JP2011005388A - Method of reducing catalyst containing copper oxide - Google Patents

Method of reducing catalyst containing copper oxide Download PDF

Info

Publication number
JP2011005388A
JP2011005388A JP2009149536A JP2009149536A JP2011005388A JP 2011005388 A JP2011005388 A JP 2011005388A JP 2009149536 A JP2009149536 A JP 2009149536A JP 2009149536 A JP2009149536 A JP 2009149536A JP 2011005388 A JP2011005388 A JP 2011005388A
Authority
JP
Japan
Prior art keywords
liquid
catalyst
gas
copper oxide
catalyst filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009149536A
Other languages
Japanese (ja)
Inventor
Toshio Nakayama
敏男 中山
Nobufumi Niwa
伸文 丹羽
Hirofumi Koike
弘文 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON OXIRANE KK
Sumitomo Chemical Co Ltd
Original Assignee
NIPPON OXIRANE KK
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON OXIRANE KK, Sumitomo Chemical Co Ltd filed Critical NIPPON OXIRANE KK
Priority to JP2009149536A priority Critical patent/JP2011005388A/en
Publication of JP2011005388A publication Critical patent/JP2011005388A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method for reducing a catalyst containing copper oxide by introducing a gas containing hydrogen and a liquid into a catalyst-filled part, with the help of a reactor having the catalyst-filled part in which the catalyst containing the copper oxide is packed and a gas-liquid separation part, this method capable of inhibiting the sintering of a metallic copper contained in the catalyst obtained by reduction process and keeping the strength of the catalyst high.SOLUTION: This method of reducing a catalyst containing copper oxide is to reduce the catalyst containing the copper oxide with the help of a reactor equipped with the catalyst-filled part 5 in which the catalyst containing the copper oxide is packed and the gas-liquid separation part 10. Further, the reactor operates through the steps to, first, introduce the gas containing hydrogen and the liquid into the catalyst-filled part 5, then introduce the gas containing hydrogen and the liquid, both extracted from the outlet of the catalyst-filled part 5, into the gas-liquid separation part 10 and separate the gas containing hydrogen and the liquid both introduced, at the gas-liquid separation part 10, and introduce the separated liquid into the catalyst-filled part 5. The moisture density of the liquid at the outlet of the catalyst-filled part 5 is set to be not more than 1,500 wt.ppm.

Description

本発明は、酸化銅含有触媒の還元方法に関するものである。更に詳しくは、本発明は、酸化銅含有触媒が充填された触媒充填部と気液分離部を備える反応器を用いて、触媒充填部に水素を含む気体と液体を導入して酸化銅含有触媒を還元する方法であって、還元によって得られる触媒中の金属銅のシンタリングを防止することができ、かつ触媒の強度を高く保持することができる酸化銅含有触媒の還元方法に関するものである。   The present invention relates to a method for reducing a copper oxide-containing catalyst. More specifically, the present invention relates to a copper oxide-containing catalyst by introducing a gas and a liquid containing hydrogen into the catalyst filling portion using a reactor equipped with a catalyst filling portion filled with a copper oxide-containing catalyst and a gas-liquid separation portion. The present invention relates to a method for reducing a copper oxide-containing catalyst capable of preventing sintering of metallic copper in a catalyst obtained by reduction and maintaining high strength of the catalyst.

酸化銅含有触媒は、通常、反応に使用する前に触媒中の酸化銅を金属銅に予め還元して用いられる。例えば、特許文献1には、固定床断熱式反応器に充填された酸化銅含有触媒にエチルベンゼン、水素、メタンを通過させて還元した後、アセトフェノンを1−フェニルエチルアルコールへ水素化する方法が開示されている。   The copper oxide-containing catalyst is usually used by reducing the copper oxide in the catalyst into metallic copper in advance before use in the reaction. For example, Patent Document 1 discloses a method of hydrogenating acetophenone to 1-phenylethyl alcohol after reduction by passing ethylbenzene, hydrogen, and methane through a copper oxide-containing catalyst packed in a fixed bed adiabatic reactor. Has been.

特開2001−199917号公報JP 2001-199917 A

かかる状況において、本発明が解決しようとする課題は、酸化銅含有触媒が充填された触媒充填部と気液分離部を備える反応器を用いて、触媒充填部に水素を含む気体と液体を導入して酸化銅含有触媒を還元する方法であって、還元によって得られる触媒中の金属銅のシンタリングを防止することができ、かつ触媒の強度を高く保持することができる酸化銅含有触媒の還元方法を提供する点にある。   In such a situation, the problem to be solved by the present invention is to introduce a gas and a liquid containing hydrogen into the catalyst filling part using a reactor equipped with a catalyst filling part filled with a copper oxide-containing catalyst and a gas-liquid separation part. Reduction of the copper oxide-containing catalyst, the sintering of the metal copper in the catalyst obtained by the reduction can be prevented and the strength of the catalyst can be kept high. The point is to provide a method.

すなわち、本発明は、酸化銅含有触媒が充填された触媒充填部と気液分離部を備える反応器を用いて、触媒充填部に水素を含む気体と液体を導入して酸化銅含有触媒を還元する方法であって、触媒充填部出口の液体に含まれる水分の濃度を1500重量ppm以下とする酸化銅含有触媒の還元方法に係るものである。   That is, the present invention reduces the copper oxide-containing catalyst by introducing a gas and a liquid containing hydrogen into the catalyst filling portion using a reactor equipped with a catalyst filling portion filled with a copper oxide-containing catalyst and a gas-liquid separation portion. The method relates to a method for reducing a copper oxide-containing catalyst in which the concentration of water contained in the liquid at the outlet of the catalyst filling unit is 1500 ppm by weight or less.

本発明の酸化銅含有触媒の還元方法によれば、還元によって得られる触媒中の金属銅のシンタリングを防止することができ、かつ触媒の強度を高く保持することができる。   According to the method for reducing a copper oxide-containing catalyst of the present invention, sintering of metallic copper in the catalyst obtained by reduction can be prevented, and the strength of the catalyst can be kept high.

触媒還元装置Catalytic reduction device

本発明で用いられる酸化銅含有触媒とは、主成分として酸化銅(CuO)を含んでいる触媒を意味する。触媒中のCuOの含有量は、通常10〜90重量%、好ましくは20〜80重量%である。触媒中のCuO以外の成分としてはCr23、ZnO、Fe23、Al23、ZrO2、TiO2、SiO2、MnO2、Co23、NiO、BaO、CaO、MgO、NaOH、KOH、Na2CO3、K2CO3などを含有してもよい。
触媒は共沈法、沈着法、混練法により製造することができる。共沈法によって触媒を製造する場合、硝酸銅の水溶液に水酸化ナトリウム、炭酸ソーダーまたは炭酸アンモニウムを加えて、水酸化物、塩基性炭酸塩として沈殿させ、水洗、乾燥後、過熱分解した後、触媒粉体を得る。固定床反応器に充填する場合には該粉体とグラファイト、シリカゾル、アルミナなどのバインダーを添加後、混練、打錠成型又は押し出し成型によって、ペレットに成型された触媒を用いる。
The copper oxide-containing catalyst used in the present invention means a catalyst containing copper oxide (CuO) as a main component. The content of CuO in the catalyst is usually 10 to 90% by weight, preferably 20 to 80% by weight. As a component other than CuO in the catalyst Cr 2 O 3, ZnO, Fe 2 O 3, Al 2 O 3, ZrO 2, TiO 2, SiO 2, MnO 2, Co 2 O 3, NiO, BaO, CaO, MgO , NaOH, KOH, Na 2 CO 3 , K 2 CO 3 and the like may be contained.
The catalyst can be produced by a coprecipitation method, a deposition method, or a kneading method. When producing a catalyst by the coprecipitation method, sodium hydroxide, sodium carbonate or ammonium carbonate is added to an aqueous solution of copper nitrate to precipitate it as a hydroxide or basic carbonate, washed with water, dried, and then thermally decomposed. A catalyst powder is obtained. When packed in a fixed bed reactor, the powder and a binder such as graphite, silica sol, and alumina are added, and then a catalyst formed into pellets by kneading, tableting or extrusion is used.

本発明で用いられる液体としては、還元条件下で液体であるものであり、例えば、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、エチルベンゼン、クメンなどの炭化水素、及びこれらの混合溶媒をあげることができる。   The liquid used in the present invention is a liquid under reducing conditions, and examples thereof include hydrocarbons such as hexane, heptane, benzene, toluene, xylene, ethylbenzene, cumene, and mixed solvents thereof. .

還元温度は、還元速度を速めるという観点や金属銅のシンタリングを防ぐという観点から、通常40〜200℃であり、好ましくは130〜200℃である。
還元圧力は、還元速度を速めるという観点や金属銅のシンタリングを防ぐという観点から、通常0.1〜2MPaであり、好ましくは0.4〜1MPaである。
The reduction temperature is usually 40 to 200 ° C., preferably 130 to 200 ° C. from the viewpoint of increasing the reduction rate and preventing sintering of metallic copper.
The reduction pressure is usually 0.1 to 2 MPa, preferably 0.4 to 1 MPa from the viewpoint of increasing the reduction rate and preventing sintering of metallic copper.

水分濃度が1500重量ppmを超えないように酸化銅含有触媒を還元するために、反応温度または反応圧力などの反応条件を調整して、反応速度、すなわち、水の生成速度を制御することが好ましい。   In order to reduce the copper oxide-containing catalyst so that the water concentration does not exceed 1500 ppm by weight, it is preferable to adjust reaction conditions such as reaction temperature or reaction pressure to control the reaction rate, that is, the water generation rate. .

本発明で用いられる水素を含む気体としては、水素ガスのみで用いても良いし、窒素ガスのような不活性ガスで希釈しても良い。また、工業的用にはナフサを分解して得られるメタネーター水素を用いても良い。水素を含む気体中の水分は通常、室温で飽和蒸気圧以下に乾燥されたガスを用いることが好ましい。   The gas containing hydrogen used in the present invention may be used only with hydrogen gas, or may be diluted with an inert gas such as nitrogen gas. Further, for industrial use, methanator hydrogen obtained by decomposing naphtha may be used. As the moisture in the gas containing hydrogen, it is usually preferable to use a gas dried to a saturated vapor pressure or lower at room temperature.

本発明において、触媒充填部出口から抜き出された液体の水分濃度は、還元によって得られる触媒中の金属銅のシンタリングを防止し、触媒の強度を高く保持するという観点から、1500重量ppm以下である。   In the present invention, the water concentration of the liquid extracted from the catalyst filling portion outlet is 1500 ppm by weight or less from the viewpoint of preventing sintering of metallic copper in the catalyst obtained by reduction and maintaining high strength of the catalyst. It is.

触媒充填部出口から抜き出された液体の水分濃度は、触媒充填部出口から抜き出された液体をカールフィッシャー法やガスクロマトグラフ法によって測定することによって求められる。触媒充填部出口から抜き出された液体を冷却して水を分離させる場合には、冷却後の液体の水分濃度と分離された水分量から、触媒充填部出口から抜き出された液体の水分濃度を計算することができる。   The water concentration of the liquid extracted from the catalyst filling portion outlet is obtained by measuring the liquid extracted from the catalyst filling portion outlet by the Karl Fischer method or the gas chromatograph method. When the water extracted from the catalyst filling unit outlet is cooled to separate water, the water concentration of the liquid extracted from the catalyst filling unit outlet is determined based on the water concentration of the liquid after cooling and the separated water content. Can be calculated.

更に、本発明の還元方法としては、触媒充填部出口から抜き出された液体に含まれる水分を除去してから、水素を含む気体と液体を分離し、分離された液体を触媒充填部へリサイクル液体として導入する還元方法が、還元での液体の使用量を少なくでき、経済的であるために好ましい。   Furthermore, as a reduction method of the present invention, after removing moisture contained in the liquid extracted from the catalyst filling section outlet, the hydrogen-containing gas and liquid are separated, and the separated liquid is recycled to the catalyst filling section. The reduction method introduced as a liquid is preferable because the amount of liquid used in the reduction can be reduced and is economical.

触媒充填部出口から抜き出された液体に含まれる水分の除去方法としては、下記の方法が好ましい
一番目の方法としては、触媒充填部出口から抜き出された液体を冷却して水を除去してから、水素を含む気体と液体を分離し、分離された液体を触媒充填部に導入する還元方法が挙げられる。触媒充填部出口から抜き出された液体の冷却温度は、還元温度より低ければ良い。好ましくは、経済的であるという観点や、液体の水分濃度が高くなり金属銅のシンタリングが起きることを防止するという観点から、5〜35℃である。
The following method is preferable as a method for removing water contained in the liquid drawn out from the catalyst filling unit outlet. As the first method, the liquid drawn out from the catalyst filling unit outlet is cooled to remove water. After that, there is a reduction method in which a gas containing hydrogen and a liquid are separated, and the separated liquid is introduced into the catalyst filling portion. The cooling temperature of the liquid withdrawn from the catalyst filling unit outlet may be lower than the reduction temperature. Preferably, the temperature is 5 to 35 ° C. from the viewpoint of economy and the prevention of sintering of metallic copper due to an increase in the water concentration of the liquid.

二番目の方法としては、触媒充填部出口から抜き出された液体に含まれる水分を、水素ガスを含む気体に水分を同伴し低減させてから、水素を含む気体と液体を分離し、分離された液体を触媒充填部に導入する還元方法が挙げられる。   The second method is to reduce the moisture contained in the liquid extracted from the outlet of the catalyst filling unit by entraining moisture in the gas containing hydrogen gas and then separating the gas and liquid containing hydrogen. And a reduction method in which the liquid is introduced into the catalyst filling portion.

三番目の方法としては、触媒充填部に、または触媒充填部出口から抜き出された液体に、乾燥した不活性ガスを導入し、触媒充填部出口から抜き出された液体に含まれる水分を、水素を含む気体および導入した不活性ガスに同伴させて低減し、水素を含む気体と液体を分離し、分離された液体を触媒充填部に導入する還元方法が挙げられる。不活性ガスとしては、安価で入手しやすいことから、窒素やメタンが好ましい。   As a third method, a dry inert gas is introduced into the catalyst filling part or the liquid withdrawn from the catalyst filling part outlet, and the moisture contained in the liquid withdrawn from the catalyst filling part outlet, There is a reduction method in which the gas containing hydrogen and the introduced inert gas are reduced, the gas containing hydrogen is separated from the liquid, and the separated liquid is introduced into the catalyst filling portion. As the inert gas, nitrogen and methane are preferable because they are inexpensive and easily available.

上記の二番目の還元方法において、水素ガスを含む気体に水分を同伴し低減させる方法としては、水素を含む気体で液体をバブリングする方法が挙げられる。上記の三番目の還元方法において、水素を含む気体および導入した不活性ガスに水分を同伴し低減させる方法としては、水素を含む気体で液体をバブリングする方法が挙げられる。バブリングする時の液体の温度は、水分を同伴し低減し易くするという観点や、液体が流出し、液体のロスが大きくなることを防ぐという観点から、50〜200℃が好ましい。   In the second reduction method described above, examples of a method for reducing moisture by entraining a gas containing hydrogen gas include a method of bubbling a liquid with a gas containing hydrogen. In the third reduction method described above, as a method for entraining and reducing moisture in the gas containing hydrogen and the introduced inert gas, a method of bubbling a liquid with a gas containing hydrogen can be given. The temperature of the liquid at the time of bubbling is preferably 50 to 200 ° C. from the viewpoint of facilitating reduction by entraining moisture, and from the viewpoint of preventing the liquid from flowing out and increasing the loss of the liquid.

本発明の方法によって還元された触媒の用途としては、ケトンの水素化に使用される。例えば、アセトフェノンを水素化する1−フェニルエチルアルコールの製造に使用できる。1−フェニルエチルアルコールは工業的にスチレンモノマーあるいは各種有機合成の中間体としての原料である。   The catalyst reduced by the method of the present invention is used for hydrogenation of ketones. For example, it can be used to produce 1-phenylethyl alcohol for hydrogenating acetophenone. 1-Phenylethyl alcohol is industrially a raw material as a styrene monomer or an intermediate for various organic synthesis.

次に本発明を実施例により説明する。
実施例1
SUS−316L製の管(内径:14mmφ、長さ:1200mmL)に温度鞘管(外径:3mmφ)をセットした中に、酸化銅を63重量%含有した触媒(直径1.4mmφ、長さ4〜8mmの円柱状)を125g(充填長:1000mm)充填した(触媒充填部(5))。触媒充填部出口から抜き出された液体を冷却する冷却器(8)、圧力調整器(9)、冷却後の液体と水を分離する為のガラス製油水分離器(10)を設置した(冷却器(8)と圧力調整器(9)と油水分離器(10)が気液分離部である)。又、気液分離部で気体と分離された液体を、リサイクル液体(11)として触媒充填部(5)へ導入して、還元反応を行った。
最初に窒素をマスフローコントローラーを通じて90Nml/min、リサイクル液体(水分濃度が330重量ppmのリサイクルエチルベンゼン)を750g/hr供給し、反応器内の圧力を0.5MPaになるように圧力調整器で調整した。液体の流出を確認後、触媒充填部(5)の入口部の予熱器の温度を上げ、触媒充填部(5)の入口温度が150℃を超えないように温度調整を行った。
温度を150℃に調整した後に、液体(水分濃度が330重量ppmのエチルベンゼン)を50g/hr、続いて、メタンの濃度が16体積%であるメタンと水素の混合ガスを90Nml/minで供給し、窒素ガスをストップした。この時点を還元反応の開始時刻(時刻0)として、触媒充填部(5)を加熱し、触媒充填部(5)の温度を150℃に維持して還元反応を開始した。開始後(時刻0から)2時間おきに油水分離器(10)に回収された水の重量と、リサイクル液中の水分濃度を測定したところ、触媒充填部(5)から抜き出された液体の水分濃度は980重量ppmと計算された。最終的には18時間の還元反応を行った。還元率は58%と計算された。窒素雰囲気下で触媒を抜き出し、窒素で触媒を乾燥した後、触媒充填部(5)の中間部の触媒について乳鉢ですりつぶし、Rigaku ultraX−18(電圧;50kv、電源;100mA、XRay Cu−Kα)でXRD分析を行った。Cu0の結晶子サイズについて測定した結果2θ=43.3度、123Åであった。また、触媒強度についても、XRD同様に触媒充填部(5)の中間部の触媒を選択し、Fujiwara Hardness Testerで測定を行ったところ、18(N)であった。結果については表1に示す。
Next, the present invention will be described with reference to examples.
Example 1
A catalyst (diameter 1.4 mmφ, length 4) containing 63% by weight of copper oxide in a temperature sheath tube (outer diameter: 3 mmφ) set in a tube made of SUS-316L (inner diameter: 14 mmφ, length: 1200 mmL). ˜8 mm cylindrical shape) was filled with 125 g (filling length: 1000 mm) (catalyst filling portion (5)). A cooler (8) for cooling the liquid extracted from the catalyst filling unit outlet, a pressure regulator (9), and a glass oil / water separator (10) for separating the cooled liquid and water were installed (cooling). (8), pressure regulator (9), and oil-water separator (10) are gas-liquid separators). Further, the liquid separated from the gas in the gas-liquid separation part was introduced into the catalyst filling part (5) as a recycle liquid (11) to carry out a reduction reaction.
First, nitrogen was supplied through a mass flow controller at 90 Nml / min and a recycle liquid (recycled ethylbenzene having a moisture concentration of 330 ppm by weight) was supplied at 750 g / hr, and the pressure inside the reactor was adjusted to 0.5 MPa with a pressure regulator. . After confirming the outflow of the liquid, the temperature of the inlet of the catalyst filling section (5) was raised and the temperature was adjusted so that the inlet temperature of the catalyst filling section (5) did not exceed 150 ° C.
After adjusting the temperature to 150 ° C., liquid (ethylbenzene having a water concentration of 330 ppm by weight) is supplied at 50 g / hr, and then a mixed gas of methane and hydrogen with a methane concentration of 16% by volume is supplied at 90 Nml / min. Nitrogen gas was stopped. With this time as the start time (time 0) of the reduction reaction, the catalyst filling portion (5) was heated, and the temperature of the catalyst filling portion (5) was maintained at 150 ° C. to start the reduction reaction. After the start (from time 0), the weight of water collected in the oil / water separator (10) every 2 hours and the water concentration in the recycle liquid were measured, and the liquid extracted from the catalyst filling section (5) was measured. The water concentration was calculated to be 980 ppm by weight. Finally, a reduction reaction was performed for 18 hours. The reduction rate was calculated as 58%. After extracting the catalyst under nitrogen atmosphere and drying the catalyst with nitrogen, the catalyst in the middle part of the catalyst filling part (5) is ground in a mortar, Rigaku ultraX-18 (voltage: 50 kv, power supply: 100 mA, XRay Cu-Kα) XRD analysis was performed. The measurement result of the crystallite size of Cu 0 was 2θ = 43.3 ° and 123 °. Further, the catalyst strength was 18 (N) when an intermediate catalyst in the catalyst packed portion (5) was selected as in XRD and measured with Fujiwara Hardness Tester. The results are shown in Table 1.

還元率の計算:生成水重量(g)÷理論生成水重量(g)
理論生成水重量(g):触媒重量×CuO濃度÷100÷CuO分子量×水分子量
CuO濃度:63(重量%)
CuO分子量:79.5(g/mol)
水分子量:18.0(g/mol)
Calculation of reduction rate: weight of generated water (g) ÷ theoretically generated water weight (g)
Theoretical water weight (g): catalyst weight × CuO concentration ÷ 100 ÷ CuO molecular weight × water molecular weight CuO concentration: 63 (% by weight)
CuO molecular weight: 79.5 (g / mol)
Water molecular weight: 18.0 (g / mol)

水分濃度(重量ppm)
in:平沼 AQ−6カールフィッシャーにて測定
out:(液体流量(g/h)×out液体中の水分濃度(重量ppm)÷10
+水生成流量(g/h))÷液体流量(g/h)×10
Water concentration (ppm by weight)
in: measured by Hiranuma AQ-6 Karl Fischer out: (liquid flow rate (g / h) × out water concentration in liquid (weight ppm) ÷ 10 6
+ Water production flow rate (g / h)) ÷ liquid flow rate (g / h) × 10 6

結晶子サイズ(Å):Rigaku ultraX−18
(電圧;50kv、電源;100mA、XRay Cu−Kα)
Scherrerの式による
Crystallite size (Å): Rigaku ultraX-18
(Voltage: 50 kv, power supply: 100 mA, XRay Cu-Kα)
According to Scherrer's formula

触媒強度(N):Fujiwara Hardness Tester
触媒20個の横方向の平均強度(長さ4.5mm以上)
Catalyst strength (N): Fujiwara Hardness Tester
20 horizontal average strength of catalyst (length 4.5mm or more)

実施例2
還元時間を100時間とした以外は実施例1と同様に還元反応を行った。約46時間までにほぼ理論量の生成水が留出したが、その後、100時間まで、同一条件で還元反応を行った。還元反応開始(時刻0)から46時間で触媒充填部(5)出口の液体の水分濃度は960重量ppm、還元率は101%と計算され、結晶子サイズ109Å、触媒強度は17Nであった。
Example 2
The reduction reaction was performed in the same manner as in Example 1 except that the reduction time was 100 hours. Almost the theoretical amount of produced water was distilled off by about 46 hours, and then the reduction reaction was carried out under the same conditions until 100 hours. After 46 hours from the start of the reduction reaction (time 0), the water concentration of the liquid at the outlet of the catalyst filling section (5) was calculated to be 960 ppm by weight, the reduction rate was calculated to be 101%, the crystallite size was 109 kg, and the catalyst strength was 17N.

実施例3
還元温度を120℃、還元時間を49時間とした以外は実施例1と同様に還元反応を行った。この時の触媒充填部(5)出口の液体の水分濃度は620重量ppm、還元率は56%と計算され、結晶子サイズ114Å、触媒強度は18Nであった。
Example 3
The reduction reaction was performed in the same manner as in Example 1 except that the reduction temperature was 120 ° C. and the reduction time was 49 hours. At this time, the water concentration of the liquid at the outlet of the catalyst filling portion (5) was calculated to be 620 ppm by weight, the reduction rate was calculated to be 56%, the crystallite size was 114 kg, and the catalyst strength was 18N.

実施例4
還元圧力を0.9Mpa、還元時間を16時間とした以外は実施例1と同様に還元反応を行った。この時の触媒充填部(5)出口の液体の水分濃度は1100重量ppm、還元率は56%と計算され、結晶子サイズ131Å、触媒強度は21Nであった。
Example 4
The reduction reaction was performed in the same manner as in Example 1 except that the reduction pressure was 0.9 Mpa and the reduction time was 16 hours. At this time, the liquid concentration at the outlet of the catalyst filling portion (5) was calculated to be 1100 ppm by weight, the reduction rate was calculated to be 56%, the crystallite size was 131 kg, and the catalyst strength was 21N.

比較例1
還元温度を210℃、還元時間を6時間とした以外は実施例1と同様に還元反応を行った。この時の触媒充填部(5)出口の液体の水分濃度は1840重量ppm、還元率は52%と計算され、結晶子サイズ177Å、触媒強度は24Nであった。
Comparative Example 1
A reduction reaction was performed in the same manner as in Example 1 except that the reduction temperature was 210 ° C. and the reduction time was 6 hours. At this time, the water concentration of the liquid at the outlet of the catalyst filling portion (5) was calculated to be 1840 ppm by weight, the reduction rate was calculated to be 52%, the crystallite size was 177 mm, and the catalyst strength was 24N.

比較例2
水を1.2g/h供給し、入口の水分濃度を1830重量ppmとして、還元時間を37時間とした以外は実施例1と同様に還元反応を行った。この時の触媒充填部(5)出口の液体の水分濃度は2350重量ppm、還元率は72%と計算され、結晶子サイズ188Å、触媒強度は17Nであった。
Comparative Example 2
The reduction reaction was performed in the same manner as in Example 1 except that 1.2 g / h of water was supplied, the water concentration at the inlet was 1830 ppm by weight, and the reduction time was 37 hours. At this time, the water concentration of the liquid at the outlet of the catalyst filling portion (5) was calculated to be 2350 ppm by weight, the reduction rate was calculated to be 72%, the crystallite size was 188 kg, and the catalyst strength was 17N.

比較例3
水を2.4g/h供給し、入口の水分濃度を3300重量ppmとして、還元圧力を0.9MPa、還元時間を32時間とした以外は実施例1と同様に還元反応を行った。この時の触媒充填部(5)出口の液体の水分濃度は3980重量ppm、還元率は83%と計算され、結晶子サイズ289Å、触媒強度は2Nであった。
Comparative Example 3
A reduction reaction was performed in the same manner as in Example 1 except that water was supplied at 2.4 g / h, the water concentration at the inlet was 3300 ppm by weight, the reduction pressure was 0.9 MPa, and the reduction time was 32 hours. At this time, the moisture concentration of the liquid at the outlet of the catalyst filling portion (5) was calculated to be 3980 ppm by weight, the reduction rate was 83%, the crystallite size was 289 kg, and the catalyst strength was 2N.

Figure 2011005388
比較例1、比較例2、比較例3から、触媒充填部(5)出口の液体の水分濃度が1500重量ppmを超えると、結晶サイズが大きくなり、銅のシンタリングが起き、活性が低下したり、触媒強度が低下したりしていることが分かる。
Figure 2011005388
From Comparative Example 1, Comparative Example 2, and Comparative Example 3, when the water concentration of the liquid at the outlet of the catalyst filling part (5) exceeds 1500 ppm by weight, the crystal size increases, copper sintering occurs, and the activity decreases. It can be seen that the catalyst strength is reduced.

(1)窒素
(2)水素
(3)液体
(4)水
(5)触媒充填部
(6)予熱器
(7)熱電対
(8)冷却器
(9)圧力調整器
(10)油水分離器
(11)リサイクル液体
(12)リサイクルポンプ
(13)vent gas
(14)パージ
(1) Nitrogen (2) Hydrogen (3) Liquid (4) Water (5) Catalyst filling section (6) Preheater (7) Thermocouple (8) Cooler (9) Pressure regulator (10) Oil-water separator ( 11) Recycled liquid (12) Recycle pump (13) Vent gas
(14) Purge

Claims (4)

酸化銅含有触媒が充填された触媒充填部と気液分離部を備える反応器を用いて、触媒充填部に水素を含む気体と液体を導入し、触媒充填部出口から抜き出された水素を含む気体と液体を気液分離部に導入し、導入された水素を含む気体と液体を気液分離部で分離し、分離された液体を触媒充填部に導入する酸化銅含有触媒を還元する方法であって、触媒充填部出口の液体の水分濃度を1500重量ppm以下とする酸化銅含有触媒の還元方法。   Using a reactor equipped with a catalyst filling part filled with a copper oxide-containing catalyst and a gas-liquid separation part, a gas and a liquid containing hydrogen are introduced into the catalyst filling part, and the hydrogen extracted from the catalyst filling part outlet is contained. In this method, gas and liquid are introduced into the gas-liquid separator, the gas and liquid containing hydrogen are separated at the gas-liquid separator, and the separated liquid is introduced into the catalyst filling unit to reduce the copper oxide-containing catalyst. A method for reducing a copper oxide-containing catalyst, wherein the water concentration of the liquid at the catalyst filling portion outlet is 1500 ppm by weight or less. 気液分離部が冷却器を備える反応器を用いて、冷却器で触媒充填部出口から抜き出された液体を冷却して、液体に含まれる水分を低減し、水素を含む気体と液体を分離し、分離された液体を触媒充填部に導入する請求項1に記載の酸化銅含有触媒の還元方法。   Using a reactor in which the gas-liquid separator is equipped with a cooler, the cooler cools the liquid extracted from the outlet of the catalyst filling unit, reduces the moisture contained in the liquid, and separates the gas containing hydrogen from the liquid The method for reducing a copper oxide-containing catalyst according to claim 1, wherein the separated liquid is introduced into the catalyst filling portion. 触媒充填部出口から抜き出された液体に含まれる水分を、水素を含む気体に同伴させて低減し、水素を含む気体と液体を分離し、分離された液体を触媒充填部に導入する請求項1に記載の酸化銅含有触媒の還元方法。   The water contained in the liquid extracted from the catalyst filling unit outlet is reduced by entraining the gas containing hydrogen, separating the gas containing hydrogen and the liquid, and introducing the separated liquid into the catalyst filling unit. 2. A method for reducing a copper oxide-containing catalyst according to 1. 触媒充填部に、または触媒充填部出口から抜き出された液体に、乾燥した不活性ガスを導入し、触媒充填部出口から抜き出された液体に含まれる水分を、水素を含む気体および導入した不活性ガスに同伴させて低減し、水素を含む気体と液体を分離し、分離された液体を触媒充填部に導入する請求項1に記載の酸化銅含有触媒の還元方法。   A dry inert gas was introduced into the catalyst filling part or into the liquid withdrawn from the catalyst filling part outlet, and moisture contained in the liquid withdrawn from the catalyst filling part outlet was introduced with hydrogen-containing gas and The method for reducing a copper oxide-containing catalyst according to claim 1, wherein the gas is reduced by entraining with an inert gas, a gas containing hydrogen and a liquid are separated, and the separated liquid is introduced into the catalyst filling portion.
JP2009149536A 2009-06-24 2009-06-24 Method of reducing catalyst containing copper oxide Pending JP2011005388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009149536A JP2011005388A (en) 2009-06-24 2009-06-24 Method of reducing catalyst containing copper oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009149536A JP2011005388A (en) 2009-06-24 2009-06-24 Method of reducing catalyst containing copper oxide

Publications (1)

Publication Number Publication Date
JP2011005388A true JP2011005388A (en) 2011-01-13

Family

ID=43562699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009149536A Pending JP2011005388A (en) 2009-06-24 2009-06-24 Method of reducing catalyst containing copper oxide

Country Status (1)

Country Link
JP (1) JP2011005388A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105709858A (en) * 2014-12-01 2016-06-29 神华集团有限责任公司 Catalyst continuous reducing apparatus and method
CN108043414A (en) * 2017-12-06 2018-05-18 万华化学集团股份有限公司 Hydrogenation of acetophenone prepares the catalyst of alpha-phenyl ethyl alcohol, preparation method and application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105709858A (en) * 2014-12-01 2016-06-29 神华集团有限责任公司 Catalyst continuous reducing apparatus and method
CN108043414A (en) * 2017-12-06 2018-05-18 万华化学集团股份有限公司 Hydrogenation of acetophenone prepares the catalyst of alpha-phenyl ethyl alcohol, preparation method and application
CN108043414B (en) * 2017-12-06 2019-07-30 万华化学集团股份有限公司 Hydrogenation of acetophenone prepares the catalyst of alpha-phenyl ethyl alcohol, preparation method and application

Similar Documents

Publication Publication Date Title
CN100500659C (en) Process for the purification of crude propene oxide
JP5823873B2 (en) Process for increasing the carbon monoxide content in a synthesis gas mixture
CN102408305B (en) Catalytic conversion method of ketone and alcohol
JP2017534624A (en) Integration of syngas production by steam reforming and dry reforming
JP5197637B2 (en) Method for producing 2-propanol
US20130303811A1 (en) Gas treatment process
US20010016671A1 (en) Reduction-treated copper-based catalyst and process for producing alpha-phenylethyl alcohol using the same
JP2011005388A (en) Method of reducing catalyst containing copper oxide
CN104230635B (en) The method of hydrogenation of acetophenone ethylbenzene processed
JP5834143B2 (en) 7-Octenal Production Method
Abdullah et al. Synthesis of Ni/SBA-15 for CO2 reforming of CH4: Utilization of palm oil fuel ash as silica source
Zhang et al. An efficient noble-metal-free supported copper catalyst for selective nitrocyclohexane hydrogenation to cyclohexanone oxime
Qingyin et al. Solvent-free thermal decomposition of methylenediphenyl di (phenylcarbamate) catalyzed by nano-Cu2O
WO2005030683A1 (en) Process for producing cumene and process for propylene oxide production including the production process
ES2403854T3 (en) Procedure for the hydrogenation of alkylaryl ketones
US9290699B2 (en) Process for synthesizing hydrocarbons from synthesis gas with control of the temperature of the external loop
JP4385700B2 (en) Propylene oxide production method
JP2002155004A (en) Method for producing dimethyl ether
CA2798971C (en) Process for preparing 2-(2-tert-butylaminoethoxy)ethanol (tert-butylaminodiglycol, tbadg)
JP2011231048A (en) Method of hydrogenating alkyl aryl ketone
JP2023167854A (en) Acetone hydrogenation catalyst and method for producing isopropanol
WO2005030745A1 (en) Method for producing propyleneoxide
JP2005097185A (en) Method for producing propylene oxide
US20060100468A1 (en) Method for hydrogenating olefin
JPH09249599A (en) Production of alpha-phenylethyl alcohol