper part of the first reaction column 1. A mixed gas phase stream 9 of reaction product and unreacted product is supplied to the second reaction column 2 and passed through the packing 7. At this time, the unreacted material is liquefied and collected in the lower part of the tower to be stored 11, and the mixed gas stream 10 of the reaction living organism and the superheated vaporized alcohol is collected from above the second reaction tower 2. The unreacted reservoir 11 becomes reflux 12 by the liquid feed pump 3, passes through the reflux path 5, enters the raw oil and fat heating device 4, and is supplied again to the reaction process together with the raw oil and fat. By this method, particularly in terms of the acid value of the product, the expected level can be stably obtained without reducing the production rate as compared with the conventional method (corresponding to using only the first reaction column). I can do it now. Even in the conventional method, it is considered that the unreacted part flows down and re-reacts in the same column. However, in order to see such an improvement, the removal of the unreacted part should be performed in the second reaction column. Therefore, compared to the case of a single column, the time during which the unreacted part is kept at a high temperature is shortened and thermal decomposition is reduced, and the precision of removing the unreacted part is improved by the fractionation effect of the packing. Such a possibility is considered, but it has not been clearly clarified yet.

第2の実施形態:第2の実施形態は、課題を解決するための手段(2)に対応するものであって、図2に示すように、液化して第II反応塔2の下部に貯留する未反応物11の温度が加熱供給される原料油脂類に比して低く、比重が大きいことを利用して、ポンプ等の機械的エネルギーの供給なしに原料油脂類加熱装置4に対して還流12を生じさせるものである。この方法はポンプによって還流を制御する第1の実施形態に比べて、機器配置・操業の融通性は低下するが、高温仕様のポンプを必要としないため設備・保守の面でコストを削減することが出来る。Second Embodiment: The second embodiment corresponds to the means (2) for solving the problem, and is liquefied and stored in the lower part of the second reaction tower 2 as shown in FIG. By utilizing the fact that the temperature of the unreacted material 11 to be heated is lower than that of the raw material fats and oils to be heated and the specific gravity is large, it is refluxed to the raw material fats and oils heating device 4 without supplying mechanical energy such as a pump. 12 is produced. Compared with the first embodiment in which the reflux is controlled by a pump, this method reduces the flexibility of equipment arrangement and operation, but does not require a high-temperature pump, thereby reducing costs in terms of facilities and maintenance. I can do it.

第3の実施形態:第3の実施形態は、課題を解決するための手段(3)に対応するものであって、図3に示すように、複数の第I反応塔1を1基の第II反応塔2に結合し、各第I反応塔において同時並行的に反応工程を進行させるものである。図3では2基の第I反応塔が1基の第II反応塔に結合された状態が示されているが、必ずしも2基に限られるものではない。この方法によって、第II反応塔の数を増加させることなくコンパクトな形で生産量を増大させることが出来る。3rd Embodiment: 3rd Embodiment respond | corresponds to the means (3) for solving a subject, and as shown in FIG. It couple | bonds with the II reaction tower 2, and advances a reaction process simultaneously in each 1st reaction tower. Although FIG. 3 shows a state in which two I reaction towers are combined with one II reaction tower, the number is not necessarily limited to two. By this method, the production amount can be increased in a compact form without increasing the number of the second reaction columns.

第4の実施形態:第4の実施形態は、課題を解決するための手段(4)に対応するものであって、図4に示すように、第II反応塔2から過熱気化アルコールとの混合気相流として取得された反応生成物9を凝縮分離装置15に導き、熱交換器等の冷却手段16によって冷却し、脂肪酸エステル19とグリセリン20及び/又は水18とを個々に凝縮させて過熱気化アルコール17から分離し、比重分離等を行うことなく高純度の脂肪酸エステルとグリセリン又は脂肪酸エステルを取得するものである。Fourth Embodiment: The fourth embodiment corresponds to the means (4) for solving the problem and, as shown in FIG. 4, mixing from the II reaction tower 2 with superheated vaporized alcohol. The reaction product 9 obtained as a gas phase flow is led to a condensing / separating device 15 and cooled by a cooling means 16 such as a heat exchanger, and the fatty acid ester 19 and glycerin 20 and / or water 18 are individually condensed and superheated. A high-purity fatty acid ester and glycerin or fatty acid ester are obtained without separation from vaporized alcohol 17 and specific gravity separation.

第2の実施形態に相当する装置を使用し、内径42mmφ、長さ1mの第I反応塔(気液接触手段としてパンチングメタルを使用)と内径73mmφ、長さ4mの第II反応塔(充填物としてステンレスタワシを使用)とを用いて実験を行った。油脂類原料として国産菜種油を使用し、第I反応塔温度290℃、第II反応塔温度250℃、メタノール供給量600ml/hr、第I反応塔〜第II反応塔間の気体流速4.27cm/sec、第I反応塔内の原料油脂類の量750ml(消費分を連続的に補給)の条件で約10時間実験を継続し、エステル生産量180ml/hr、酸価0.34の結果を得た。これまで第I反応塔のみを使用してほぼ同一の条件で行った実験では、酸価は3〜5で一定せず、今回の酸価に近い値を得るには、気体流速を小さくし、生産効率を下げねばならなかった。Using an apparatus corresponding to the second embodiment, an I reaction tower having an inner diameter of 42 mmφ and a length of 1 m (using punching metal as gas-liquid contact means) and an II reaction tower having an inner diameter of 73 mmφ and a length of 4 m (packing) And stainless steel scrubber as Japanese rapeseed oil is used as a fat and oil raw material, the first reaction tower temperature is 290 ° C., the second reaction tower temperature is 250 ° C., the methanol supply amount is 600 ml / hr, and the gas flow rate between the first reaction tower and the second reaction tower is 4.27 cm / The experiment was continued for about 10 hours under the condition of 750 ml of raw oil and fat in the first reaction tower (consumption replenished continuously), resulting in an ester production of 180 ml / hr and an acid value of 0.34. It was. In experiments conducted under almost the same conditions up to now using only the first reaction column, the acid value is not constant at 3 to 5, and in order to obtain a value close to the current acid value, the gas flow rate is decreased, Production efficiency had to be lowered.

本発明により、規格値を満足する製品が良好なコストパフオーマンスをもって安定的に生産されることとなり、無触媒法によるバイオデイーゼル燃料の生産な実用展開が可能となる。According to the present invention, a product satisfying the standard value is stably produced with good cost performance, and the practical development of production of biodiesel fuel by a non-catalytic method becomes possible.

1 第I反応塔
2 第II反応塔
3 送液ポンプ
4 原料油脂類加熱装置
5 未反応物還流路
6 気液接触手段
7 充填物
8 過熱気化アルコール(原料油脂類を含む)
9 過熱気化アルコール・反応生成物・未反応物の混合気相流
10 反応生成物・過熱気化アルコールの混合気相流
11 貯留未反応物
12 未反応物の還流
13 原料油脂類
14 過熱気化アルコール
15 凝縮分離装置
16 冷却手段
17 過熱気化アルコール
18 排出水
19 製品エステル
20 グリセリン
DESCRIPTION OF SYMBOLS 1 1st reaction tower 2 2nd reaction tower 3 Feeding pump 4 Raw material fats and oils heating apparatus 5 Unreacted substance reflux path 6 Gas-liquid contact means 7 Filling 8 Superheated vaporized alcohol (including raw material fats and oils)
9 Mixed vapor phase stream of superheated alcohol / reaction product / unreacted substance 10 Mixed gas phase stream of reaction product / superheated vaporized alcohol 11 Retained unreacted substance 12 Reflux of unreacted substance 13 Raw oil / fat 14 Superheated vaporized alcohol 15 Condenser / separator 16 Cooling means 17 Superheated alcohol 18 Effluent 19 Product ester 20 Glycerin

Claims (4)

油脂、脂肪酸若しくはこれらの混合物(以下原料油脂類という)と一価アルコール(以下単にアルコールと言う)とから脂肪酸エステルを製造する目的で、必要な理論化学当量よりも過剰のアルコールを過熱気化アルコール(該アルコールの圧力に対応する沸点よりも高温の状態に保持されたアルコール)の状態で反応に使用し、反応生成物(脂肪酸エステルとグリセリン及び/又は水との混合物)を過熱気化アルコールとの混合気相流(気相の反応生成物と過熱気化アルコールとの混合物若しくはこれに液滴状の反応生成物を伴うもの)として取得する脂肪酸エステルの製造方法において、内部にスタチックミキサ等の気液接触手段を有する管状の第I反応塔及び内部の所要部分に充填物を有する塔状の第II反応塔を設け、第I反応塔の下部から加熱された原料油脂類と過熱気化アルコールとを送入し、該反応塔の上部から送出される、原料油脂類の未反応部分(以下未反応物という)を含む混合気相流を第II反応塔に供給し、反応生生物と過熱気化アルコールとの混合気相流を第II反応塔の上方より採取し、液化して第II反応塔の下部(充填物の存在しない部分)に貯留する未反応物をポンプにより第I反応塔の下部に還流して原料油脂類と共に再度反応工程に供給することを特徴とする脂肪酸エステルの製造方法。For the purpose of producing fatty acid esters from fats and oils, fatty acids or a mixture thereof (hereinafter referred to as raw material fats and oils) and monohydric alcohols (hereinafter simply referred to as alcohols), an excess of alcohol exceeding the required theoretical chemical equivalent is heated to a vaporized alcohol ( The reaction product (mixture of fatty acid ester and glycerin and / or water) is mixed with the superheated vaporized alcohol in the state of an alcohol maintained at a temperature higher than the boiling point corresponding to the pressure of the alcohol. In a method for producing a fatty acid ester obtained as a gas phase flow (a mixture of a gas phase reaction product and a superheated vaporized alcohol or a droplet-like reaction product), a gas-liquid such as a static mixer is provided inside. A tubular first reaction tower having a contact means and a tower-like second reaction tower having a packing in a required portion inside are provided. The raw material fats and superheated alcohol heated from the part are fed in, and the mixed vapor stream containing unreacted parts (hereinafter referred to as unreacted substances) of the raw material fats and oils sent from the upper part of the reaction tower Supplied to the II reaction tower, mixed gas phase stream of reaction product and superheated vapor is collected from the upper part of the second reaction tower, liquefied and stored in the lower part of the second reaction tower (part where no packing is present) A method for producing a fatty acid ester, characterized in that an unreacted product to be refluxed to the lower part of the first reaction tower by a pump and supplied to the reaction step again together with raw oils and fats. 請求項1記載の脂肪酸エステルの製造方法において、液化して第II反応塔の下部(充填物の存在しない部分)に貯留する未反応物の温度が、加熱供給される原料油脂類に比して低く比重が大きいことを利用して、ポンプ等の機械的エネルギーの供給なしに還流を行うことを特徴とする脂肪酸エステルの製造方法。2. The method for producing a fatty acid ester according to claim 1, wherein the temperature of the unreacted material that is liquefied and stored in the lower part of the second reaction tower (portion where no packing is present) is higher than that of the raw oil and fat to be heated and supplied. A method for producing a fatty acid ester, wherein reflux is performed without supplying mechanical energy such as a pump by utilizing a low specific gravity. 請求項1若しくは請求項2記載の脂肪酸エステルの製造方法において、複数の第I反応塔を1基の第II反応塔に結合し、各第I反応塔において同時並行的に反応工程を進行させることを特徴とする脂肪酸エステルの製造方法。3. The method for producing a fatty acid ester according to claim 1 or 2, wherein a plurality of first reaction towers are coupled to one second reaction tower, and the reaction steps are advanced simultaneously in each first reaction tower. The manufacturing method of the fatty acid ester characterized by these. 請求項1〜請求項3記載の脂肪酸エステルの製造方法において、第II反応塔から過熱気化アルコールとの混合気相流として取得された反応生成物を冷却し、脂肪酸エステルとグリセリン及び/又は水とを個々に凝縮させて過熱気化アルコールから分離し、比重分離等を行うことなく高純度の脂肪酸エステルとグリセリン又は脂肪酸エステルを取得することを特徴とする、脂肪酸エステルの製造方法。The method for producing a fatty acid ester according to any one of claims 1 to 3, wherein the reaction product obtained as a mixed vapor stream of superheated vaporized alcohol from the II reaction tower is cooled, and the fatty acid ester and glycerin and / or water A method for producing a fatty acid ester, characterized in that a high-purity fatty acid ester and glycerin or a fatty acid ester are obtained without condensing them separately from superheated vaporized alcohol and performing specific gravity separation or the like.
JP2009167230A 2009-06-25 2009-06-25 Method for producing fatty acid ester Pending JP2011006652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009167230A JP2011006652A (en) 2009-06-25 2009-06-25 Method for producing fatty acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009167230A JP2011006652A (en) 2009-06-25 2009-06-25 Method for producing fatty acid ester

Publications (1)

Publication Number Publication Date
JP2011006652A true JP2011006652A (en) 2011-01-13

Family

ID=43563662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009167230A Pending JP2011006652A (en) 2009-06-25 2009-06-25 Method for producing fatty acid ester

Country Status (1)

Country Link
JP (1) JP2011006652A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032312A (en) * 2009-07-30 2011-02-17 National Agriculture & Food Research Organization Apparatus and method for producing fatty acid methyl ester
JP2014525490A (en) * 2011-08-26 2014-09-29 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Biodiesel production method
JP2015086167A (en) * 2013-10-30 2015-05-07 株式会社Adeka Method of producing ester compound
CN108905908A (en) * 2018-09-12 2018-11-30 江苏金桥油脂化工科技有限公司 The reaction kettle system of Acrawax

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032312A (en) * 2009-07-30 2011-02-17 National Agriculture & Food Research Organization Apparatus and method for producing fatty acid methyl ester
JP2014525490A (en) * 2011-08-26 2014-09-29 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Biodiesel production method
JP2015086167A (en) * 2013-10-30 2015-05-07 株式会社Adeka Method of producing ester compound
CN108905908A (en) * 2018-09-12 2018-11-30 江苏金桥油脂化工科技有限公司 The reaction kettle system of Acrawax

Similar Documents

Publication Publication Date Title
US7531688B2 (en) Method for recovering unreacted alcohol from biodiesel product streams by flash purification
JP5364591B2 (en) Method for producing fatty acid ester using alcohol recycling
He et al. A novel continuous-flow reactor using reactive distillation for biodiesel production
JP4567961B2 (en) Daisel fuel oil production process from fats and oils
JP2004175794A (en) Method for esterifying fatty acid
JP2009516047A (en) Biodiesel production method using supercritical alcohol
JP2009544654A (en) process
JP2011006652A (en) Method for producing fatty acid ester
CN107428643A (en) Method for being reacted in reaction tower
US20130131376A1 (en) Method for producing a carboxylic acid ester
JP4963011B2 (en) Method for producing fatty acid lower alkyl ester
JP2006342328A (en) Method for producing fatty acid ester and method for producing glycerol
CN1900224B (en) Process for preparing biological diesel oil
CN109942358A (en) A kind of solid acid catalysis low-boiling point alcohol continuous esterification technique
RU2532555C2 (en) Method and device for conversion of carbon monoxide and water in carbon dioxide and hydrogen with discharge of obtained gas
AU2018253853B2 (en) Method and device for converting carbon dioxide into methanol
JP2014514276A (en) Method for converting glycerin to propylene glycol
JP5313482B2 (en) Process for producing fatty acid alkyl ester and / or glycerin
JP2008031400A (en) Method for producing fatty acid ester from fats and oils as raw material
JP5868178B2 (en) Method for producing methanol
JP2010285320A (en) Glycerol reformer and reforming method
JP5401024B2 (en) Method for producing acrolein and method for producing acrylic acid
WO2006121021A1 (en) Process for producing fatty acid ester and process for producing glycerol
JP2009057288A (en) Method for producing acrolein and method for producing acrylic acid
US20120288906A1 (en) Process For Obtaining Fatty Acid Lower Alkyl Esters From Unrefined Fats And Oils