JP2011004609A - Aspergillus sp. lacking function of gene encoding alpb and utilization thereof - Google Patents

Aspergillus sp. lacking function of gene encoding alpb and utilization thereof Download PDF

Info

Publication number
JP2011004609A
JP2011004609A JP2009148348A JP2009148348A JP2011004609A JP 2011004609 A JP2011004609 A JP 2011004609A JP 2009148348 A JP2009148348 A JP 2009148348A JP 2009148348 A JP2009148348 A JP 2009148348A JP 2011004609 A JP2011004609 A JP 2011004609A
Authority
JP
Japan
Prior art keywords
koji
alpb
strain
gene
aspergillus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009148348A
Other languages
Japanese (ja)
Other versions
JP5305353B2 (en
Inventor
Jun Watabe
潤 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamasa Shoyu KK
Original Assignee
Yamasa Shoyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamasa Shoyu KK filed Critical Yamasa Shoyu KK
Priority to JP2009148348A priority Critical patent/JP5305353B2/en
Publication of JP2011004609A publication Critical patent/JP2011004609A/en
Application granted granted Critical
Publication of JP5305353B2 publication Critical patent/JP5305353B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Alcoholic Beverages (AREA)
  • Soy Sauces And Products Related Thereto (AREA)
  • Seasonings (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide Aspergillus sp. which can efficiently inhibit the scattering of spores from the malted rice in a process for producing a malt or the like, and to provide a method for utilizing the same.SOLUTION: There are provided the Aspergillus sp. which lacks the function of a gene encoding subtilisin-related protease alpB, has a remarkably lower spore-forming ability than that of a parent strain, has total protease activity equal to or larger than that of the parent strain hardly scattering spores, and is therefore extremely practical for the production of fermented seasonings; and the method for utilizing the same.

Description

本発明は、サブチリシンリレーテッドプロテアーゼalpBをコードする遺伝子の機能を欠損した麹菌、および該麹菌を用いて麹または調味料を製造する方法に関するものである。 The present invention relates to a koji mold lacking the function of a gene encoding subtilisin-related protease alpB, and a method for producing koji or a seasoning using the koji mold.

焼酎、清酒、みりん、味噌、醤油等の調味料の製造では、アスペルギルス・カワチ(Aspergillus kawachii)、アスペルギルス・アワモリ(A.awamori)、アスペルギルス・ニガー(A.niger)、アスペルギルス・オリゼー(A.oryzae)といった麹菌が用いられている。 In the production of seasonings such as shochu, sake, mirin, miso and soy sauce, Aspergillus kawachii, Aspergillus awamori, A. niger and Aspergillus oryzae y. ) Is used.

麹菌は、各種酵素の生産に適しており、その用途に応じて、その各種酵素系の発現に適した製麹方法が採られている。例えば醤油の製造においては、蒸煮した穀類等の固体原料に麹菌の胞子を散布し、その表面で麹菌を増殖させることによって製麹を行っている。 Aspergillus is suitable for the production of various enzymes, and a koji making method suitable for the expression of the various enzyme systems is adopted depending on the use. For example, in the production of soy sauce, koji molds are produced by spraying koji mold spores on a solid raw material such as cooked cereal and allowing the koji mold to grow on the surface.

麹の原料となる大豆、小麦、米の種類により、また、それらのα化度、水分量により、製麹中の温度、湿度、培養時間、手入れ条件、通風・換気条件等のさまざまな製麹条件を調整して、各種酵素を効率よく産生させるように管理するのが一般的である。 Various types of koji making, such as temperature, humidity, incubation time, maintenance conditions, ventilation / ventilation conditions, etc., depending on the type of soybean, wheat, and rice used for koji, as well as their pregelatinization and moisture content In general, the conditions are adjusted so that various enzymes are efficiently produced.

製麹過程において麹菌は、生育するに従い多量の胞子を着生するために、大量の胞子が空気中に飛散する。この飛散した胞子が調味料製造の作業環境を悪化させ、あるいは胞子が作業者の体内に入ることによってアレルギーを引き起こす原因物質となるおそれのあることは、従来問題とされてきた。 As the koji mold grows during the koji making process, a large amount of spores are formed, so that a large amount of spores are scattered in the air. It has been a problem in the past that these scattered spores may worsen the work environment for producing seasonings, or may be a causative substance that causes allergies when they enter the body of the worker.

上記問題を解決するため、従来、集塵機を用いて胞子を空気と共に排除したり、密閉式ベルトコンベア内で麹に液体を散布するなど物理的な方法で飛散した胞子を除去する方法や、長毛の麹菌と短毛の麹菌をブレンドした種麹を用いて製麹することで分生子の着生を抑制する方法が報告されている(非特許文献1)。 In order to solve the above-mentioned problem, conventionally, a method of removing spores scattered by a physical method such as removing spores together with air using a dust collector, or spraying liquid on a bag in a sealed belt conveyor, There has been reported a method for suppressing the conidia formation by making a koji using a seed koji blended with koji mold and short koji mold (Non-patent Document 1).

しかしながら、麹の製造工程において多量の胞子が空気中に飛散する問題を解決する手段として、従来、飛散した胞子を大型換気扇、集塵機、密閉式のベルトコンベアや散水装置などの設備を用いて除去するなどの方法が知られてきたが、当該方法では、胞子を完全に除去することは不可能である上に、大型設備の導入や運転には多大なコストが必要であって、実用的な方法であるとは言えなかった。 However, as a means of solving the problem that a large amount of spores are scattered in the air in the manufacturing process of the soot, conventionally, the scattered spores are removed using facilities such as a large ventilation fan, a dust collector, a sealed belt conveyor and a watering device. However, in this method, it is impossible to completely remove spores, and a large cost is required for the introduction and operation of large-scale equipment. I could not say that.

また、長毛の麹菌と短毛の麹菌を混和して使用する方法についても、胞子の飛散を抑制することはできるものの、完全に防除することは困難であった。 In addition, the method using a mixture of long hair koji molds and short hair koji molds, although suppressing spore scattering, is difficult to completely control.

一方、アスペルギルス・オリゼーなどの糸状菌は、ゲノム中にalpA、alpBと呼ばれる2種のサブチリシンリレーテッドプロテアーゼをコードする遺伝子を保持することが知られており、糸状菌においてアルカリプロテアーゼ遺伝子を欠損させると、総プロテアーゼ活性が低下し、結果、当該糸状菌を用いて異種タンパク質を合成する際にもタンパク質の分解が生じないために、遺伝子組換え等によって目的のタンパク質を高収量に獲得できるような糸状菌を作製できることが報告されている(特許文献1)。 On the other hand, filamentous fungi such as Aspergillus oryzae are known to retain genes encoding two subtilisin-related proteases called alpA and alpB in the genome, and the alkaline protease gene is deficient in filamentous fungi. As a result, the total protease activity decreases, and as a result, protein degradation does not occur when synthesizing a heterologous protein using the filamentous fungus, so that the target protein can be obtained in a high yield by genetic recombination or the like. It has been reported that a filamentous fungus can be produced (Patent Document 1).

しかしながら、記載されている遺伝子の塩基配列の比較を行ったところ、上記文献に記載の麹菌は、2種のサブチリシンリレーテッドプロテアーゼのうち、alpA遺伝子だけを欠損させたものであって、alpB遺伝子を欠損させた場合にどのような表現型を持つ糸状菌が得られるかついては、これまで全く知られていなかった。 However, when the nucleotide sequences of the described genes were compared, the koji mold described in the above document was obtained by deleting only the alpA gene from the two subtilisin related proteases, What kind of phenotypes of filamentous fungi can be obtained when a gene is deleted has never been known.

本発明者は、alpA遺伝子の機能を欠損した麹菌株の様々な形質を検討したところ、実施例に詳述しているように、上記alpA欠損株は、親株と比較して胞子形成能がほとんど低下しておらず、また総プロテアーゼ活性も著しく低下しているものであり、醸造食品等の製造等に応用するには全く適さないものであった。 The present inventor examined various traits of a koji strain deficient in the function of the alpA gene. As described in detail in the Examples, the alpA-deficient strain has almost no spore-forming ability compared to the parent strain. It was not reduced, and the total protease activity was remarkably reduced, and it was completely unsuitable for application to the production of brewed foods and the like.

特表2000−507106Special table 2000-507106

日本醸造協会誌 Vol.92 860−867、1997Journal of Japan Brewing Association Vol. 92 860-867, 1997

このように、麹菌の胞子形成を抑制し、かつ調味料製造に影響を及ぼさない麹菌の育種に関しては、従来全く報告されていないのが現状である。そこで、本発明の目的は、製麹等の過程における麹からの胞子の飛散を効率的に抑制でき、かつ醸造食品の製造に適した麹菌を育種し、当該麹菌を用いた麹及び調味料の製造法を提供するものである。 Thus, the present condition has not been reported at all about the breeding of the koji mold which suppresses the sporulation of koji mold and does not affect the seasoning production. Therefore, an object of the present invention is to efficiently breed spores suitable for the production of brewed foods, which can efficiently suppress spore scattering from the koji in the process of koji making and the like. A manufacturing method is provided.

本発明者は、麹菌の育種に関し、種々検討を重ねる過程で、麹菌ゲノム中の2種のサブチリシンリレーテッドプロテアーゼ(alpA、alpB)のサブチリシンリレーテッドプロテアーゼalpBをコードする遺伝子の機能のみを欠損させると、(1)alpAをコードする遺伝子の機能を欠損させた場合とは全く異なって、親株よりも胞子形成能が著しく低下し、調味料製造の過程において胞子をほぼ飛散することがないこと、しかも(2)当該麹菌株は、全く意外なことに親株に比べて著しく高い総プロテアーゼ活性を有しており、調味料製造においても、原料の歩留まりの向上を期待できるなど、きわめて実用的な麹菌であることを見出し、本発明を完成するに至った。 The present inventor, in the course of various studies regarding the gonococcal breeding, only functions of the genes encoding the subtilisin-related protease alpB of the two subtilisin-related proteases (alpA, alpB) in the gonococcal genome. (1) completely different from the case where the function of the gene encoding alpA is deficient, the spore-forming ability is significantly lower than that of the parent strain, and the spores are almost scattered in the seasoning production process. (2) The koji strain has a surprisingly high total protease activity compared to the parent strain, and it can be expected to improve the yield of raw materials in the production of seasonings. As a result, the present invention was completed.

したがって、本発明は以下の通りである。   Therefore, the present invention is as follows.

(1) サブチリシンリレーテッドプロテアーゼalpBをコードする遺伝子の機能が欠損している麹菌。
(2) ゲノムDNA中に2種のサブチリシンリレーテッドプロテアーゼ(alpA、alpB)をコードする遺伝子を保有する麹菌のalpBをコードする遺伝子のみを欠損させ、麹汁培地上で胞子を形成せず白色のコロニーを形成する株を選抜する方法で得られる、(1)記載の麹菌。
(3) 麹菌がアスペルギルス・オリゼー(Aspergillus oryzae)である(1)に記載の麹菌。
(4) (1)に記載の麹菌を用いて製麹することを特徴とする麹の製造法。
(5) (1)に記載の麹菌を用いて麹を調製し、その麹を用いて常法により仕込みし、発酵、熟成せしめることを特徴とする調味料の製造法。
(1) Aspergillus oryzae deficient in the function of the gene encoding the subtilisin-related protease alpB.
(2) In the genomic DNA, only the gene encoding the alpB of Aspergillus oryzae carrying the genes encoding two subtilisin-related proteases (alpA and alpB) is deleted, and no spores are formed on the broth medium. The koji mold according to (1), which is obtained by a method of selecting a strain that forms a white colony.
(3) The koji mold according to (1), wherein the koji mold is Aspergillus oryzae.
(4) A method for producing koji, wherein the koji is produced using the koji mold described in (1).
(5) A method for producing a seasoning, comprising preparing a koji using the koji mold described in (1), charging the koji using a koji method, and fermenting and aging the koji.

本発明の麹菌は、胞子形成能が著しく低下しており、食品の醸造工程において、大規模な設備の導入を行わずとも胞子の飛散をほぼ完全に抑制できる。一方で、当該麹菌は高い総プロテアーゼ活性をも有していることから、調味料の効率的な製造に寄与し、産業上の利用可能性が非常に高いものである。また、胞子を飛散させる事がないことから、固体培養による組換えタンパク質の大量発現などを行わせる際にも、組換え遺伝子を含む胞子を管理区域外に放散させる危険性がなく、宿主菌株として安全に用いることができる。 The gonococcus of the present invention has a markedly reduced spore-forming ability and can almost completely suppress spore scattering without introducing a large-scale facility in the food brewing process. On the other hand, since the koji mold also has a high total protease activity, it contributes to the efficient production of seasonings and has very high industrial applicability. In addition, since spores are not scattered, there is no risk of releasing spores containing recombinant genes out of the control area when large-scale expression of recombinant proteins by solid culture is performed. It can be used safely.

図1は、実施例で行ったalpB遺伝子破壊ベクターの作成工程を模式的に表したものである。FIG. 1 schematically shows the steps of creating an alpB gene disruption vector performed in the examples. 図2は、育種した麹菌の生育速度を親株と比較した結果である。◆は親株、□はalpA遺伝子破壊株、△はalpB遺伝子破壊株における測定値を示す。FIG. 2 shows the results of comparison of the growth rate of the gonococci bred with the parent strain. ♦ indicates the measured value in the parent strain, □ indicates the alpA gene-disrupted strain, and Δ indicates the alpB gene-disrupted strain. 図3は、親株とalpA破壊株(ΔalpA)、alpB破壊株(ΔalpB)それぞれの麹菌の総プロテアーゼ活性(unit/ml)比較した結果を示す。FIG. 3 shows the results of comparison of the total protease activity (unit / ml) of the koji molds of the parent strain, the alpA-disrupted strain (ΔalpA), and the alpB-disrupted strain (ΔalpB).

本発明において親株として用いられる麹菌とは、そのゲノムDNA中に2種のサブチリシンリレーテッドプロテアーゼ(alpA、alpB)をコードする遺伝子を保有する麹菌であれば、いずれも使用可能である。具体的には、焼酎、清酒、みりん、醤油、味噌等の調味料の製造に使用可能で、プロテアーゼ活性を有するアスペルギルス属に属する麹菌であれば特に限定はされず、アスペルギルス・カワチ、アスペルギルス・アワモリ、アスペルギルス・ニガー、アスペルギルス・オリゼー、アスペルギルス・ソーヤ等が好ましい。中でも特に好ましいのはアスペルギルス・オリゼー、アスペルギルス・ソーヤである。さらに、上記の麹菌株を親株として、人為的に改変された遺伝子組換え株、あるいは天然に存在する変異株なども用いることができる。 As the gonococcus used as a parent strain in the present invention, any gonococcus having genes encoding two subtilisin-related proteases (alpA, alpB) in its genomic DNA can be used. Specifically, it is not particularly limited as long as it is a koji mold belonging to the genus Aspergillus that can be used in the production of seasonings such as shochu, sake, mirin, soy sauce, miso, etc., and Aspergillus kawachi, Aspergillus awamori Aspergillus niger, Aspergillus oryzae, Aspergillus soya and the like are preferable. Of these, Aspergillus oryzae and Aspergillus soya are particularly preferred. Furthermore, an artificially modified genetically modified strain or a naturally occurring mutant strain can be used with the above koji strain as a parent strain.

本発明において、サブチリシンリレーテッドプロテアーゼをコードするalpB遺伝子は、ゲノムデータベースDOGAN(http://www.bio.nite.go.jp/dogan/MicroTop?GENOME_ID=ao)において定義される。すなわち、IDがAO090003001036である遺伝子がalpA、AO090020000517である遺伝子がalpBである。 In the present invention, the alpB gene encoding a subtilisin-related protease is defined in the genome database DOGAN (http://www.bio.nite.go.jp/dogan/MicroTop?GENOME_ID=ao). That is, the gene whose ID is AO090003001036 is alpA, and the gene whose ID is AO090020000517 is alpB.

本願発明における、サブチリシンリレーテッドプロテアーゼalpBをコードする遺伝子の機能が欠損している麹菌とは、相同組換えによる遺伝子破壊法または変異導入法によってalpBをコードする遺伝子の機能が失われた麹菌株のことを指す。 In the present invention, the koji mold lacking the function of the gene encoding the subtilisin-related protease alpB is a koji mold in which the function of the gene encoding alpB has been lost by homologous recombination or mutagenesis. It refers to a stock.

相同組み換えによる遺伝子破壊法としては、公知の方法を用いることができる。たとえば、alpB遺伝子の断片もしくはその上流・下流の領域とマーカー遺伝子とを組み合わせたDNA断片をベクターに組み込み、プロトプラスト−PEG法やエレクトロポレーション法などによってベクターを糸状菌に取り込ませ、相同組み換えによって当該DNA断片を糸状菌のゲノム中に導入する方法などを挙げられる。DNA断片を麹菌細胞中に取り込ませる他の方法としてはパーティクルガン法、アグロバクテリウム法、マイクロインジェクション法などが挙げられる。 A known method can be used as a gene disruption method by homologous recombination. For example, a fragment of the alpB gene or a DNA fragment that combines the upstream / downstream region and a marker gene is incorporated into a vector, the vector is incorporated into a filamentous fungus by the protoplast-PEG method, electroporation method, etc. Examples thereof include a method of introducing a DNA fragment into the genome of a filamentous fungus. Other methods for incorporating the DNA fragment into the gonococcal cell include the particle gun method, the Agrobacterium method, and the microinjection method.

相同組み換え法によって所期の遺伝子が麹菌に導入されたことを確認する方法としては、公知の方法を用いることができる。たとえば、遺伝子を導入する際に、親株として栄養要求性の突然変異株を、マーカー遺伝子として当該栄養要求性を補償するような機能を持つ遺伝子を用い、形質転換後に栄養要求性培地上で正常に生育した株を選抜する方法などが挙げられる。ただし、このような栄養要求性だけでは、目的とする遺伝子座が導入したマーカー遺伝子と置換されたかどうか確認できない。従って、栄養要求性に合わせて適宜PCR法、サザンハイブリダイゼーション法等を用いて、目的とする遺伝子座がマーカーによって置換されていることを確認する必要がある。 As a method for confirming that a desired gene has been introduced into koji mold by homologous recombination, a known method can be used. For example, when a gene is introduced, an auxotrophic mutant is used as a parent strain, and a gene having a function that compensates for the auxotrophy is used as a marker gene. For example, a method of selecting a grown strain can be mentioned. However, such auxotrophy alone cannot confirm whether the target gene locus has been replaced with the introduced marker gene. Therefore, it is necessary to confirm that the target gene locus has been replaced with a marker by using a PCR method, Southern hybridization method or the like as appropriate in accordance with auxotrophy.

また、変異導入法としては、公知の処理方法を用いることができ、紫外線、イオンビーム、放射線等を照射させる物理的方法、エチルメタンスルホネート、N−メチル−N’−ニトロ−N−ニトロソグアニジン、亜硝酸、アクリジン色素等の変異剤を用いる化学的方法がある。特に好ましくは、紫外線を照射させる方法を挙げることができる。 In addition, as a method for introducing mutation, a known treatment method can be used, such as a physical method of irradiating with ultraviolet rays, ion beams, radiation, etc., ethylmethanesulfonate, N-methyl-N′-nitro-N-nitrosoguanidine, There are chemical methods that use mutagens such as nitrous acid and acridine dyes. Particularly preferred is a method of irradiating with ultraviolet rays.

上記のような遺伝子破壊法、または変異導入法によってalpB遺伝子に変異、もしくは欠損が生じ、胞子形成能が著しく低下した株をスクリーニングする方法としては、麹汁培地上で胞子を形成せず白色のコロニーを形成する株を選抜し、選抜した候補株からゲノムDNAを抽出し、シークエンス解析で確認する方法などを挙げることができる。他の方法としては、コロニーハイブリダイゼーション法等を利用することができる。 As a method of screening for a strain in which the alpB gene has been mutated or deleted by the gene disruption method or the mutation introduction method as described above and the spore-forming ability has been significantly reduced, Examples include a method of selecting a strain that forms a colony, extracting genomic DNA from the selected candidate strain, and confirming it by sequence analysis. As another method, a colony hybridization method or the like can be used.

本発明において、胞子形成能の著しく低下した株とは、親株に比べて胞子数が1/10以下である麹菌株を指す。胞子数を測定する方法としては、たとえば胞子縣濁液を作成し、一定対数あたりの胞子数を血球計算盤で測定することで、プレート一枚当たりに形成された胞子数を算出するなどの方法などを挙げることができる。 In the present invention, the strain having significantly reduced spore-forming ability refers to a koji strain having a spore count of 1/10 or less compared to the parent strain. As a method of measuring the number of spores, for example, a method of calculating the number of spores formed per plate by creating a spore suspension and measuring the number of spores per fixed log with a hemocytometer And so on.

また、本発明における総プロテアーゼ活性が上昇した株とは、醤油原料培地などにおいて親株に比べて総プロテアーゼ活性が1.1倍以上向上した株を指す。なお、総プロテアーゼ活性の測定方法としては、通常用いられている方法を利用することができ、たとえば「しょう油試験法」(財団法人日本醤油研究所・編集発行)に記載の方法を用いることができる。 In addition, the strain having increased total protease activity in the present invention refers to a strain having a total protease activity improved by 1.1 times or more in the soy sauce raw material medium or the like as compared with the parent strain. In addition, as a measuring method of total protease activity, the method currently used normally can be utilized, for example, the method as described in "Shoyu test method" (The Japan Soy Sauce Research Institute edit edition) can be used. .

この様にして育種した麹菌を用いた麹の製法および当該麹を用いた調味料を製造する方法としては、公知の方法を用いることができる。たとえば、調味料として醤油を製造する場合においては、通常の麹原料、たとえば撒水して蒸煮した大豆原料と炒熬割砕した小麦原料の混合物に、上記のalpB遺伝子の機能が欠損した麹菌を接種混合して麹を調製し、得られた麹を通常の仕込みタンクに適当な濃度の食塩水で仕込み、適宜撹拌しつつ3〜6ヶ月間程度発酵熟成させて醤油諸味を得、常法により圧搾、精製、必要により火入れを行い、製品醤油(生醤油あるいは火入醤油)とすればよい。 As a method for producing a koji using the koji mold bred in this way and a method for producing a seasoning using the koji, known methods can be used. For example, in the case of producing soy sauce as a seasoning, inoculation with a koji mold lacking the function of the alpB gene in a mixture of a koji raw material, for example, a soy material that has been boiled and steamed, and a wheat koji material that has been cracked with fried rice Mix to prepare koji, and pour the obtained koji into a normal charging tank with a suitable concentration of saline, and ferment and mature for about 3 to 6 months with proper stirring to obtain soy sauce moromi. It can be refined and fired as necessary to produce product soy sauce (raw soy sauce or fired soy sauce).

以下、実施例において本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples.

実施例1
(1)相同組換え法によるalpA遺伝子破壊株およびalpB遺伝子破壊株の作成
alpA、alpBそれぞれの遺伝子破壊株の単離には、まず親株として、硫酸(硫黄源)を資化することのできない栄養要求性株である麹菌アスペルギルス・オリゼーΔligD株を用いた。なお、ΔligD株は、公知文献(Fungal Genet Biol.45(2008)、878−889)に従い、アスペルギルス・オリゼーRIB40株(ATCC42149)を元に作成された株である。また、マーカー遺伝子としては、硫酸(硫黄源)を資化する機能をもつアスペルギルス・ニドランスsC遺伝子(Mol Gen Genet.1995 May 20;247(4):423−429.)を用いた。
Example 1
(1) Preparation of alpA gene disruption strain and alpB gene disruption strain by homologous recombination method For isolation of each gene disruption strain of alpA and alpB, first, as a parent strain, nutrients that cannot assimilate sulfuric acid (sulfur source) The Neisseria gonorrhoeae Aspergillus oryzae ΔligD strain, which is a requirement strain, was used. The ΔligD strain is a strain prepared based on Aspergillus oryzae RIB40 strain (ATCC 42149) according to known literature (Fungal Genet Biol. 45 (2008), 878-889). As a marker gene, Aspergillus nidulans sC gene (Mol Gen Genet. 1995 May 20; 247 (4): 423-429.) Having a function to assimilate sulfuric acid (sulfur source) was used.

alpAまたはalpBが相同組み換えによって欠損した株は、マーカーであるsC遺伝子が導入されることによってΔligD株の栄養要求性が回復していることから、硫黄源として硫酸塩だけが含まれる培地においても生育することができる。このことから、alpA、またはalpB遺伝子破壊株を容易に単離することができる。 Strains lacking alpA or alpB by homologous recombination have grown in a medium containing only sulfate as a sulfur source since the auxotrophy of the ΔligD strain has been restored by introducing the sC gene as a marker. can do. From this, an alpA or alpB gene disruption strain can be easily isolated.

(1−1)alpA遺伝子破壊株の作成
alpA遺伝子コード領域の上流領域約1.5kbp(alpA ORF上流領域)から下流領域約1.5kbp(alpA ORF下流領域)までをプライマーAとBを用いてPCR法により増幅した。PCR反応にはKOD−Plus−(東洋紡ライフサイエンス)を用い、条件は附属のプロトコルに従った。以下で行うPCR反応についても、同様の条件を用いた。該増幅産物をベクターpENTR D/TOPO(インビトロジェン)に導入し、完成したベクターをプライマーCとDを用いて再度PCR法により増幅し、増幅断片「い」を得た。
(1-1) Preparation of an alpA gene disruption strain Using primers A and B from an upstream region of about 1.5 kbp (alpA ORF upstream region) to a downstream region of about 1.5 kbp (alpA ORF downstream region) of the alpA gene coding region Amplified by PCR. For the PCR reaction, KOD-Plus- (Toyobo Life Science) was used, and the conditions followed the attached protocol. The same conditions were used for the PCR reaction performed below. The amplified product was introduced into a vector pENTR D / TOPO (Invitrogen), and the completed vector was amplified again by the PCR method using primers C and D to obtain an amplified fragment “I”.

一方アスペルギルス・ニドランスのゲノムDNAを鋳型とし、sC遺伝子領域をプライマーEとFを用いてPCR法で増幅し、増幅断片「ろ」を得た。2つの増幅断片「い」と「ろ」とを、In−Fusion PCRクローニングキット(Clontech社)を用いて融合することで、alpA遺伝子破壊用コンストラクトを作成した(図1)。このベクターをNotI処理することで直鎖状のベクターとし、これをプロトプラスト−PEG法を用いて麹菌ΔligD株に導入した。 On the other hand, the Aspergillus nidulans genomic DNA was used as a template, and the sC gene region was amplified by PCR using primers E and F to obtain an amplified fragment “RO”. The amplA gene disruption construct was prepared by fusing the two amplified fragments “I” and “RO” using an In-Fusion PCR cloning kit (Clontech) (FIG. 1). This vector was treated with NotI to obtain a linear vector, which was introduced into Neisseria gonorrhoeae ΔligD using the protoplast-PEG method.

選択培地(グルコース1%、亜硝酸ナトリウム0.2%、リン酸2カリウム0.1%、硫酸マグネシウム0.05%、塩化カリウム0.5%、硫酸鉄0.001%、トレースエレメント0.1%、食塩4.68%)で生育した株を同培地に3回植え継いでalpA遺伝子破壊候補株を得た。これらの株から定法に従いゲノムDNAを抽出し、これを鋳型としてalpA遺伝子の増幅をPCR法でおこなった。alpA遺伝子が破壊されていた場合、alpA遺伝子の増幅は認められないため、増幅を認めない株を選抜してalpA遺伝子破壊株を取得した。 Selection medium (glucose 1%, sodium nitrite 0.2%, dipotassium phosphate 0.1%, magnesium sulfate 0.05%, potassium chloride 0.5%, iron sulfate 0.001%, trace element 0.1 %, Salt of 4.68%) was subcultured three times in the same medium to obtain an alpA gene disruption candidate strain. Genomic DNA was extracted from these strains according to a conventional method, and the alpA gene was amplified by PCR using this as a template. When the alpA gene was disrupted, amplification of the alpA gene was not observed. Therefore, a strain that did not recognize amplification was selected to obtain an alpA gene disrupted strain.

なお、本明細書中において「トレースエレメント」とは以下に示した組成の水溶液のことを指す。
トレースエレメント組成:硫酸鉄七水和物0.1%、硫酸亜鉛七水和物0.88%、硫酸銅五水和物0.04%、硫酸マンガン四水和物0.015%、四ホウ酸ナトリウム十水和物0.01%、七モリブデン酸六アンモニウム四水和物0.005%。
In this specification, “trace element” refers to an aqueous solution having the composition shown below.
Trace element composition: iron sulfate heptahydrate 0.1%, zinc sulfate heptahydrate 0.88%, copper sulfate pentahydrate 0.04%, manganese sulfate tetrahydrate 0.015%, tetraborate Sodium acetate decahydrate 0.01%, hexamolybdate hexammonium tetrahydrate 0.005%.

使用したプライマーの配列を表1に示した。   The primer sequences used are shown in Table 1.

Figure 2011004609
Figure 2011004609

(1−2)alpB遺伝子破壊株の作成
alpB遺伝子コード領域の上流領域約1.5kbp(alpB ORF上流領域)から下流領域約1.5kbp(alpB ORF下流領域)までをプライマー1と2を用いてPCR法により増幅した。該増幅断片をベクターpENTR D/TOPO(インビトロジェン)に導入し、完成したベクターを制限酵素NdeIサイト、SphIサイトを付加したプライマー3と4を用いて再度PCR法により増幅した。増幅断片を制限酵素NdeI、SphIで処理し、alpBのORF部分を欠損した直鎖状の配列(甲)を得た。
(1-2) Preparation of alpB gene disrupted strain Using primers 1 and 2 from the upstream region of about 1.5 kbp (alpB ORF upstream region) to the downstream region of about 1.5 kbp (alpB ORF downstream region) of the alpB gene coding region Amplified by PCR. The amplified fragment was introduced into a vector pENTR D / TOPO (Invitrogen), and the completed vector was amplified again by the PCR method using primers 3 and 4 added with restriction enzyme NdeI site and SphI site. The amplified fragment was treated with restriction enzymes NdeI and SphI to obtain a linear sequence (A) lacking the ORF part of alpB.

一方アスペルギルス・ニドランスのゲノムDNAを鋳型とし、sC遺伝子領域をNdeIサイト、SphIサイトを付加したプライマー5と6を用いてPCR法で増幅した後、pCRBluntベクターに導入し、NdeI、SphI処理し、sC領域断片(乙)を得た。甲と乙の各断片をDNAリガーゼを用いて融合することで、alpB遺伝子破壊用コンストラクトを作成した(図1)。このベクターをNotI処理して得られた直鎖状のベクターをプロトプラスト−PEG法を用いて麹菌ΔligD株に導入した。   On the other hand, the Aspergillus nidulans genomic DNA was used as a template, the sC gene region was amplified by PCR using primers 5 and 6 added with NdeI site and SphI site, introduced into pCRBlunt vector, treated with NdeI and SphI, and sC An area fragment (B) was obtained. A construct for alpB gene disruption was prepared by fusing each of the fragments of A and B using DNA ligase (FIG. 1). A linear vector obtained by treating NotI with this vector was introduced into Neisseria gonorrhoeae ΔligD using the protoplast-PEG method.

選択培地(グルコース1%、亜硝酸ナトリウム0.2%、リン酸2カリウム0.1%、硫酸マグネシウム0.05%、塩化カリウム0.5%、硫酸鉄0.001%、トレースエレメント0.1%、食塩4.68%)で生育した株を同培地に3回植え継ぎ、培地上で胞子を形成せず白色のコロニーを形成する株のみを選抜してalpB遺伝子破壊候補株とした。これらの株から定法に従いゲノムDNAを抽出し、これを鋳型としてalpB遺伝子の増幅をPCR法でおこなった。alpB遺伝子が破壊されていた場合、alpB遺伝子の増幅は認められないため、増幅を認めない株を選抜してalpB遺伝子破壊株を取得した。 Selection medium (glucose 1%, sodium nitrite 0.2%, dipotassium phosphate 0.1%, magnesium sulfate 0.05%, potassium chloride 0.5%, iron sulfate 0.001%, trace element 0.1 %, Salt of 4.68%) was inoculated three times in the same medium, and only strains that did not form spores and formed white colonies on the medium were selected as alpB gene disruption candidate strains. Genomic DNA was extracted from these strains according to a conventional method, and the alpB gene was amplified by PCR using this as a template. When the alpB gene was disrupted, amplification of the alpB gene was not observed. Therefore, a strain that did not recognize amplification was selected to obtain an alpB gene disrupted strain.

使用したプライマーの配列を表2に示した。   The primer sequences used are shown in Table 2.

Figure 2011004609
Figure 2011004609

(2)作成した遺伝子組換え株の形質の確認
上記(1)で作成したアスペルギルス・オリゼーalpA欠損株およびalpB欠損株について、胞子形成能、生育および総プロテアーゼ活性を確認した。
(2−1)胞子形成能
直径8cmのプラスチックシャーレに麹汁培地を作成し、親株と該麹菌を播種した。30℃で7日間培養した後、0.03%ツイーンを含む滅菌蒸留水20mlを加え、胞子を激しく縣濁し、ミラクロス(コスモバイオ社)でろ過することで、胞子縣濁液を得た。得られた胞子縣濁液の胞子数を血球計算盤で測定し、プレート一枚当たりに形成された胞子数を測定した。その結果、alpA遺伝子破壊株とは対照的に、alpB遺伝子破壊株はほとんど胞子を形成しないことが明らかとなった(表3)。なお表3中、ΔligDは親株、ΔalpAはalpA遺伝子破壊株、ΔalpBはalpB遺伝子破壊株をそれぞれ示す。
(2) Confirmation of the characteristics of the prepared genetically modified strain The spore-forming ability, growth and total protease activity of the Aspergillus oryzae alpA-deficient strain and the alpB-deficient strain prepared in (1) above were confirmed.
(2-1) Spore-forming ability A broth medium was prepared in a plastic petri dish having a diameter of 8 cm, and the parent strain and the koji mold were inoculated. After culturing at 30 ° C. for 7 days, 20 ml of sterile distilled water containing 0.03% tween was added, the spores were suspended vigorously, and filtered with Miracloth (Cosmo Bio) to obtain a spore suspension. The number of spores of the obtained spore suspension was measured with a hemocytometer, and the number of spores formed per plate was measured. As a result, in contrast to the alpA gene-disrupted strain, it was revealed that the alpB gene-disrupted strain hardly formed spores (Table 3). In Table 3, ΔligD represents a parent strain, ΔalpA represents an alpA gene disruption strain, and ΔalpB represents an alpB gene disruption strain.

Figure 2011004609
Figure 2011004609

(2−2)生育の確認
直径8cmのプラスチックシャーレに麹汁培地を作成し、親株と該麹菌をプレートの中央に播種した。30℃で24時間おきにコロニーの直径を測定した。その結果、親株であるΔligD株、alpA破壊株、alpB破壊株間で生育に差がないことが明らかとなった(図2)。
(2-2) Growth Confirmation A broth medium was prepared in a plastic petri dish having a diameter of 8 cm, and the parent strain and the koji mold were seeded at the center of the plate. Colony diameters were measured every 30 hours at 30 ° C. As a result, it became clear that there was no difference in growth among the parent strains ΔligD strain, alpA disrupted strain, and alpB disrupted strain (FIG. 2).

(2−3)製麹工程における胞子形成能の確認
脱脂大豆5gに8mlの滅菌蒸留水を散水し、5gの割砕小麦を加えてよく攪拌し、40分オートクレーブ処理を行った原料を醤油原料培地とした。該醤油原料培地1g当たり、胞子数が106個となるように該麹菌の胞子を散布し、よく攪拌して、28℃で48時間程度培養した。結果、培養した麹では、胞子の形成はほとんど観察されなかった。
(2-3) Confirmation of spore-forming ability in the koji making process Sprinkle 8 ml of sterilized distilled water into 5 g of defatted soybeans, add 5 g of cracked wheat, and stir well. The medium was used. The gonococcal spores were sprayed so that the number of spores was 10 6 per gram of the soy sauce raw material medium, stirred well, and cultured at 28 ° C. for about 48 hours. As a result, almost no spore formation was observed in the cultured sputum.

(2−4)総プロテアーゼ活性の測定
上記の麹に140mlの冷水を添加しよく攪拌した後4時間放置し、これをろ紙でろ過し、酵素溶液を調整した。調整した酵素溶液を用いて総プロテアーゼ活性を測定した。測定には「しょう油試験法」(財団法人日本醤油研究所)に記載の方法を用い、以下の手順で行った。
(2-4) Measurement of total protease activity 140 ml of cold water was added to the above koji and stirred well, then allowed to stand for 4 hours, and filtered through filter paper to prepare an enzyme solution. Total protease activity was measured using the prepared enzyme solution. For the measurement, the method described in “Soy Sauce Test Method” (Japan Soy Sauce Research Institute) was used, and the following procedure was used.

1.5%ミルクカゼイン溶液1mlと蒸留水1mlを試験管にとり、30℃の恒温槽で5分間予熱した。5分後1mlの酵素液を加え、10分間反応を行った後、0.4Mトリクロロ酢酸溶液3mlを加え反応を停止した。さらに30℃で30分放置して、沈殿をろ紙で除いた後、ろ液2mlを取り、0.55M炭酸ナトリウム溶液5ml、Folin試薬1mlを加え30℃で30分反応させ、分光光度計で660nmの吸光度を測定した。同様の方法で、チロシン標準液を用いて検量線を作成し、1分間にチロシン1μgを遊離させる酵素量を1unitとして酵素活性を計算した。その結果、alpA破壊株は親株に比べて総プロテアーゼ活性が有意に低く、一方alpB破壊株は親株に比べて総プロテアーゼ活性が有意に高かった(表4、図3)。 1 ml of 1.5% milk casein solution and 1 ml of distilled water were placed in a test tube and preheated in a thermostatic bath at 30 ° C. for 5 minutes. After 5 minutes, 1 ml of enzyme solution was added and reacted for 10 minutes, and then 3 ml of 0.4 M trichloroacetic acid solution was added to stop the reaction. Further, the mixture was allowed to stand at 30 ° C. for 30 minutes, and the precipitate was removed with a filter paper. Then, 2 ml of the filtrate was taken, 0.55M sodium carbonate solution 5 ml and 1 ml of Folin reagent were added and reacted at 30 ° C. for 30 minutes, and 660 nm with a spectrophotometer. The absorbance was measured. In the same manner, a calibration curve was prepared using a tyrosine standard solution, and the enzyme activity was calculated with 1 unit being the amount of enzyme that liberates 1 μg of tyrosine per minute. As a result, the total protease activity of the alpA-disrupted strain was significantly lower than that of the parent strain, while that of the alpB-disrupted strain was significantly higher than that of the parent strain (Table 4, FIG. 3).

Figure 2011004609
Figure 2011004609

(2−5)まとめ
以上の結果より、alpBをコードする遺伝子の機能を欠損させることによって、胞子形成能が著しく低く、しかも総プロテアーゼ活性が親株に比べて高くなっている所期の麹菌を得ることができることが明かとなった。なお、上記の特性は、多少の程度の差はあるものの、取得したalpB破壊株すべてにおいて観察されたことから、alpB破壊に由来することが確認された。
(2-5) Summary From the above results, the desired gonococci with significantly reduced spore-forming ability and higher total protease activity than the parent strain are obtained by deleting the function of the gene encoding alpB. It became clear that I could do it. In addition, although the said characteristic was observed in all the acquired alpB disruption strain | stump | stocks, although it was somewhat different, it was confirmed that it originates in alpB destruction.

実施例2
実施例1で選択したalpB破壊株を使用して醤油を製造し、醸造特性を調べた。すなわち、脱脂大豆5kgに150%散水し、2kg/cm2で13分間加圧蒸煮後、40℃に冷却したものに炒熬割砕した小麦4.8kgを混合して粉合せ原料を得、これにalpB破壊株を接種混合して小型通風製麹装置内で送風温度28℃で24時間、次いで26℃で20時間製麹して醤油麹を得た。
Example 2
Soy sauce was produced using the alpB disruption strain selected in Example 1, and brewing characteristics were examined. That is, 150% water is sprayed on 5 kg of defatted soybeans, steamed under pressure at 2 kg / cm 2 for 13 minutes, and then cooled to 40 ° C. and 4.8 kg of sautéed mash is mixed to obtain a mixed raw material. The alpB-disrupted strain was inoculated and mixed in a small ventilating apparatus for 24 hours at a blowing temperature of 28 ° C. and then 20 hours at 26 ° C. to obtain a soy sauce cake.

得られた麹10kgに24.5%食塩水15.3リットル(L)を加えて小型容器に仕込み、15℃で1ヶ月、次いで30℃で5ヶ月間発酵熟成させた。対照として、親株であるΔligD株を用いて同様にして醤油諸味を得た。得られた諸味を濾紙濾過により、液汁と固形分に分け諸味液汁を得、諸味液汁を加熱処理して醤油を得た。 14.5 liters (L) of 24.5% saline was added to 10 kg of the obtained koji and charged into a small container, which was fermented and aged at 15 ° C. for 1 month and then at 30 ° C. for 5 months. As a control, soy sauce moromi was obtained in the same manner using the parent strain ΔligD. The obtained moromi was divided into liquid soup and solid content by filtration through filter paper to obtain moromi soup, and the moromi soup was heat-treated to obtain soy sauce.

Claims (5)

サブチリシンリレーテッドプロテアーゼalpBをコードする遺伝子の機能が欠損している麹菌。 Aspergillus oryzae deficient in the function of the gene encoding the subtilisin-related protease alpB. ゲノムDNA中に2種のサブチリシンリレーテッドプロテアーゼ(alpA、alpB)をコードする遺伝子を保有する麹菌のalpBをコードする遺伝子のみを欠損させ、麹汁培地上で胞子を形成せず白色のコロニーを形成する株を選抜する方法で得られる、請求項1記載の麹菌。 A white colony that does not form spores on the broth culture medium, in which only the gene encoding the alpB of Aspergillus oryzae carrying the genes encoding two subtilisin-related proteases (alpA and alpB) is deleted in the genomic DNA. The koji mold according to claim 1, which is obtained by a method of selecting a strain that forms a bacterium. 麹菌がアスペルギルス・オリゼー(Aspergillus oryzae)である請求項1に記載の麹菌。 The koji mold according to claim 1, wherein the koji mold is Aspergillus oryzae. 請求項1に記載の麹菌を用いて製麹することを特徴とする麹の製造法。 A method for producing koji, characterized in that koji is produced using the koji mold according to claim 1. 請求項1に記載の麹菌を用いて麹を調製し、その麹を用いて常法により仕込みし、発酵、熟成せしめることを特徴とする調味料の製造法。 A method for producing a seasoning comprising preparing a koji using the koji mold according to claim 1, charging the koji using a koji method by a conventional method, fermenting and aging.
JP2009148348A 2009-06-23 2009-06-23 Neisseria gonorrhoeae deficient in the function of the gene encoding alpB and use thereof Expired - Fee Related JP5305353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009148348A JP5305353B2 (en) 2009-06-23 2009-06-23 Neisseria gonorrhoeae deficient in the function of the gene encoding alpB and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009148348A JP5305353B2 (en) 2009-06-23 2009-06-23 Neisseria gonorrhoeae deficient in the function of the gene encoding alpB and use thereof

Publications (2)

Publication Number Publication Date
JP2011004609A true JP2011004609A (en) 2011-01-13
JP5305353B2 JP5305353B2 (en) 2013-10-02

Family

ID=43562051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009148348A Expired - Fee Related JP5305353B2 (en) 2009-06-23 2009-06-23 Neisseria gonorrhoeae deficient in the function of the gene encoding alpB and use thereof

Country Status (1)

Country Link
JP (1) JP5305353B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013252069A (en) * 2012-06-05 2013-12-19 Ikeda Shokken Kk Method for producing fermented seasoning
KR101454157B1 (en) 2012-12-31 2014-10-28 우석대학교 산학협력단 Aspergillus fumigatus culture method of repressing spore formation and Aspergillus fumigatus sporeless strain in high temperature
JP2016514488A (en) * 2013-06-26 2016-05-23 大韓民国Republic Of Korea Composite wheat straw and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000507106A (en) * 1996-03-27 2000-06-13 ノボ ノルディスク アクティーゼルスカブ Filamentous fungi lacking alkaline protease
WO2007045248A1 (en) * 2005-10-17 2007-04-26 Novozymes A/S Use of fungal mutants for expression of antibodies

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000507106A (en) * 1996-03-27 2000-06-13 ノボ ノルディスク アクティーゼルスカブ Filamentous fungi lacking alkaline protease
WO2007045248A1 (en) * 2005-10-17 2007-04-26 Novozymes A/S Use of fungal mutants for expression of antibodies

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6012026409; Database GenBank XM_001824768, 20080311 *
JPN6012026410; Int. J. Med. Microbiol. vol.290, 2000, pp.549-558 *
JPN6012026411; 醸協 vol.92 no.12, 1997, pp.860-867 *
JPN6012026412; Agric. Biol. Chem. vol.55 no.11, 1991, pp.2807-2811 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013252069A (en) * 2012-06-05 2013-12-19 Ikeda Shokken Kk Method for producing fermented seasoning
KR101454157B1 (en) 2012-12-31 2014-10-28 우석대학교 산학협력단 Aspergillus fumigatus culture method of repressing spore formation and Aspergillus fumigatus sporeless strain in high temperature
JP2016514488A (en) * 2013-06-26 2016-05-23 大韓民国Republic Of Korea Composite wheat straw and method for producing the same

Also Published As

Publication number Publication date
JP5305353B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
Li et al. Developing Aspergillus niger as a cell factory for food enzyme production
Daba et al. The ancient koji mold (Aspergillus oryzae) as a modern biotechnological tool
CN108866093A (en) A method of using CRISPR/Cas9 system to alfalfa site-directed point mutation
CN107586789B (en) High-yield acidic protease aspergillus niger recombinant expression strain and construction method and application thereof
CN1259167A (en) Agrobacterium mediated transformation of moulds, in particular those belonging to the genus aspergillus
TWI503412B (en) Aspergillus having large-scale genomic duplication and its use
CN108118002B (en) Acremonium ramosum and application thereof
CN109957520B (en) Pichia pastoris strain for exogenous gene expression
JP5305353B2 (en) Neisseria gonorrhoeae deficient in the function of the gene encoding alpB and use thereof
CN108503700A (en) Rice grain shape albumen and its encoding gene and application
CN110582573A (en) Expression of phytase in aspergillus niger
CN105483034B (en) A method of conversion yeast mating type
JP5582628B2 (en) Neisseria gonorrhoeae that can be used for the production of seasonings lacking the function of the gene encoding creC and use thereof
CN101016568B (en) Method of screening transgene barley strain without antibiotic mediated by agrobacterium
CN104004729B (en) The Aspergillus niger strain of a kind of ��-amylase Producer and application thereof
JPH099968A (en) Enhancer dna base sequence of mould and its use
CN105102471A (en) A filamentous fungal cell with inactivated component of the selective autophagy pathway and method of using same
CN110305879B (en) Maize small leaf spot pathogen ChCDC3 gene and application thereof
JP2009118783A (en) Improvement of secretion production of protein by filamentous fungus
JP2004329143A (en) Cyclic nucleotide derived from mold of genus aspergillus, method for producing self-cloning strain of mold of genus aspergillus and self-cloning strain
RU2423526C2 (en) Method of producing recombinant protein
CN114480468B (en) Method for inhibiting growth of fusarium by constructing Sch9 gene mutant strain
TWI496885B (en) A new species of Pleurotus sp. And its breeding methods
JP6176597B2 (en) Neisseria gonorrhoeae with low TCA production ability and method for producing the same
CN110023496A (en) The manufacturing method of der Pilz variant and the C4 dicarboxylic acids using it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees