JP2011003375A - Insulated wire - Google Patents

Insulated wire Download PDF

Info

Publication number
JP2011003375A
JP2011003375A JP2009144957A JP2009144957A JP2011003375A JP 2011003375 A JP2011003375 A JP 2011003375A JP 2009144957 A JP2009144957 A JP 2009144957A JP 2009144957 A JP2009144957 A JP 2009144957A JP 2011003375 A JP2011003375 A JP 2011003375A
Authority
JP
Japan
Prior art keywords
insulated wire
amorphous
resin
sea
insulating coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009144957A
Other languages
Japanese (ja)
Inventor
Yuki Honda
祐樹 本田
Tomiya Abe
富也 阿部
Hideyuki Kikuchi
英行 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Magnet Wire Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Magnet Wire Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Magnet Wire Ltd filed Critical Hitachi Cable Ltd
Priority to JP2009144957A priority Critical patent/JP2011003375A/en
Priority to US12/816,699 priority patent/US8679628B2/en
Publication of JP2011003375A publication Critical patent/JP2011003375A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an insulated wire including an insulating coat having mechanical property and heat resistance equal to or greater than the insulating coat of a conventional insulated wire, and improved partial discharge starting voltage by actualizing a lower dielectric constant.SOLUTION: The insulated wire includes the insulating coat formed of a polymer alloy including an amorphous thermosetting resin and an amorphous thermoplastic resin. The insulating coat has a sea-island structure, where the amorphous thermosetting resin forms a sea component of the sea-island structure and the amorphous thermoplastic resin forms an island component of the sea-island structure.

Description

本発明は、導体上に絶縁被膜塗料を塗布、焼き付けして形成した絶縁電線に関し、特に高強度・高耐熱性・低誘電率の絶縁被膜を有し、回転電機などの電機機器用コイルに好適に使用できる絶縁電線に関する。   The present invention relates to an insulated wire formed by applying and baking an insulating coating on a conductor, and particularly has an insulating coating with high strength, high heat resistance, and low dielectric constant, and is suitable for coils for electrical equipment such as rotating electrical machines. It relates to an insulated wire that can be used.

一般的に、回転電機や変圧器などのコイルに用いられている絶縁電線は、コイルの用途・形状に合致した断面形状(例えば、丸型や平角)に成形された導体の外層に単層または複数層の絶縁被膜が形成された構成をしている。自動車用の回転電機は、近年、高出力化とともに小型化・軽量化が求められており、コイルを構成する小さなコアに対して高密度の巻き付けが可能な絶縁電線が必要とされている。また、比較的短尺の絶縁電線の端末同士を溶接などによってつなぎ合わせて作製されるコイルの場合には、溶接しても問題の生じない絶縁電線が必要とされている。   In general, an insulated wire used in a coil of a rotating electrical machine or a transformer is a single layer on the outer layer of a conductor formed in a cross-sectional shape (for example, round shape or flat angle) that matches the use / shape of the coil. It has a structure in which a plurality of layers of insulating coatings are formed. In recent years, rotating electrical machines for automobiles have been required to be smaller and lighter with higher output, and there is a need for insulated wires that can be wound around a small core constituting a coil with high density. In addition, in the case of a coil that is produced by joining the ends of relatively short insulated wires by welding or the like, an insulated wire that does not cause a problem even if it is welded is required.

絶縁電線の絶縁被膜に利用できる絶縁被膜塗料として、特許文献1(特開昭58-34828号公報)には、5〜95重量%のポリアミドイミドと95〜5重量%のポリエーテルイミドとをブレンドした樹脂組成物が開示されている。特許文献1によると、この樹脂組成物を硬化させたシートは、ポリエーテルイミドと同等の機械的特性を有するとともに、ポリアミドイミドと同等の耐薬品性と耐熱性とを併せ持つとされている。   Patent Document 1 (Japanese Patent Laid-Open No. 58-34828) blends 5 to 95% by weight of polyamideimide and 95 to 5% by weight of polyetherimide as an insulating film paint that can be used as an insulating film for insulated wires. A resin composition is disclosed. According to Patent Document 1, a sheet obtained by curing the resin composition has mechanical properties equivalent to those of polyetherimide, and has both chemical resistance and heat resistance equivalent to those of polyamideimide.

また、特許文献2(特開2000-235818号公報)では、導体上に該導体との密着力が30 g/mm以上でガラス転移温度(Tg)が250℃以上であるポリアミドイミド等の樹脂組成物の絶縁層を形成し、その上にTgが250℃以上であるポリアミドイミド等の樹脂組成物とTgが140℃以上であるポリエーテルイミドまたはポリエーテルスルホン等の樹脂組成物の混合物で、被膜の破断伸びが40%以上である絶縁層を形成した絶縁電線が開示されている。特許文献2に記載の絶縁電線は、絶縁被膜の可撓性に優れ、厳しい捲線加工や圧延加工を行っても被膜に割れが生じない優れた加工性を有し、かつポリアミドイミドと同等の耐熱性を有するとされている。   Further, in Patent Document 2 (Japanese Patent Laid-Open No. 2000-235818), a resin composition such as a polyamide-imide having an adhesive strength of 30 g / mm or more on a conductor and a glass transition temperature (Tg) of 250 ° C. or more. An insulating layer of the product is formed, and a coating of a resin composition such as polyamideimide having a Tg of 250 ° C. or higher and a resin composition such as polyetherimide or polyethersulfone having a Tg of 140 ° C. or higher is formed on the insulating layer. An insulated wire in which an insulating layer having a breaking elongation of 40% or more is formed is disclosed. The insulated wire described in Patent Document 2 is excellent in flexibility of the insulating coating, has excellent workability that does not cause cracking in the coating even when severe winding or rolling is performed, and has the same heat resistance as that of polyamideimide It is said to have sex.

また、特許文献3(特開2001-155551号公報)では、導体上に(1)実質的にポリアミドイミドおよび/またはポリイミドからなる第1絶縁層が形成され、その上に(2)ポリアミドイミドAにガラス転移温度が140℃以上の熱可塑性樹脂B(ポリエーテルイミドやポリエーテルスルホン等)を、重量比A/Bで表してA/B=70/30〜30/70の割合で配合してなる第2絶縁層が被覆・積層され、前記第1絶縁層の膜厚T1と前記第2絶縁層T2との比がT1/T2=5/95〜40/60の範囲内で、かつ残留溶剤量が絶縁被膜総量の0.05重量%以下である絶縁電線が開示されている。特許文献3に記載の絶縁電線は、厳しい圧延加工や巻線加工などを行っても被膜に損傷などが生じない優れた耐加工性と、ポリアミドイミドと同等の高い耐熱性とを有し、しかも絶縁電線の端末を接合する工程において、接合部付近の絶縁被膜が接合の熱などによって発泡したり、あるいはその変色長さが長くなったりしない優れた接合性を有するとされている。   In Patent Document 3 (Japanese Patent Laid-Open No. 2001-155551), (1) a first insulating layer substantially made of polyamideimide and / or polyimide is formed on a conductor, and (2) polyamideimide A is formed thereon. A thermoplastic resin B (polyetherimide, polyethersulfone, etc.) having a glass transition temperature of 140 ° C. or higher is blended in a weight ratio A / B at a ratio of A / B = 70/30 to 30/70. And a ratio of the thickness T1 of the first insulating layer to the second insulating layer T2 is within a range of T1 / T2 = 5/95 to 40/60, and a residual solvent. An insulated wire whose amount is 0.05% by weight or less of the total amount of the insulating coating is disclosed. The insulated wire described in Patent Document 3 has excellent work resistance that does not cause damage to the coating even when severe rolling and winding processes are performed, and has high heat resistance equivalent to that of polyamideimide. In the process of joining the ends of the insulated wires, it is said that the insulating coating in the vicinity of the joining portion has excellent joining properties such that the insulating coating does not foam due to the heat of joining, or the discoloration length does not increase.

特開昭58−34828号公報JP 58-34828 A 特開2000−235818号公報JP 2000-235818 A 特開2001−155551号公報JP 2001-155551 A

近年、電気機器に対する小型化・高性能化・省エネ化などの要求から、回転電機におけるインバータ制御が急速に普及してきている。そして、その要求を満たすため、インバータ制御において高電圧・大電流化(大電力化)がどんどん進展している。その場合、インバータ制御によって発生する高いインバータサージ電圧が、回転電機中のコイルの絶縁システムに悪影響を及ぼすことが懸念される。   In recent years, inverter control in rotating electrical machines has been rapidly spreading due to demands for downsizing, high performance, energy saving, and the like for electrical equipment. In order to satisfy this requirement, higher voltage and higher current (higher power) are being developed in inverter control. In that case, there is a concern that a high inverter surge voltage generated by the inverter control may adversely affect the coil insulation system in the rotating electrical machine.

インバータサージ電圧による絶縁被膜の劣化を防ぐためには、絶縁被膜中での部分放電の発生を抑制すること、すなわち絶縁被膜における部分放電開始電圧が高くなるようにすることが必要である。そのための方法としては、例えば、絶縁被膜の膜厚を厚くする方法や、フッ素系ポリイミド樹脂を用いて絶縁被膜の誘電率を低くする方法などが知られている。   In order to prevent deterioration of the insulating film due to the inverter surge voltage, it is necessary to suppress the occurrence of partial discharge in the insulating film, that is, to increase the partial discharge start voltage in the insulating film. As a method for this purpose, for example, a method of increasing the thickness of the insulating coating, a method of reducing the dielectric constant of the insulating coating using a fluorine-based polyimide resin, and the like are known.

しかしながら、絶縁被膜の膜厚を厚くする方法は、コイルの小型化要求に反する方向であることから好ましい対策ではない。また、フッ素系ポリイミド樹脂を用いて絶縁被膜を形成した場合、該絶縁被膜と導体との密着性が低いことから剥離が生じやすく、その結果、絶縁破壊が発生してしまう問題がある。   However, the method of increasing the thickness of the insulating coating is not a preferable measure because it is in a direction contrary to the demand for downsizing of the coil. In addition, when an insulating coating is formed using a fluorine-based polyimide resin, there is a problem that peeling is likely to occur due to low adhesion between the insulating coating and the conductor, resulting in dielectric breakdown.

一方、特許文献1に記載の樹脂組成物をエナメル線の絶縁被膜として利用した場合、ポリエーテルイミド成分の軟化温度が低いことから、一時的な高温に曝された場合であっても(例えば、回転電機の過負荷運転状態などで)短絡が発生してしまう問題がある。また、特許文献2や特許文献3に記載の絶縁電線においても、ポリエーテルイミド成分の軟化温度が低いことに起因した不具合が生じる懸念がある。   On the other hand, when the resin composition described in Patent Document 1 is used as an insulating coating for enameled wires, the softening temperature of the polyetherimide component is low, so even if it is exposed to a temporary high temperature (for example, There is a problem that a short circuit occurs (for example, when the rotating electrical machine is overloaded). In addition, in the insulated wires described in Patent Document 2 and Patent Document 3, there is a concern that a malfunction may occur due to the low softening temperature of the polyetherimide component.

従って、本発明の目的は、上記の課題を解決し、従来の絶縁被膜と同等以上の機械的特性および耐熱性を有し、かつ低誘電率化を図ることで部分放電開始電圧を高めた絶縁被膜を具備する絶縁電線を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems, have an insulation property that has a mechanical property and heat resistance equal to or higher than those of conventional insulating coatings, and has a low dielectric constant to increase the partial discharge starting voltage. It is providing the insulated wire which comprises a film.

本発明は、上記目的を達成するため、非晶質の熱硬化性樹脂と非晶質の熱可塑性樹脂とを含むポリマアロイからなる絶縁被膜が形成された絶縁電線であって、
前記絶縁被膜は海島構造を有し、前記非晶質の熱硬化性樹脂が前記海島構造の海成分を成し前記非晶質の熱可塑性樹脂が前記海島構造の島成分を成すことを特徴とする絶縁電線を提供する。
In order to achieve the above object, the present invention is an insulated wire in which an insulating coating made of a polymer alloy containing an amorphous thermosetting resin and an amorphous thermoplastic resin is formed,
The insulating coating has a sea-island structure, wherein the amorphous thermosetting resin constitutes a sea component of the sea-island structure, and the amorphous thermoplastic resin constitutes an island component of the sea-island structure, Provide insulated wires.

また、本発明は、上記目的を達成するため、上記の本発明に係る絶縁電線において、以下のような改良や変更を加えることができる。
(1)前記島成分は、その平均直径が1μm未満である。
(2)前記ポリマアロイは、前記非晶質の熱硬化性樹脂100重量部に対して前記非晶質の熱可塑性樹脂が10重量部以上150重量部以下で配合されている。
(3)前記非晶質の熱硬化性樹脂の分子量が10,000以上200,000以下であり、前記非晶質の熱可塑性樹脂の分子量が15,000以上200,000以下である。
(4)前記非晶質の熱硬化性樹脂がポリアミドイミドからなり、前記非晶質の熱可塑性樹脂がポリエーテルイミドからなる。
(5)前記絶縁被膜は、その膜厚が1μm以上200μm以下である。
Moreover, in order to achieve the said objective, this invention can add the following improvements and changes in the insulated wire which concerns on said invention.
(1) The island component has an average diameter of less than 1 μm.
(2) The polymer alloy contains 10 to 150 parts by weight of the amorphous thermoplastic resin with respect to 100 parts by weight of the amorphous thermosetting resin.
(3) The amorphous thermosetting resin has a molecular weight of 10,000 or more and 200,000 or less, and the amorphous thermoplastic resin has a molecular weight of 15,000 or more and 200,000 or less.
(4) The amorphous thermosetting resin is made of polyamideimide, and the amorphous thermoplastic resin is made of polyetherimide.
(5) The insulating coating has a thickness of 1 μm or more and 200 μm or less.

本発明によれば、従来の絶縁被膜と同等以上の機械的特性・耐熱性を有し、かつ低い誘電率を併せ持つ絶縁被膜を具備する絶縁電線を提供することができる。本発明に係る絶縁電線は、絶縁被膜中での部分放電の発生を抑制することができ、インバータ制御される電気機器のコイル用絶縁電線として好適に利用できる。   According to the present invention, it is possible to provide an insulated wire having an insulating coating having mechanical properties and heat resistance equal to or higher than those of conventional insulating coatings and having a low dielectric constant. The insulated wire which concerns on this invention can suppress generation | occurrence | production of the partial discharge in an insulating film, and can be utilized suitably as an insulated wire for coils of the electric equipment controlled by an inverter.

本発明者らは、前記目的を達成するため絶縁被膜の微構造(特にミクロ相分離構造)を鋭意検討した結果、絶縁被膜の微構造が特定の海島構造になった場合に良好な特性が得られることを見出したことに基づき、本発明を完成した。以下、本発明に係る実施形態を説明する。なお、本発明はここで取り上げた実施形態に限定されることはなく、要旨を変更しない範囲で組合せや改良が適宜可能である。   As a result of intensive studies on the microstructure (especially the microphase separation structure) of the insulating film in order to achieve the above object, the present inventors have obtained good characteristics when the microstructure of the insulating film has a specific sea-island structure. The present invention has been completed on the basis of the finding that it can be achieved. Embodiments according to the present invention will be described below. It should be noted that the present invention is not limited to the embodiments taken up here, and combinations and improvements can be appropriately made without departing from the scope of the invention.

本発明における絶縁被膜を構成するポリマアロイの微構造(ミクロ相分離構造)は、海島構造であることが好ましい。また、該海島構造は、海成分(連続相成分)が非晶質の熱硬化性樹脂で島成分(分散相成分)が非晶質の熱可塑性樹脂である構成が好ましい。逆の構成の場合(海成分が非晶質の熱可塑性樹脂で島成分が非晶質の熱硬化性樹脂である場合)、絶縁被膜が全体として熱可塑性的挙動(軟化温度が低く、耐熱性に劣る)を示すことから好ましくない。また、ポリマアロイのミクロ相分離構造が共連続構造(例えば、ラメラ構造やジャイロイド構造)を形成する場合も、絶縁被膜が全体として熱可塑性的挙動を示すことから好ましくない。   The fine structure (microphase separation structure) of the polymer alloy constituting the insulating coating in the present invention is preferably a sea-island structure. The sea-island structure preferably has a configuration in which the sea component (continuous phase component) is an amorphous thermosetting resin and the island component (dispersed phase component) is an amorphous thermoplastic resin. In the opposite configuration (when the sea component is an amorphous thermoplastic resin and the island component is an amorphous thermosetting resin), the insulating coating as a whole has a thermoplastic behavior (low softening temperature, heat resistance) Inferior to the above). Further, when the microphase separation structure of the polymer alloy forms a co-continuous structure (for example, a lamellar structure or a gyroid structure), it is not preferable because the insulating coating exhibits a thermoplastic behavior as a whole.

海島構造の島成分である非晶質の熱可塑性樹脂は、その平均直径が1μm未満であることが好ましい。島成分の平均直径が1μm未満であることによって、絶縁被膜の機械的特性と耐熱性が大幅に向上し、さらにエナメル焼き付け後における外観が良好となる。一方、島成分の平均直径が1μm以上である場合、微小クラック発生による機械的特性の低下や島成分が大きいことによる熱可塑的挙動の表面化といった現象が生じ、さらにエナメル焼き付け後に外観不良となることから好ましくない。   The amorphous thermoplastic resin, which is an island component having a sea-island structure, preferably has an average diameter of less than 1 μm. When the average diameter of the island components is less than 1 μm, the mechanical properties and heat resistance of the insulating coating are greatly improved, and the appearance after enamel baking is improved. On the other hand, when the average diameter of the island component is 1 μm or more, phenomena such as deterioration of mechanical properties due to generation of microcracks and surfaceization of the thermoplastic behavior due to the large island component occur, and the appearance is deteriorated after enamel baking. Is not preferable.

本発明におけるポリマアロイは、非晶質の熱硬化性樹脂100重量部に対して、非晶質の熱可塑性樹脂が10重量部以上150重量部以下で配合されていることが好ましい。非晶質の熱可塑性樹脂の配合量が少な過ぎると高い部分放電開始電圧を有する絶縁電線を得ることが困難となる。   In the polymer alloy of the present invention, the amorphous thermoplastic resin is preferably blended in an amount of 10 to 150 parts by weight with respect to 100 parts by weight of the amorphous thermosetting resin. If the blending amount of the amorphous thermoplastic resin is too small, it is difficult to obtain an insulated wire having a high partial discharge starting voltage.

一方、非晶質の熱硬化性樹脂100重量部に対して、非晶質の熱可塑性樹脂が151重量部以上300重量部程度で配合されているポリマアロイの場合、熱硬化性樹脂と熱可塑性樹脂とが共連続相分離構造を形成することから、全体として熱可塑性的挙動を示すようになる。例えば、250℃以上での弾性率の低下が大きく耐熱性が大幅に低下するため好ましくない。   On the other hand, in the case of a polymer alloy in which an amorphous thermoplastic resin is blended in an amount of 151 to 300 parts by weight with respect to 100 parts by weight of an amorphous thermosetting resin, the thermosetting resin and the thermoplastic resin Form a co-continuous phase separation structure, and as a whole, it exhibits a thermoplastic behavior. For example, the elastic modulus is greatly reduced at 250 ° C. or higher, and the heat resistance is greatly reduced.

さらに、非晶質の熱硬化性樹脂100重量部に対して、非晶質の熱可塑性樹脂が300重量部以上で配合されているポリマアロイの場合、熱硬化性樹脂が島成分となり熱可塑性樹脂が海成分となる海島構造が形成される。この場合も、全体として熱可塑性的挙動を示すため好ましくない。   Furthermore, in the case of a polymer alloy in which an amorphous thermoplastic resin is blended at 300 parts by weight or more with respect to 100 parts by weight of an amorphous thermosetting resin, the thermosetting resin becomes an island component and the thermoplastic resin becomes A sea-island structure, which is a sea component, is formed. This case is also not preferable because it exhibits a thermoplastic behavior as a whole.

非晶質の熱硬化性樹脂100重量部に対して、非晶質の熱可塑性樹脂の配合量が30重量部以上130重量部以下であることがより好ましく、非晶質の熱可塑性樹脂の配合量が50重量部以上120重量部以下であることが更に好ましい。非晶質の熱可塑性樹脂の配合量が50重量部以上120重量部以下である場合、絶縁被膜の誘電率と耐熱性とのバランスがもっとも良くなる。   More preferably, the blending amount of the amorphous thermoplastic resin is 30 to 130 parts by weight with respect to 100 parts by weight of the amorphous thermosetting resin, and the blending of the amorphous thermoplastic resin More preferably, the amount is not less than 50 parts by weight and not more than 120 parts by weight. When the blending amount of the amorphous thermoplastic resin is 50 parts by weight or more and 120 parts by weight or less, the balance between the dielectric constant and the heat resistance of the insulating coating becomes the best.

ポリマアロイの製造方法は、本発明で規定した要件を満たす絶縁被膜が結果として得られれば、特段の制限はなく通常の方法を利用できる。例えば、それぞれの樹脂を溶剤に溶解した別個の溶液を混合する方法や、それぞれの樹脂を同じ溶剤に同時に溶解して混合する方法や、一方の樹脂を溶剤に溶解した後に他方の樹脂を添加して溶解・混合する方法や、一方の樹脂を溶剤に溶解した後にその溶液中で他方の樹脂を合成・混合する方法などが挙げられる。なお、本発明では、絶縁被膜が海島構造を形成し易くするために、ポリマアロイの製造段階で樹脂と溶剤との相溶性を向上させるべく非晶質の熱硬化性樹脂と非晶質の熱可塑性樹脂を用い、溶剤として極性溶剤を用いることが特に好ましい。   The production method of the polymer alloy is not particularly limited as long as an insulating coating satisfying the requirements defined in the present invention is obtained, and a normal method can be used. For example, a method of mixing separate solutions in which each resin is dissolved in a solvent, a method in which each resin is simultaneously dissolved in the same solvent, or a method in which one resin is dissolved in a solvent and then the other resin is added. And a method in which one resin is dissolved in a solvent and then the other resin is synthesized and mixed in the solution. In the present invention, in order to facilitate the formation of the sea-island structure in the insulating coating, the amorphous thermosetting resin and the amorphous thermoplastic are used to improve the compatibility between the resin and the solvent in the polymer alloy production stage. It is particularly preferable to use a resin and a polar solvent as the solvent.

絶縁電線の製造方法も、本発明で規定した要件を満たす絶縁電線が結果として得られれば、特段の制限はなくエナメル線を製造する通常の方法を利用できる。例えば、上記のように製造したポリマアロイの溶液(絶縁被膜塗料)を導体上に塗布し焼き付けて絶縁被膜を形成することによって製造できる。なお、本発明に係る絶縁電線は、必要に応じて該絶縁被膜の最外層に自己潤滑性被膜を更に設けてもよいし、導体と該絶縁被膜との間に密着性を向上させるための被膜を更に設けてもよい。自己潤滑性被膜や密着性向上被膜は、例えば、ベース樹脂としてポリイミド、ポリアミドイミド、ポリエステルイミド、H種ポリエステル等の樹脂から1種または複数種を選択して形成することができる。   The insulated wire manufacturing method is not particularly limited as long as an insulated wire satisfying the requirements defined in the present invention is obtained, and a normal method for manufacturing enameled wire can be used. For example, the polymer alloy solution (insulating coating material) manufactured as described above can be applied to a conductor and baked to form an insulating film. The insulated wire according to the present invention may be further provided with a self-lubricating film on the outermost layer of the insulating film as necessary, or a film for improving adhesion between the conductor and the insulating film. May be further provided. The self-lubricating film and the adhesion improving film can be formed by selecting one or more kinds of resins such as polyimide, polyamideimide, polyesterimide, and H-type polyester as the base resin.

ポリマアロイの海成分である非晶質の熱硬化性樹脂の分子量は、10,000〜200,000であることが好ましく、15,000〜100,000であることがより好ましい。熱硬化性樹脂の分子量が10,000より小さいと、被膜の機械的強度が低下するとともに、分子の末端が多い樹脂となることから誘電率が高くなる問題がある。一方、熱硬化性樹脂の分子量が200,000より大きいと、溶剤への溶解性の低下や、熱可塑性樹脂との相溶性の低下や、海島構造の海部分となりにくいといった問題を引き起こす。   The molecular weight of the amorphous thermosetting resin that is the sea component of the polymer alloy is preferably 10,000 to 200,000, and more preferably 15,000 to 100,000. If the molecular weight of the thermosetting resin is less than 10,000, the mechanical strength of the coating film is lowered, and the resin has a large number of molecular ends, which increases the dielectric constant. On the other hand, if the molecular weight of the thermosetting resin is larger than 200,000, problems such as a decrease in solubility in a solvent, a decrease in compatibility with a thermoplastic resin, and difficulty in becoming a sea part of a sea-island structure are caused.

本発明における非晶質の熱硬化性樹脂としては、ポリアミドイミドやポリイミドが好ましく用いられる。なお、ポリアミドイミドの製造方法に特段の制限はなく、既知の方法を利用できる。例えば、ジイソシアネート成分と酸成分とを重合させる方法や、ジアミン成分と酸成分とを反応させた反応生成物を略等モル量のジイソシアネート成分とさらに重合させる方法や、酸クロライドを含む酸成分とジアミン成分とを重合させる方法などが挙げられる。具体的な1例としては、ジフェニルメタンジイソシアネートとトリメリット酸無水物との反応によって得られるポリアミドイミドを好適に用いることができる。   As the amorphous thermosetting resin in the present invention, polyamideimide or polyimide is preferably used. In addition, there is no special restriction | limiting in the manufacturing method of a polyamideimide, A known method can be utilized. For example, a method of polymerizing a diisocyanate component and an acid component, a method of further polymerizing a reaction product obtained by reacting a diamine component and an acid component with an approximately equimolar amount of a diisocyanate component, an acid component containing an acid chloride and a diamine And a method of polymerizing the components. As a specific example, a polyamideimide obtained by reaction of diphenylmethane diisocyanate and trimellitic anhydride can be suitably used.

ポリマアロイの島成分である非晶質の熱可塑性樹脂は、誘電率が低い熱可塑性樹脂であることが好ましく、具体的には、誘電率3.3未満の熱可塑性樹脂が好ましい。誘電率が3.3以上の熱可塑性樹脂を島成分として用いると、絶縁被膜全体の低誘電率化を図ることが困難になる。   The amorphous thermoplastic resin which is an island component of the polymer alloy is preferably a thermoplastic resin having a low dielectric constant, and specifically, a thermoplastic resin having a dielectric constant of less than 3.3 is preferable. When a thermoplastic resin having a dielectric constant of 3.3 or more is used as an island component, it is difficult to reduce the dielectric constant of the entire insulating coating.

該非晶質の熱可塑性樹脂の分子量は、15,000〜200,000であることが好ましく、20,000〜100,000であることがより好ましい。熱可塑性樹脂の分子量が15,000より小さいと、被膜の機械的強度が低下するとともに、海島構造の島部分となりにくいといった問題を引き起こす。一方、熱可塑性樹脂の分子量が200,000より大きいと、溶剤への溶解性の低下や、熱硬化性樹脂との相溶性の低下を引き起こす。   The molecular weight of the amorphous thermoplastic resin is preferably 15,000 to 200,000, and more preferably 20,000 to 100,000. If the molecular weight of the thermoplastic resin is less than 15,000, the mechanical strength of the coating is lowered and the island part of the sea-island structure is hardly formed. On the other hand, when the molecular weight of the thermoplastic resin is larger than 200,000, the solubility in a solvent and the compatibility with a thermosetting resin are reduced.

本発明における非晶質の熱可塑性樹脂としては、溶剤への溶解性・耐熱性・誘電率の観点からポリエーテルイミドが好ましく用いられる。使用されるポリエーテルイミドは、イミド基を2個以上有するポリエーテルであれば特に制限されない。ポリエーテルイミドの製造方法に特段の制限はなく、既知の方法を利用できる。具体的な1例としては、4.4’[イソプロピリデンビス(P-フェニレンオキシ)]ジフタル酸二水和物とメタフェニレンジアミンとの縮合によって得られるポリエーテルイミドを好適に用いることができる。   As the amorphous thermoplastic resin in the present invention, polyetherimide is preferably used from the viewpoints of solubility in a solvent, heat resistance, and dielectric constant. The polyether imide used is not particularly limited as long as it is a polyether having two or more imide groups. There is no special restriction | limiting in the manufacturing method of polyetherimide, A known method can be utilized. As a specific example, a polyetherimide obtained by condensation of 4.4 '[isopropylidenebis (P-phenyleneoxy)] diphthalic acid dihydrate and metaphenylenediamine can be preferably used.

本発明における非晶質の熱可塑性樹脂として、市販のポリエーテルイミド(例えば、SABICイノベーティブプラスチックス社製、ウルテム(登録商標))を使用することができる。また、ポリエーテルイミドは、単独の組成物であっても2種以上を混合した組成物であってもよい。   As the amorphous thermoplastic resin in the present invention, a commercially available polyetherimide (for example, Ultem (registered trademark) manufactured by SABIC Innovative Plastics) can be used. In addition, the polyetherimide may be a single composition or a composition in which two or more kinds are mixed.

以下、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to these.

(実施例1)
ポリアミドイミド(日立化成株式会社製、HI-406F29、樹脂分含量29質量%)とポリエーテルイミド(SABICイノベーティブプラスチックス社製、ウルテム1040A)をN-メチル-2-ピロリドンによって溶解した25質量%ポリエーテルイミド溶液とをそれぞれの樹脂分の質量比率が100/100となるように配合し、フラスコ内で混合・攪拌した。次に、この混合溶液にN-メチル-2-ピロリドンを加え、不揮発分の質量濃度が略一定(27±2%)で均一な褐色透明の溶液になるまで更に希釈して絶縁被膜塗料を作製した。該絶縁被膜塗料の粘度は820 mPa・sであった。その後、導体外径0.8 mmの銅線の外周にエナメル被覆の一般的な方法で該絶縁被膜塗料を塗布・焼き付けして、厚さ0.045 mmの絶縁被膜を有する絶縁電線(実施例1)を製造した。
Example 1
Polyamideimide (Hitachi Chemical Co., Ltd., HI-406F29, resin content 29 mass%) and polyetherimide (SABIC Innovative Plastics, Ultem 1040A) dissolved in N-methyl-2-pyrrolidone with 25 mass% poly The etherimide solution was blended so that the mass ratio of each resin was 100/100, and mixed and stirred in the flask. Next, add N-methyl-2-pyrrolidone to this mixed solution, and further dilute until the mass concentration of non-volatiles is almost constant (27 ± 2%) until it becomes a uniform brown transparent solution to produce an insulation coating. did. The viscosity of the insulating coating was 820 mPa · s. Thereafter, the insulation coating is applied and baked on the outer periphery of a copper wire having a conductor outer diameter of 0.8 mm by a general method of enamel coating to produce an insulated wire (Example 1) having a thickness of 0.045 mm. did.

なお、絶縁被膜塗料の性状について、絶縁被膜塗料の外観は目視により観察し、絶縁被膜塗料の粘度は円錐平板型回転粘度計(東機産業株式会社製、TV-20)を用いて室温で測定した。また、絶縁被膜の厚さは走査型電子顕微鏡(株式会社日立製作所製、S-3500N)を用いて製造した絶縁電線の断面観察から計測した。   Regarding the properties of the insulating coating, the appearance of the insulating coating is visually observed, and the viscosity of the insulating coating is measured at room temperature using a cone-plate rotary viscometer (TV-20, manufactured by Toki Sangyo Co., Ltd.). did. Moreover, the thickness of the insulating coating was measured from cross-sectional observation of an insulated wire manufactured using a scanning electron microscope (manufactured by Hitachi, Ltd., S-3500N).

(実施例2)
ポリアミドイミド樹脂分とポリエーテルイミド樹脂分との質量比率が100/10となるように配合した以外は上記実施例1と同様の方法によって、絶縁被膜塗料を作製した。該絶縁被膜塗料の粘度は2730 mPa・sであった。その後、導体外径0.8 mmの銅線の外周にエナメル被覆の一般的な方法で該絶縁被膜塗料を塗布・焼き付けして、厚さ0.044 mmの絶縁被膜を有する絶縁電線(実施例2)を製造した。
(Example 2)
An insulating coating material was prepared by the same method as in Example 1 except that the mass ratio of the polyamideimide resin and the polyetherimide resin was 100/10. The viscosity of the insulating coating was 2730 mPa · s. Then, the insulation coating paint is applied and baked on the outer periphery of a copper wire with a conductor outer diameter of 0.8 mm by a general method of enamel coating to produce an insulated wire (Example 2) having a thickness of 0.044 mm. did.

(実施例3)
ポリアミドイミド樹脂分とポリエーテルイミド樹脂分との質量比率が100/150となるように配合した以外は上記実施例1と同様の方法によって、絶縁被膜塗料を作製した。該絶縁被膜塗料の粘度は700 mPa・sであった。その後、導体外径0.8 mmの銅線の外周にエナメル被覆の一般的な方法で該絶縁被膜塗料を塗布・焼き付けして、厚さ0.046 mmの絶縁被膜を有する絶縁電線(実施例3)を製造した。
(Example 3)
An insulating coating was prepared in the same manner as in Example 1 except that the mass ratio of the polyamideimide resin and the polyetherimide resin was 100/150. The viscosity of the insulating coating was 700 mPa · s. Thereafter, the insulation coating is applied and baked on the outer periphery of a copper wire having a conductor outer diameter of 0.8 mm by a general method of enamel coating to produce an insulated wire having a thickness of 0.046 mm (Example 3). did.

(実施例4)
ポリアミドイミド樹脂分とポリエーテルイミド樹脂分との質量比率が100/5となるように配合した以外は上記実施例1と同様の方法によって、絶縁被膜塗料を作製した。該絶縁被膜塗料の粘度は2850 mPa・sであった。その後、導体外径0.8 mmの銅線の外周にエナメル被覆の一般的な方法で該絶縁被膜塗料を塗布・焼き付けして、厚さ0.045 mmの絶縁被膜を有する絶縁電線(実施例4)を製造した。
Example 4
An insulating coating material was prepared by the same method as in Example 1 except that the mass ratio of the polyamideimide resin and the polyetherimide resin was 100/5. The viscosity of the insulating coating was 2850 mPa · s. After that, the insulation coating paint is applied and baked on the outer periphery of a copper wire having a conductor outer diameter of 0.8 mm by a general method of enamel coating to produce an insulated wire (Example 4) having an insulation coating with a thickness of 0.045 mm. did.

(比較例1)
ポリアミドイミド樹脂分とポリエーテルイミド樹脂分との質量比率が100/160となるように配合した以外は上記実施例1と同様の方法によって、絶縁被膜塗料を作製した。該絶縁被膜塗料の粘度は680 mPa・sであった。その後、導体外径0.8 mmの銅線の外周にエナメル被覆の一般的な方法で該絶縁被膜塗料を塗布・焼き付けして、厚さ0.045 mmの絶縁被膜を有する絶縁電線(比較例1)を製造した。
(Comparative Example 1)
An insulating coating was prepared in the same manner as in Example 1 except that the mass ratio of the polyamideimide resin and the polyetherimide resin was 100/160. The viscosity of the insulating coating was 680 mPa · s. After that, the insulation coating paint is applied and baked on the outer periphery of a copper wire with a conductor outer diameter of 0.8 mm by a general method of enamel coating to produce an insulated wire having a thickness of 0.045 mm (Comparative Example 1). did.

(比較例2)
ポリアミドイミド樹脂分とポリエーテルイミド樹脂分との質量比率が100/0となるように配合した(すなわち、ポリアミドイミド樹脂分のみを用いた)以外は上記実施例1と同様の方法によって、絶縁被膜塗料を作製した。該絶縁被膜塗料の粘度は2960 mPa・sであった。その後、導体外径0.8 mmの銅線の外周にエナメル被覆の一般的な方法で該絶縁被膜塗料を塗布・焼き付けして、厚さ0.045 mmの絶縁被膜を有する絶縁電線(比較例2)を製造した。
(Comparative Example 2)
Insulating film was produced in the same manner as in Example 1 except that the mass ratio of the polyamideimide resin and the polyetherimide resin was 100/0 (that is, only the polyamideimide resin was used). A paint was made. The viscosity of the insulating coating was 2960 mPa · s. After that, the insulation coating paint is applied and baked on the outer circumference of a copper wire with a conductor outer diameter of 0.8 mm by a general method of enamel coating to produce an insulated wire having a thickness of 0.045 mm (Comparative Example 2). did.

(比較例3)
ポリアミドイミド樹脂分とポリエーテルイミド樹脂分との質量比率が0/100となるように配合した(すなわち、ポリエーテルイミド樹脂分のみを用いた)以外は上記実施例1と同様の方法によって、絶縁被膜塗料を作製した。該絶縁被膜塗料の粘度は680 mPa・sであった。その後、導体外径0.8 mmの銅線の外周にエナメル被覆の一般的な方法で該絶縁被膜塗料を塗布・焼き付けして、厚さ0.044 mmの絶縁被膜を有する絶縁電線(比較例3)を製造した。
(Comparative Example 3)
Insulation was conducted in the same manner as in Example 1 except that the mass ratio of the polyamideimide resin component and the polyetherimide resin component was 0/100 (that is, only the polyetherimide resin component was used). A coating was prepared. The viscosity of the insulating coating was 680 mPa · s. Thereafter, the insulation coating is applied and baked on the outer circumference of a copper wire having a conductor outer diameter of 0.8 mm by a general method of enamel coating to produce an insulated wire having a thickness of 0.044 mm (Comparative Example 3). did.

(比較例4)
ポリアミドイミド樹脂分とポリエーテルイミド樹脂分との質量比率が301/100となるように配合した以外は上記実施例1と同様の方法によって、絶縁被膜塗料を作製した。該絶縁被膜塗料の粘度は520 mPa・sであった。その後、導体外径0.8 mmの銅線の外周にエナメル被覆の一般的な方法で該絶縁被膜塗料を塗布・焼き付けして、厚さ0.044 mmの絶縁被膜を有する絶縁電線(比較例4)を製造した。
(Comparative Example 4)
An insulating coating was prepared in the same manner as in Example 1 except that the mass ratio of the polyamideimide resin and the polyetherimide resin was 301/100. The viscosity of the insulating coating was 520 mPa · s. Thereafter, the insulation coating is applied and baked on the outer circumference of a copper wire having a conductor outer diameter of 0.8 mm by a general method of enamel coating to produce an insulated wire having a thickness of 0.044 mm (Comparative Example 4). did.

上記のように作製した絶縁電線(実施例1〜4および比較例1〜4)に対して、次のような試験を行った。走査型電子顕微鏡(株式会社日立製作所製、S-3500N)を用いて各絶縁被膜の表面を観察し、絶縁被膜のミクロ相分離構造を判定した。また、海島構造における島成分の平均直径は、撮影した画像から島成分を任意に50点抽出し、それらの直径を計測して平均値を算出した。   The following tests were performed on the insulated wires (Examples 1 to 4 and Comparative Examples 1 to 4) produced as described above. The surface of each insulating coating was observed using a scanning electron microscope (manufactured by Hitachi, Ltd., S-3500N), and the microphase separation structure of the insulating coating was determined. In addition, the average diameter of the island component in the sea-island structure was calculated by arbitrarily extracting 50 island components from the photographed images and measuring their diameters.

絶縁電線の可撓性試験は自己径巻き付け法によって評価した。なお、自己径巻き付け法とは、導体径と同じ径を有する丸棒(巻き付け棒)に絶縁電線を巻き付け、光学顕微鏡を用いて絶縁被膜での亀裂の有無を調査する方法である。本明細書では、絶縁電線を5巻き/コイルとして5コイル分巻き付け、50倍の光学顕微鏡を用いて観察した。亀裂が観察されない場合を「合格」とした。   The flexibility test of the insulated wire was evaluated by a self-diameter winding method. The self-diameter winding method is a method in which an insulated wire is wound around a round bar (winding bar) having the same diameter as the conductor diameter, and the presence or absence of cracks in the insulating coating is investigated using an optical microscope. In this specification, the insulated wire was wound as 5 coils / coil for 5 coils and observed using a 50 × optical microscope. The case where no crack was observed was defined as “pass”.

絶縁被膜の耐摩耗性試験は、一方向磨耗試験として次のような手順で行った。絶縁電線を120 mmの長さで切り出し、片側末端の絶縁被覆をアビソフィックス装置で剥離して評価試料とした。耐摩耗性評価には、テーバー型の磨耗試験機(東洋精機株式会社製)を用いた。評価試料の剥離した末端部に電極を取り付け、絶縁被膜の表面に垂直方向から荷重を掛けながら斜面を滑らせた際に、電気が導通したときの荷重を測定し評価した。   The abrasion resistance test of the insulating coating was performed as a unidirectional abrasion test according to the following procedure. The insulated wire was cut out with a length of 120 mm, and the insulation coating on one end was peeled off with an abisofix device to obtain an evaluation sample. A Taber type abrasion tester (manufactured by Toyo Seiki Co., Ltd.) was used for the evaluation of wear resistance. An electrode was attached to the peeled end portion of the evaluation sample, and when a slope was slid while applying a load from the vertical direction to the surface of the insulating coating, the load when electricity was conducted was measured and evaluated.

捻回試験は次のような手順で行った。250 mm離れた2つのクランプに絶縁電線を直線状で固定し、一方のクランプを回転させて絶縁被膜が浮いた時点の回転回数を測定した。   The torsion test was performed according to the following procedure. The insulated wire was fixed in a straight line to two clamps 250 mm apart, and one of the clamps was rotated to measure the number of rotations when the insulating coating floated.

絶縁被膜の貯蔵弾性率とTg(ガラス転移温度)の評価は次のように行った。各絶縁被膜塗料を用いて25μm(厚さ)×5 mm×200 mmの短冊状の評価用フィルムを作製した。動的粘弾性測定装置(アイティー計測制御株式会社、DVA-200)を用いて室温から400℃までを10℃/minで昇温しながら評価用フィルムの100 Hz振動時の貯蔵弾性率を測定した。このとき、100 Hz振動時の貯蔵弾性率が低下する変曲点の温度をTgとした。   The storage elastic modulus and Tg (glass transition temperature) of the insulating coating were evaluated as follows. A strip-shaped evaluation film of 25 μm (thickness) × 5 mm × 200 mm was prepared using each insulating coating. Using a dynamic viscoelasticity measurement device (ITG Measurement Control Co., Ltd., DVA-200), measure the storage elastic modulus at 100 Hz vibration of the evaluation film while raising the temperature from room temperature to 400 ° C at 10 ° C / min. did. At this time, the temperature at the inflection point at which the storage elastic modulus during 100 Hz vibration decreases was defined as Tg.

また、絶縁被膜の誘電率測定は次のように行った。上述と同様に、25μm(厚さ)×2 mm×100 mmの短冊状の評価用フィルムを作製した。空洞共振器摂動法(空洞共振器摂動法誘電率測定装置:株式会社関東電子応用開発製、Sパラメータ・ベクトル・ネットワーク・アナライザ: アジレント・テクノロジー株式会社製8720ES)により評価用フィルムの誘電率を測定した。   The dielectric constant of the insulating coating was measured as follows. In the same manner as described above, a strip-shaped evaluation film of 25 μm (thickness) × 2 mm × 100 mm was produced. Measure the dielectric constant of the film for evaluation using the cavity resonator perturbation method (cavity resonator perturbation method dielectric constant measuring device: Kanto Electronics Application Development, S-parameter vector network analyzer: Agilent Technologies 8720ES) did.

部分放電開始電圧の測定は次のような手順で行った。絶縁電線を500 mmの長さで2本切り出し、14.7 N(1.5 kgf)の張力を掛けながら撚り合わせて中央部の120 mmの範囲に9回の撚り部を有するツイストペアの試料を作製した。試料端部10 mmの絶縁被覆をアビソフィックス装置で剥離した。その後、絶縁被覆の乾燥のため、120℃の恒温槽中に30分間保持し、デシケータ中で室温になるまで18時間放置した。部分放電開始電圧は、部分放電自動試験システム(総研電気株式会社製、DAC-6024)を用いて測定した。測定条件は、25℃で相対湿度50%の雰囲気とし、50 Hzの電圧を10〜30 V/sで昇圧しながらツイストペア試料に荷電した。ツイストペア試料に50 pCの放電が50回発生した電圧を部分放電開始電圧とした。   The partial discharge start voltage was measured according to the following procedure. Two insulated wires having a length of 500 mm were cut out and twisted while applying a tension of 14.7 N (1.5 kgf) to prepare a twisted pair sample having nine twisted portions in the range of 120 mm in the central portion. The insulating coating at the 10 mm edge of the sample was peeled off with an abisofix device. Thereafter, in order to dry the insulating coating, it was kept in a constant temperature bath at 120 ° C. for 30 minutes and left in a desiccator for 18 hours until it reached room temperature. The partial discharge start voltage was measured using a partial discharge automatic test system (manufactured by Soken Denki Co., Ltd., DAC-6024). The measurement conditions were an atmosphere with a relative humidity of 50% at 25 ° C., and the twisted pair sample was charged while increasing the voltage of 50 Hz at 10 to 30 V / s. The voltage at which 50 pC discharge occurred 50 times in the twisted pair sample was defined as the partial discharge start voltage.

各種測定評価結果を表1に示す。   Various measurement evaluation results are shown in Table 1.

Figure 2011003375
Figure 2011003375

表1に示したように、本発明に係る絶縁電線(実施例1〜4)は、機械的特性(耐摩耗性試験結果)と耐熱性(300℃での貯蔵弾性率)と部分放電開始電圧特性とが全て高いレベルでバランスしていることが判る。これに対し、本発明の規定から外れる絶縁電線(比較例1〜4)はいずれかの特性で劣っており、全てを満足した絶縁電線が得られなかった。   As shown in Table 1, the insulated wires (Examples 1 to 4) according to the present invention have mechanical characteristics (abrasion resistance test results), heat resistance (storage elastic modulus at 300 ° C.), and partial discharge start voltage. It can be seen that all the properties are balanced at a high level. On the other hand, the insulated wires (Comparative Examples 1 to 4) that deviate from the provisions of the present invention were inferior in any of the characteristics, and an insulated wire satisfying all of them was not obtained.

以上説明したように、本発明に係る絶縁電線は、非晶質の熱硬化性樹脂と非晶質の熱可塑性樹脂とを含むポリマアロイからなり海島構造を有する絶縁被膜が形成され、該熱硬化性樹脂が海島構造の海成分を成し、該熱可塑性樹脂が海島構造の島成分を成したものである。この特徴により、従来の絶縁被膜と同等以上の機械的特性および耐熱性を有し、かつ部分放電開始電圧を高めた絶縁電線を得られることが確認された。   As described above, the insulated wire according to the present invention is formed of a polymer alloy containing an amorphous thermosetting resin and an amorphous thermoplastic resin, and an insulating film having a sea-island structure is formed. The resin forms a sea component having a sea-island structure, and the thermoplastic resin forms a sea component having a sea-island structure. With this feature, it was confirmed that an insulated wire having mechanical characteristics and heat resistance equal to or higher than those of conventional insulating coatings and having an increased partial discharge starting voltage can be obtained.

Claims (6)

非晶質の熱硬化性樹脂と非晶質の熱可塑性樹脂とを含むポリマアロイからなる絶縁被膜が形成された絶縁電線であって、
前記絶縁被膜は海島構造を有し、前記非晶質の熱硬化性樹脂が前記海島構造の海成分を成し前記非晶質の熱可塑性樹脂が前記海島構造の島成分を成すことを特徴とする絶縁電線。
An insulated wire in which an insulating coating made of a polymer alloy containing an amorphous thermosetting resin and an amorphous thermoplastic resin is formed,
The insulating coating has a sea-island structure, wherein the amorphous thermosetting resin constitutes a sea component of the sea-island structure, and the amorphous thermoplastic resin constitutes an island component of the sea-island structure, Insulated wires.
請求項1に記載の絶縁電線において、
前記島成分はその平均直径が1μm未満であることを特徴とする絶縁電線。
The insulated wire according to claim 1,
The island component has an average diameter of less than 1 μm.
請求項1または請求項2に記載の絶縁電線において、
前記ポリマアロイは前記非晶質の熱硬化性樹脂100重量部に対して前記非晶質の熱可塑性樹脂が10重量部以上150重量部以下で配合されていることを特徴とする絶縁電線。
In the insulated wire according to claim 1 or claim 2,
The insulated wire according to claim 1, wherein the amorphous thermoplastic resin is blended in an amount of 10 to 150 parts by weight with respect to 100 parts by weight of the amorphous thermosetting resin.
請求項1乃至請求項3のいずれかに記載の絶縁電線において、
前記非晶質の熱硬化性樹脂の分子量が10,000以上200,000以下であり、前記非晶質の熱可塑性樹脂の分子量が15,000以上200,000以下であることを特徴とする絶縁電線。
In the insulated wire according to any one of claims 1 to 3,
An insulated wire, wherein the amorphous thermosetting resin has a molecular weight of 10,000 to 200,000, and the amorphous thermoplastic resin has a molecular weight of 15,000 to 200,000.
請求項1乃至請求項4のいずれかに記載の絶縁電線において、
前記非晶質の熱硬化性樹脂がポリアミドイミドからなり、前記非晶質の熱可塑性樹脂がポリエーテルイミドからなることを特徴とする絶縁電線。
The insulated wire according to any one of claims 1 to 4,
An insulated wire, wherein the amorphous thermosetting resin is made of polyamideimide, and the amorphous thermoplastic resin is made of polyetherimide.
請求項1乃至請求項5のいずれかに記載の絶縁電線において、
前記絶縁被膜はその膜厚が1μm以上200μm以下であることを特徴とする絶縁電線。
In the insulated wire according to any one of claims 1 to 5,
The insulated wire is characterized in that the insulating coating has a thickness of 1 μm or more and 200 μm or less.
JP2009144957A 2009-06-18 2009-06-18 Insulated wire Pending JP2011003375A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009144957A JP2011003375A (en) 2009-06-18 2009-06-18 Insulated wire
US12/816,699 US8679628B2 (en) 2009-06-18 2010-06-16 Insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009144957A JP2011003375A (en) 2009-06-18 2009-06-18 Insulated wire

Publications (1)

Publication Number Publication Date
JP2011003375A true JP2011003375A (en) 2011-01-06

Family

ID=43561193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009144957A Pending JP2011003375A (en) 2009-06-18 2009-06-18 Insulated wire

Country Status (1)

Country Link
JP (1) JP2011003375A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011138934A1 (en) * 2010-05-06 2011-11-10 古河電気工業株式会社 Insulated electric wire, electric device, and process for production of insulated electric wire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235818A (en) * 1998-12-15 2000-08-29 Sumitomo Electric Ind Ltd Insulated wire
JP2001155551A (en) * 1999-11-30 2001-06-08 Sumitomo Electric Ind Ltd Insulated wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235818A (en) * 1998-12-15 2000-08-29 Sumitomo Electric Ind Ltd Insulated wire
JP2001155551A (en) * 1999-11-30 2001-06-08 Sumitomo Electric Ind Ltd Insulated wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011138934A1 (en) * 2010-05-06 2011-11-10 古河電気工業株式会社 Insulated electric wire, electric device, and process for production of insulated electric wire
JP2011238384A (en) * 2010-05-06 2011-11-24 Furukawa Electric Co Ltd:The Insulated electric wire, electrical device, and method of manufacturing insulated electric wire

Similar Documents

Publication Publication Date Title
KR102000380B1 (en) Insulated electrical wire having excellent resistance to bending process, coil and electronic/electric equipment using same
US8642179B2 (en) Insulating varnish and production method therefor and insulated electric wire using same and production method therefor
WO2012102121A1 (en) Polyimide resin varnish, and insulated electrical wire, electrical coil, and motor using same
JP5540671B2 (en) Insulated wire
JP5931654B2 (en) Insulated wire and coil using the same
CN106062894B (en) Flat insulating electric wire, coil and electric/electronic device
JP2013131423A (en) Electrically insulated electric wire and coil
JP2012184416A (en) Polyamideimide resin insulation coating and insulated electric wire formed by using the same
JP2011252035A (en) Insulating varnish and insulated wire formed by using the same
JP2012195290A (en) Insulated wire
JP6394697B2 (en) Insulated wires and coils
JP2013206648A (en) Insulated wire
US8679628B2 (en) Insulated wire
JP2012224697A (en) Polyimide resin varnish, and electric insulated wire, electric appliance coil and motor using the same
JP2013131424A (en) Insulated wire and coil using the same
JP5454297B2 (en) Insulated wire
JP7405750B2 (en) Insulated wires, coils, and electrical/electronic equipment
JP5407059B2 (en) Insulated wire
JP2012233123A (en) Polyimide resin varnish, insulated electric wire using the same, electric machine coil, and motor
JP2012046619A (en) Insulated wire, electric appliance coil using the same, and motor
JP2013101759A (en) Insulation wire, electric machine coil using the same, and motor
JP2011003375A (en) Insulated wire
JP2013155281A (en) Insulating coating, insulated wire using the insulating coating, and coil using the insulated wire
JP5837397B2 (en) Insulated wire and electric coil and motor using the same
JP2012184311A (en) Insulating coating and insulated electric wire formed by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022