JP2011002396A - Hydrogen concentration measuring system, and method for calibrating hydrogen concentration measuring instrument - Google Patents

Hydrogen concentration measuring system, and method for calibrating hydrogen concentration measuring instrument Download PDF

Info

Publication number
JP2011002396A
JP2011002396A JP2009147174A JP2009147174A JP2011002396A JP 2011002396 A JP2011002396 A JP 2011002396A JP 2009147174 A JP2009147174 A JP 2009147174A JP 2009147174 A JP2009147174 A JP 2009147174A JP 2011002396 A JP2011002396 A JP 2011002396A
Authority
JP
Japan
Prior art keywords
hydrogen concentration
gas
concentration measuring
calibration
measuring instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009147174A
Other languages
Japanese (ja)
Inventor
Mitsuaki Ozawa
光明 小沢
Hiroshi Fukushima
浩 福島
Shinichi Kurihara
信一 栗原
Takeshi Hirayama
武志 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2009147174A priority Critical patent/JP2011002396A/en
Publication of JP2011002396A publication Critical patent/JP2011002396A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To miniaturize tank equipment for storing calibration gas.SOLUTION: This hydrogen concentration measuring system, equipped with a measuring target device through which gas flows, a hydrogen concentration measuring instrument for measuring the concentration of hydrogen in the gas and a measuring system for connecting the measuring target device and the hydrogen concentration measuring instrument, includes a calibration gas system for supplying the calibration gas from the upstream side of the hydrogen concentration measuring instrument. The calibration gas supplied to the hydrogen concentration measuring instrument is recovered from the downstream side of the hydrogen concentration measuring instrument to be returned to the calibration gas system. By this constitution, the tank equipment for storing the calibration gas is miniaturized.

Description

本発明は、水素濃度計測システム及び水素濃度計測器の校正方法に関する。   The present invention relates to a hydrogen concentration measuring system and a hydrogen concentration measuring device calibration method.

特許文献1は、原子力発電所のガス成分監視装置において、水素検出器の校正方法を開示する。水素検出器を校正する際に使用する校正ガス(水素標準ガス)は、水素検出器の校正試験に使用した後、水素吸蔵タンクに供給して校正ガスの水素濃度を低減させて、原子炉格納容器に戻している。   Patent Document 1 discloses a method for calibrating a hydrogen detector in a gas component monitoring device of a nuclear power plant. The calibration gas (hydrogen standard gas) used when calibrating the hydrogen detector is used for the calibration test of the hydrogen detector, then supplied to the hydrogen storage tank to reduce the hydrogen concentration of the calibration gas, and stored in the reactor. Return to container.

特開平9−21784号公報Japanese Patent Laid-Open No. 9-21784

水素検出器の校正試験は、校正ガスによる水素検出器の指示値を安定させるため、一定時間、水素検出器に校正ガスを流し続ける必要がある。そのため、多量の校正ガスが消費され、校正ガスを蓄えるタンクの容量が大きくなる。従って、設備が大型化するという課題があった。   In the calibration test of the hydrogen detector, it is necessary to keep the calibration gas flowing through the hydrogen detector for a certain period of time in order to stabilize the indicated value of the hydrogen detector by the calibration gas. Therefore, a large amount of calibration gas is consumed, and the capacity of the tank that stores the calibration gas increases. Therefore, there has been a problem that the equipment is increased in size.

本発明は、校正ガスを蓄えるタンク設備を小型化することを目的とする。   An object of the present invention is to reduce the size of a tank facility for storing calibration gas.

本発明は、水素濃度計測器の上流側から校正ガスを供給する校正ガス系統を備え、水素濃度計測器に供給された校正ガスは、水素濃度計測器の下流側から回収され、校正ガス系統へ戻されることを特徴とする。   The present invention includes a calibration gas system for supplying calibration gas from the upstream side of the hydrogen concentration measuring instrument, and the calibration gas supplied to the hydrogen concentration measuring instrument is recovered from the downstream side of the hydrogen concentration measuring instrument and is supplied to the calibration gas system. It is returned.

本発明によれば、校正ガスを蓄えるタンク設備を小型化することが可能となる。   According to the present invention, it is possible to reduce the size of a tank facility for storing calibration gas.

原子力発電所の気体廃棄物処理設備における水素濃度計測システムを示す図である。It is a figure which shows the hydrogen concentration measurement system in the gaseous waste processing equipment of a nuclear power plant. ゼロガス校正を行う場合の弁開閉状況を示す図である。It is a figure which shows the valve opening / closing state in the case of performing zero gas calibration. スパンガス校正を行う場合の弁開閉状況を示す図である。It is a figure which shows the valve opening / closing situation in performing span gas calibration.

図1は、原子力発電所の気体廃棄物処理設備における水素濃度計測システムを示す。原子力発電所は、原子炉1が水を蒸気に変え、蒸気でタービン2を回し、発電機4により発電する。タービン2を駆動した蒸気は、復水器3で水に戻り、再び原子炉1へ供給される。   FIG. 1 shows a hydrogen concentration measurement system in a gaseous waste treatment facility of a nuclear power plant. In the nuclear power plant, the nuclear reactor 1 converts water into steam, rotates the turbine 2 with steam, and generates power with the generator 4. The steam that has driven the turbine 2 returns to water in the condenser 3 and is supplied to the nuclear reactor 1 again.

気体廃棄物処理設備5は、復水器3を流れるガスに含まれる水素と酸素などを連続的に抽出し、ガス中に含まれる酸素と水素を触媒反応により水蒸気とし、水素濃度を可燃限界未満にする。さらに、ガスを冷却しガス中の大部分の水蒸気を凝縮させ、湿分を凝縮除去する。また、ガスを一定期間活性炭に吸着させ、環境に影響を与えない程度まで放射能を減衰させた後、処理後のガスを大気に放出する。   The gaseous waste treatment facility 5 continuously extracts hydrogen, oxygen, and the like contained in the gas flowing through the condenser 3, converts the oxygen and hydrogen contained in the gas into water vapor by a catalytic reaction, and the hydrogen concentration is less than the flammable limit. To. Further, the gas is cooled to condense most of the water vapor in the gas, and the moisture is condensed and removed. Further, after the gas is adsorbed on the activated carbon for a certain period and the radioactivity is attenuated to an extent that does not affect the environment, the treated gas is released into the atmosphere.

水素濃度計測システム100は、計測対象である気体廃棄物処理設備5,水素濃度計測装置6、及び校正ガス装置7を備える。水素濃度計測装置6は、この気体廃棄物処理設備5内の水素濃度を確認する装置である。校正ガス装置7は、水素濃度計測装置6が有する水素濃度計測器14を校正するための装置である。   The hydrogen concentration measurement system 100 includes a gas waste treatment facility 5, a hydrogen concentration measurement device 6, and a calibration gas device 7 that are measurement targets. The hydrogen concentration measuring device 6 is a device for confirming the hydrogen concentration in the gaseous waste treatment facility 5. The calibration gas device 7 is a device for calibrating the hydrogen concentration measuring device 14 included in the hydrogen concentration measuring device 6.

本実施例において、水素濃度計測装置6は、水素濃度計測器14,気体廃棄物処理設備5と水素濃度計測器14とを接続する計測系統25,水素濃度計測器14によってガス中の水素濃度を計測した後に、当該ガスを復水器3に戻す配管24,計測系統25を流れるガスの流量を調整する弁8,配管24を流れるガスの流量を調整する弁9を備える。また、水素濃度計測器14の上流側には、第1の校正ガスであるゼロガスを水素濃度計測器14に供給する第1の校正ガス系統26,第2の校正ガスであるスパンガスを水素濃度計測器14に供給する第2の校正ガス系統27が接続されている。第1の校正ガス系統26,第2の校正ガス系統27は、それぞれ校正ガスの供給量を調整する弁10,11を備える。そして、水素濃度計測器14の下流側には、水素濃度計測器14に供給された第1の校正ガスを回収するために、第1の校正ガス系統26が接続されている。同様に、水素濃度計測器14に供給された第2の校正ガスを回収するために、第2の校正ガス系統27も接続されている。   In this embodiment, the hydrogen concentration measuring device 6 determines the hydrogen concentration in the gas by the hydrogen concentration measuring device 14, the measurement system 25 connecting the gas waste treatment facility 5 and the hydrogen concentration measuring device 14, and the hydrogen concentration measuring device 14. After the measurement, a pipe 24 for returning the gas to the condenser 3, a valve 8 for adjusting the flow rate of the gas flowing through the measurement system 25, and a valve 9 for adjusting the flow rate of the gas flowing through the pipe 24 are provided. Further, on the upstream side of the hydrogen concentration measuring instrument 14, a first calibration gas system 26 that supplies zero gas, which is a first calibration gas, to the hydrogen concentration measuring instrument 14, and a span gas, which is a second calibration gas, are measured for hydrogen concentration. A second calibration gas system 27 for supplying to the vessel 14 is connected. The first calibration gas system 26 and the second calibration gas system 27 include valves 10 and 11 for adjusting the supply amount of the calibration gas, respectively. A first calibration gas system 26 is connected to the downstream side of the hydrogen concentration measuring instrument 14 in order to recover the first calibration gas supplied to the hydrogen concentration measuring instrument 14. Similarly, a second calibration gas system 27 is also connected to recover the second calibration gas supplied to the hydrogen concentration meter 14.

第1の校正ガス系統26は、その上流側から、弁10,水素濃度計測器19a,タンク22,逆止弁23,ポンプ17,タンク15を備える。第2の校正ガス系統27は、その上流側から、弁11,水素濃度計測器19,タンク20,逆止弁21,ポンプ18,タンク16を備える。また、水素濃度計測装置6と校正ガス装置7を制御する制御盤30が設けられている。   The first calibration gas system 26 includes a valve 10, a hydrogen concentration measuring device 19 a, a tank 22, a check valve 23, a pump 17, and a tank 15 from the upstream side. The second calibration gas system 27 includes a valve 11, a hydrogen concentration measuring device 19, a tank 20, a check valve 21, a pump 18, and a tank 16 from the upstream side. Further, a control panel 30 for controlling the hydrogen concentration measuring device 6 and the calibration gas device 7 is provided.

図1は、計測対象装置内のガス水素濃度を計測する場合の弁開閉状況を示す。「開」状態の弁は白抜き、「閉」状態の弁は黒色の塗りつぶしで示す。弁8,9は「開」、弁10,11,12,13は「閉」の状態で行う。計測系統25内のガス圧力は、配管24内のガス圧力より低いため、計測系統25内のガスは、弁8,水素濃度計測器14,弁9,配管24を流れる。そして、ガス中の水素濃度は、水素濃度計測器14で計測される。   FIG. 1 shows a valve opening / closing state in the case of measuring the gas hydrogen concentration in the measurement target apparatus. Valves in the “open” state are outlined, and valves in the “closed” state are shown in black. Valves 8 and 9 are opened, and valves 10, 11, 12, and 13 are closed. Since the gas pressure in the measurement system 25 is lower than the gas pressure in the pipe 24, the gas in the measurement system 25 flows through the valve 8, the hydrogen concentration measuring instrument 14, the valve 9, and the pipe 24. The hydrogen concentration in the gas is measured by the hydrogen concentration meter 14.

また、水素濃度計測器14の健全性を確認するため、定期的に校正ガスによる校正を行う。校正ガスは、校正ガス装置7より供給する。この校正は、ゼロガス・スパンガスを用いて行う。ゼロガスは、水素濃度計測器14の最小目盛値を校正するために用いる校正ガスであり、窒素ガスなどが用いられる。スパンガスは、水素濃度計測器14の最大目盛値付近の目盛値を校正するために用いる校正ガスであり、最大目盛値に近い水素濃度ガスが用いられる。更に、中間点ガスを用いることも可能である。中間点ガスは、水素濃度計測器14の最小目盛値と最大目盛値の間の目盛値を校正するために用いられる校正ガスをいう。図1では、中間点ガスを省略している。   Moreover, in order to confirm the soundness of the hydrogen concentration measuring device 14, calibration with a calibration gas is periodically performed. Calibration gas is supplied from the calibration gas device 7. This calibration is performed using zero gas and span gas. Zero gas is a calibration gas used for calibrating the minimum scale value of the hydrogen concentration measuring instrument 14, and nitrogen gas or the like is used. The span gas is a calibration gas used for calibrating the scale value near the maximum scale value of the hydrogen concentration measuring instrument 14, and a hydrogen concentration gas close to the maximum scale value is used. It is also possible to use a midpoint gas. The midpoint gas is a calibration gas used to calibrate a scale value between the minimum scale value and the maximum scale value of the hydrogen concentration measuring instrument 14. In FIG. 1, the midpoint gas is omitted.

水素濃度計測器14の校正方法は、ゼロガスを一定時間流し、水素濃度計測器14の指示値が安定した後、ゼロ調整を行う。次に、スパンガスを一定時間流し、水素濃度計測器14の指示値が安定した後、スパン調整を行う。必要に応じてゼロ調整,スパン調整を繰り返して行い、ゼロ,スパン、それぞれの指示が、指定の再現性内で一致したことを確認する。   The calibration method of the hydrogen concentration measuring instrument 14 performs zero adjustment after flowing zero gas for a certain period of time and the indicated value of the hydrogen concentration measuring instrument 14 is stabilized. Next, the span gas is allowed to flow for a certain period of time, and the span adjustment is performed after the indicated value of the hydrogen concentration measuring instrument 14 is stabilized. Repeat zero adjustment and span adjustment as necessary, and confirm that the zero and span instructions match within the specified reproducibility.

以下の手順により、ゼロガス校正,スパンガス校正を行う。   Perform zero gas calibration and span gas calibration according to the following procedure.

ゼロガス校正を行う場合、水素濃度計測器19aが検出するゼロガスの水素濃度を示す計測信号31に基づき、制御盤30が制御信号32を弁に送信する。図2は、ゼロガス校正を行う場合の弁開閉状況を示す図である。このとき、弁10,12を「開」、弁8,9,11,13を「閉」とする。また、ポンプ17,18は「停止」状態となる。タンク22内のガス圧力よりタンク15内のガス圧力が低いため、タンク22内のゼロガスは、弁10,水素濃度計測器14,弁12を流れ、タンク15に蓄えられる。ゼロガスを一定時間流し、水素濃度計測器14の指示がゼロ近傍で安定することを確認してから、水素濃度計測器14のゼロ調整を行う。水素濃度計測器19aでゼロガスの水素濃度を確認しながらゼロガス校正を行う。   When performing zero gas calibration, the control panel 30 transmits a control signal 32 to the valve based on the measurement signal 31 indicating the hydrogen concentration of the zero gas detected by the hydrogen concentration measuring device 19a. FIG. 2 is a diagram illustrating a valve opening / closing state when zero gas calibration is performed. At this time, the valves 10 and 12 are set to “open”, and the valves 8, 9, 11, and 13 are set to “closed”. Further, the pumps 17 and 18 are in a “stop” state. Since the gas pressure in the tank 15 is lower than the gas pressure in the tank 22, the zero gas in the tank 22 flows through the valve 10, the hydrogen concentration measuring device 14, and the valve 12 and is stored in the tank 15. Zero gas is flown for a certain period of time, and after confirming that the instruction of the hydrogen concentration measuring instrument 14 is stable in the vicinity of zero, zero adjustment of the hydrogen concentration measuring instrument 14 is performed. Zero gas calibration is performed while checking the hydrogen concentration of the zero gas with the hydrogen concentration measuring device 19a.

次にスパンガスにより、スパン調整を実施する。図3は、スパンガス校正を行う場合の弁開閉状況を示す図である。スパンガス校正は、水素濃度計測器19が検出するスパンガスの水素濃度を示す計測信号31に基づき、制御盤30が制御信号32を送信し、弁11,13を「開」、弁8,9,10,12を「閉」とする。ポンプ17,18は「停止」とする。タンク20内のガス圧力よりタンク16内のガス圧力が低いため、タンク20内のスパンガスは、弁11,水素濃度計測器14,弁13を流れ、タンク16に入り蓄えられる。スパンガスを一定時間流し、水素濃度計測器14の指示が安定することを確認してから、水素濃度計測器14のスパン調整を行う。スパンガスを水素濃度計測器19で確認しながらスパンガス校正を行う。   Next, the span adjustment is performed with the span gas. FIG. 3 is a diagram illustrating a valve opening / closing state when span gas calibration is performed. In the span gas calibration, the control panel 30 transmits the control signal 32 based on the measurement signal 31 indicating the hydrogen concentration of the span gas detected by the hydrogen concentration measuring device 19, and the valves 11, 13 are opened, and the valves 8, 9, 10 are used. , 12 are “closed”. The pumps 17 and 18 are “stopped”. Since the gas pressure in the tank 16 is lower than the gas pressure in the tank 20, the span gas in the tank 20 flows through the valve 11, the hydrogen concentration measuring instrument 14, and the valve 13 and is stored in the tank 16. The span gas is allowed to flow for a certain period of time, and after confirming that the instruction of the hydrogen concentration measuring instrument 14 is stable, the span of the hydrogen concentration measuring instrument 14 is adjusted. The span gas calibration is performed while checking the span gas with the hydrogen concentration measuring device 19.

次に、ゼロガスをタンク15からタンク22に戻す。この戻し工程は、図1の計測状態で行う。計測状態では、制御盤30からの制御信号32により、弁8,9を「開」、弁10,11,12,13を「閉」とする。計測状態時、タンク15に蓄えられたゼロガスは、ポンプ17によって吸引され、逆止弁23を介してタンク22に戻される。ポンプ17の起動は、制御盤30からの制御信号32により行う。また、ゼロガスの戻し工程は、計測状態の任意の時間に実施する。   Next, the zero gas is returned from the tank 15 to the tank 22. This returning step is performed in the measurement state of FIG. In the measurement state, the valves 8 and 9 are set to “open” and the valves 10, 11, 12 and 13 are set to “closed” by the control signal 32 from the control panel 30. In the measurement state, the zero gas stored in the tank 15 is sucked by the pump 17 and returned to the tank 22 via the check valve 23. The pump 17 is activated by a control signal 32 from the control panel 30. In addition, the zero gas return step is performed at an arbitrary time in the measurement state.

また、スパンガスもタンク16からタンク20に戻す。計測状態時に、タンク16に蓄えられたスパンガスは、ポンプ18によって吸引され、逆止弁21を介してタンク20に戻される。ポンプ18の起動も、制御盤30からの制御信号32により行われる。スパンガスは、計測状態の任意の時間にタンク20へ戻される。このように、ゼロガスの戻し工程とスパンガスの戻し工程は、制御盤30からの制御信号32により、ポンプ17またはポンプ18を一定時間起動することにより実施する。同時に実施してもよい。   The span gas is also returned from the tank 16 to the tank 20. During the measurement state, the span gas stored in the tank 16 is sucked by the pump 18 and returned to the tank 20 via the check valve 21. The pump 18 is also activated by a control signal 32 from the control panel 30. The span gas is returned to the tank 20 at an arbitrary time in the measurement state. As described above, the zero gas return process and the span gas return process are performed by starting the pump 17 or the pump 18 for a predetermined time by the control signal 32 from the control panel 30. You may carry out simultaneously.

以上のように、ゼロガス,スパンガスをそれぞれタンク22,20に戻すことにより、再度ゼロガス校正,スパンガス校正を行うことができる。   As described above, zero gas calibration and span gas calibration can be performed again by returning the zero gas and span gas to the tanks 22 and 20, respectively.

このように、本実施例は、水素濃度計測器14の上流側から校正ガスを供給する校正ガス系統を備え、水素濃度計測器14に供給された校正ガスは、水素濃度計測器14の下流側から回収され、校正ガス系統へ戻される。そのため、校正ガスが気体廃棄物処理設備5に排出されてしまうことを防ぎ、校正ガスを蓄えるタンク設備を小型化することが可能となる。   Thus, the present embodiment includes a calibration gas system that supplies calibration gas from the upstream side of the hydrogen concentration measuring instrument 14, and the calibration gas supplied to the hydrogen concentration measuring instrument 14 is downstream of the hydrogen concentration measuring instrument 14. And returned to the calibration gas system. Therefore, it is possible to prevent the calibration gas from being discharged to the gaseous waste treatment facility 5, and to reduce the size of the tank facility for storing the calibration gas.

また、本実施例は、水素濃度計測器の上流側から第1の校正ガス及び第2の校正ガスを供給する2つの校正ガス系統と、水素濃度計測器に供給された第1の校正ガス及び第2の校正ガスは、水素濃度計測器の下流側からそれぞれ回収され、2つの校正ガス系統へ戻される。そのため、2種類以上の校正ガス(例えば、スパンガスとゼロガス)を使用する場合も、2系統の校正ガスを切り替えて使用できるため、異なる種類の校正ガスが混ざってしまうことを抑制できる。   Further, in this embodiment, the two calibration gas systems supplying the first calibration gas and the second calibration gas from the upstream side of the hydrogen concentration measuring device, the first calibration gas supplied to the hydrogen concentration measuring device, and The second calibration gas is collected from the downstream side of the hydrogen concentration measuring device and returned to the two calibration gas systems. Therefore, even when two or more types of calibration gases (for example, span gas and zero gas) are used, two types of calibration gases can be switched and used, so that mixing of different types of calibration gases can be suppressed.

このように、ゼロガス校正,スパンガス校正,ゼロガスの戻し工程,スパンガスの戻し工程を行うことにより、水素濃度計測器14の上流側から供給された校正ガスは、水素濃度計測器14の下流側から回収され、再び校正ガス系統へ戻される。従って、校正ガスを循環して使用することができる。本実施例では、校正で使用したガスを再度、ゼロガス,スパンガスに戻し使用する。したがって、校正ガスの消費を抑えることができ、校正ガスを貯めるタンクの容量を小さくすることが可能である。また、校正ガスを循環して使用することで、不要なゼロガス,スパンガスを廃棄物処理設備に流す必要がない。   Thus, the calibration gas supplied from the upstream side of the hydrogen concentration measuring instrument 14 is recovered from the downstream side of the hydrogen concentration measuring instrument 14 by performing the zero gas calibration, the span gas calibration, the zero gas returning process, and the span gas returning process. And returned to the calibration gas system again. Therefore, the calibration gas can be circulated and used. In this embodiment, the gas used in the calibration is returned again to zero gas and span gas and used. Therefore, consumption of the calibration gas can be suppressed, and the capacity of the tank that stores the calibration gas can be reduced. In addition, by circulating the calibration gas, unnecessary zero gas and span gas do not need to flow to the waste treatment facility.

原子力発電所の水素濃度計測器を用いる設備に適用可能と考える。   It can be applied to facilities using hydrogen concentration measuring instruments at nuclear power plants.

1 原子炉
2 タービン
3 復水器
4 発電機
5 気体廃棄物処理設備
6 水素濃度計測装置
7 校正ガス装置
8,9,10,11,12,13 弁
14,19,19a 水素濃度計測器
15,16,20,22 タンク
17,18 ポンプ
21,23 逆止弁
24 配管
25 計測系統
26 第1の校正ガス系統
27 第2の校正ガス系統
30 制御盤
31 計測信号
32 制御信号
DESCRIPTION OF SYMBOLS 1 Reactor 2 Turbine 3 Condenser 4 Generator 5 Gas waste disposal facility 6 Hydrogen concentration measuring device 7 Calibration gas device 8, 9, 10, 11, 12, 13 Valves 14, 19, 19a Hydrogen concentration measuring device 15, 16, 20, 22 Tanks 17, 18 Pumps 21, 23 Check valve 24 Piping 25 Measurement system 26 First calibration gas system 27 Second calibration gas system 30 Control panel 31 Measurement signal 32 Control signal

Claims (3)

ガスが流れる計測対象装置と、
該ガス中の水素濃度を計測する水素濃度計測器と、
前記計測対象装置と前記水素濃度計測器とを接続する計測系統とを備えた水素濃度計測システムであって、
前記水素濃度計測器の上流側から校正ガスを供給する校正ガス系統を備え、
前記水素濃度計測器に供給された校正ガスは、前記水素濃度計測器の下流側から回収され、前記校正ガス系統へ戻されることを特徴とする水素濃度計測システム。
A measurement target device through which gas flows;
A hydrogen concentration meter for measuring the hydrogen concentration in the gas;
A hydrogen concentration measurement system comprising a measurement system for connecting the measurement target device and the hydrogen concentration measuring instrument,
A calibration gas system for supplying calibration gas from the upstream side of the hydrogen concentration measuring instrument;
The calibration gas supplied to the hydrogen concentration measuring device is recovered from the downstream side of the hydrogen concentration measuring device and returned to the calibration gas system.
ガスが流れる計測対象装置と、
該ガス中の水素濃度を計測する水素濃度計測器と、
前記計測対象装置と前記水素濃度計測器とを接続する計測系統とを備えた水素濃度計測システムであって、
前記水素濃度計測器の上流側から第1の校正ガス及び第2の校正ガスを供給する2つの校正ガス系統と、
前記水素濃度計測器に供給された前記第1の校正ガス及び前記第2の校正ガスは、前記水素濃度計測器の下流側からそれぞれ回収され、2つの前記校正ガス系統へ戻されることを特徴とする水素濃度計測システム。
A measurement target device through which gas flows;
A hydrogen concentration meter for measuring the hydrogen concentration in the gas;
A hydrogen concentration measurement system comprising a measurement system for connecting the measurement target device and the hydrogen concentration measuring instrument,
Two calibration gas systems for supplying a first calibration gas and a second calibration gas from the upstream side of the hydrogen concentration measuring instrument;
The first calibration gas and the second calibration gas supplied to the hydrogen concentration measuring device are respectively collected from the downstream side of the hydrogen concentration measuring device and returned to the two calibration gas systems. To measure hydrogen concentration.
ガスが流れる計測対象装置と、
該ガス中の水素濃度を計測する水素濃度計測器と、
前記計測対象装置と前記水素濃度計測器とを接続する計測系統とを備えた水素濃度計測器の校正方法であって、
前記水素濃度計測器の上流側から校正ガスを供給し、
前記水素濃度計測器に供給された校正ガスを前記水素濃度計測器の下流側から回収し、前記校正ガス系統へ戻されることを特徴とする水素濃度計測器の校正方法。
A measurement target device through which gas flows;
A hydrogen concentration meter for measuring the hydrogen concentration in the gas;
A method for calibrating a hydrogen concentration measuring instrument comprising a measurement system for connecting the device to be measured and the hydrogen concentration measuring instrument,
Supply calibration gas from the upstream side of the hydrogen concentration measuring instrument,
A calibration method for a hydrogen concentration meter, wherein the calibration gas supplied to the hydrogen concentration meter is recovered from the downstream side of the hydrogen concentration meter and returned to the calibration gas system.
JP2009147174A 2009-06-22 2009-06-22 Hydrogen concentration measuring system, and method for calibrating hydrogen concentration measuring instrument Pending JP2011002396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009147174A JP2011002396A (en) 2009-06-22 2009-06-22 Hydrogen concentration measuring system, and method for calibrating hydrogen concentration measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009147174A JP2011002396A (en) 2009-06-22 2009-06-22 Hydrogen concentration measuring system, and method for calibrating hydrogen concentration measuring instrument

Publications (1)

Publication Number Publication Date
JP2011002396A true JP2011002396A (en) 2011-01-06

Family

ID=43560453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009147174A Pending JP2011002396A (en) 2009-06-22 2009-06-22 Hydrogen concentration measuring system, and method for calibrating hydrogen concentration measuring instrument

Country Status (1)

Country Link
JP (1) JP2011002396A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937609A (en) * 2012-11-01 2013-02-20 中国船舶重工集团公司第七一八研究所 System for measuring hydrogen density in nuclear power plant containment vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937609A (en) * 2012-11-01 2013-02-20 中国船舶重工集团公司第七一八研究所 System for measuring hydrogen density in nuclear power plant containment vessel
CN102937609B (en) * 2012-11-01 2014-10-22 中国船舶重工集团公司第七一八研究所 System for measuring hydrogen density in nuclear power plant containment vessel

Similar Documents

Publication Publication Date Title
JP6426188B2 (en) Gas sampling device and filling station provided with such a device
US7707741B2 (en) Method and apparatus for dehydrating high level waste based on dew point temperature measurements
KR100731146B1 (en) A evaluating performance test equipments of hydrogen storage
US10964436B2 (en) System for hydrogen injection for boiling water reactors (BWRs) during startup / shutdown
CN105004801A (en) Loop heat pipe ammonia working medium purity analysis device
CN100593718C (en) Method and device for detecting flow injection type dissolved oxygen meter
CN107265407A (en) Ozone generating-device
CN107993731B (en) System for monitoring combustibility of gas in containment after serious accident of reactor
JP2011002396A (en) Hydrogen concentration measuring system, and method for calibrating hydrogen concentration measuring instrument
JP6632557B2 (en) Sampling system
JP2008207090A5 (en)
JP2018025454A (en) Hydrogen peroxide analyzer and hydrogen peroxide analysis method
KR20140042581A (en) Oxide layer producing system, oxide layer simulating method of a primary nuclear power plant using the same
JP2008104912A (en) Ammonia gas-supplying system, ammonia gas-supplying method, and ammonia gas-supplying program
CN209821181U (en) Dissolved oxygen sensor test device
JP2010054499A (en) Method to protect bwr reactor from corrosion during start-up
RU2009123821A (en) METHOD AND DEVICE FOR GAS ORDORIZATION
JP2010160969A (en) Fuel cell power generation system, and inspection method thereof
Holquist et al. Demonstration of Paragon� s Ionomer-membrane Water Processing (IWP) technology as a Purification Step for Lunar Water Processing
CN211040473U (en) Gas supply device for toxic gas detection
JP2003065495A (en) Mixed gas charging method and device
KR102656780B1 (en) LNGC Carrier Tank Leak Inspection System
CN210774134U (en) On-vehicle LNG gas cylinder static evaporation rate does not dismouting steady voltage detection device
CN219957085U (en) Automatic degassing and separating device for dissolved gas in water of nuclear power plant
CN112858376B (en) Method for measuring content of dissolved hydrogen in primary loop of reactor