JP2011001877A - Internal combustion engine equipped with mechanical supercharger and supercharging method therefor - Google Patents

Internal combustion engine equipped with mechanical supercharger and supercharging method therefor Download PDF

Info

Publication number
JP2011001877A
JP2011001877A JP2009145415A JP2009145415A JP2011001877A JP 2011001877 A JP2011001877 A JP 2011001877A JP 2009145415 A JP2009145415 A JP 2009145415A JP 2009145415 A JP2009145415 A JP 2009145415A JP 2011001877 A JP2011001877 A JP 2011001877A
Authority
JP
Japan
Prior art keywords
supercharging
turbocharger
supercharging pressure
mechanical
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009145415A
Other languages
Japanese (ja)
Inventor
Naoya Ishikawa
直也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2009145415A priority Critical patent/JP2011001877A/en
Publication of JP2011001877A publication Critical patent/JP2011001877A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine equipped with a mechanical supercharger capable of generating supercharging pressure close to a target supercharging pressure of a steady state and performing an exhaust gas improvement, even in a transition state of operation of an internal combustion engine, and in addition, capable of reducing driving losses of a mechanical supercharger and suppressing deterioration of fuel consumption, and to provide a supercharging method therefor.SOLUTION: In internal combustion engines 1, 1A equipped with a turbocharger 7 and a mechanical supercharger 6, in a transition state and when a supercharging pressure of the turbocharger 7 cannot be increased, the supercharging pressure is boosted using the mechanical supercharger 6, the supercharging pressure by the mechanical supercharger 6 is lowered in synchronization with boosting of the supercharging pressure by the turbocharger 7, and at the time point when the supercharging pressure of the turbocharger 7 becomes a required target supercharging pressure Pc, the mechanical supercharger 6 is stopped and supercharging control for switching to the turbocharger 7 is performed.

Description

本発明は、内燃機関の運転が過渡状態のときに、過給圧を迅速に上昇でき、ターボチャージャーのみに比べて過給遅れを著しく少なくすることができると共に、機械式過給装置による駆動損失を低減できる機械式過給装置を備えた内燃機関及びその過給方法に関する。   According to the present invention, when the operation of the internal combustion engine is in a transient state, the supercharging pressure can be quickly increased, and the supercharging delay can be remarkably reduced as compared with the turbocharger alone, and the driving loss due to the mechanical supercharging device can be reduced. The present invention relates to an internal combustion engine provided with a mechanical supercharging device capable of reducing the above and a supercharging method thereof.

従来技術のディーゼルエンジンでは、インタークーラ付きターボチャージャー、EGR(排気再循環)装置、DPF(ディーゼルパティキュレートフィルタ)装置等によって、エンジンから排出される排ガスの浄化を行っている。また、今後の排ガス規制強化に対応するために、低圧EGR装置、2段階式ターボチャージャー、カムレス弁機構等の色々な装置が検討されている。   In a conventional diesel engine, exhaust gas discharged from the engine is purified by a turbocharger with an intercooler, an EGR (exhaust gas recirculation) device, a DPF (diesel particulate filter) device, or the like. Also, various devices such as a low-pressure EGR device, a two-stage turbocharger, and a camless valve mechanism are being studied in order to respond to future exhaust gas regulations.

この内燃機関の排ガス特性の向上と燃費改善には、シリンダ内に新気(空気)とEGRガスを最適な状態で導入することが重要であり、過給特性が大きく影響する。しかしながら、ターボチャージャーでは、負荷の上昇があると排ガス流量が増加し、排気マニホールド内の温度と圧力が上昇してタービンの回転数が上昇し、タービンと同軸上にあるコンプレッサも同時に回転して、回転数が上昇した後に過給圧が上昇する。そのため、エンジンの運転状態が変化する過渡状態においては、過給遅れ(ターボラグ)が生じ、最適な過給圧が得られない時期が生じる。従って、過渡時の過給特性の改善が排ガス改善への重要な課題の一つとなっている。   In order to improve the exhaust gas characteristics and fuel consumption of the internal combustion engine, it is important to introduce fresh air (air) and EGR gas into the cylinder in an optimal state, and the supercharging characteristics have a great influence. However, in the turbocharger, when the load increases, the exhaust gas flow rate increases, the temperature and pressure in the exhaust manifold rises, the turbine speed increases, and the compressor coaxial with the turbine also rotates at the same time. The supercharging pressure increases after the rotational speed increases. Therefore, in a transient state in which the engine operating state changes, a supercharging delay (turbo lag) occurs, and a time when the optimum supercharging pressure cannot be obtained occurs. Therefore, improvement of the supercharging characteristics at the time of transition is one of the important issues for exhaust gas improvement.

つまり、ターボチャージャーを用いた内燃機関においては、過給圧の立ち上がりにターボラグと呼ばれる時間遅れ(タイムラグ)があるので、内燃機関の運転状態の過渡状態においては、図6の上段に示すように、車速をゼロから加速して定常状態にする場合に、燃焼噴射量Qstは、加速中は増量され、定常状態で一定になるように供給される。このときに、新気(Air)とEGRガス(EGR)は、図6の中段に示すように、シリンダ内に供給されるのが望ましいが、実際には、図6の下段に示すように、加速中の過渡状態においては、過給遅れが生じて、過給圧が目標過給圧よりも低くなるため、新気の供給は、実線のAirのように低くなるので、空燃比が下がるため、EGRを行うことができなくなる。そのため、図6の下段に示すような新気(Air)とEGRガス(EGR)がシリンダ内に供給されることになる。つまり、この過渡状態では、スモークを排出しないように、空燃比を設定するとEGRガスが吸気側に入らなくなってしまう。このことから、過渡時の排ガスは定常状態に比べて悪化してしまうという問題がある。   That is, in an internal combustion engine using a turbocharger, there is a time lag (time lag) called a turbo lag at the rise of the supercharging pressure, so in the transient state of the operating state of the internal combustion engine, as shown in the upper part of FIG. When the vehicle speed is accelerated from zero to a steady state, the combustion injection amount Qst is increased during acceleration and is supplied so as to be constant in the steady state. At this time, fresh air (Air) and EGR gas (EGR) are preferably supplied into the cylinder as shown in the middle part of FIG. 6, but actually, as shown in the lower part of FIG. 6, In a transient state during acceleration, a supercharging delay occurs, and the supercharging pressure becomes lower than the target supercharging pressure. Therefore, the supply of fresh air becomes lower as indicated by the solid line Air, and thus the air-fuel ratio decreases. , EGR cannot be performed. Therefore, fresh air (Air) and EGR gas (EGR) as shown in the lower part of FIG. 6 are supplied into the cylinder. That is, in this transient state, if the air-fuel ratio is set so as not to discharge smoke, EGR gas will not enter the intake side. For this reason, there is a problem that the exhaust gas at the time of transition deteriorates compared to the steady state.

これに関連して、ターボ過給機(ターボチャージャー)又は機械式過給機を備えた過給機付エンジンにおいて、排気還流が行われる運転領域において、排気還流弁の制御と過給機の制御とを効果的に協調させ、過給機の効率等を良好に保つために、排気還流が行われている運転領域で、運転状態の変化に伴い、過給圧と新気量とが互いに対応して増減するように過給機の駆動量とEGR弁の開口量とのうちの少なくとも一方を制御する過給機付エンジンの制御装置が提案されている(例えば、特許文献1参照。)。   In this connection, in a turbocharged engine equipped with a turbocharger (turbocharger) or a mechanical supercharger, the control of the exhaust gas recirculation valve and the control of the supercharger in the operation region where the exhaust gas recirculation is performed. In order to keep the efficiency of the turbocharger in good condition, the supercharging pressure and the fresh air volume correspond to each other as the operating state changes in the operating region where the exhaust gas recirculation is performed. Therefore, a supercharger-equipped engine control device that controls at least one of the drive amount of the supercharger and the opening amount of the EGR valve so as to increase or decrease has been proposed (see, for example, Patent Document 1).

また、EGRシステムにおいて、燃焼用空気と混合されて吸気マニホールドに導入される排気ガスの量を微調整するために、一方の組の排気マニホールドに連結する第1ターボチャージャーと他方の組の排気マニホールドに連結する第2ターボチャージャーを備え、バルブにより両方の組のEGR用の排気ガス量を調整する内燃機関における排気ガス再循環システムが提案されている(例えば、特許文献2参照。)。   Also, in the EGR system, in order to finely adjust the amount of exhaust gas mixed with combustion air and introduced into the intake manifold, the first turbocharger connected to one set of exhaust manifolds and the other set of exhaust manifolds There has been proposed an exhaust gas recirculation system in an internal combustion engine that includes a second turbocharger connected to the engine and adjusts the amount of exhaust gas for both sets of EGR using a valve (see, for example, Patent Document 2).

更に、ターボチャージャーと過給機(機械式過給機)の2つを備え、過給機下流の吸気圧力が所望値になるまで、ターボチャージャーと過給機の出力を調整する過給ディーゼルエンジンが提案されており、この制御では、高い吸気圧ではターボチャージャーの出力増加を優先し、低い吸気圧では過給機の出力低減を優先としている(例えば、特許文献3参照)。   In addition, a turbocharger and a turbocharger (mechanical turbocharger) are provided, and a turbocharged diesel engine that adjusts the output of the turbocharger and the turbocharger until the intake pressure downstream of the turbocharger reaches a desired value. In this control, priority is given to increasing the output of the turbocharger at a high intake pressure, and priority is given to reducing the output of the turbocharger at a low intake pressure (see, for example, Patent Document 3).

特開2000−170580号公報JP 2000-170580 A 特開2002−180911号公報JP 2002-180911 A 特表2008−546946号公報Special table 2008-546946

本発明は、上記の状況を鑑みてなされたものであり、その目的は、内燃機関の運転の過渡状態においても、定常状態の目標過給圧に近い過給圧を発生して排ガス改善を行うことができ、しかも、機械式過給装置の駆動損失を減少できて燃費の悪化を抑制できる機械式過給装置を備えた内燃機関及びその過給方法を提供することにある。   The present invention has been made in view of the above-described situation, and an object thereof is to improve exhaust gas by generating a supercharging pressure close to a target supercharging pressure in a steady state even in a transient state of operation of an internal combustion engine. Another object of the present invention is to provide an internal combustion engine including a mechanical supercharger that can reduce the drive loss of the mechanical supercharger and suppress deterioration of fuel consumption, and a supercharging method thereof.

上記のような目的を達成するための機械式過給装置を備えた内燃機関は、ターボチャージャーと機械式過給装置の両方を備えた内燃機関において、内燃機関の運転が過渡状態でかつ前記ターボチャージャーの過給圧が上がらないときに、前記機械式過給装置を使って過給圧を上昇させ、前記ターボチャージャーによる過給圧の上昇に合わせて前記機械式過給装置による過給圧を下げて、前記ターボチャージャーの過給圧が要求された目標過給圧になったところで前記機械式過給装置を停止して前記ターボチャージャーに切り替える過給制御を行うように構成される。   An internal combustion engine equipped with a mechanical supercharger for achieving the above object is an internal combustion engine equipped with both a turbocharger and a mechanical supercharger. When the supercharging pressure of the charger does not increase, the supercharging pressure is increased by using the mechanical supercharging device, and the supercharging pressure by the mechanical supercharging device is increased in accordance with the increase of the supercharging pressure by the turbocharger. The turbocharger is configured to perform supercharging control that stops the mechanical supercharger and switches to the turbocharger when the turbocharger reaches the required target supercharging pressure.

この構成によれば、内燃機関の運転が過渡状態のときに、過給圧を迅速に上昇でき、ターボチャージャーのみに比べて過給遅れ(ターボラグ)を著しく少なくすることができる。また、機械式過給装置(スーパーチャージャー)のみに比べて、過給遅れで過給圧が不足する部分だけを機械式過給装置で補う過給を行うので、機械式過給装置による駆動損失を低減できる。   According to this configuration, when the operation of the internal combustion engine is in a transient state, the supercharging pressure can be quickly increased, and the supercharging delay (turbo lag) can be remarkably reduced as compared with the turbocharger alone. Compared to the mechanical supercharger (supercharger) only, the turbocharger compensates only the part where the supercharging pressure is insufficient due to the delay in supercharging, so the drive loss due to the mechanical supercharger Can be reduced.

また、低圧EGRを用いている場合には、ターボチャージャーのみを有する場合においては、内燃機関の運転の過渡状態では、過給遅れで過給圧(ブースト圧)が定常状態の目標過給圧よりも低くなってしまうために、空燃比が下がって、EGRの最適制御を行えないが、この構成によれば、過渡状態でも低圧EGRでEGRの最適制御を行うことができる。   In addition, when the low pressure EGR is used, in the case where only the turbocharger is provided, in the transient state of the operation of the internal combustion engine, the supercharging pressure (boost pressure) is higher than the target supercharging pressure in the steady state due to the supercharging delay. However, the air-fuel ratio is lowered and the EGR optimal control cannot be performed. However, according to this configuration, the EGR optimal control can be performed with the low pressure EGR even in the transient state.

また、上記の機械式過給装置を備えた内燃機関において、過渡状態における過給圧の制御では、前記ターボチャージャーによる過給圧と前記機械式過給装置による過給圧の和が、過渡状態終了後の定常状態における目標過給圧になるように、前記機械式過給装置による過給圧を調整するように構成すると、速やかに定常状態で必要とする目標過給圧になるように過給できる。   Further, in the internal combustion engine including the mechanical supercharger, in the control of the supercharging pressure in the transient state, the sum of the supercharging pressure by the turbocharger and the supercharging pressure by the mechanical supercharger is a transient state. If it is configured to adjust the supercharging pressure by the mechanical supercharging device so that the target supercharging pressure in the steady state after the end is obtained, the supercharging pressure is quickly adjusted to the target supercharging pressure required in the steady state. You can pay.

更に、上記の機械式過給装置を備えた内燃機関において、前記機械式過給装置による過給圧の調整を、前記機械式過給装置を迂回する通路に設けたバイパスバルブの開度で調整するように構成すると、容易に機械式過給装置による過給圧を調整でき、しかも、機械式過給装置による駆動損失を低減できる。   Further, in the internal combustion engine provided with the mechanical supercharger, the adjustment of the supercharging pressure by the mechanical supercharger is adjusted by the opening degree of a bypass valve provided in a passage bypassing the mechanical supercharger. If comprised in this way, the supercharging pressure by a mechanical supercharger can be adjusted easily, and also the drive loss by a mechanical supercharger can be reduced.

そして、上記の目的を達成するための本発明の機械式過給装置を備えた内燃機関の過給方法は、ターボチャージャーと機械式過給機の両方を備えた内燃機関の過給方法において、内燃機関の運転が過渡状態でかつ前記ターボチャージャーの過給圧が上がらないときに、前記機械式過給機を使って過給圧を上昇させ、前記ターボチャージャーによる過給圧の上昇に合わせて前記機械式過給機による過給圧を下げて、前記ターボチャージャーの過給圧が要求された目標過給圧になったところで前記機械式過給機を停止して前記ターボチャージャーに切り替えて過給することを特徴する方法である。   And the supercharging method of the internal combustion engine provided with the mechanical supercharger of the present invention for achieving the above object is a supercharging method of the internal combustion engine provided with both a turbocharger and a mechanical supercharger. When the operation of the internal combustion engine is in a transitional state and the supercharging pressure of the turbocharger does not increase, the supercharging pressure is increased using the mechanical supercharger, and the supercharging pressure is increased by the turbocharger. When the supercharging pressure of the mechanical supercharger is lowered and the turbocharger reaches the required supercharging pressure, the mechanical supercharger is stopped and switched to the turbocharger. It is the method characterized by supplying.

この方法によれば、内燃機関の運転が過渡状態のときに、過給圧を迅速に上昇でき、ターボチャージャーのみに比べて過給遅れを著しく少なくすることができる。また、機械式過給装置のみに比べて、過給遅れで過給圧が不足する部分だけを機械式過給装置で補う過給を行うので、機械式過給装置による駆動損失を低減できる。   According to this method, when the operation of the internal combustion engine is in a transient state, the supercharging pressure can be quickly increased, and the supercharging delay can be remarkably reduced as compared with the turbocharger alone. Further, as compared with the mechanical supercharger alone, supercharging is performed by supplementing only the portion where the supercharging pressure is insufficient due to a delay in supercharging by the mechanical supercharger, so that drive loss due to the mechanical supercharger can be reduced.

また、上記の機械式過給装置を備えた内燃機関の過給方法において、過渡状態における過給圧の制御では、前記ターボチャージャーによる過給圧と前記機械式過給装置による過給圧の和が、過渡状態終了後の定常状態における目標過給圧になるように、前記機械式過給装置による過給圧を調整すると、速やかに定常状態で必要とする目標過給圧になるように過給できるようになる。   Further, in the supercharging method for an internal combustion engine provided with the mechanical supercharger described above, in the control of the supercharging pressure in a transient state, the sum of the supercharging pressure by the turbocharger and the supercharging pressure by the mechanical supercharger is used. However, if the supercharging pressure by the mechanical supercharging device is adjusted so that it becomes the target supercharging pressure in the steady state after the end of the transient state, the supercharging pressure quickly reaches the target supercharging pressure required in the steady state. You will be able to pay.

更に、上記の機械式過給装置を備えた内燃機関の過給方法において、前記機械式過給装置による過給圧の調整を、前記機械式過給装置を迂回する通路に設けたバイパスバルブの開度で調整すると、容易に機械式過給装置による過給圧を調整でき、しかも、機械式過給装置による駆動損失を低減できる。   Furthermore, in the supercharging method for an internal combustion engine provided with the mechanical supercharger described above, the adjustment of the supercharging pressure by the mechanical supercharger can be performed by a bypass valve provided in a passage bypassing the mechanical supercharger. By adjusting the opening, the supercharging pressure by the mechanical supercharger can be easily adjusted, and the drive loss by the mechanical supercharger can be reduced.

本発明に係る機械式過給装置を備えた内燃機関及びその過給方法によれば、内燃機関の運転が過渡状態のときに、過給圧を迅速に上昇でき、ターボチャージャーのみに比べてターボラグを著しく少なくすることができ、しかも、機械式過給装置のみに比べて、機械式過給装置の駆動損失を低減できる。   According to the internal combustion engine including the mechanical supercharging device and the supercharging method thereof according to the present invention, when the operation of the internal combustion engine is in a transient state, the supercharging pressure can be quickly increased, and the turbo lag is compared with the turbocharger alone. In addition, the driving loss of the mechanical supercharger can be reduced as compared with the mechanical supercharger alone.

本発明の第1の実施の形態の機械式過給装置を備えた内燃機関の構成を示した図である。It is the figure which showed the structure of the internal combustion engine provided with the mechanical supercharging apparatus of the 1st Embodiment of this invention. 本発明の第2の実施の形態の機械式過給装置を備えた内燃機関の構成を示した図である。It is the figure which showed the structure of the internal combustion engine provided with the mechanical supercharging apparatus of the 2nd Embodiment of this invention. 本発明を説明するためのアクセル開度と過給圧の関係を示した図である。It is the figure which showed the relationship between the throttle opening and supercharging pressure for demonstrating this invention. 本発明に係る過給圧制御ロジックを示した図である。It is the figure which showed the supercharging pressure control logic which concerns on this invention. 本発明の実施例でのエンジンの過渡状態におけるターボラグの改善状況を示した図である。It is the figure which showed the improvement condition of the turbo lag in the engine transient state in the Example of this invention. 従来技術のエンジンの過渡状態におけるターボラグを示した図である。It is the figure which showed the turbo lag in the transient state of the engine of a prior art. ターボチャージャーと機械式過給装置(スーパーチャージャー)における過渡状態の過給圧の差を模式的に示した図である。It is the figure which showed typically the difference of the supercharging pressure of the transient state in a turbocharger and a mechanical supercharger (supercharger). 機械式過給装置(スーパーチャージャー)の過給圧と駆動損失の関係を示した図である。It is the figure which showed the relationship between the supercharging pressure of a mechanical supercharger (supercharger), and drive loss.

以下、本発明に係る実施の形態の機械式過給装置を備えた内燃機関及びその過給方法について、図面を参照しながら説明する。図1に、本発明の第1の実施の形態の内燃機関1の構成を示し、図2に本発明の第2の実施の形態の内燃機関1Aの構成を示す。   DESCRIPTION OF EMBODIMENTS Hereinafter, an internal combustion engine including a mechanical supercharging device according to an embodiment of the present invention and a supercharging method thereof will be described with reference to the drawings. FIG. 1 shows the configuration of the internal combustion engine 1 according to the first embodiment of the present invention, and FIG. 2 shows the configuration of the internal combustion engine 1A according to the second embodiment of the present invention.

図1に示すように、第1の実施の形態の機械式過給装置を備えた内燃機関(エンジン)1では、エンジン本体2の吸気マニホールド3に接続された吸気通路4に、上流側から順に、吸気絞り弁(インテークスロットル弁)5、機械式過給装置(スーパーチャージャー)6、ターボチャージャー7のコンプレッサ7a、インタークーラ8が設けられる。また、過給圧を制御するために、機械式過給装置6を迂回するバイパス通路6aが設けられ、このバイパス通路6aにバイパスバルブ6bが設けられる。   As shown in FIG. 1, in the internal combustion engine (engine) 1 including the mechanical supercharger according to the first embodiment, the intake passage 4 connected to the intake manifold 3 of the engine body 2 is sequentially connected to the intake passage 4 from the upstream side. An intake throttle valve (intake throttle valve) 5, a mechanical supercharger (supercharger) 6, a turbocharger 7 compressor 7a, and an intercooler 8 are provided. In order to control the supercharging pressure, a bypass passage 6a that bypasses the mechanical supercharging device 6 is provided, and a bypass valve 6b is provided in the bypass passage 6a.

また、エンジン本体2の排気マニホールド9に接続される排気通路10に、上流側から順に、ターボチャージャー7のタービン7b、触媒付きDPF(ディーゼルパティキュレートフィルタ)11、排気絞り弁(エクゾーストバルブ)12が設けられる。なお、このタービン7bにはウェストゲートバルブ7cが設けられている。   In addition, a turbine 7b of a turbocharger 7, a DPF (diesel particulate filter) 11 with a catalyst, and an exhaust throttle valve (exhaust valve) 12 are provided in the exhaust passage 10 connected to the exhaust manifold 9 of the engine body 2 in order from the upstream side. Provided. The turbine 7b is provided with a waste gate valve 7c.

更に、低圧EGR用に、吸気絞り弁5の下流側の吸気通路4と排気絞り弁12の上流側の排気通路10を連結するEGR通路13が設けられる。このEGR通路13には、EGRガスを冷却するためのEGRクーラー14とEGRを制御するためのEGR弁15が配設される。なお、この図1のような機械式過給装置6の配置においては、機械式過給装置6では排気マニホールド9の圧力が高くならないので、触媒付きDPF11の出口側から排ガスを取り、機械式過給装置6の入口側に戻す低圧EGR用の配置としている。   Further, an EGR passage 13 that connects the intake passage 4 on the downstream side of the intake throttle valve 5 and the exhaust passage 10 on the upstream side of the exhaust throttle valve 12 is provided for the low pressure EGR. The EGR passage 13 is provided with an EGR cooler 14 for cooling the EGR gas and an EGR valve 15 for controlling the EGR. In the arrangement of the mechanical supercharger 6 as shown in FIG. 1, since the pressure of the exhaust manifold 9 does not increase in the mechanical supercharger 6, exhaust gas is taken from the outlet side of the DPF 11 with catalyst, The arrangement is for low pressure EGR returning to the inlet side of the feeding device 6.

また、過給圧(ブースト圧)を調整するために、吸気通路4には、吸気絞り弁5の上流側に第1排気ガス温度センサ21と第1圧力センサ22を設け、吸気絞り弁5と機械式過給装置6との間に、第2排気ガス温度センサ23と第2圧力センサ24を設ける。更に、機械式過給装置6の下流側の吸気通路4に第3排気ガス温度センサ25を設け、吸気マニホールド3に第4排気ガス温度センサ26と第3圧力センサ27を設ける。   In order to adjust the boost pressure (boost pressure), the intake passage 4 is provided with a first exhaust gas temperature sensor 21 and a first pressure sensor 22 upstream of the intake throttle valve 5, A second exhaust gas temperature sensor 23 and a second pressure sensor 24 are provided between the mechanical supercharger 6. Further, a third exhaust gas temperature sensor 25 is provided in the intake passage 4 on the downstream side of the mechanical supercharger 6, and a fourth exhaust gas temperature sensor 26 and a third pressure sensor 27 are provided in the intake manifold 3.

これらの各センサの検出値は、エンジン全体を制御するエンジンコントロールユニット(ECU)と呼ばれる制御装置(図示しない)に入力される。この制御装置は、各センサからの信号を入力し、燃料噴射制御、過給制御、EGR制御等のエンジン1の運転制御のみならず、触媒付きDPF11の再生制御等も行う。この制御装置の出力により、燃料噴射機構、吸気・排気用の弁開閉機構、吸気絞り弁5、機械式過給装置6、バイパスバルブ6b、ウェストゲートバルブ7c、排気絞り弁12、EGR弁15等が制御される。   The detection values of these sensors are input to a control device (not shown) called an engine control unit (ECU) that controls the entire engine. This control device inputs signals from each sensor and performs not only operation control of the engine 1 such as fuel injection control, supercharging control, EGR control, but also regeneration control of the DPF 11 with catalyst. Depending on the output of this control device, a fuel injection mechanism, a valve opening / closing mechanism for intake / exhaust, an intake throttle valve 5, a mechanical supercharger 6, a bypass valve 6b, a wastegate valve 7c, an exhaust throttle valve 12, an EGR valve 15, etc. Is controlled.

次に、第2の実施の形態の機械式過給装置を備えた内燃機関について説明する。図2に示すように、第2の実施の形態の機械式過給装置を備えた内燃機関1Aでは、第1の実施の形態に比べて、機械式過給装置6がターボチャージャー7のコンプレッサ7aの下流側に配置されると共に、EGR通路13が低圧EGR用ではなく高圧EGR用に構成されている点が異なる。それ以外は同じ構成である。   Next, an internal combustion engine provided with the mechanical supercharging device of the second embodiment will be described. As shown in FIG. 2, in the internal combustion engine 1 </ b> A provided with the mechanical supercharging device of the second embodiment, the mechanical supercharging device 6 is a compressor 7 a of a turbocharger 7 as compared with the first embodiment. The EGR passage 13 is configured not for low pressure EGR but for high pressure EGR. Other than that, the configuration is the same.

より詳細には、エンジン本体2の吸気マニホールド3に接続された吸気通路4に上流側から順に、吸気絞り弁5、ターボチャージャー7のコンプレッサ7a、機械式過給装置6、インタークーラ8が設けられる。   More specifically, an intake throttle valve 5, a compressor 7a of a turbocharger 7, a mechanical supercharger 6, and an intercooler 8 are provided in this order from the upstream side in the intake passage 4 connected to the intake manifold 3 of the engine body 2. .

また、エンジン本体2の排気マニホールド9に接続される排気通路10に、上流側から順に、ターボチャージャー7のタービン7b、触媒付きDPF11、排気絞り弁12が設けられる。なお、このタービン7bにはウェストゲートバルブ7cが設けられている。   A turbine 7b of the turbocharger 7, a DPF 11 with a catalyst, and an exhaust throttle valve 12 are provided in the exhaust passage 10 connected to the exhaust manifold 9 of the engine body 2 in order from the upstream side. The turbine 7b is provided with a waste gate valve 7c.

更に、高圧EGR用に、機械式過給装置6がターボチャージャー7のコンプレッサ7aの下流側に配置され、ターボチャージャー7のコンプレッサ7aの下流側でかつ機械式過給装置6の上流側の吸気通路4とターボチャージャー7のタービン7bの上流側の排気通路10を連結するEGR通路13が設けられる。   Further, for the high pressure EGR, a mechanical supercharger 6 is arranged on the downstream side of the compressor 7a of the turbocharger 7, and the intake passage on the downstream side of the compressor 7a of the turbocharger 7 and on the upstream side of the mechanical supercharger 6 is provided. 4 and an EGR passage 13 connecting the exhaust passage 10 upstream of the turbine 7b of the turbocharger 7 is provided.

そして、その他のバイパス通路6、バイパスバルブ6b、EGRクーラー14、EGR弁15等や、各センサ21〜27等の構成及び制御装置等も第1の実施の形態と同様である。   The other bypass passage 6, bypass valve 6 b, EGR cooler 14, EGR valve 15, etc., the configurations and control devices of the sensors 21 to 27, etc. are the same as those in the first embodiment.

次に、上記の構成の機械式過給装置を備えた内燃機関1、1Aにおける過給方法について説明する。これらの内燃機関1、1Aのシステムでは、機械式過給装置6とターボチャージャー7が直列に配置されていて、過給圧の調整は機械式過給装置6の前後を結び、機械式過給装置6を迂回するバイパス通路6aのバイパスバルブ6bの開度調整により行う。なお、EGRに関しては、低圧EGR又は高圧EGRのためのEGR制御が別に必要となり、各EGR用の酸素濃度モデルをベースにした制御を実施することになるが、詳細についてはここでは言及しない。   Next, a supercharging method in the internal combustion engine 1, 1A provided with the mechanical supercharging device having the above-described configuration will be described. In these internal combustion engine 1 and 1A systems, the mechanical supercharger 6 and the turbocharger 7 are arranged in series, and the supercharging pressure is adjusted before and after the mechanical supercharger 6. This is done by adjusting the opening of the bypass valve 6b in the bypass passage 6a that bypasses the device 6. In addition, regarding EGR, EGR control for low pressure EGR or high pressure EGR is separately required, and control based on an oxygen concentration model for each EGR is performed, but details are not mentioned here.

図7にターボチャージャー7の過渡時の過渡特性Tと機械式過給装置(スーパーチャージャー)6の過渡特性Sの違いを示す。ターボチャージャー7の特性Tでは、負荷の上昇があるとまず排ガス流量が増加し、排気マニホールド3内の温度と圧力が上昇してタービン7bの回転数が上昇する。タービン7bと同軸上にあるコンプレッサ7aも同時に回転して、回転数が上昇した後に過給圧が上昇するので過給遅れ(ターボラグ)と呼ばれる時間遅れ(タイムラグ)が生じる。   FIG. 7 shows the difference between the transient characteristic T of the turbocharger 7 during the transition and the transient characteristic S of the mechanical supercharger (supercharger) 6. In the characteristic T of the turbocharger 7, when the load increases, the exhaust gas flow rate first increases, the temperature and pressure in the exhaust manifold 3 increase, and the rotational speed of the turbine 7b increases. The compressor 7a, which is coaxial with the turbine 7b, also rotates at the same time, and the supercharging pressure rises after the number of rotations rises. Therefore, a time delay (time lag) called a supercharging delay (turbo lag) occurs.

一方、機械式過給装置6ではコンプレッサは常に回転しており、図1又は図2に示す機械式過給装置6のバイパスバルブ6bを閉めるだけで過給圧が上昇するので、図7に示す機械式過給装置6の特性Sのように、ターボラグは殆ど存在しない。   On the other hand, in the mechanical supercharger 6, the compressor is always rotating, and the supercharging pressure rises only by closing the bypass valve 6b of the mechanical supercharger 6 shown in FIG. 1 or FIG. Like the characteristic S of the mechanical supercharger 6, there is almost no turbo lag.

図8に機械式過給装置6における過給圧と駆動力の関係を示す。ターボチャージャー7の場合には、排気エネルギーを使用して過給を行うが、機械式過給装置6ではエンジンによって直接駆動するので駆動損失が生じる。つまり、過給圧を高くするほど駆動損失が増え、また、回転速度が速いほど駆動損失が増える。ルーツブロア式等の機械式過給装置6の場合には、内部圧縮が無いのでバイパス通路6aを経由して過給圧を逃がすことによって、駆動損失を低くすることができる。   FIG. 8 shows the relationship between the supercharging pressure and the driving force in the mechanical supercharging device 6. In the case of the turbocharger 7, supercharging is performed using exhaust energy. However, since the mechanical supercharger 6 is directly driven by the engine, a driving loss occurs. That is, the drive loss increases as the boost pressure increases, and the drive loss increases as the rotational speed increases. In the case of a mechanical supercharger 6 such as a Roots blower type, since there is no internal compression, driving loss can be reduced by releasing the supercharging pressure via the bypass passage 6a.

本発明では、図1又は図2のような構成で、機械式過給装置(スーパーチャージャー)6とターボチャージャー7を組み合わせてそれぞれの良いところを生かす。即ち、過渡時にターボチャージャー7の過給圧が上がらない時に機械式過給装置6を使って過給圧を上昇させる。   In the present invention, the mechanical supercharger (supercharger) 6 and the turbocharger 7 are combined in the configuration as shown in FIG. That is, when the turbocharging pressure of the turbocharger 7 does not increase during a transition, the mechanical supercharging device 6 is used to increase the supercharging pressure.

この機械式過給装置6は駆動損失があるのでターボチャージャー7の過給圧が高くなってきたところで、機械式過給装置6からターボチャージャー7に切り替える。つまり、図3に示す斜線部分に対して機械式過給装置6で過給を行い、ターボチャージャー7の過給圧Tの上昇に合わせて機械式過給装置6の過給圧を下げて駆動損失を低減させる。   Since the mechanical supercharger 6 has a drive loss, the turbocharger 7 is switched from the mechanical supercharger 6 to the turbocharger 7 when the supercharging pressure of the turbocharger 7 is increased. In other words, the hatched portion shown in FIG. 3 is supercharged by the mechanical supercharger 6 and driven by lowering the supercharging pressure of the mechanical supercharger 6 as the supercharging pressure T of the turbocharger 7 increases. Reduce loss.

過給圧の制御については、過渡時においても、エンジン回転数Neと噴射燃料量Qfinから定常状態の目標過給圧マップM1を参照して目標過給圧Pcを算出し、この目標過給圧Pcに対して、測定される過給圧Boostが目標過給圧になるように、過給圧制御手段(ブーストコントローラ)で、PID制御等で機械式過給装置6のバイパスバルブ6bの開度制御を行うフィードバック制御を行う。この制御フローを図4に示す。   Regarding the control of the supercharging pressure, even in a transient state, the target supercharging pressure Pc is calculated by referring to the target supercharging pressure map M1 in the steady state from the engine speed Ne and the injected fuel amount Qfin, and this target supercharging pressure. The degree of opening of the bypass valve 6b of the mechanical supercharger 6 by PID control or the like by the supercharging pressure control means (boost controller) so that the measured supercharging pressure Boost becomes the target supercharging pressure with respect to Pc. Perform feedback control to control. This control flow is shown in FIG.

本発明においては、機械式過給装置(スーパーチャージャー)6とターボチャージャー7を直列に配置し、過渡時の過給圧の制御を機械式過給装置6のバイパスバルブ6bの開度制御で行うことで、内燃機関1、1Aの運転の過渡時の過給特性及び排ガス特性を改善する。   In the present invention, the mechanical supercharger (supercharger) 6 and the turbocharger 7 are arranged in series, and the supercharging pressure at the time of transition is controlled by the opening degree control of the bypass valve 6b of the mechanical supercharger 6. Thus, the supercharging characteristic and the exhaust gas characteristic at the time of transient operation of the internal combustion engine 1, 1A are improved.

このとき、ターボチャージャー7による過給圧の上昇に合わせて、目標過給圧Pcになるように機械式過給装置6のバイパスバルブ6bの開度を調整し、目標過給圧Pcを維持しながら機械式過給装置6による過給圧を低下させて駆動損失を減少する。この構成により、第1の実施の形態での低圧EGRの実施例を示す図5の下段の実施例に示すように、過渡過給特性を改善することで、シリンダ内への新気(Air)及びEGRガス(EGR)の同流量を中段に示す制御目標に近づけることができ、排ガス特性を改善できる。つまり、過渡特性を改善して排ガス特性を改善ながら、機械式過給装置6の駆動損失増加を最小限にすることができる。   At this time, the opening degree of the bypass valve 6b of the mechanical supercharger 6 is adjusted so as to become the target supercharging pressure Pc in accordance with the increase of the supercharging pressure by the turbocharger 7, and the target supercharging pressure Pc is maintained. However, the supercharging pressure by the mechanical supercharging device 6 is lowered to reduce the driving loss. With this configuration, as shown in the lower example of FIG. 5 showing an example of the low pressure EGR in the first embodiment, the transient supercharging characteristics are improved, so that fresh air (Air) into the cylinder is obtained. In addition, the same flow rate of EGR gas (EGR) can be brought close to the control target shown in the middle stage, and the exhaust gas characteristics can be improved. That is, an increase in driving loss of the mechanical supercharger 6 can be minimized while improving the transient characteristics and improving the exhaust gas characteristics.

従って、本発明に係る機械式過給装置を備えた内燃機関1、1A及びその過給方法によれば、内燃機関1、1Aの運転の過渡状態のときに、過給圧を迅速に上昇でき、ターボチャージャー7のみに比べてターボラグを著しく少なくすることができ、機械式過給装置6のみに比べて、機械式過給装置6の駆動損失を低減できる。   Therefore, according to the internal combustion engine 1, 1A equipped with the mechanical supercharging device and the supercharging method thereof according to the present invention, the supercharging pressure can be quickly increased in a transient state of the operation of the internal combustion engine 1, 1A. The turbo lag can be remarkably reduced as compared with the turbocharger 7 alone, and the drive loss of the mechanical supercharger 6 can be reduced as compared with the mechanical supercharger 6 alone.

また、低圧EGRを用いている場合には、ターボチャージャー7のみを有する場合では、内燃機関の運転の過渡状態では、過給遅れで過給圧が定常状態の目標過給圧Pcよりも低くなってしまうために、空燃比が下がって、EGRの最適制御を行えないが、本発明では、過渡状態でも低圧EGRでEGRの最適制御を行うことができる。   Further, when the low pressure EGR is used, when only the turbocharger 7 is provided, in the transient state of the operation of the internal combustion engine, the supercharging pressure becomes lower than the target supercharging pressure Pc in the steady state due to the supercharging delay. As a result, the air-fuel ratio is lowered and the EGR optimal control cannot be performed. However, in the present invention, the EGR optimal control can be performed with the low pressure EGR even in the transient state.

更に、過給遅れで過給圧が不足する部分だけを機械式過給装置6で補う過給を行うので、機械式過給装置6による駆動損失を低減でき、燃費の悪化を抑制することができる。   Furthermore, since only the portion where the supercharging pressure is insufficient due to the supercharging delay is compensated by the mechanical supercharging device 6, driving loss by the mechanical supercharging device 6 can be reduced, and deterioration of fuel consumption can be suppressed. it can.

本発明の機械式過給装置を備えた内燃機関及びその過給方法は、上記のように、内燃機関の過渡状態においても、定常状態の目標過給圧に近い過給圧を発生して排ガス改善を行うことができ、しかも、機械式過給装置の駆動損失を減少できて燃費の悪化を抑制できるという効果を奏することができるので、自動車搭載等の内燃機関やその過給方法として利用できる。   As described above, the internal combustion engine including the mechanical supercharging device and the supercharging method thereof according to the present invention generates a supercharging pressure close to the target supercharging pressure in the steady state even in a transient state of the internal combustion engine. It can be improved, and the drive loss of the mechanical supercharger can be reduced and the deterioration of fuel consumption can be suppressed. Therefore, it can be used as an internal combustion engine mounted on an automobile and its supercharging method. .

1、1A 内燃機関
2 エンジン本体
4 吸気通路
6 機械式過給装置(スーパーチャージャー)
6a バイパス通路
6b バイパスバルブ
7 ターボチャージャー
7a コンプレッサ
7b タービン
7c ウェストゲートバルブ
10 排気通路
13 EGR通路
1, 1A Internal combustion engine 2 Engine body 4 Intake passage 6 Mechanical supercharger (supercharger)
6a Bypass passage 6b Bypass valve 7 Turbocharger 7a Compressor 7b Turbine 7c Wastegate valve 10 Exhaust passage 13 EGR passage

Claims (6)

ターボチャージャーと機械式過給装置の両方を備えた内燃機関において、内燃機関の運転が過渡状態でかつ前記ターボチャージャーの過給圧が上がらないときに、前記機械式過給装置を使って過給圧を上昇させ、前記ターボチャージャーによる過給圧の上昇に合わせて前記機械式過給装置による過給圧を下げて、前記ターボチャージャーの過給圧が要求された目標過給圧になったところで前記機械式過給装置を停止して前記ターボチャージャーに切り替える過給制御を行うことを特徴する機械式過給装置を備えた内燃機関。   In an internal combustion engine equipped with both a turbocharger and a mechanical supercharger, when the operation of the internal combustion engine is in a transient state and the supercharging pressure of the turbocharger does not increase, supercharging is performed using the mechanical supercharger. When the turbocharger's supercharging pressure reaches the required target supercharging pressure, the pressure is increased and the supercharging pressure by the mechanical supercharger is lowered in accordance with the increase of the supercharging pressure by the turbocharger. An internal combustion engine comprising a mechanical supercharger, wherein supercharging control is performed to stop the mechanical supercharger and switch to the turbocharger. 過渡状態における過給制御では、前記ターボチャージャーによる過給圧と前記機械式過給装置による過給圧の和が、過渡状態終了後の定常状態における目標過給圧になるように、前記機械式過給装置による過給圧を調整することを特徴とする請求項1記載の機械式過給装置を備えた内燃機関。   In the supercharging control in the transient state, the mechanical type is set so that the sum of the supercharging pressure by the turbocharger and the supercharging pressure by the mechanical supercharger becomes the target supercharging pressure in the steady state after the end of the transient state. 2. An internal combustion engine having a mechanical supercharging device according to claim 1, wherein the supercharging pressure by the supercharging device is adjusted. 前記機械式過給装置による過給圧の調整を、前記機械式過給装置を迂回する通路に設けたバイパスバルブの開度で調整することを特徴とする請求項1又は2に記載の機械式過給装置を備えた内燃機関。   The mechanical type according to claim 1 or 2, wherein the adjustment of the supercharging pressure by the mechanical supercharging device is adjusted by an opening degree of a bypass valve provided in a passage detouring the mechanical supercharging device. An internal combustion engine equipped with a supercharging device. ターボチャージャーと機械式過給機の両方を備えた内燃機関の過給方法において、内燃機関の運転が過渡状態でかつ前記ターボチャージャーの過給圧が上がらないときに、前記機械式過給機を使って過給圧を上昇させ、前記ターボチャージャーによる過給圧の上昇に合わせて前記機械式過給機による過給圧を下げて、前記ターボチャージャーの過給圧が要求された目標過給圧になったところで前記機械式過給機を停止して前記ターボチャージャーに切り替えて過給することを特徴する機械式過給装置を備えた内燃機関の過給方法。   In a supercharging method for an internal combustion engine including both a turbocharger and a mechanical supercharger, when the operation of the internal combustion engine is in a transient state and the supercharging pressure of the turbocharger does not increase, the mechanical supercharger is The target supercharging pressure at which the supercharging pressure of the turbocharger is required by increasing the supercharging pressure using the turbocharger and lowering the supercharging pressure by the mechanical supercharger in accordance with the increase of the supercharging pressure by the turbocharger. A supercharging method for an internal combustion engine comprising a mechanical supercharging device, wherein the supercharger is stopped and the turbocharger is switched to supercharge. 過渡状態における過給制御では、前記ターボチャージャーによる過給圧と前記機械式過給装置による過給圧の和が、過渡状態終了後の定常状態における目標過給圧になるように、前記機械式過給装置による過給圧を調整することを特徴とする請求項4記載の機械式過給装置を備えた内燃機関の過給方法。   In the supercharging control in the transient state, the mechanical type is set so that the sum of the supercharging pressure by the turbocharger and the supercharging pressure by the mechanical supercharger becomes the target supercharging pressure in the steady state after the end of the transient state. The supercharging method of the internal combustion engine provided with the mechanical supercharging device according to claim 4, wherein the supercharging pressure by the supercharging device is adjusted. 前記機械式過給装置による過給圧の調整を、前記機械式過給装置を迂回する通路に設けたバイパスバルブの開度で調整することを特徴とする請求項4又は5に記載の機械式過給装置を備えた内燃機関の過給方法。   The mechanical type according to claim 4 or 5, wherein the adjustment of the supercharging pressure by the mechanical supercharging device is adjusted by an opening degree of a bypass valve provided in a passage bypassing the mechanical supercharging device. A method of supercharging an internal combustion engine provided with a supercharging device.
JP2009145415A 2009-06-18 2009-06-18 Internal combustion engine equipped with mechanical supercharger and supercharging method therefor Pending JP2011001877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009145415A JP2011001877A (en) 2009-06-18 2009-06-18 Internal combustion engine equipped with mechanical supercharger and supercharging method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145415A JP2011001877A (en) 2009-06-18 2009-06-18 Internal combustion engine equipped with mechanical supercharger and supercharging method therefor

Publications (1)

Publication Number Publication Date
JP2011001877A true JP2011001877A (en) 2011-01-06

Family

ID=43560037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145415A Pending JP2011001877A (en) 2009-06-18 2009-06-18 Internal combustion engine equipped with mechanical supercharger and supercharging method therefor

Country Status (1)

Country Link
JP (1) JP2011001877A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102777287A (en) * 2011-05-11 2012-11-14 现代自动车株式会社 Engine system based on turbo charger and fuel ratio improving method thereof
JP2013170455A (en) * 2012-02-17 2013-09-02 Isuzu Motors Ltd Internal combustion engine, exhaust circulating method therefor, and control method therefor
US20130333665A1 (en) * 2012-06-14 2013-12-19 Ford Global Technologies, Llc Approach for supplying vacuum via a supercharger
US20160061104A1 (en) * 2014-09-02 2016-03-03 Toyota Jidosha Kabushiki Kaisha Internal combustion engine system
CN111102067A (en) * 2019-12-30 2020-05-05 湖南省力宇燃气动力有限公司 Gas generator set

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102777287A (en) * 2011-05-11 2012-11-14 现代自动车株式会社 Engine system based on turbo charger and fuel ratio improving method thereof
KR101262506B1 (en) * 2011-05-11 2013-05-08 현대자동차주식회사 Engine System Based on Turbo Charger and Fuel Ratio Improving Method thereof
US8931274B2 (en) 2011-05-11 2015-01-13 Hyundai Motor Company Engine system based on turbo charger and fuel ratio improving method thereof
CN102777287B (en) * 2011-05-11 2016-03-30 现代自动车株式会社 Based on engine system and the fuel ratio raising method thereof of turbosupercharger
JP2013170455A (en) * 2012-02-17 2013-09-02 Isuzu Motors Ltd Internal combustion engine, exhaust circulating method therefor, and control method therefor
US20130333665A1 (en) * 2012-06-14 2013-12-19 Ford Global Technologies, Llc Approach for supplying vacuum via a supercharger
CN103511357A (en) * 2012-06-14 2014-01-15 福特环球技术公司 Approach for supplying vacuum via a supercharger
US9027343B2 (en) * 2012-06-14 2015-05-12 Ford Global Technologies, Llc Approach for supplying vacuum via a supercharger
CN103511357B (en) * 2012-06-14 2017-03-01 福特环球技术公司 The method supplying vacuum via mechanical supercharger
US20160061104A1 (en) * 2014-09-02 2016-03-03 Toyota Jidosha Kabushiki Kaisha Internal combustion engine system
CN111102067A (en) * 2019-12-30 2020-05-05 湖南省力宇燃气动力有限公司 Gas generator set

Similar Documents

Publication Publication Date Title
JP4741678B2 (en) Diesel engine with supercharger
CN107654314B (en) Engine system
US8499747B2 (en) Method and device for operating an internal combustion engine
US10513976B2 (en) Engine system
JP5444996B2 (en) Internal combustion engine and control method thereof
EP3179079B1 (en) Engine system
US10344688B2 (en) Apparatus and method for engine control
JP2008546946A (en) Supercharged diesel engine
KR100962160B1 (en) Boost pressure control
KR20150074063A (en) Controlling exhaust gas flow to the egr system through a scavenger valve
CN111287839B (en) Engine system and method of controlling the same
JP2013108479A (en) Diesel engine
JP2007092618A (en) Internal combustion engine with supercharger
JP2011001877A (en) Internal combustion engine equipped with mechanical supercharger and supercharging method therefor
JP2010255525A (en) Internal combustion engine and method for controlling the same
JP2012132370A (en) Diesel engine with turbo-supercharger
JP2006299892A (en) Internal combustion engine with supercharger
US20180100428A1 (en) Engine system
JP2012233412A (en) Compressed air supply method for internal combustion engine and internal combustion engine
KR101526390B1 (en) Engine system
US10634044B2 (en) Engine system and method using the same
KR102463199B1 (en) Engine system
JP4206934B2 (en) Supercharging system for internal combustion engines
JP2012163009A (en) Control device for internal combustion engine
CN101205844A (en) Device improving air-intake of combustion engine