JP2010510499A - 重力グラジオ・メータ - Google Patents

重力グラジオ・メータ Download PDF

Info

Publication number
JP2010510499A
JP2010510499A JP2009537446A JP2009537446A JP2010510499A JP 2010510499 A JP2010510499 A JP 2010510499A JP 2009537446 A JP2009537446 A JP 2009537446A JP 2009537446 A JP2009537446 A JP 2009537446A JP 2010510499 A JP2010510499 A JP 2010510499A
Authority
JP
Japan
Prior art keywords
bar
container
coil
gradiometer
bent web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2009537446A
Other languages
English (en)
Inventor
ジョアキム ファン カン フランク
ウィンターフラッド ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technological Resources Pty Ltd
Original Assignee
Technological Resources Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2006906562A external-priority patent/AU2006906562A0/en
Application filed by Technological Resources Pty Ltd filed Critical Technological Resources Pty Ltd
Publication of JP2010510499A publication Critical patent/JP2010510499A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V7/00Measuring gravitational fields or waves; Gravimetric prospecting or detecting
    • G01V7/005Measuring gravitational fields or waves; Gravimetric prospecting or detecting using a resonating body or device, e.g. string

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Golf Clubs (AREA)
  • Measuring Magnetic Variables (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

重力グラジオ・メータおよびグラジオ・メータのためのピボット屈曲ウエブを形成する方法において、グラジオ・メータは、容器45、47にサポートされた測定バー41、43と、バーの移動を測定して重力勾配テンソルの表示を与えるトランスジューサ71とを有する。バー41、43は、屈曲ウエブ上に搭載される。ウエブは、容器およびバーと別の要素中に形成される。

Description

(発明の分野)
本発明は、重力グラジオ・メータに関するものであって、詳細には、航空機で使用する重力グラジオ・メータに関するが、これに限定しない。本発明は、重力勾配テンソルの対角および非対角成分を測定する用途に特に適している。
(発明の背景)
重力グラジオ・メータは、我々の国際特許出願第PCT/AU2006/001269号および同時出願のいくつかの出願に開示されている。国際特許出願第PCT/AU2006/001269号の内容は、参照によってここに取り込まれる。
重力計は、地質学調査で地球の重力場の一次導関数を測定するために広く用いられる。地球の重力場の一次導関数を測定できる重力計の開発においていくらかの進歩があるが、場の空間的変動を移動車両の加速度の一時的な変動から区別することが困難なため、その測定は、地上に静止した機器による有用な調査に十分な精度でのみ行われるのが通常である。
重力グラジオ・メータ(重力計と区別して)は、重力場の二次導関数を測定するために用いられ、重力間の差を通常重力の1012分の1まで測定するのに必要とされるセンサを使用する。
典型的な場合、このような装置は、鉄鉱石を含む鉱床や炭化水素を含む地質学的構造を発見しようとして用いられてきた。
上述のグラジオ・メータは、センサ・マスの形をしたセンサを有し、重力勾配に応答して動くようにピボット回転するように固定されている。
上述の国際出願に開示された重力グラジオ・メータは、センサ・バーの形をしたセンサ・マスをサポートする容器を含む。バーは、一体となった屈曲ウエブによってセンサ・マスに接続される。屈曲ウエブが破れれば、容器およびバーは、従って有用であり、完全な置き換えを必要とするが、これは、バーおよび容器を形成する材料の性質上、比較的高くつく。
(発明の概要)
本発明の目的は、グラジオ・メータと、この問題を克服するグラジオ・メータのための屈曲ウエブ・ジョイントを形成する方法を提供することである。
従って、本発明は、重力勾配テンソルの成分を測定する重力グラジオ・メータであって、
重力勾配に応答して移動する少なくともセンサ・バーと、
重力勾配テンソルの少なくとも1つの成分の測定値を提供するためにセンサ・バーの移動を測定するトランスジューサと、
センサ・バーをサポートする容器と、
容器およびバーと別に形成され屈曲ウエブを有する屈曲ウエブ要素であって、容器およびバーに接続されバーが屈曲ウエブの周りにピボット運動できるようにバーを容器にサポートする屈曲ウエブ要素と、
を含む重力グラジオ・メータを提供する。
分離された屈曲ウエブ要素が提供されるため、屈曲ウエブが破れても、古い要素を取り外し、グラジオ・メータを修理するためのスペア・パーツとして保有できる新しい要素を挿入するだけでよい。従って、このことは、一体となった屈曲ウエブを有する完全な新しい容器およびバーの時間の掛かる加工の必要性あるいは比較的高くつく完全なスペアの容器および屈曲ウエブを保持する必要性を回避できる。
好ましくは、屈曲ウエブ要素は、二重の鳩の尾の形状を有し、屈曲ウエブの場所を除いて二重の鳩の尾の形状の鳩の尾を分離するカットを備えており、容器は、鳩の尾のチャネルを有し、センサ・バーは、要素を受け入れる鳩の尾のチャネルを有し、要素を容器およびバーに接続している。
本発明は、また重力勾配テンソルの成分を測定する重力グラジオ・メータに屈曲ウエブを形成する方法を提供し、重力グラジオ・メータは、容器に搭載されたセンサ・バーを有し、センサ・バーは、重力勾配に応答して容器に相対的に動くことができ、重力勾配テンソルの少なくとも1つの成分の測定値を与える。本方法は、
バー上に1つの接続部品および容器上に1つの接続部品を形成し、バー上の接続部品に対応する部品と容器上の接続部品に対応する部品を有する分離した屈曲ウエブ要素を、容器およびバーの1つと要素とを加熱し容器およびバーの他方と要素とを冷却してバーおよび容器に接着させ、容器、バーおよび要素が本質的に同じ温度に戻ったとき容器、バーおよび要素の収縮および膨張を利用して要素がバーおよび容器に接続されるように、対応する部品を一緒に配置する工程を含む。
好ましくは、バーおよび容器上の部品は、二重の鳩の尾の形をしたチャネルであり、容器上の部品は、屈曲ウエブの場所を除いて、カットによって分離された対応する鳩の尾の形をした要素である。
本発明の好適な実施の形態について、添付図面を参照しながら例を挙げて説明しよう。
(好適な実施の形態の詳細な説明)
図1は、本発明の1つの実施の形態に従う重力グラジオ・メータの模式図である。
図1に示されたグラジオ・メータは、外部プラットフォーム2にサポートされた二重壁のデュワ1を含む。外部プラットフォーム2は、デュワ、従って、デュワの内容物の3つの直交する軸の周りの調節を可能にする。外部プラットフォーム2は、一般に既知であり、適当なモータやその他の同様な手段によって調節することも知られている。従って、詳細な説明は、行わない。
デュワには、真空キャニスタ3が備えられ、またデュワには、液体ヘリウムHeのような液化ガスが供給され、グラジオ・メータが低温で動作できるようになっている。デュワ1は、エンド・プレート4によって閉じられ、後者は、電気リード線(図示されていない)を外部コンポネント(図示されていない)に接続するコネクタ5aを含んでいる。
キャニスタ3は、エンド・プレート9によって閉じられ、後者は、電気リード線(図示されていない)をコネクタ5aに接続するコネクタ5bを含んでいる。グラジオ・メータは、12角形のリング62と半球ドーム63から形成されるメイン・ケーシング61を有する(図12参照)。内部マウンティング5がリング62に接続される。リング62は、1つのサポート65を備え、これに対してフィード・スルー・フランジ9が接続される。バッフル11aがフォーム11bを挟んだ形のネック・プラグ11がキャニスタ3の上方に配置される。キャニスタ3まで延びてキャニスタ3を排気するためにも使用される中空ロッド93の上にバッフル11aがサポートされる。
図2を参照すると、グラジオ・メータの回転可能なマウンティング5(図7)の第1のマウント10が示されており、ベース12と直立する周壁14とを含む。周壁14は、複数の切欠き16を有する。ベース12は、ハブ18をサポートする。
図3および図4は、周壁22および上部壁24を含む第2のマウント20を示す。周壁22は、マウントをケーシング61に接続する4つのラグ13を有する。上部壁24および周壁22は、開口部28を定義する。周壁22は、第1のパーツ25、第2のパーツ26および第3のパーツを有する。第2のマウントは、一体型の統合された構造物であり、第1のパーツ25は、あとで説明するように、屈曲ウエブの形成を除いて、周壁を貫通する円周状カット19を行うことによって形成される。第3のパーツ27は、これもあとで説明するように、屈曲ウエブの形成を除いて、周壁22を貫通する第2の円周状カット29を行うことによって形成される。第2のマウント20は、図7に示すように、ハブ18を開口部28に合わせ、ラグ13を対応する切欠き16に通すことによって第1のマウント10上に搭載される。
第1のマウント10は、第2のマウント20に結合される。第1のマウント10に第1の屈曲ウエブ31が形成され、マウント10の一次マウント部がウエブ31の回りでマウント10の二次マウント部に相対的にピボット回転できるようにされる。このことについては、図13から図21に示された第2の実施の形態を参照しながらより詳しく説明する。
ラグ13は、キャニスタ3のマウンティング5に接続し、次にグラジオ・メータの低温動作のためのデュワ1に位置する。
デュワは、次に3つの直交する軸x、yおよびzの周りにグラジオ・メータの粗い回転制御を行うように第1の外部プラットフォームに搭載される。マウンティング5は、特にグラジオ・メータが空中にある場合に測定を実行する間のグラジオ・メータを安定させるためにx、yおよびz軸の周りのかなり細かい回転調節を行うように、センサ40(これについては、のちにもっと詳しく説明するが、四重極マスとするのが望ましい)を搭載する。
第1の屈曲ウエブ31は、図7に示すように第1のマウント10が第2のマウント20に相対的にz軸の周りに動くことを可能にする。
図5および図6は、それぞれラインIVおよびVに沿った断面図であり、図3に示したカット19、29に沿ったものである。周壁22は、ワイヤ・カッタや同等品のような任意の適当な切断器具によってカットされる。図5は、カット27によって形成される底面19aを示す。図3および図5から明らかなように、カット27は、2つの逆V字形のピーク34を有する。ピーク34の頂点は、カットされず、従って、第1のパーツ25を第2のパーツ26につなぐ第2の屈曲ウエブ33を形成する。このように、第2のパーツは、図7でx軸の周りに第1のパーツ25に相対的にピボット回転できる。第2のカット29が図6に示されているが、ここでもカット29によって形成された底面29aが見えている。ここでも、第2のカット29が2つのV字形のピーク35を形成し、ピーク35の頂点は、カットされず、従って第2のパーツ26を第3のパーツ27につなぐ第3の屈曲ウエブ37を形成する。こうして、第3のパーツ27は、図7に示されたy軸の周りにピボット回転できる。
図8は、マウンティング上に搭載されたセンサ40を示す。センサ40は、第1のバー41および第1のバー41に直交し、バー41と同じ形の第2のバー(図8に示されていない)の形をした第1のマスおよび第2のマスを含む直交四重極レスポンダOQRセンサである。
バー41は、第1の容器45内に形成され、バー42は、第2の容器内に形成される。バー41および容器45は、バー42および容器47と同じであるが、一方が他方に対して90度回転しているため互いに直交する点が異なる。従って、容器45についてのみ説明する。
容器45は、末端壁51および周辺の側壁52aを有する。末端壁51は、第1のマウント10の壁14の縁75(図2および図7)にネジ等(図示されていない)によって接続される。バー41は、バー41を壁51につなぐ第4の屈曲ウエブ59を除いて、壁51にカット57によって形成される。屈曲ウエブは、図9のバー41の上面図に拡大して示されている。従って、バー41は、重力場の変動に応答して容器45に相対的にピボット回転できる。バー42は、上で述べたのと同じように搭載され、これも第5の屈曲ウエブ59の回りに重力場の変動に応答して、その容器47に相対的にピボット回転できる。容器47は、第1のマウント10のベース12(図2)に接続される。
バー41および容器45は、この実施の形態で屈曲ウエブ59と一緒に統合された一体型構造になっている。しかし、ウエブ59は、図24および図25の実施の形態で説明するように、容器45と分離して作成して、容器45およびバー41に接続してもよい。
バーの移動を測定し、移動量、従ってバーによって検出された重力場の差分の測定値を表す出力信号を生成するために、トランスジューサ71(図2から図6に示されていない)が設けられる。
図10は、3つの直交する軸(x、y、z)の周りにマウンティング5を回転させることによってグラジオ・メータを安定化するためのアクチュエータ制御を示す模式的ブロック図である。コンピュータ、マイクロ・プロセッサ又は同等物であるコントローラ50は、アクチュエータ52、53、54、55に信号を出力する。アクチュエータ52は、マウンティング5をx軸の周りに回転させることができ、アクチュエータ54は、マウンティング5をy軸の周りに回転させることができ、アクチュエータ54は、マウンティング5をz軸の周りに回転させることができる。しかし、好適な実施の形態では、4つのアクチュエータ52、53、54、55のうちの2つが用いられてマウンティングを各軸の周りに回転させるため、各軸の周りの回転は、2つのアクチュエータで提供される2つの線形運動の組合せで引き起こすことができる。各アクチュエータによって提供される線形運動については、図31および図32を参照しながら説明する。マウンティング5の位置は、適当なフィードバックをコントローラ50に提供することができるようにモニタされ、航空機内部にあるか又はその後方に曳航されるかのいずれかによって空中を移動する場合のサポートを安定化するために必要とされるように、サポート10を回転させるための適当な制御信号がアクチュエータに提供される。
好適な実施の形態は、また角加速度計を含み、バー41、42と類似した形状をしているが、その形状は、四重極モーメントをゼロとするように調整される。線形加速度計は、屈曲するヒンジとして働く単一マイクロ・ピボットを備えた単純な振り子デバイスである。
図11は、好適な実施の形態に使用されるフィードバック制御の外観である。
図12は、低温動作のためにデュワ1に搭載し、次に外部プラットフォームに搭載するように準備ができたグラジオ・メータの一部を切除した図である。図2から図8は、上と下にバー41と42を備えたグラジオ・メータを示すが、この機器は、実際は、図12に示すように、その側面を下側にして(90度回転して)バー41、42が端部に来るようにされる。
図12は、ケーシング61内部に配置され、リング62および透明な半球端63によって形成されたマウンティング5を示す。リング22は、ケーシング61内に位置するSQUID(超伝導量子干渉デバイス)電子回路およびトランスジューサ71(図8を参照)からの内部配線をコネクタ5b(図1)に接続するコネクタ69を有する。
トランスジューサ71は、バー41、42の移動の角度を測定し、制御回路(図示されていない)は、その差分を測定するように構成される。
誤差修正は、加速度計および温度センサからのデジタル化された信号に基づいて数値的に実行することができる。
トランスジューサ71は、SQUIDベースのトランスジューサで、誤差修正は、多分SQUIDベースのトランスジューサの大きいダイナミック・レンジおよび線形性によって行われる。
図13から図21は、第2の実施の形態を示しており、同様な部品は、先に述べたものと同様な部品を示す。
この実施の形態で、第1のマウント10は、切欠き80を有し、等価的にラグ(図示されていない)を受け入れるスロットを構成し、切欠き80でマウント10に接続され、更に図19から図21に示された第2のマウント20に接続される。この実施の形態で、ラグは、分離したコンポネントであるため、それらを小型化することは、第2の屈曲ウエブ33および第3の屈曲ウエブ37を構成する第2のマウント・セクション20でカットされるよりも可能で、更に容易に行うことができる。
図13で、ハブ18のパーツ18aを定義するようにカット87が行われる。カット87は、次に88において内側に向かって放射状に延びて、次にカット101で示されるように中央セクション18cを取り囲む。カット101は、次にカット・ライン18d、18eに沿って中央セクション18cに入ってコア18を定義する。コア18fは、カット・ライン18e、18dとの間のカットされていない部分である屈曲ウエブ31によって中央セクション18cに接続される。従って、パーツ10aは、マウント10の一次マウント部を形成し、部分18aが屈曲ウエブ31によって部分10aと結合する場所を除いて、マウント10の二次マウント部10aから分離される。パーツ18aは、等価的に、屈曲ウエブ31周りにz軸方向でパーツ10aに相対的にパーツ18aの回転を許容する心棒を形成する。
図14に示されたように、カット・ライン88は、図14に示された上端部から下端部に外側に傾斜し、またコア18cは、図17に最も良く示されたように、対応する形状で外側に向かって傾斜する。
図13から図18で明らかなように、第1のマウント10は、先の実施の形態のように丸でなくて六角形の形状をしている。
図19から図21は、第2のマウント20を示す。図16は、第1のマウント10に搭載された第2のマウント20を示す。図19から図20に最も良く示されているように、第2のマウント20は、受入れラグ(図示されていない)に関する切欠き80と合致する切欠き120を有する。ラグは、ラグを貫通してボルト孔121に達するボルトによって第2のマウント20にボルト止めできる。ラグ(図示されていない)は、マウント20が第1のマウント10に固定される前にマウント20に搭載される。
図19から図20の実施の形態で、ピーク34および逆転したピーク35は、先の実施の形態でそうであったようにV字ではなく、むしろ平坦にされる。
この実施の形態で、中央孔137および2つの結合孔138aを備えた上部壁24が設けられる。分解したいときに、パーツ18aから容器45を容易に押し離すことができるように3つの小さい孔139aが設けられる。第2のマウント20が第1のマウント内に位置するとき、中央セクション18cの上側部分は、図16に最も良く示されたように、孔137を通って飛び出す。マウント20は、次に孔138を貫通してパーツ18aの孔139b(図13参照)と結合するファスナによってマウント10に接続できる。
こうして、第1の容器45およびそれに付属するバー41が容器10の縁75に接続され、第2の容器47がベース12に接続されるとき、容器45、47とそれらに付属するバー41、42は、それに従って、屈曲ウエブ31、屈曲ウエブ33および屈曲ウエブ37によって定義される3つの直交する軸の周りに動くことができる。
第2のマウント20を作り上げる3つのパーツ25、26、27の展開図である図21に最も良く見られるように、開口部は、マウント20を貫通して延びて、孔137、孔138および孔139で形成されている。図21に示されたマウント20が一体型の構造で、屈曲ウエブ33、35の場所を明確に示すためだけに、展開図で示されていることを理解すべきである。明らかなように、図21に示された屈曲ウエブ33は、パーツ26と結合し、また図21に示された屈曲35は、パーツ27と結合する。孔137、138、139は、第2のマウント20を第1のマウント10中に配置するときに、第1のマウント10の心棒又は第1の部分18aが通過する通路を定義する。
このように、第2のマウント20がパーツ18aに固定されるとき、第2のマウント20は、屈曲ウエブ31によって定義されたz軸の周りに第1のマウント10の第1の部分10aと一緒にピボット回転でき、他方、パーツ18aによって形成される第2の部分は、静止状態に留まる。xおよびy軸の周りの運動は、先に述べたように、屈曲ウエブ33、35の周りの第2のマウントのピボット回転運動によって実現される。
図22は、容器45、47に固定された線形および環状加速度計90を示す。
重力勾配は、任意のマス分布を有する剛体に対して、非ゼロの四重極モーメントを持てば、トルクを与える。平坦な物体に対しては、x−y面でz軸の周りにピボット回転する場合、四重極は、xとy方向との慣性モーメント間の差分である。このように、四角又は円形は、ゼロの四重極モーメントを有し、長方形は、非ゼロの値を有する。
生成されるトルクがグラジオ・メータで測定される信号を構成するものである。
これもトルクを発生でき、従って誤差の原因となりうる2つの動的擾乱が存在する。
第1のものは、線形加速度である。
これは、マスの中心が回転中心と正確に一致しない、すなわち、バーが「アンバランス」な場合、トルクを生じる。バー41、42は、可能な限りバランスするようにされる(マスの中心位置を調節するためにグラブ・ネジを使用して)が、それで十分でなく、従って誤差が残る。この誤差は、線形加速度を測定し、それを用いて信号の誤差部を数値的に取り去ることによって修正することが可能である。
第2のものは、角運動である。
角運動には、2つの面があり、その各々が異なる誤差を生み出す。
第1のものは、アスペクト角加速度である。
角加速度は、その慣性モーメントを通してマス分布に対してトルクを発生する(四重極モーメントがゼロであったとしても)。これは、膨大な誤差であり、それに対抗するために2つの好適な方法が使用される。
第1のものは、内部回転安定化を使用するものである。これは、図10のブロック図に示されている。ここで、Ho(s)は、マウンティング5の周りにピボットするセンサ・アセンブリを表す(図9のように)。ブロックA(s)は、アクチュエータを表し、加えられた擾乱を打ち消すことによって安定化を実現するフィードバック・トルクを提供する。T(s)は、加えられた擾乱の効果を測定するセンサ(又はトランスジューサ)を表す。これは、角加速度計である。回転制御に角加速度計を使用することは、通常でない。通常は、ジャイロおよび/又は高度にダンプされたチルト・メータが使用されるが、我々の目的のためには、角加速度計が優れている。これは、誤差が角加速度擾乱に比例するからである。
第2のものは、同相除去CMRRを使用するものであり、これが2つの直交するバーが必要とされる理由である。2つのバーに対して、角加速度によって生じる誤差トルクは、同じ方向にあるが、重力勾配によって生じる信号トルクは、逆方向を向いている。
従って、2つのバーの間で偏向差を測定することによって、勾配を検出することができるが、角加速度は、できない。
従って、2つの分離した角加速度計90(区別が容易になるように図22に90’とラベル付けされている)が設けられる。本発明は、OQRバー41、42の対から2つの独立した出力信号を有する。第1のものは、偏向差に比例し、勾配信号を与え、また第2のものは、その偏向の和に比例し、角加速度に比例し、z軸回転制御に関するセンサを提供する。
xおよびy軸は、別々の角加速度計を必要とする。2つのバーのピボット軸が正確に平行でないため、また以下で議論する角度擾乱によって生じる第2の形の誤差に対抗するために、その軸の周りの回転安定化が必要である。
第2のアスペクトは、角速度である。
角速度は、遠心力を生ずるが、それも誤差の原因である。アクチュエータによって提供される内部回転安定化は、角運動を低減するため、誤差は、1Eotvosよりも小さくなる。
図23は、半球端を除去したコネクタ69およびメイン・ボディ61を示す。
図24は、本発明の更に別の実施の形態に従う容器45の平面図である。図24から明らかなように、容器45は、図8の実施の形態のケースのように六角形ではなくむしろ円形である。
容器45は、バー41のマスの中心に位置する屈曲ウエブ59に関して説明したのと同じように、バー41をサポートする。バー41は、シェブロン形をしているが、このシェブロン形は、先の実施の形態のものと若干異なっており、屈曲ウエブ59と逆にもっと丸い端部41eを有しており、屈曲ウエブ59に隣接して槽状の形をした壁セクション41f、41g、41hを有する。バー41の端は、ネジを切った穴300を有し、グラブ・ネジ又は同等物のようなプラグの形をしたものでよいネジを切った要素301を受け入れるようになっている。穴300は、容器45の周壁52aの孔302と組になる。孔302は、スクリュ・ドライバやその他の道具でプラグ301にアクセスすることを可能とするため、プラグ301は、穴300にネジで出し入れすることができ、マス41のバランスを取るように穴の中でのその位置を調節することができ、重力の中心が屈曲ウエブ59にあるようにされる。
図24に示されたように、穴300は、図24の水平および垂直に対して45度の角度にある。従って、図24に示された2つの穴302は、互いに直角になっている。
図24は、またバー41の動きを監視して、SQUIDデバイスに送られる信号を生成するトランスジューサ71を受け入れる開口部305を示す。典型的には、トランスジューサは、コイルの形をしており、バー41がバー末端における重力の差によってわずかに移動すると、容量変化が発生して、コイルを流れる電流が変化して、バー41の運動を示す信号を提供する。
図24の実施の形態で、屈曲ウエブ59は、バー41および容器45と一体化しておらず、むしろ分離したウエブ要素501の上に形成される。
この実施の形態で、バー41(図24および図25に示されていない第2の容器内のバー42)は、容器45とは、切り離されている。バー41は、鳩の尾の形をしたチャネル502を備えた形に形成されており、容器45は、それに対応した形の鳩の尾のチャネル503を備えている。
図25に最も良く示されているように、ウエブ要素501は、屈曲ウエブ59によって一緒に結合される第1の鳩の尾部分501aおよび第2の鳩の尾部分501bを有する二重の鳩の尾形状のものになっている。パーツ501、501bは、カット504によって屈曲ウエブ59の場所から隔てられている。
パーツ501aは、チャネル503にフィットするような形状に構成されており、パーツ501bは、チャネル502にフィットするような形状に構成されている。従って、要素501がチャネル502、503の内部に位置するとき、要素501は、バー41を容器45と結合させ、容器45内部でのバー41の運動を可能にする屈曲ウエブ59を提供する。
要素501をチャネル502、503に固定するために、要素501は、低温に冷却され、その雰囲気温度でのサイズに等価的に収縮する。容器45およびバー41は、加熱することもできて、そうすれば、拡大し、チャネル502、503のサイズをそれらの雰囲気温度でのものに拡大させる。このように、縮小した要素501は、比較的ぴったりとチャネル502、503に容易にフィットすることができて、また要素501とバー41および容器45の両方が雰囲気温度に戻るとき、容器41およびバー45は、膨張する要素501に相対的に等価的に縮む又は収縮することによって、要素501をチャネル502、503に正確に固定させることになる。
グラジオ・メータが低温で使用されるとき、要素501とバーおよび容器の両方とも同じ温度を体験するので、要素501がチャネル502、503にフィットしていたときに発生したその間の温度差は、要素501をバー41および容器45と接続する一体性および固定状態を保つように維持される。
要素501を使用することは、別のコンポネント上に屈曲ウエブ59が形成されることを意味し、ウエブ59が破れると、要素501は、簡単に取り外されて、新しい要素で置き換えることができる。従って、これは、屈曲ウエブ59が破れた場合に、容器45およびバー41の全体を置き換える必要性を回避する。
屈曲ウエブ31、33、37も、その対応するマウンティング・パーツと一体化する代わりに、要素501と同じように、別々になったウエブ要素上に形成することができ、そうすることで、それらのウエブの1つが破れた場合でも、マウンティング・パーツ全体を置き換える必要がない。
図26は、図24の容器のパーツのより詳細な図であり、開口部305を示している。図25から明らかなように、開口部305は、溝402を形成するショルダ部401を有する。表面406に隣接してバネ403が配置される。
図27から図33は、本発明の好適な実施の形態に使用されるトランスジューサ71に関する図面であり、トランスジューサ71は、容器45、47のバー41、42の動きを測定する。図27から図33には、1つのトランスジューサだけが示されている。
図27に示されたように、トランスジューサ70は、2つの検出コイル510、511を有し、バー41が重力場の変動に応答してバー41が屈曲ウエブ59周りに動くとともに、バー41の超伝導表面41aの運動によって変調されたインダクタンスを有する。コイル510は、比較的小さい電流を流すように意図された多いターン数を有する大きいインダクタンスの細かいピッチのコイルである。コイル511は、より少ないターン数の低インダクタンスの粗いピッチのパンケーキ・コイルであって、コイル510に対して強く結合しているが、薄い絶縁層513(図32に示されている)によってコイル510から分離されている。コイル510、512は、互いに同心であって、シリコン基板515(図28および図29)をサポートするマコール(Macor)(R)ブロック514(図29参照)の1つの表面上に設けられる。
コイル510と並列にバラスト・インダクタ・コイル516が設けられており、コイル510およびコイル516によって形成されるループに初期電流を入力させる入力リード517、518が設けられている。入力リードと出力リードとは、加熱スイッチ519によって分離されている。加熱スイッチ519とリード517、518の役目については、以下に詳細に説明する。ここでの説明に関してあえて言えば、リード517、518とスイッチ519とは、コイル510とコイル516で形成されたループの中に初期電流が蓄積されることを可能にし、グラジオ・メータが重力場の変化を検出する低温動作の間のバー41の運動によって変調される。
コイル516は、以下でより詳しく説明するように、コイル510、516と表面512との効率的間隔のチューニングも提供する。
コイル511は、SQUIDデバイス367の一部を形成するコイル518に並列に接続される。任意の大きい電流を流して、その電流がSQUIDデバイス367に流入しないようにするために、コイル511、518と並列になったコイル519の形の固定されたバラスト・インダクタを設けることができる。コイル519のインダクタンスがコイル518のそれよりも大幅に大きい場合、固定されたバラスト・インダクタ519を加えても感度は、変化しない。
表面512の移動を測定するために適切なパンケーキ・コイルを提供するために、非常に多いターン数が必要である。これは、基板上にワイヤを巻き付けて従来のコイルを作製する方法を困難にする。これは、重力グラジオ・メータでコイルを容器45のバー41の近傍に配置する上で課されるコイルのサイズおよびサイズに対する制約のためである。
製造および費用の点での困難を克服するために、検出コイルは、薄膜技術を用いて形成され、コイルは、シリコン基板上に良く知られた適当なマスキング製造技術によって形成された集積回路となる。しかし、そのような薄膜技術の欠点は、比較的低い電流制約要求を有することである。この欠点を克服するために、図27を参照して説明するように、少なくとも2つのコイル510、511を備えた回路が提供される。コイル511は、コイル510の電流をSQUIDデバイス367に適したものに増幅する。このように、コイル511は、等価的にコイル510の出力電流を増大させる変成器を形成する。これは、また等価的なソース・インダクタンスを低減するが、欠点ではない。これは、高分解能のマイクロ回路を使用することによって、ターン数の大きい非常に大きいインダクタンスを有するコイルを作製することが可能となるからである。
このように、図28に側面図が示されたマコール・ブロック514の平面図である図29に示されるように、シリコン基板515がブロック514上に配置され、図30に示されるように、シリコン基板515の上に円形のアルミニウムのキャパシタ電極板518aが次に形成される。電極板518aの周りに循環する電流を減らすために放射状のスロット519aを備えた電極板518aが設けられる。キャパシタの電極板518aの形成と同時に、加熱スイッチ519bに電流を供給する加熱スイッチ入力520、521が形成される。コイル510およびコイル516を通って流れる初期のソース電流を供給するために入力および出力パッド517aも形成される。次に、図31に示されたように、キャパシタ518aを覆って薄い絶縁層522が配置される。次に、絶縁層522に細かいコイル510を含む層が形成され、コイル510、516によって形成されたループを通って循環する初期電流を供給する入力および出力リード517も形成される。細かいコイル510は、ニオブのような超伝導材料から形成され、ターン数1200、5ミクロンのピッチ、28μmの外径および16μmの内径を有する。
次にコイル510を覆って絶縁層が形成される。次にコイル510をコイル511から分離するために図32に示された絶縁層513がコイル510を覆って配置され、また次に図32に示されたように、粗いコイル511が絶縁層513を覆って配置される。
粗いコイル511も、またニオブのような超伝導材料を含むことができ、また、例えば、ターン数が36で、ピッチが150ミクロン、外径および内径は、細かいコイル510と同じように作成される。
コイル510、511と反対側の基板515にバラスト・コイル516が設けられる。これは、厚さが約0.5mmの2枚の基板を用意して、その2つの基板を一緒に接着させるようにして、コイル516がコイル510、511が取り付けられたのと反対の形成された基板の外側の表面にあるようにして行われる。コイル510は、ボンディング・ワイヤ535(図28に1つしか示されていない)によってコイル516に接続される。ボンディング・ワイヤ535を受け入れるようにわずかな窪み539を備えたマコール・ブロック514が提供される。ボンディング・ワイヤ536も基板515と、マコール・ブロック514に形成されたニオブのコンタクト・ストリップ537との間に延びている。
図33に示されたように、粗いコイル511の一部を絶縁ストリップ530が覆って、コイル511からSQUIDデバイス367に、パッド531およびリード532、パッド533、パッド534およびリード535を介するなどによって相互接続を可能にしている。
本発明の最も単純な実施の形態で、上述の層によって形成される集積回路は、すべて、それに対応する絶縁層によって分離されたアルミニウムのキャパシタ電極板518とともに、コイル510およびコイル511を含む単純なものである。
この実施の形態で、この配置は、1に近いK12を有する良好な結合を提供する。粗いコイル511とSQUIDデバイス367で構成されるループを循環する初期電流は、ゼロに設定することができ、検出フラックスは、コイル510を流れる電流によって維持される。電流は、小さいが、検出フラックスは、大きい。この理由は、コイル510が非常に多いターン数を有するからである。
入力リード517を介してループに電流を供給することによって、コイル510(又はコイル510とコイル516で構成されるループ)に初期電流が蓄積される。電流は、またリード517、521にも供給されて、抵抗519aを加熱させ、図32に示されたように、リード517の下にある加熱抵抗519bに隣接する図28に示されたループの一部を加熱し、リード517のその部分を加熱して、等価的に超伝導ループを壊す。リード517、518から供給される電流は、従ってループおよびそのリードを通って循環することができ、ループに初期電流を誘導する。次に加熱抵抗519bへの電流が切断されて、ループに誘起された電流は、ループの超伝導特性のせいでループを循環し続ける。ループに誘起された電流は、コイル510に相対的なバー41の運動によって変調された電流であり、従って、生成される磁束を変化させ、次にコイル511を流れる電流を変化させ、次にSQUIDデバイス367によって検出されて重力場の変化の測定値を与える。
コイル516を含む図27および図28に示された実施の形態で、先に説明したように、コイル516は、コイル510と反対側の基板515の表面に搭載されて、コイル510を通って流れるバイアス電流が外部リード517を流れるのを阻止する。コイル516は、等価的にコイル510の正確な複製であり、従って好ましくは、基板515に堆積された薄膜層から形成される。ストリップ537に接続するボンディング・ワイヤ536は、コイル511をSQUIDデバイス367に接続させるコネクションを形成する。
コイル516は、またバー41の前面512とコイル510との効率的な間隔をチューニングするためにも使用され、使用されるすべてのトランスジューサが表面512から同じ距離だけ離されるようにできる。このことは、以下でもっと詳しく説明するが、ここでの説明のためにあえて言うなら、コイル516、510は、コイル510と516で構成されるループに誘起される電流を適切に選ぶことによって単一の仮想コイルを構成することができる。このように、その電流を変化させることによって、仮想コイルの位置は、等価的にコイル510と516との間で移動し、面512から予め決められた距離に位置すると位置決めされる仮想コイル位置を与える。それぞれ対応するループを循環する電流を適切に選ぶことによって、装置の製造および組立時の許容誤差を克服でき、コイル510、516によって構成される仮想コイルがそれぞれ対応するバーの面512から等しい距離だけ離されることを保証できる。
このように、コイル516は、上で述べたように外部リードに流れるバイアス電流を阻止するとともに、表面512とコイル510との効率的間隔をチューニングするという2つの機能を実行するために利用できる。
上で述べた実施の形態で、キャパシタ電極板518aは、コイル510、511と同心になっている。キャパシタ電極板518aは、重力場の変化を検出するトランスジューサの動作において何ら役目を持たない。キャパシタ電極板518aは、以下でより詳しく説明するように、バー41、42のそれぞれの容器45、47でのバランスを校正するために使用される。コイル510、511と同心状に配置され、それらのコイルと本質的に同一面にあるというキャパシタ電極板518aの位置づけは、コイル(すなわち、表面512とコイル510との間のギャップ)が見るのと同じ信号をキャパシタ電極板518aが見ることを意味する。こうして、キャパシタ518がバー41、42のバランスを校正するために使用されるとき、キャパシタは、グラジオ・メータの動作中にコイルが見るのと同じ等価的信号を測定することになる。このことは、バー41、42を装置の動作中にコイル510によって実際に検出される信号に相対的にバランスさせることを可能とし、バー41、42のバランスを従ってグラジオ・メータの動作を改善する。
この実施の形態で、電極518とコイル510、512とが本質的に同じ中心点を有するように作成することによって、電極板518aは、コイル510と同心的なものとして提供される。しかし、他の実施の形態では、同心配置は、図30Aに示すように、共通する中心ではなくて、キャパシタ電極板518aをコイル510、511の中心位置の周りに同心状に配置された別の板として提供することによって与えられる。異なる幾何学的配置もまた可能である。
図34は、開口部305および溝402のブロック514の位置を示しており、バー41のエッジ面41aに隣接しているコイル510と一緒にブロック514を所定の位置に保持するようにショルダ部401に対してバネ403でバイアスされている。
このように、コイル510とバー41は、lc回路を構成し、バー41が移動すると、コイル510を流れる電流が変化する。
図34Aおよび図34Bを参照すると、コイル510、511のより好適な実施の形態が示されている。先に述べた実施の形態では、コイル510、511が一般に円形のパンケーキ型コイルであった。コイルをもっと容易に形成し、コイルとグラジオ・メータの他の回路部品との相互接続を可能にするために、図34Aおよび図34Bのコイル510、511は、先に述べたような絶縁によって分離された2つの別々の層の中のブロック514上に形成された曲がりくねったコイルになっている。
図34Aに最も良く示されるように、粗いピッチのコイル511は、一般に曲線を描いてジグザグに曲がりくねり、図34Aに示すようにアーム511aの交番する端部における変曲点511bによって結合されたアーム511aを有する。図34に、細かいピッチのコイル510は、示されていない。しかし、細かいピッチのコイルが単にコイル511の曲がりに追随することによって、複数の細かいピッチの曲がりくねったアームができて、各々のアーム511aに付随して逆向きの電流が流れると、細かいピッチのコイルのアームに流れる電流は、単に互いに打ち消しあって、正味ゼロの磁束を生じることになる。
これを回避するために、細かいピッチのコイル510は、コイル511に対して図34Bに示すように蛇行する。コイル510は、第1のアーム510aを有し、コイルの反対側の端511aまでコイル511(図34Bに点線ラインで示されている)の蛇行部分に追随し、そのあと、コイル区分510bに沿って戻り、別のアーム510a’を形成し、同じように蛇行しながら、コイル部分510cに沿って戻り、再び別のアーム510a’’を形成する。コイル510は、次に回路部分510dに沿って戻り、更に別のアーム510a’’’を形成する。
このようにして、コイル511のアーム511aと重なり合うコイル510のアーム510aを通って流れる電流は、そのアームの各々に矢印の向きで示されるのと同じ方向に流れる。従って、コイル511の重なり合うアーム511aに関連する各コイル510aで磁束の打ち消しは、起こらない。更に、図34Bに示すように、コイル510から出力電流を供給するために、コイル510は、それ自身と1つの場所512aでのみ交差すればよい。コイル部分512aは、コイル510の残りの部分と異なる別の層(例えば、粗いピッチのコイル511と同じ層)にあるようにすれば、コイル510と511との間の絶縁層が回部部分512aを図34Bに示したコイル510の残りの部分から分離することになる。)
コイル511の寸法は、粗いピッチのコイルのアーム511aの幅Wが、バー41の表面と、図34に示すように、その上にコイル510、511が堆積されたブロック514の表面との間隔dよりも大きくなるようにされる。
図24から明らかなように、バー41の端部に隣接して4つのトランスジューサ71が配置される。他方の容器47もまたバー42に隣接して配置された4つのトランスジューサを有する。このように、グラジオ・メータには、8つのトランスジューサ71が設けられる。
図35は、バー41、42の模式図で、それらが使用される状況を示している。開口部305に位置するトランスジューサは、図36および図37の回路図と一致するように参照符号71aから71eで示されている。
図36および図37を参照すると、バー41に付属するトランスジューサ71a、71bおよびバー42に付属するトランスジューサ71g、71eを用いて重力の勾配測定値が提供される。
入力端子361は、図36に示された超伝導回路に入力電流を供給する。抵抗362の形をした加熱スイッチが設けられて、回路内部の超伝導電流を初期設定するために用いられる。加熱スイッチ362は、初期に非常に短い時間だけターン・オンされて、抵抗362が位置する回路部分を加熱して、その回路部分が超伝導になるのを阻止する。次に電流が超伝導回路に対して供給されて、抵抗362によって形成される加熱スイッチがスイッチ・オフされたときに、回路の関連部分が再び超伝導になって、以下で説明するように、重力勾配および角加速度の影響下で、バー41、42が移動によって引き起こされる任意の変化に晒される回路を通って電流が循環できるようになる。
トランスジューサ71a、71b、71g、71gは、SQUID367につながる回路ライン365および回路ライン366に並列に接続されている。
このように、バー41、42がそれぞれ対応する屈曲ウエブの周りに回転すると、バー41、42は、それぞれ、例えば、トランスジューサ71aに接近し、従ってトランスジューサ71bから遠ざかり、およびトランスジューサ71hに接近し、トランスジューサ71gから遠ざかる。これは、従って、トランスジューサを通って流れる電流を変化させることになり、その電流は、等価的に差し引きされて、重力勾配の測定値を提供する信号を与えることになる。
図37に示されたように、トランスジューサ71c、71dは、1つの分離した回路を形成し、バー41とトランスジューサ71a、71bの周波数チューニングのために使用される。同様に、トランスジューサ71e、71fは、バー42とトランスジューサ71g、71hの周波数チューニングのために使用される。バーの周波数チューニングは、角加速度を排除するためにバーが同一でなければならないことから重要である。従って、周波数チューニング回路は、バーを共鳴周波数に一致させ、モード除去を実現する電子的チューニングを可能とし、各バーは、同一のやり方で機能することになる。
トランスジューサ71a、71b、71g、71hは、またマウンティング5の角運動を測定する角加速度計を形成するためにも使用され、この角運動を補償するフィードバック信号が提供される。
これを行うために、ライン366は、変成器370に接続される。トランスジューサ71a、71b、71g、71hからの信号の極性が反転され、勾配を測定して信号の加算がバーの角運動を与える場合のように、トランスジューサ370のライン371、372上の出力は、信号の減算ではなく加算となる。出力371、372は、SQUIDデバイス375に接続されて、角加速度の測定値を提供し、図10の回路で使用されてマウンティング5を安定化する補償信号を提供する。
このように、本発明の好適な実施の形態に従えば、角加速度計90’は、例えば、xおよびy軸の周りの角加速度の測定値を提供し、バー41、42とトランスジューサ71a、71b、71g、71hによって形成される角加速度計は、例えば、z軸の周りの角加速度計の測定値を提供する。
図38および図39を参照しながら、バー41、42のバランスを取るやり方について説明する。キャパシタ400、410によって形成される一対の位置ずれセンサが2つの主な目的のために設置される。
1. 低温での動作の前に、図24を参照して説明したグラブ・ネジ301を用いて機械的にバーのバランスを取ることを可能にする各々のバー41(および42)の残留線形加速度感度を測定するため。
2. 各バー41、42の誘起線形加速度感度を測定するため。
キャパシタ400は、先に述べたキャパシタ電極板518aとバー41の表面41aによって形成される。図39に示されたのと同じ第2の回路がキャパシタ401が経験する変化を測定するために使用される。この回路は、図38と同じであるが、キャパシタ400がキャパシタ電極板とトランスジューサ71の別のものに関連する表面41aとによって形成されるキャパシタ401で置き換えられている点が異なる。
バー41、42は、それぞれの容器内部でジグ(図示されていない)の中で360度回転する。これは、2gの加速度範囲を提供するが、典型的に低温で都合よく印加される加速度の100倍である。一般的な要求は、キャパシタ400、401が1から20分の期間にわたって0.1nmを検出できることである。センサのドリフトと区別するために、各バーには、一対のキャパシタ400、401が必要である。これは、バー41の回転は、図38に示すように、一方のキャパシタ400を増大させ、他方のキャパシタ401を同じ量だけ減少させるが、熱膨張は、キャパシタ400、401の両方の出力を増大させるためである。キャパシタ400、401は、それが低温で使用できなくても、所定の場所に留まり、従って、その部品は、非磁性でなければならず、グラジオ・メータ、特に、それの近傍にある超伝導回路の動作に干渉しなくなる。
図38は、バー41がピボット回転するときに、キャパシタ400に適用されるギャップが減少し、キャパシタ401のギャップが増大することを示している。
キャパシタ400、401は、バー41の面41a(および他方のバー42の対応する面)と、面41aから離れた第2の電極板405とによって形成される。それぞれのキャパシタ400と401の電極板間のギャップは、典型的に約1ppmの分解能まで指定されなければならない。
キャパシタ400は、インダクタ410と一緒に高いQ係数の共鳴回路を形成する。インダクタ410およびキャパシタ400は、キャパシタ411、412と並列に設けられて、キャパシタ413を介して増幅器414に接続される。増幅器414の出力は、周波数カウンタ415に供給され、更にライン416によってキャパシタ412と411との間でフィードバックされる。従って、キャパシタ400は、増幅器414の動作周波数を決定し、高精度に読み出すことができる。
バー41のバランスが破れれば、周波数カウンタ45は、バーの不均衡のせいでドリフトする傾向がある。これは、バランスが取れるまで、先に述べたようにグラブ・ネジ301を動かしてマスの出し入れを行うことによって調節できる。増幅器414は、次に周波数カウンタ415から切り離され、図39に示した回路の他の部品を所定の場所においた状態で、グラジオ・メータをデュワ1に配置することができる。
図40は、図24に示され、円Aでマークしたバー41および容器45の部品の詳細な図である。バー41が非常に薄い屈曲ウエブ59によって容器45に接続されているので、バー41が移動しすぎると、屈曲ウエブ59の弾性限界を超えるかもしれない。これは、屈曲ジョイントを劣化させ、従ってバー41の端部が経験する重力場の差分の影響下でのバー41の運動を劣化させる。
通常、発生し重力場の起こりうる変化を表示する信号を提供するために必要なバー41の運動量は、10ミクロンのオーダである。典型的には、バー41は、ワイヤ切断操作によって容器45から切り離されて、図40に550と付された約60ミクロンの厚さを有するカットが形成される。従って、バー41が移動するのに利用できる間隔の大きさは、必要とされる量を大幅に超過して、屈曲ウエブ59の弾性限界を超える可能性がある。バー41が弾性限界を超えて(例えば、±10ミクロンを超えて)移動するのを防止するために、バー41の端部に隣接してカット551が形成される。同様なカットがバー41の他方の端部にも形成されるが、図40に示されていない。細長い孔552を備えたカット551が設けられる。バー41の端部を定義するカット550は、第1の突合せ面554および第2の突合せ面555を定義するプロファイルを有するセクション553を備えるように設けられる。
カット551とカット555との間の非常に薄いストリップ材料556は、プロファイル553に一致するプロファイル557を有するが、プロファイル557の端部に形成される突合せ面558、559が突合せ面554と555との間の間隔よりも小さい20ミクロンの距離だけ離れている点が異なる。すなわち、突合せ面558、559は、矢印Bの方向に移動することができ(以下で説明するように)、従って突合せ面558、559は、表面554、555に隣接し、それらからわずかに離れたプロファイル553に移動する。
薄いストリップ材料506は、矢印Bの方向に移動して、ピンを孔552に挿入することによって突合せ面558、559を位置決めし、ストリップ材料556を矢印Bの方向に押し出して表面558、559を表面554、555と合致させる。こうして、表面554と558とは、約10ミクロンの距離だけ隔てられ、表面555と559とは、約10ミクロンの距離だけ隔てられる。このように、バー41が屈曲ウエブ59の周りに図40の双方向矢印Cの方向に移動するときは、表面554が表面558と結合して、その表面の接触によってバー41がそれ以上移動することが防止されるため、移動量は、10ミクロンに限定される。同様に、バー41が逆の方向に移動すれば、表面555が表面559に接触するため、ここでも移動は、約10ミクロンに制限される。
従って、バー41の移動は、屈曲ウエブ59の弾性限界内の移動に制限されるため、ウエブは、劣化することなく、グラジオ・メータの動作に悪影響を及ぼすこともない。
図41および図42は、コネクタ5aを示すより詳細な図で、デュワ1の内部からデュワ1の外部の部品(図示されていない)へ電気信号を接続するために使用される。特に、図41および図42の構造および回路は、SQUIDデバイス367を単にワイヤ端子がエンド・プレート4を貫通して外部部品につながっている場合に発生するRF干渉からシールドするためのものである。
コネクタ5aは、Oリング562によってエンド・プレート4にシールされた底面壁561を有するコンテナ560を含む。563と符号をつけたリードがデュワ1内部からエンド・プレート4を貫通して底面壁561に搭載されたフィード・スルー・フィルタ564につながっている。第1のバッフル567は、フィード・スルー・フィルタに接続された3端子キャップ565をサポートしており、キャップ565は、第2のバッフル567上にサポートされたリレー566に接続されている。リレー566は、リレー・スイッチ568を含み(図42を参照)、次にコンテナ560上の接続要素570を通してリード571につながって、外部部品(図示されていない)につながっている。
図41に示されたように、リード563は、フィード・スルー・フィルタ564につながっており、インダクタ571と、片側をインダクタ571に並列に接続され、反対側をアースに接続されたキャパシタ572とを含む。インダクタ571は、3端子キャップ565につながり、インダクタ573、インダクタ574およびキャパシタ575を含む。キャパシタ575は、片側をインダクタ573、574に並列に接続され、反対側をアースに接続されている。インダクタ574は、リレー・コイル575およびリレー・スイッチ568を含むリレー566につながっている。リード563からリード571に信号を伝えたい場合は、リレー・コイル575に電流を流してスイッチ568をクローズさせて、信号がフィルタ564、3端子キャップ565、リレー・スイッチ568を通ってリード571に通過するようにする。信号が送られないときは、リレーがオープン状態になることでリード571からリード563への回路を切断し、3端子キャップ565およびフィード・スルー・フィルタ564は、グラジオ・メータの動作中のデュワ1のSQUIDデバイスを更にシールドすることによって、テレビ信号および同等物のような外部ソースからのRF干渉が端子5aを介してSQUIDデバイス367に伝わることを防止する。
他の実施の形態では、キャパシタ572、575が抵抗によって置き換えられる。
図42Aは、コネクタ5bに位置するRFシールドの別の部分を示す。ワイヤ563(図41および図42Aに1つだけ示されている)は、各々が対になった撚線を含み、各対は、個々に遮蔽されている。ワイヤ563の各対の各ワイヤは、インダクタ579a、579bと、それぞれ、インダクタ579a、579bと並列に接続されて更なるRF減衰を提供する2つの抵抗579cとに接続されている。
図43および図44は、測定バーの1つ(すなわち、バー41)の物理的構成および回路図と、各トランスジューサのセンサ・コイルとバー41の端41aとの間の効率的間隔のチューニングを示す回路図とをそれぞれ示している。図示された実施の形態で、トランスジューサ71bは、先に図28に関連して説明したコイルでよい2つのコイル510、516を備えて設けられている。コイル510、516は、約1mmの間隔で隔てられている。コイル510、516と、バー41の他端にあるトランスジューサ71aのコイル601とによって形成されるループ中に、加熱スイッチ362が設けられる。コイル601、510がバー41の表面41aから等しい距離だけ隔てられることを保証するために、コイル510、516、601によって形成されるループを通って流れる電流は、例えば、図44に示された場所Dにおいて仮想コイルを形成するようにコイル510と516との間で比例配分される。コイル510と516を通って流れる電流の配分を変えることによって、コイル間のDの位置は、変化し、その位置に等価的な仮想コイルが形成される。このように、コイル510と516がそれぞれの表面41aから等しい距離だけ隔てられていなければ、ループに誘起される電流を変化させて、コイル510と516のそれぞれを流れる電流量が変化して、Dの位置、従ってコイル510、516から構成される単一コイルの仮想位置は、間隔がコイル601のそれと一致するまで調節される。
必要であれば、コイル601を図44に示されたトランスジューサ71bを形成するものと同じ二重コイル配置で置き換えることができる。もちろん、トランスジューサ71a、71bは、図27および図28に関して説明したものと同じ変成器を構成する粗いコイル511がSQUIDデバイス367に供給される電流をステップ・アップするために設けられるものでよい。説明の便宜上、図27から図33に関して説明した付加的コイル511およびその他の部品は、図示されていない。
先に説明したように、SQUID367は、初期には、コイル510、601によって形成されるループに電流を誘起することによってチューニングされる。これは、抵抗362の位置にあるループの一部を昇温するヒート・ポンプを形成する加熱抵抗362に電流を供給することによって、回路のその部分を超伝導遷移温度以上に暖めて、回路のその部分が最早超伝導でないようにすることによって実行される。すなわち、例えば、図27から図33に関して説明し、図44には、示されていない入力517からループに電流を供給することができ、ループと端子517、518に接続された電流源とを通って電流が循環するようにできる。次に加熱抵抗362を不活性化して、回路のその部分が再び超伝導状態になって、電流源がループから切り離され、ループに誘起された電流は、超伝導状態にあるループを通って循環し続ける。
コイル510と516を通る電流を比例配分するために、別の加熱スイッチ362’が設けられ、コイル510、516によって形成されるループ中に図44で矢印Eの方向に流れる電流が誘起されることを許容する。加熱スイッチ362によって誘起される電流は、矢印Fの方向に循環する。従って、コイル510を通過する電流量は、コイル516を通過するそれと比べて異なるようにすることが可能で、コイル510、516によって形成される仮想コイルのD位置をシフトさせることができる。このように、コイルの間隔、従ってコイル510、コイル601の間隔は、電子的に実現されるものと同じになる。
この電流は、コイル510、516を比例配分されて通過し、必要に応じてコイル510の仮想位置をD位置にセットして、コイル601、501が等価的に表面41aから正確に同じ距離だけ隔てられるようにする。バー41が重力勾配の影響下で移動すると、これに従ってコイル601、510は、表面41aに相対的に移動して、そのコイルを流れる誘起電流を変化させ、次にSQUIDデバイス367によって検出されて、移動の測定値、従ってバー41が経験する重力勾配の測定値を提供する。
コイル601、510は、角運動を横方向運動から分離することを可能にする。図45で右又は左へのバー41の任意の横方向運動は、両コイルに同じ効果をもたらすが、重力勾配の影響下での角運動は、バー41の一端をその対応するコイルに接近させ、他方の端をそのコイルから遠ざける。
先に述べた加熱スイッチ362は、従来の抵抗の形をしているが、本発明の1つの実施の形態で、加熱スイッチは、図45に示すようにホール効果センサ570のような半導体材料を含む。ホール効果センサ570は、センサに電力を供給するリード571、572を有し、次にその関連する575と付けされた回路部分の温度を超伝導閾値よりも高く上昇させて、その時点で等価的にその回路をオープン状態にし、回路中に外部ソースから電流を誘起することができ、従って、センサがターン・オフされてデバイスが低温動作に戻ると、外部ソースから供給された誘起電流は、超伝導状態にある回路を通って循環し続ける。
半導体材料、特に、ホール効果センサを使用することは、これが低温環境で働くこと、非磁性であること、そして非常に小型であることの特徴を有する。
更に、ホール効果センサ570は、非磁性で加熱可能という別の特徴を有する。非磁性という特徴は、従って超伝導回路との干渉を回避することであり、また通常は、望ましくないセンサ570の加熱可能性という特徴は、センサ570を先に説明したようなスイッチとして使用することを可能にする。センサ570は、また4Kにおいて1キロ・オーム台の高い抵抗値を有し、それもまた有利なことである。
図45Aから図45Eは、加熱スイッチ570およびグラジオ・メータにおけるその配置をより詳細に示す。これらの図面、特に図45Aを参照すると、容器45にバー41がトランスジューサ71と一緒に示されている。回路基板850が溝861に容器によってサポートされ(図45Cを参照)、ネジ863(図45Cに1つだけ示されている)によって所定の場所に固定されている。回路基板850は、SQUIDデバイスおよび同等物のような図45Cにブロック859として集合的に示された電子回路をサポートする。図45Aおよび図45Bを参照すると、先に述べたように、コイル510、511の上に堆積されたマコール・ブロック514は、回路859に電流を流すストリップ537をそのエッジに有する。先に説明したように、ブロック514は、バネ403によって所定の場所にバイアスされている。
回路基板850は、複数の導電性ストリップ856を有し、この実施の形態で、例えば、ニオブのような超伝導材料を含み、回路859と相互接続される。ストリップ537は、これもニオブを含むブリッジ852によってストリップ856に接続される。ブリッジ852は、バネ403に塗布されたワニスによってバネから絶縁されるか、ブリッジ852をバネ403から適切に遠ざける。
図45Cに最も良く示されるように、回路基板850は、銅基板856のような伝導性基板を有し、その裏面には、ホール効果センサ570が位置している。図45Dに最も良く示されるように、センサ570は、4つの端子又はコネクタ・ピン867を有する。この実施の形態で、ピン867のうちの2つだけを用いて、電流リード571、572からセンサ570に電流を流している。リード571、572は、870においてエッチされパッド867を基板865の残りから絶縁するように形成された銅基板材料を含むパッド869に接続される。図45Eに示されるように、リード571、572は、回路基板850を貫通しており、リード571、572をピン867に結合させるために細かい銅のワイヤ873を用いている。
超伝導回路575がピン867の1つを包み込んでおり、センサ570を通って電流が流れると、センサが加熱されその熱がピン867に伝わり、次にピン867を包み込んだ回路575の部分を加熱することで、先に述べたように回路575をオープンさせる。回路575は、図45Dの場所879においてワニスや同等物によって銅基板865に接着され、センサ570がスイッチ・オフすると、熱が基板865を通って逃げてしまうことから回路575は、急速に冷却される。こうして、回路575は、そのクローズした超伝導状態に戻る。
加熱スイッチ570の好適な実施の形態は、従って、デバイスの高抵抗値および非磁性とともに、デバイスを加熱するというような通常、望ましくないデバイスの特徴を活用している。
図44に示されるように、トランスジューサ71aも点線で示すように二重コイル601、601aによって形成するとすれば、それぞれコイル510、516と601、601aで形成される各ループだけを通って電流が循環するようにでき、SQUIDデバイスが接続されたリード576における電流をゼロにすることができる。従って、SQUIDデバイスに伝わるリードのマイクロ・フォニック雑音の擾乱は、消える。
本発明の更に別の実施の形態では、バー41、42によって形成された一対の測定バーを提供する代わりに、少なくとも1つの直交する追加のバー対が設けられる。第2のバー対は、バー41、42と、その対応する容器45、47と構成が同じであり、図22に示した加速度計90’’の場所に配置される。
この配置は、図46に示されている。図22および図46に示された容器45、47に設けられた第1のバー対は、それぞれテンソル成分GZZおよびGYY(GZZ−GYY)間の差の測定値を与え、また図46に45’、47’と記された容器中に設けられた第2のバー対は、テンソル成分GZZおよびGXX(GZZ−GXX)間の差の測定値を与える。
理解すべきことは、上記に言及した成分に与えられた添え字は、水平面にあって直交するX軸およびY軸と、垂直軸であるZ軸に対するものであるということである。先に述べたように、容器45と47のバー41と43は、互いに直交しており、容器45’と47’のバーもまた互いに直交している。バー41、43は、また容器45’、47’のバーが位置し、間隔をおいた面に直交し、間隔をおいた面内に配置される。図46で更に理解すべきことは、グラジオ・メータが使用時に取る方位には、示されていないことである。使用時に、グラジオ・メータは、図46に示された位置から等価的に90度回転されて、図46の点線がX軸又はグラジオ・メータを運ぶ航空機の飛行方向を向くようにされる。容器45’、47’のバーの移動がどのように動き測定信号を与えるかは、先の実施の形態で述べたのと全く同じである。典型的には、調査機を飛ばしたとき、航空機は、調査すべき領域のいわゆる地層走行方向を横切って飛行する。図46に示されたグラジオ・メータに2組のバーを備えることによって、単一飛行で2組の測定バーから同時にデータを測定できるため、データが調査ラインに沿った同じ地点に関連するという特徴を有する。
本発明の各種の実施の形態で、2組の調査バーから集められるデータは、図46に示したプロセッサ800によって操作されて、重力勾配テンソルの一又は複数の成分の測定値を与える。データが2組の測定バーから受信され、処理されるため、テンソルの1つの成分、例えば、GZZ成分の実際の測定値が調査ラインに沿った個別地点に対して得られる。これは、従って、従来の地質学調査の場合よりもずっと幅広いラインを飛行して調査を実行することを可能とし、従って、図46の実施の形態のグラジオ・メータは、比較的大きい距離だけ離れた調査ラインで地層額調査および領域調査の両方を行うために使用できる。
2つのバーのみを使用する状況では、テンソルの単一成分の測定値を得る数学的変換技術による処理を可能とするために、グリッド状のデータを得る必要がある。これは、一般に比較的接近した調査ラインを飛行してグリッドを作成することを必要とし、処理の性格上、データは、通常、調査領域の全体を表示するグリッド状データとして与えられる。このように、本発明の実施の形態で、実際の興味対象地点から収集されたデータを解析して成分が生成される。2つのバーだけを使用した場合、グリッド状データが必要で、フーリエ変換技術又は同等の方法による処理が必要で、成分の測定値を得るために特定地点に加えて周辺地点からのデータが用いられる。このように、測定の精度を上げるために、調査ラインは、互いに接近しなければならない。
本発明の更に別の実施の形態では、別の組の測定バーが設けられ、6つのバーを用いて測定を行い、ここでも必要とされる重力勾配のテンソルの任意の必要とされる成分に関する測定値を得るために、成分の各種組合せをプロセッサによって操作することが可能になる。これらの付加的測定値も、信号対雑音を改善する付加的処理を許容すべきである。
先に説明したように、バー41、43の動きを検出するトランスジューサ(図46に示されていない)からのデータは、SQUIDデバイス367に供給される。SQUIDデバイス367は、説明の便宜上、図46に模式的にのみ示されている。SQUIDデバイスで生成されたデータは、プロセッサ800によって操作することができるが、図46のグラジオ・メータに物理的に接続されるか、どちらかといえば、遠隔場所にある分離したプロセッサである。プロセッサ800が遠隔場所にあれば、SQUIDデバイス367およびグラジオ・メータに付属する他の処理部品からのデータは、追記型のメディア900上に記録でき、プロセッサ800にロードされて操作されるか、通信リンクによってプロセッサ800に送信することができる。プロセッサ800は、2組の測定バーから得られたデータを次のように処理する。
XX+GYY+GZZ=0 (式1)
ZZ−GXX (測定1)
ZZ−GYY (測定2)
式1は、式1に与えられた重力勾配成分テンソルの成分間の既知の関係である。
測定1は、第1のバー対によって得られた測定値である。
測定2は、第2のバー対によって得られた測定値である。
測定値1と測定値2を加算すると、次を得る。
ZZ−GXX+GZZ−GYY
=2GZZ−GXX−GYY
=2GZZ−(GXX+GYY) (式2)
式1から GXX+GYY=−GZZとなり、式2に代入すると、次を得る。
2GZZ−(−GZZ
=3GZZ
本発明の精神および範囲で当業者は、容易に修正を行うことができるため、本発明は、これまで例示した特定の実施の形態に限定されないことを理解すべきである。
次の特許請求の範囲または本発明のこれまでの説明の中で言語又は必要とする含意を表現する理由から文脈が別の意味を要求する場合を除いて、用語「含む」又はその変形「含んでいる」は、包括的な意味、すなわち、表現された特徴の存在を指定するが、発明の各種実施の形態に含まれる別の特徴の存在や追加を排除しないという意味で使用されている。
本発明の1つの実施の形態のグラジオ・メータの模式図。 好適な実施の形態のグラジオ・メータのマウンティングの一部を形成する第1のマウントの斜視図。 マウンティングの第2のマウントの外観図。 図3のマウントの下方からの外観図。 図3のラインIV−IVに沿った断面図。 図3のラインV−Vに沿った断面図。 組み立てられた構造の外観図。 ジンバル構造上に搭載されたセンサを示す外観図。 好適な実施の形態のバーの平面図。 アクチュエータ制御を示す線図。 回転可能なサポート・システムの動作を示すブロック図。 好適な実施の形態のグラジオ・メータの外観図。 第2の実施の形態の第1のマウントの外観図。 第1のマウントの屈曲ウエブの場所および広がりを示す図13のマウンティングの一部の外観図。 図13のマウンティングの下方からの外観図。 第2の実施の形態の第2のマウントを含む図13のマウンティングの外観図。 図16に示されたアセンブリを切断した断面図。 図17に示されたセクションの下方からの外観図。 第2の実施の形態の第2のマウントの下方からの外観図。 図19の第2のマウントの上方からの外観図。 第2の実施の形態の第2のマウントの展開図。 第2の実施の形態に従って組み立てられたマウンティングおよびセンサの外観図。 外周の真空コンテナのいくつかを取り除いたグラジオ・メータの斜視図。 本発明の別の実施の形態に従うバーを支える容器の平面図。 図24の実施の形態の一部の展開図。 図24の容器の一部のより詳細な外観図。 本発明の好適な実施の形態に使用されるトランスジューサの回路図。 好適な実施の形態のトランスジューサの物理的レイアウトの側面図。 本発明の好適な実施の形態のトランスジューサの作成を示す一連のレイアウト図。 本発明の好適な実施の形態のトランスジューサの作成を示す一連のレイアウト図。 本発明の好適な実施の形態のトランスジューサの作成を示す一連のレイアウト図。 本発明の好適な実施の形態のトランスジューサの作成を示す一連のレイアウト図。 本発明の好適な実施の形態のトランスジューサの作成を示す一連のレイアウト図。 本発明の好適な実施の形態のトランスジューサの作成を示す一連のレイアウト図。 図26と類似しているトランスジューサを所定の場所に配置した断面図。 図29から図33に示されたコイル配置のより好適な実施の形態の図。 図34Aに示された配置の一部の詳細な図。 図36および図37の回路の説明を補足する図。 本発明の好適な実施の形態に関連し特にセンサの1つを角度加速度計として使用する様子を示す回路図。 周波数チューニング回路を示す図。 好適な実施の形態のグラジオ・メータのセンサのバランスを示す図。 グラジオ・メータのバランスを取るときに使用される校正センサの回路図。 図24で環状部分のAとマークされた部分の詳細な図。 本発明の好適な実施の形態に使用されるコネクタの模式図。 図41のコネクタの回路図。 図42の回路と一緒に使用される回路図。 本発明の1つの実施の形態のセンサ・バーおよびトランスジューサ構成の模式図。 図43に示された構成の回路図。 本発明の1つの実施の形態の加熱スイッチを示す模式図。 1つの実施の形態に従うグラジオ・メータの容器部分の模式図。 図45Aの実施の形態の一部の詳細な図。 図45Aのライン45C−45Cに沿った断面図。 図45Cに示された配置の一部の下方からの詳細な図。 図45Dのライン45E−45Eに沿った断面図。 本発明の1つの実施の形態に従うグラジオ・メータの模式図。

Claims (4)

  1. 重力勾配テンソルの成分を測定する重力グラジオ・メータであって、
    重力勾配に応答して移動する少なくとも1つのセンサ・バーと、
    センサ・バーの移動を測定して重力勾配テンソルの少なくとも1つの成分の測定値を与えるトランスジューサと、
    センサ・バーをサポートする容器と、
    容器およびバーと分離して形成され屈曲ウエブを有する屈曲ウエブ要素であって、バーおよび容器に接続されバーが屈曲ウエブの周りにピボット移動できるようにバーを容器にサポートする屈曲ウエブ要素と、
    を含む重力グラジオ・メータ。
  2. 請求項1記載のグラジオ・メータであって、屈曲ウエブ要素は、二重の鳩の尾の形をしており、屈曲ウエブの場所を除いて二重の鳩の尾の形状の鳩の尾を分離するカットを備え、容器は、鳩の尾のチャネルを有し、センサ・バーは、要素を受け入れる鳩の尾のチャネルを有し、要素を容器およびバーに接続するようにしてなる前記グラジオ・メータ。
  3. 重力勾配テンソルの成分を測定する重力グラジオ・メータに屈曲ウエブを形成する方法であって、重力グラジオ・メータは、容器に搭載されたセンサ・バーを有し、センサ・バーは、重力勾配に応答して容器に相対的に移動でき、重力勾配テンソルの少なくとも1つの成分の測定値を与えるようになっており、
    バー上に1つの接続部品および容器上に1つの接続部品を形成し、バー上の部品に対応する部品と容器上の部品に対応する部品を有する分離した屈曲ウエブ要素を、容器およびバーの1つと要素とを加熱し容器およびバーの他方と要素とを冷却してバーおよび容器に接着し、容器、バーおよび要素が本質的に同じ温度に戻ったとき、容器、バーおよび要素の収縮および膨張を利用して要素がバーおよび容器に接続されるように対応する部品を一緒に配置する工程、
    を含む方法。
  4. 請求項3記載のグラジオ・メータであって、バーおよび容器上の部品は、二重の鳩の尾の形をしたチャネルであり、容器上の部品は、屈曲ウエブの場所を除いて、カットによって分離された対応する鳩の尾の形をした要素である前記グラジオ・メータ。
JP2009537446A 2006-11-23 2007-08-17 重力グラジオ・メータ Ceased JP2010510499A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2006906562A AU2006906562A0 (en) 2006-11-23 Gravity gradiometer
PCT/AU2007/001180 WO2008061282A1 (en) 2006-11-23 2007-08-17 Gravity gradiometer

Publications (1)

Publication Number Publication Date
JP2010510499A true JP2010510499A (ja) 2010-04-02

Family

ID=39420466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009537446A Ceased JP2010510499A (ja) 2006-11-23 2007-08-17 重力グラジオ・メータ

Country Status (10)

Country Link
US (1) US7823449B2 (ja)
EP (1) EP2092372B1 (ja)
JP (1) JP2010510499A (ja)
AR (1) AR062671A1 (ja)
BR (1) BRPI0702878A2 (ja)
CA (1) CA2612568C (ja)
CL (1) CL2007002589A1 (ja)
PE (1) PE20080960A1 (ja)
WO (1) WO2008061282A1 (ja)
ZA (1) ZA200710807B (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007038820A1 (en) 2005-10-06 2007-04-12 Technological Resources Pty Limited Gravity gradiometer
AU2007249127A1 (en) 2006-11-20 2008-06-05 Technological Resources Pty. Limited A gravity gradiometer
CA2690886A1 (en) 2006-11-20 2008-05-29 Technological Resources Pty Limited A gravity gradiometer
CA2690958C (en) 2006-11-20 2015-06-30 Technological Resources Pty Limited A gravity gradiometer
CA2691032A1 (en) 2006-11-20 2008-05-29 Technological Resources Pty Limited A gravity gradiometer
WO2008061273A1 (en) 2006-11-20 2008-05-29 Technological Resources Pty Limited A gravity gradiometer
CA2690893A1 (en) 2006-11-20 2008-05-29 Technological Resources Pty Limited A gravity gradiometer
ZA200710808B (en) 2006-11-23 2009-03-25 Tech Resources Pty Ltd Gravity gradiometer
ZA200710809B (en) 2006-11-23 2009-03-25 Tech Resources Pty Ltd Gravity gradiometer
ZA200710807B (en) 2006-11-23 2009-09-30 Tech Resources Pty Ltd Gravity gradiometer
JP2010510496A (ja) 2006-11-23 2010-04-02 テクノロジカル リソーシーズ プロプライエタリー リミテッド 重力グラジオ・メータ
WO2008061283A1 (en) 2006-11-23 2008-05-29 Technological Resources Pty. Limited Compensation for unwanted accelerations in a gravity gradiometer
CA2612860C (en) 2006-11-23 2015-02-03 Technological Resources Pty Limited Gravity gradiometer
CN101592536B (zh) * 2008-05-30 2012-09-26 鸿富锦精密工业(深圳)有限公司 重力感测器及其应用的便携式电子设备
AP2750A (en) * 2008-09-25 2013-09-30 Technological Recources Pty Ltd A gravity gradiometer
CA2729570C (en) * 2008-09-25 2017-11-21 Technological Resources Pty Ltd A detector for detecting a gravity gradient
WO2010045738A1 (en) * 2008-10-24 2010-04-29 Gedex Inc. Gravity gradiometer with torsion flexure pivots
EP2340450B1 (en) * 2008-10-24 2018-12-05 Martin Vol Moody Gravity gradiometer with torsion flexure pivots
GB201003355D0 (en) 2010-03-01 2010-04-14 Moir Christopher I A method and apparatus for the measurement of earth's gravity and gravity gradient
US20130055808A1 (en) * 2010-03-29 2013-03-07 Frank Joachim Van Kann Gravity gradiometer with correction of external disturbance
US9632208B2 (en) 2013-11-07 2017-04-25 Russell David MOORE Rotational gravity gradiometer
US11550003B2 (en) 2021-03-11 2023-01-10 Trustees Of Boston University Casimir-enabled sensing system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452482A (en) * 1987-06-08 1989-02-28 Pootex Inc Thrachea opening tube having detachable ring pulling inside cannula
JPH04502362A (ja) * 1988-12-20 1992-04-23 アール・テイー・ゼツト・マイニング・アンド・エクスプロレイシヨン・リミテツド 重力勾配計
US5668315A (en) * 1988-12-20 1997-09-16 The University Of Western Australia Gravity gradiometer with flexural pivot bearing

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2743415A (en) 1946-09-30 1956-04-24 Kenneth G Williams Gradiometer
US2809524A (en) 1954-01-11 1957-10-15 Exxon Research Engineering Co Automatic damping of a gravimeter
US3273397A (en) 1964-06-05 1966-09-20 Hughes Aircraft Co Measurement of static force field gradients
US3564921A (en) 1968-02-02 1971-02-23 Hughes Aircraft Co Torsionally resonant gravity gradient sensor
US3579805A (en) * 1968-07-05 1971-05-25 Gen Electric Method of forming interference fits by heat treatment
US3758854A (en) 1971-03-12 1973-09-11 Ja Zimmerman Superconductive quantum interference device having two cavities isolated by a superconductive weak link
GB1385189A (en) 1971-11-05 1975-02-26 Russell M K Remote angle measurement
US3956690A (en) 1974-01-21 1976-05-11 Develco, Inc. Trimmed superconductive magnetic pickup coil circuits
US3926054A (en) 1974-11-11 1975-12-16 Draper Lab Charles S Gravity gradiometer
US4024468A (en) 1975-06-18 1977-05-17 White's Electronics, Inc. Induction balance metal detector with inverse discrimination
GB2075760A (en) 1979-12-28 1981-11-18 Ibm Electric rotary actuators
US4809545A (en) 1986-05-30 1989-03-07 Mobil Oil Corporation Gravimetry logging
US4713890A (en) 1987-01-12 1987-12-22 Cubic Corporation Mislevel sensing device
US4828376A (en) 1987-02-17 1989-05-09 Martin Marietta Corporation Triaxis stabilized platform
US4841772A (en) 1987-12-03 1989-06-27 University Of Maryland, College Park Three-axis superconducting gravity gradiometer
US5505555A (en) 1988-12-20 1996-04-09 Rtz Mining And Exploration Ltd. Flexural pivot bearing
DE68915455T2 (de) 1988-12-20 1994-12-22 Rtz Mining & Exploration Messer für gradienten durch schwerkraft.
US5130654A (en) 1989-06-16 1992-07-14 University Of Virginia Alumni Patents Foundation Magnetolelastic amorphous metal ribbon gradiometer
FI95628C (fi) 1990-05-15 1996-02-26 Valtion Teknillinen Menetelmä ja laite pienikohinaisen anturin lähtösignaalin käsittelemiseksi
US5224380A (en) 1990-05-21 1993-07-06 The University Of Maryland Superconducting six-axis accelerometer
US5326986A (en) 1991-03-05 1994-07-05 University Of Houston - University Park Parallel N-junction superconducting interferometer with enhanced flux-to-voltage transfer function
US5293119A (en) 1992-02-20 1994-03-08 Sqm Technology, Inc. Electromagnetic microscope for evaluation of electrically conductive and magnetic materials
RU2046380C1 (ru) 1992-04-22 1995-10-20 Пермский политехнический институт Гравитационный трехкомпонентный градиентометр
RU2056642C1 (ru) 1993-07-09 1996-03-20 Центральный научно-исследовательский институт "Дельфин" Гравиметр для измерения силы тяжести с движущихся носителей
EP0634663B1 (en) 1993-07-12 2000-02-16 Sumitomo Electric Industries, Limited Non-destructive testing equipment having SQUID type magnetic sensor
US5587526A (en) 1994-03-30 1996-12-24 Oxford Instruments (Uk) Limited Proof mass support and sensing system
GEP20012371B (en) 1994-10-04 2001-02-25 Gravitec Instruments Ltd Method and Apparatus for Measurement of Quasistationary Gravitational Fields and Method and Apparatus for Measurement of Non-Diagonal Components of Gravitation Tensor
AUPN951096A0 (en) 1996-04-26 1996-05-23 Commonwealth Scientific And Industrial Research Organisation Gravity meter
US5728935A (en) 1996-08-14 1998-03-17 Czompo; Jozsef Method and apparatus for measuring gravity with lever arm correction
US5922951A (en) 1997-06-11 1999-07-13 The Broken Hill Proprietary Company Ltd. Gravity gradiometer
US6450028B1 (en) 1997-09-06 2002-09-17 Vail, Iii William Banning Precision gravity gradiometer optically measuring density variations in gases
RU2127439C1 (ru) 1997-10-21 1999-03-10 Центральный научно-исследовательский институт "Дельфин" Гравиметр
DE19751724A1 (de) 1997-11-21 1999-07-15 Holger Dipl Ing Schuette Gerät zur Gravitationsmessung
WO2000031550A1 (en) 1998-11-25 2000-06-02 University Of Maryland Proof mass support for accelerometers
GB2353100B (en) 1999-08-03 2002-03-13 Schlumberger Ltd Gravity measuring apparatus
RU2156481C1 (ru) 1999-09-14 2000-09-20 Научный центр гравитационно-волновых исследований "Дулкын" Академии наук Республики Татарстан Гравитационно-волновой детектор
CN1118713C (zh) 1999-10-28 2003-08-20 中国地震局地震研究所 一种高精度重力仪
US20050236909A1 (en) 1999-11-19 2005-10-27 Baker Robert M Jr Gravitational wave imaging
RU2167437C1 (ru) 1999-11-30 2001-05-20 Научный центр гравитационно-волновых исследований "Дулкын" АН Республики Татарстан Гравитационно-волновой детектор
RU2171481C1 (ru) 2000-02-03 2001-07-27 Бронштейн Игорь Григорьевич Кварцевый гравиметр
RU2171482C1 (ru) 2000-02-04 2001-07-27 Научный центр гравитационно-волновых исследований "Дулкын" АН Республики Татарстан Гравитационно-волновой детектор
RU2175773C1 (ru) 2000-04-24 2001-11-10 Центральный научно-исследовательский институт "Электроприбор" Гравитационный вариометр
RU2172967C1 (ru) 2000-06-05 2001-08-27 Центральный научно-исследовательский институт "Электроприбор" Гравитационный вариометр
RU2171483C1 (ru) 2000-07-17 2001-07-27 Научный центр гравитационно-волновых исследований "Дулкын" АН Республики Татарстан Гравитационно-волновой детектор
JP4316777B2 (ja) 2000-07-26 2009-08-19 東京計器株式会社 重力測定装置及び方法
CA2429828C (en) 2000-11-28 2011-02-08 Business Arts Inc. Gravity gradiometry
US6494091B2 (en) 2001-02-28 2002-12-17 Gilles Couture Apparatus for measuring a gravitational attraction of the earth
US6526825B2 (en) 2001-02-28 2003-03-04 Neozoic Geophysical Survey, Ltd. Gravity device
US6658935B1 (en) 2001-03-07 2003-12-09 Lockheed Martin Corporation Complemented absolute/relative full-tensor gravity gradiometer system
AUPR571301A0 (en) 2001-06-15 2001-07-12 Bhp Billiton Innovation Pty Ltd Airborne gravity gradiometers
AUPR575701A0 (en) 2001-06-18 2001-07-12 Bhp Billiton Innovation Pty Ltd Gravity surveys
GB0115413D0 (en) 2001-06-21 2001-08-15 Univ Open Vertical gravity gradiometer
CA2478466C (en) 2002-02-06 2013-09-17 The Regents Of The University Of California Squid detected nmr and mri at ultralow fields
US7262601B2 (en) 2002-02-12 2007-08-28 Bhp Billiton Innovation Pty Ltd Aircraft equipped for airborne vector magnetic exploration surveys
AUPS114702A0 (en) 2002-03-18 2002-04-18 Bhp Billiton Innovation Pty Ltd Enhancement of sensors for airborne operation
US6724188B2 (en) 2002-03-29 2004-04-20 Wavbank, Inc. Apparatus and method for measuring molecular electromagnetic signals with a squid device and stochastic resonance to measure low-threshold signals
CA2488511C (en) 2002-06-28 2012-07-03 Gedex Inc. System and method for surveying underground density distributions
RU2221263C1 (ru) 2002-07-01 2004-01-10 Общество с ограниченной ответственностью Научно-производственное объединение "Петрогаз" Способ и устройство для измерения гравитационного поля
US6882937B2 (en) 2003-02-18 2005-04-19 Pathfinder Energy Services, Inc. Downhole referencing techniques in borehole surveying
RU2242032C1 (ru) 2003-07-31 2004-12-10 Открытое акционерное общество "Раменское приборостроительное конструкторское бюро" Гравиметр
RU2253882C1 (ru) 2003-11-28 2005-06-10 Открытое акционерное общество "Нефтяные контрольно-измерительные приборы" ("Нефтекип") Гравиметр
RU2253138C1 (ru) 2003-11-28 2005-05-27 Открытое акционерное общество "Нефтяные контрольно-измерительные приборы" ("Нефтекип") Гравиметр
RU2290674C2 (ru) 2004-04-29 2006-12-27 Джамалудин Гаджиевич Таймазов Гравитационный вариометр
US7240550B2 (en) 2004-12-07 2007-07-10 Vega Grieshaber Kg Method and apparatus for material indentification by means of gravitational field analysis
US7444867B2 (en) 2005-01-04 2008-11-04 Bell Geospace, Inc. Accelerometer and rate sensor package for gravity gradiometer instruments
US7305879B2 (en) * 2005-03-18 2007-12-11 University Of Maryland Cross-component superconducting gravity gradiometer with improved linearity and sensitivity and method for gravity gradient sensing
US7401514B2 (en) 2005-06-08 2008-07-22 Friedrich-Alexander-Universitat At Erlangen-Nurnberg Asymmetric torsion balance gravimeter
WO2007012192A1 (en) 2005-07-29 2007-02-01 John Barry French Gravity gradiometer
WO2007038820A1 (en) 2005-10-06 2007-04-12 Technological Resources Pty Limited Gravity gradiometer
US7863892B2 (en) 2005-10-07 2011-01-04 Florida State University Research Foundation Multiple SQUID magnetometer
WO2008061273A1 (en) 2006-11-20 2008-05-29 Technological Resources Pty Limited A gravity gradiometer
CA2690893A1 (en) 2006-11-20 2008-05-29 Technological Resources Pty Limited A gravity gradiometer
CA2691032A1 (en) 2006-11-20 2008-05-29 Technological Resources Pty Limited A gravity gradiometer
CA2690958C (en) 2006-11-20 2015-06-30 Technological Resources Pty Limited A gravity gradiometer
AU2007249127A1 (en) 2006-11-20 2008-06-05 Technological Resources Pty. Limited A gravity gradiometer
CA2690886A1 (en) 2006-11-20 2008-05-29 Technological Resources Pty Limited A gravity gradiometer
ZA200710807B (en) 2006-11-23 2009-09-30 Tech Resources Pty Ltd Gravity gradiometer
CA2612860C (en) 2006-11-23 2015-02-03 Technological Resources Pty Limited Gravity gradiometer
ZA200710809B (en) 2006-11-23 2009-03-25 Tech Resources Pty Ltd Gravity gradiometer
ZA200710808B (en) 2006-11-23 2009-03-25 Tech Resources Pty Ltd Gravity gradiometer
JP2010510496A (ja) 2006-11-23 2010-04-02 テクノロジカル リソーシーズ プロプライエタリー リミテッド 重力グラジオ・メータ
WO2008061283A1 (en) 2006-11-23 2008-05-29 Technological Resources Pty. Limited Compensation for unwanted accelerations in a gravity gradiometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452482A (en) * 1987-06-08 1989-02-28 Pootex Inc Thrachea opening tube having detachable ring pulling inside cannula
JPH04502362A (ja) * 1988-12-20 1992-04-23 アール・テイー・ゼツト・マイニング・アンド・エクスプロレイシヨン・リミテツド 重力勾配計
US5668315A (en) * 1988-12-20 1997-09-16 The University Of Western Australia Gravity gradiometer with flexural pivot bearing

Also Published As

Publication number Publication date
US7823449B2 (en) 2010-11-02
EP2092372A1 (en) 2009-08-26
CL2007002589A1 (es) 2008-06-06
CA2612568A1 (en) 2008-05-23
WO2008061282A1 (en) 2008-05-29
EP2092372A4 (en) 2010-12-08
AR062671A1 (es) 2008-11-26
CA2612568C (en) 2015-05-19
PE20080960A1 (es) 2008-07-10
ZA200710807B (en) 2009-09-30
BRPI0702878A2 (pt) 2011-03-22
US20090293611A1 (en) 2009-12-03
EP2092372B1 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP2010510499A (ja) 重力グラジオ・メータ
JP2010510498A (ja) 重力グラジオ・メータ
JP2010510496A (ja) 重力グラジオ・メータ
CA2612860C (en) Gravity gradiometer
EP1949142B1 (en) Gravity gradiometer
US7627954B2 (en) Gravity gradiometer
JP2010510497A (ja) 重力グラジオ・メータ
AU2007249049B2 (en) Gravity gradiometer
AU2007209800B2 (en) Gravity gradiometer
AU2007249045B2 (en) Gravity gradiometer
AU2007249048B2 (en) Gravity gradiometer
AU2007249046A1 (en) Gravity gradiometer
AU2007246216A1 (en) Gravity gradiometer
AU2007249050A1 (en) Gravity gradiometer
AU2007249047A1 (en) Gravity gradiometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120406

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120705

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20130322