JP2010282091A - Optical coupling structure and method of manufacturing the same - Google Patents

Optical coupling structure and method of manufacturing the same Download PDF

Info

Publication number
JP2010282091A
JP2010282091A JP2009136359A JP2009136359A JP2010282091A JP 2010282091 A JP2010282091 A JP 2010282091A JP 2009136359 A JP2009136359 A JP 2009136359A JP 2009136359 A JP2009136359 A JP 2009136359A JP 2010282091 A JP2010282091 A JP 2010282091A
Authority
JP
Japan
Prior art keywords
optical
semiconductor element
resin
optical coupling
transmission path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009136359A
Other languages
Japanese (ja)
Inventor
Masahito Takigahira
将人 瀧ヶ平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2009136359A priority Critical patent/JP2010282091A/en
Publication of JP2010282091A publication Critical patent/JP2010282091A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical coupling structure which is manufactured at a low cost, transmits an optical signal at higher efficiency and compatible to the exchange of optical transmission lines, and to provide a method of manufacturing the optical coupling structure. <P>SOLUTION: The optical coupling structure 5 includes: an optical semiconductor element 1 which has a light receiving/emitting part 1a and is mounted on a substrate 4; and an optical coupling part 3 made of a resin transparent to transmitting light and the end part of a fiber connector 2C, which is closely connected to the optical coupling part 3, are fitted on the light receiving part of the semiconductor element. The method of manufacturing the optical coupling structure includes: a step in which a lump of the liquid transparent resin is placed on the light receiving/emitting part 1a of the optical semiconductor 1 mounted on the substrate 4, the fiber connector 2C fitted to the fiber is plunged into the lump of the transparent resin, and the fiber connector 2C is pulled obliquely upward so that the shape of the surface of the transparent resin forms any one of recessed face parts 11, 12, 13; and a step in which the transparent resin is hardened. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、光通信技術、光伝送技術、光情報記録技術に用いられる光伝送路と光半導体素子との光結合構造とその製造方法に関する。   The present invention relates to an optical coupling structure of an optical transmission line and an optical semiconductor element used in optical communication technology, optical transmission technology, and optical information recording technology, and a method for manufacturing the same.

光モジュールは、基板に搭載された光半導体素子と、光軸が基板に対して平行となるように配置された光伝送路を備えている。
従来、この種の光モジュールにおいて、光半導体素子の受発光部と光伝送路の端部とを光学的に結合させるために、図11に示すように、光半導体素子101の上に設置された集光レンズ102と、光路変換用ミラー103とを組み合わせることで、光伝送路104(特にそのコア105)と光半導体素子101とを光学的に接続(光結合)させる構造が一般に用いられている。
The optical module includes an optical semiconductor element mounted on a substrate and an optical transmission path arranged so that the optical axis is parallel to the substrate.
Conventionally, in this type of optical module, in order to optically couple the light emitting / receiving portion of the optical semiconductor element and the end of the optical transmission path, it is installed on the optical semiconductor element 101 as shown in FIG. A structure in which the optical transmission path 104 (particularly its core 105) and the optical semiconductor element 101 are optically connected (optically coupled) by combining the condenser lens 102 and the optical path conversion mirror 103 is generally used. .

しかしながら、こうした集光レンズ102や光路変換用ミラー103は、レンズの屈折率やミラーの反射率等が所望の値に調整されている必要がある。また、光結合のために必要な部品点数も多く、光半導体素子101、集光レンズ102、光路変換用ミラー103、光伝送路104の各々の位置関係を精密に合わせる必要がある。このため、部品のコストや作業のコストが高く、コストアップの主たる要因となっていた。   However, the condensing lens 102 and the optical path conversion mirror 103 need to have the refractive index of the lens, the reflectance of the mirror, and the like adjusted to desired values. In addition, the number of parts required for optical coupling is large, and it is necessary to precisely match the positional relationships among the optical semiconductor element 101, the condenser lens 102, the optical path conversion mirror 103, and the optical transmission path 104. For this reason, the cost of parts and the cost of work were high, which was a major factor in increasing costs.

こうした光モジュールの製造コストを低減し、より低コストに光モジュールを提供するため、
例えば、特許文献1には、光実装基板の表面のガイド溝と、このガイド溝に実装される光ファイバの光軸上に位置するテーパ面とを備え、テーパ面にミラーが形成された光デバイスが提案されている。
また、特許文献2には、光導波路の端部に対向する位置に斜めに形成された反射面を有するV溝が形成され、光導波路の端部と反射面の間には光導波路のコアとほぼ同じ屈折率を有する屈折率整合剤が充填され、反射面で反射した出射光を受光する受光素子を備えた光導波路と受光素子の結合構造が提案されている。
In order to reduce the manufacturing cost of such optical modules and provide optical modules at lower costs,
For example, Patent Document 1 discloses an optical device including a guide groove on the surface of an optical mounting substrate and a tapered surface positioned on the optical axis of an optical fiber mounted in the guide groove, and a mirror is formed on the tapered surface. Has been proposed.
In Patent Document 2, a V-groove having a reflective surface formed obliquely at a position facing the end of the optical waveguide is formed, and the core of the optical waveguide is interposed between the end of the optical waveguide and the reflective surface. A coupling structure of an optical waveguide and a light receiving element, which is filled with a refractive index matching agent having substantially the same refractive index and includes a light receiving element that receives outgoing light reflected by a reflecting surface, has been proposed.

また、特許文献3には、光送受信モジュールにおいて光部品間の接続を高精度で、しかも簡略にできる光部品接合方法として、光軸を概略一致するように配置した光ファイバと光受発光素子とを、未硬化状態の透明樹脂組成物を介して圧着し、引き戻して未硬化状態の透明樹脂組成物(光硬化性、熱硬化性、または熱可塑性)を延伸した後、延伸された透明樹脂組成物を硬化させる光部品接合方法が記載されている。
また、特許文献4には、半導体レーザ素子、モニタフォトダイオード、及び光ファイバが透明樹脂に封入され、半導体レーザ素子の後方出力光が透明樹脂と空気との界面において反射してモニタフォトダイオードに入射するようにした半導体レーザ装置が提案されている。
また、特許文献5には、図12に示す如く基板111上に設けたアレイ状面型光素子112と、基板111上に離間して設けたアレイ状光ファイバ113とを光結合する構造の一例として、光の進行方向に沿って表裏両面に溝を設けた第1のクラッド116と、この第1のクラッド116の屈折率よりも高い屈折率を有して各溝内に配置されたコア117と、これらのコア117の表出面を覆って第1のクラッド116に一体化された第2のクラッド118及び第3のクラッド119とからなる光路変換用光導波路115を備えた構造の光モジュールが知られている。
Further, in Patent Document 3, as an optical component joining method capable of simplifying connection between optical components in an optical transceiver module with high accuracy, an optical fiber and a light receiving and emitting element arranged so that optical axes are substantially coincided with each other are disclosed. Is stretched by pressing through an uncured transparent resin composition, drawn back to stretch an uncured transparent resin composition (photocurability, thermosetting, or thermoplastic), and then stretched transparent resin composition An optical component joining method for curing an object is described.
Further, in Patent Document 4, a semiconductor laser element, a monitor photodiode, and an optical fiber are sealed in a transparent resin, and the rear output light of the semiconductor laser element is reflected at the interface between the transparent resin and air and enters the monitor photodiode. A semiconductor laser device has been proposed.
Further, in Patent Document 5, as shown in FIG. 12, an example of a structure for optically coupling an array-shaped optical element 112 provided on a substrate 111 and an arrayed optical fiber 113 provided on the substrate 111 so as to be separated from each other. The first clad 116 provided with grooves on both the front and back surfaces along the light traveling direction, and the core 117 disposed in each groove having a refractive index higher than that of the first clad 116. And an optical module having a structure including an optical path converting optical waveguide 115 including a second clad 118 and a third clad 119 integrated with the first clad 116 so as to cover the exposed surface of the core 117. Are known.

特開2003−167175号公報JP 2003-167175 A 特許第2985791号公報Japanese Patent No. 2985791 特開平9−197196号公報JP-A-9-197196 特開2000−269584号公報Japanese Patent Laid-Open No. 2000-269584 特開2006−91684号公報JP 2006-91684 A

しかしながら、特許文献1の光デバイスでは、ガイド溝とテーパ面を成形するための金型の用意と、テーパ面のミラーを形成する工程が必要になり、高コストになってしまうという問題があった。さらに、ガイド溝を有する光実装基板において光半導体素子を下向きにしてフリップチップボンディングする必要があるために、例えば受光素子とアンプ用ICとの間のような、光半導体素子からワイヤボンドが必要なICまでの線路長が長くなり、ノイズが乗りやすくなってしまうという問題や、フリップチップボンディングした光半導体素子は、実装後の外観検査がしにくいため、接続不良を発見しにくいという問題などがあった。
また、特許文献2の光結合構造では、非常に細い光ファイバに対向する位置にテーパ面を有するV溝を形成し、そのテーパ面に全反射ミラーを形成し、さらに光導波路の端部と反射面の間に屈折率整合剤を充填する必要があるため、工数が多くなり、高コストになってしまうという問題があった。
However, the optical device of Patent Document 1 requires a preparation of a mold for forming a guide groove and a tapered surface, and a process of forming a tapered mirror, which increases the cost. . Furthermore, since it is necessary to perform flip chip bonding with the optical semiconductor element facing downward on the optical mounting substrate having the guide groove, a wire bond is required from the optical semiconductor element, for example, between the light receiving element and the amplifier IC. There is a problem that the line length to the IC becomes long and it becomes easy to ride noise, and the optical semiconductor element that is flip-chip bonded is difficult to detect a connection defect because it is difficult to inspect the appearance after mounting. It was.
In the optical coupling structure disclosed in Patent Document 2, a V-groove having a tapered surface is formed at a position facing a very thin optical fiber, a total reflection mirror is formed on the tapered surface, and the end of the optical waveguide is reflected from the end. Since it is necessary to fill the refractive index matching agent between the surfaces, there is a problem that the number of steps is increased and the cost is increased.

また、特許文献3の光部品接合方法では、光ファイバと光受発光素子の光軸を概略一致するように配置する必要があるため、両者の光軸が同軸である場合にしか適用できず、例えば両者の光軸が互いに垂直である場合には適用できないという問題があった。   In addition, in the optical component joining method of Patent Document 3, since it is necessary to arrange the optical axes of the optical fiber and the light receiving and emitting element to substantially coincide with each other, it can be applied only when both optical axes are coaxial, For example, there is a problem that it cannot be applied when both optical axes are perpendicular to each other.

また、特許文献4の半導体レーザ装置は、開口角の大きい半導体レーザ素子の後方出力光をモニタする目的であるので、光結合の効率が低くても利用可能である。しかしながら、光信号を開口角の小さい光ファイバから受光素子に入射させたり、あるいは、発光素子から光ファイバに入射させたりする場合には、結合効率が低いと光信号の伝送の信頼性を確保するのが難しいという問題があった。
また、反射面となる樹脂界面の位置・形状は、透明樹脂の塗布量や基板の段差形状によっていると考えられるが、基板に段差を形成すると高コストになってしまう。また、半導体レーザ素子に垂直な光軸とモニタPD素子に垂直な光軸とが交差する交点に反射面が存在する必要があるが、ちょうどその交点の位置に樹脂の界面が位置するように樹脂を形成するのは容易ではない。
Further, since the semiconductor laser device of Patent Document 4 is intended to monitor the rear output light of the semiconductor laser element having a large aperture angle, it can be used even if the optical coupling efficiency is low. However, when the optical signal is incident on the light receiving element from the optical fiber having a small aperture angle, or when the optical signal is incident on the optical fiber from the light emitting element, the reliability of the transmission of the optical signal is ensured if the coupling efficiency is low. There was a problem that it was difficult.
In addition, the position / shape of the resin interface serving as the reflection surface is considered to depend on the amount of transparent resin applied and the step shape of the substrate. However, if a step is formed on the substrate, the cost becomes high. In addition, the reflection surface must exist at the intersection where the optical axis perpendicular to the semiconductor laser element and the optical axis perpendicular to the monitor PD element intersect, but the resin interface is located just at the intersection. It is not easy to form.

次に、特許文献5に記載の光モジュールにあっては、光路変換用光導波路115を通る光を正確にアレイ状面型光素子112の受発光面に集光するためには、光路変換用光導波路115をXYZ方向、即ち3次元方向に位置決めしなければならない。加えて、特許文献5に記載の構造では、XYZ軸を中心とする回転方向(θφψ方向と称する)についても正確に位置決めしなくてはならない。
このため、特許文献5に記載の光モジュールにあっては、光路変換用光導波路115から光を常に出射させてアレイ状面型光素子112の受光信号をモニタし、光のパワーが最大となるように光路変換用光導波路115をXYZ方向およびθφψ方向について調芯しなければならないので、組み立て作業に時間がかかり、光モジュールとしての製造コストが高くなる問題があった。また、第1のクラッド116の成型には金型が必要であるために、光路変換用光導波路115の製造コストも高くなるという問題もあった。
Next, in the optical module described in Patent Document 5, in order to accurately collect the light passing through the optical path converting optical waveguide 115 on the light receiving and emitting surface of the array-shaped surface optical element 112, the optical path converting The optical waveguide 115 must be positioned in the XYZ direction, that is, in the three-dimensional direction. In addition, in the structure described in Patent Document 5, the rotational direction around the XYZ axes (referred to as the θφψ direction) must be accurately positioned.
For this reason, in the optical module described in Patent Document 5, light is always emitted from the optical path conversion optical waveguide 115 to monitor the light reception signal of the array-shaped surface optical element 112, and the light power is maximized. Thus, since the optical waveguide for optical path conversion 115 must be aligned in the XYZ direction and the θφψ direction, there is a problem that it takes time to assemble and the manufacturing cost as an optical module increases. In addition, since a mold is necessary for molding the first clad 116, there is a problem that the manufacturing cost of the optical path converting optical waveguide 115 is increased.

本発明は、上記事情に鑑みてなされたものであり、調芯作業が不要で組立時間が短く、光結合部にクラッドが不要なので低コストで作製でき、かつより高い効率で光信号を伝送することが可能な光結合部を備えた光結合構造を提供することを課題とする。
また、本発明によれば、光伝送路と光電変換部を独立に製造した後に接続することが可能であって、光電変換部の作製が容易で歩留まりを良くすることができ、また、ユーザの使用環境に応じて光伝送路の再配線が可能であるとともに、仮に故障が生じた場合であっても光伝送路あるいは光電変換部を独立に交換でき、メンテナンスが容易でローコストで実施できる光結合構造を提供することを課題とする。
The present invention has been made in view of the above circumstances, requires no alignment work, has a short assembly time, and does not require a clad in the optical coupling portion, so that it can be manufactured at low cost and transmits an optical signal with higher efficiency. It is an object of the present invention to provide an optical coupling structure including an optical coupling portion that can be used.
In addition, according to the present invention, it is possible to connect the optical transmission line and the photoelectric conversion unit after they have been independently manufactured, and the photoelectric conversion unit can be easily manufactured and the yield can be improved. The optical transmission line can be rewired according to the usage environment, and even if a failure occurs, the optical transmission line or the photoelectric conversion unit can be replaced independently, making maintenance easy and low-cost optical coupling It is an object to provide a structure.

前記課題を解決するために本発明は、上面に受発光部を有し、かつ下面の側で基板に実装された光半導体素子と、前記光半導体素子の光軸に対して所定の角度で交差する光軸を有し、かつ前記基板の実装面から離間して配置された光伝送路と、前記光半導体素子と前記光伝送路との間を光学的に結合する光結合部とを備え、前記光結合部は、伝送される光に対して透明な樹脂からなり、前記樹脂は、前記光半導体素子の受発光部の少なくとも一部および前記光伝送路の端部の少なくとも一部にそれぞれ密着し、前記光結合部を構成する前記樹脂の外面が、前記光半導体素子の受発光部および前記光伝送路の端部の側に凹んだ形状となっているとともに、前記光伝送路が光ファイバと該光ファイバの先端部に取り付けられたファイバコネクタとを備え、前記ファイバコネクタの先端部が前記樹脂に密着してなることを特徴とする。
本発明において、前記ファイバコネクタが前記樹脂に密着されてその先端に窓部材を備えた筒形のメス型コネクタ部材と、前記光ファイバの先端部に装着されて前記メス型コネクタ部材に嵌め込まれた筒形のオス型コネクタ部材とを備えた構造とすることができる。
In order to solve the above-mentioned problems, the present invention crosses an optical semiconductor element having a light emitting / receiving section on the upper surface and mounted on a substrate on the lower surface side at a predetermined angle with respect to the optical axis of the optical semiconductor element. And an optical transmission path disposed apart from the mounting surface of the substrate, and an optical coupling portion that optically couples between the optical semiconductor element and the optical transmission path, The optical coupling portion is made of a resin that is transparent to transmitted light, and the resin is in close contact with at least a part of the light emitting / receiving unit of the optical semiconductor element and at least a part of the end of the optical transmission path. The outer surface of the resin constituting the optical coupling portion has a shape recessed toward the light emitting / receiving portion of the optical semiconductor element and the end of the optical transmission path, and the optical transmission path is an optical fiber. And a fiber connector attached to the tip of the optical fiber; Provided, the leading end portion of the fiber connector is characterized by being in close contact with the resin.
In the present invention, the fiber connector is in close contact with the resin and has a cylindrical female connector member provided with a window member at the tip thereof, and is attached to the tip of the optical fiber and fitted into the female connector member. It can be set as the structure provided with the cylindrical male connector member.

前記課題を解決するために本発明は、上面に受発光部を有し、かつ下面の側で基板に実装された光半導体素子と、前記光半導体素子の光軸に対して所定の角度で交差する光軸を有し、かつ前記基板の実装面から離間して配置される光伝送路接続用コネクタと、前記光半導体素子と前記光伝送路との間を光学的に結合する光結合部とを備え、前記光結合部は、伝送される光に対して透明な樹脂からなり、前記樹脂は、前記光半導体素子の受発光部の少なくとも一部および前記光伝送路の端部の少なくとも一部にそれぞれ密着し、前記光結合部を構成する前記樹脂の外面が、前記光半導体素子の受発光部および前記光伝送路の端部の側に凹んだ形状となっているとともに、前記光伝送路接続用コネクタは光伝送路としての光ファイバを接続可能としてなることを特徴とする。     In order to solve the above-mentioned problems, the present invention crosses an optical semiconductor element having a light emitting / receiving section on the upper surface and mounted on a substrate on the lower surface side at a predetermined angle with respect to the optical axis of the optical semiconductor element. An optical transmission line connecting connector that is disposed apart from the mounting surface of the substrate, and an optical coupling part that optically couples the optical semiconductor element and the optical transmission line. The optical coupling portion is made of a resin that is transparent to transmitted light, and the resin is at least a part of the light receiving and emitting part of the optical semiconductor element and at least a part of the end of the optical transmission path. And the outer surface of the resin constituting the optical coupling portion has a shape recessed toward the light emitting / receiving portion of the optical semiconductor element and the end of the optical transmission path, and the optical transmission path The connector can be connected to an optical fiber as an optical transmission line. Characterized in that it comprises Te.

本発明において、前記光結合部は、前記光半導体素子の光軸と前記光伝送路の光軸とが交差する交点の位置には前記樹脂が存在せず、前記樹脂の外面が前記受発光部に対向する位置が、前記交点と前記受発光部との間にあり、かつ、前記樹脂の外面が前記光伝送路の端部に対向する位置が、前記交点と前記光伝送路の端部との間にあることを特徴とする。
本発明において、前記光結合部を構成する前記樹脂は、前記半導体素子の上面より上方に位置する範囲内に収まっていることが好ましい。
前記光結合部を構成する前記樹脂は、前記光伝送路の端面の上端の高さより下側の範囲内に収まっていることが好ましい。
本発明において、前記光結合部の周囲が気体で覆われている構造でも良い。
本発明において、前記光結合部の周囲が光結合部を構成する樹脂より屈折率が低いクラッド樹脂層で覆われていることを特徴とする。
In the present invention, the optical coupling portion is such that the resin does not exist at the intersection point where the optical axis of the optical semiconductor element and the optical axis of the optical transmission path intersect, and the outer surface of the resin is the light emitting / receiving portion. Is located between the intersection and the light emitting / receiving section, and the position where the outer surface of the resin faces the end of the optical transmission path is the intersection and the end of the optical transmission path. It is characterized by being between.
In the present invention, it is preferable that the resin constituting the optical coupling portion is within a range located above the upper surface of the semiconductor element.
It is preferable that the resin constituting the optical coupling portion is within a range below the height of the upper end of the end face of the optical transmission path.
In this invention, the structure where the circumference | surroundings of the said optical coupling part are covered with gas may be sufficient.
In the present invention, the periphery of the optical coupling portion is covered with a clad resin layer having a refractive index lower than that of the resin constituting the optical coupling portion.

本発明の光結合構造の製造方法は、上面に受発光部を有し、かつ下面の側で基板に実装された光半導体素子と、前記光半導体素子の光軸に対して所定の角度で交差する光軸を有し、かつ前記基板の実装面から離間して配置された光伝送路と、前記光半導体素子と前記光伝送路との間を光学的に結合する光結合部とを備え、前記光結合部は、伝送される光に対して透明な樹脂からなり、前記樹脂は、前記光半導体素子の受発光部の少なくとも一部および前記光伝送路の端部の少なくとも一部にそれぞれ密着し、前記光結合部を構成する前記樹脂の外面が、前記光半導体素子の受発光部および前記光伝送路の端部の側に凹んだ形状となっているとともに、前記光伝送路が光ファイバと該光ファイバの先端部に取り付けられたコネクタとを備え、前記コネクタの先端部が前記樹脂に密着してなる光結合構造を製造する方法であって、前記基板上に実装された光半導体素子の受発光部に対し、注出装置を用いて液状の透明樹脂を塊状に盛り付ける工程と、ファイバに取り付けたコネクタを前記塊状の透明樹脂中に押し込む工程と、前記透明樹脂の表面形状が凹面部を描くように前記コネクタを斜め上方に引き上げる工程と、前記透明樹脂を硬化させる工程を具備したことを特徴とする。   The method for manufacturing an optical coupling structure of the present invention includes an optical semiconductor element having a light emitting / receiving portion on an upper surface and mounted on a substrate on the lower surface side, and intersecting the optical axis of the optical semiconductor element at a predetermined angle. And an optical transmission path disposed apart from the mounting surface of the substrate, and an optical coupling portion that optically couples between the optical semiconductor element and the optical transmission path, The optical coupling portion is made of a resin that is transparent to transmitted light, and the resin is in close contact with at least a part of the light emitting / receiving unit of the optical semiconductor element and at least a part of the end of the optical transmission path. The outer surface of the resin constituting the optical coupling portion has a shape recessed toward the light emitting / receiving portion of the optical semiconductor element and the end of the optical transmission path, and the optical transmission path is an optical fiber. And a connector attached to the tip of the optical fiber, A method for manufacturing an optical coupling structure in which a tip portion of a connector is in close contact with the resin, wherein a liquid transparent resin is used by using a pouring device for a light emitting / receiving portion of an optical semiconductor element mounted on the substrate. , A step of pushing a connector attached to a fiber into the block-shaped transparent resin, a step of pulling up the connector obliquely upward so that the surface shape of the transparent resin describes a concave portion, and the transparent resin It is characterized by comprising a step of curing.

本発明の製造方法において、前記塊状の透明樹脂中に押し込むコネクタを取り付けるファイバとしてダミーファイバを用い、前記透明樹脂を硬化させた後、前記ダミーファイバをコネクタから引き抜いて硬化させた透明樹脂に密着した状態でコネクタを残すことを特徴とする。   In the manufacturing method of the present invention, a dummy fiber is used as a fiber for attaching a connector to be pushed into the bulky transparent resin, and after the transparent resin is cured, the dummy fiber is pulled out of the connector and closely adhered to the cured transparent resin. The connector is left in a state.

本発明によれば、光結合部を多数の部品を用いることなく低コストで作製でき、しかもより高い効率で光信号を伝送することが可能になる。即ち、樹脂からなる光接合部に凹面部を設けて光伝送路と受発光素子を樹脂により光学的に直接結合しているので、位置合わせのための調芯作業を要することがなく、光結合を行う樹脂の部分にクラッドが不要な上にクラッド作製のための金型も不要であり、部材コスト、製造コストともに削減することができる。
光半導体素子の受発光部を基板の実装面とは反対側に向けて実装することができるので、ダイボンディングやワイヤボンディングによる実装が可能になる。これにより、伝送特性に重要な配線を最短の線路長でつなぐことができ、ノイズが乗りにくく、良好な伝送特性が得られる。また、ボンディングの外観検査が容易であり、接続不良を発見するのが容易になる。
According to the present invention, the optical coupling portion can be manufactured at a low cost without using a large number of components, and an optical signal can be transmitted with higher efficiency. In other words, a concave surface portion is provided in the optical joint made of resin, and the optical transmission path and the light receiving / emitting element are optically directly coupled by the resin, so that alignment work for alignment is not required and optical coupling is performed. In addition, no clad is required for the resin portion to be used, and a mold for producing the clad is also unnecessary, so that both the member cost and the manufacturing cost can be reduced.
Since the light emitting / receiving portion of the optical semiconductor element can be mounted facing away from the mounting surface of the substrate, mounting by die bonding or wire bonding becomes possible. As a result, it is possible to connect wirings important for transmission characteristics with the shortest line length, and it is difficult for noise to ride, and good transmission characteristics can be obtained. Further, it is easy to inspect the appearance of bonding, and it is easy to find a connection failure.

更に、コネクタの先端部を光結合をなす樹脂に密着させておく構造を採用するならば、光伝送路と光電変換部を独立に製造した後に接続することが可能であって、光電変換部の作製が容易で歩留まりを良くすることができ、また、ユーザの使用環境に応じて光伝送路のみをコネクタから外して他の光伝送路と交換することによる再配線が可能であるとともに、仮に故障が生じた場合であっても光伝送路あるいは光電変換部を個別独立に交換することができ、メンテナンスが容易でローコストで実施できる光結合構造を提供することができる。   Furthermore, if a structure in which the tip of the connector is in close contact with the resin that makes optical coupling is adopted, it is possible to connect the optical transmission path and the photoelectric conversion unit after they are manufactured independently. It is easy to manufacture and can improve the yield. Also, depending on the user's usage environment, rewiring is possible by removing only the optical transmission line from the connector and replacing it with another optical transmission line. Even if this occurs, the optical transmission path or the photoelectric conversion unit can be individually replaced independently, and an optical coupling structure that is easy to maintain and can be implemented at low cost can be provided.

本発明の製造方法によれば、光半導体素子の受発光部に液状の透明樹脂を塊状に盛り付け、光伝送路に接続したコネクタを塊状の透明樹脂中に押し込み、透明樹脂の表面形状が凹面部を描くようにコネクタを斜め上方に引き上げ、透明樹脂を硬化させる、という簡単な操作を行うことにより光接合構造を実現できるので、光結合部における調芯作業が不要となり、光結合部の形成を容易にできるとともに、金型やクラッドを要することなく光結合部を製造できるので低コストかつ容易に光結合部を製造できる効果がある。
また、光結合部を構成する樹脂中にコネクタの先端部を密着させてコネクタを残しておく構造とするならば、光接合部に対する光伝送路の交換、あるいは光伝送路に対する光半導体素子の交換が容易にできるメンテナンスが容易な構造を低コストで提供することができる。
According to the manufacturing method of the present invention, liquid transparent resin is placed in a lump on the light receiving and emitting part of the optical semiconductor element, the connector connected to the optical transmission path is pushed into the lump transparent resin, and the surface shape of the transparent resin is concave. The optical joining structure can be realized by performing a simple operation of pulling the connector diagonally upward and curing the transparent resin so that the optical coupling part is formed. In addition to being easy, the optical coupling part can be manufactured without the need for a mold or a clad, so that the optical coupling part can be easily manufactured at low cost.
Also, if the connector is left in contact with the resin that constitutes the optical coupling part, the optical transmission path is replaced with the optical joint, or the optical semiconductor element is replaced with the optical transmission path. A structure that can be easily maintained and can be easily maintained can be provided at low cost.

本発明の第1形態例に係る光結合構造の一例を示す断面図である。It is sectional drawing which shows an example of the optical coupling structure which concerns on the 1st example of a form of this invention. 光結合部の製造工程を説明する断面図である。It is sectional drawing explaining the manufacturing process of an optical coupling part. 光結合部の製造工程を説明する断面図である。It is sectional drawing explaining the manufacturing process of an optical coupling part. 本発明の第2形態例に係る光結合構造の一例を示す断面図である。It is sectional drawing which shows an example of the optical coupling structure which concerns on the 2nd example of a form of this invention. 光結合部の他の例を示す断面図である。It is sectional drawing which shows the other example of an optical coupling part. 本発明の第3形態例に係る光結合構造の一例を示す断面図である。It is sectional drawing which shows an example of the optical coupling structure which concerns on the 3rd form example of this invention. 本発明の光結合構造を説明する断面図である。It is sectional drawing explaining the optical coupling structure of this invention. 光結合部の外面が凸形状である場合を説明する断面図である。It is sectional drawing explaining the case where the outer surface of an optical coupling part is convex shape. 光結合部が45°ミラーである場合を説明する断面図である。It is sectional drawing explaining the case where an optical coupling part is a 45 degree mirror. 光結合部が大きな45°ミラーである場合を説明する断面図である。It is sectional drawing explaining the case where an optical coupling part is a big 45 degree mirror. 従来の光モジュールにおける光結合構造の一例を示す概略図である。It is the schematic which shows an example of the optical coupling structure in the conventional optical module. 従来の光モジュールにおける光結合構造の他の例を示す概略図である。It is the schematic which shows the other example of the optical coupling structure in the conventional optical module.

以下、最良の形態に基づき、図面を参照して本発明を説明する。
図1に、第1形態例に係る光結合構造を備えた光モジュールの一例を示す。
図1に示す光モジュール5は、基板4の上面である実装面4aに実装された光半導体素子1と、基板4の実装面4aに沿い、かつ基板4の実装面4aから離間して配置された光伝送路2と、光伝送路2と光半導体素子1との間を光学的に結合する光結合部3とを備えている。
The present invention will be described below with reference to the drawings based on the best mode.
FIG. 1 shows an example of an optical module including the optical coupling structure according to the first embodiment.
The optical module 5 shown in FIG. 1 is disposed along the mounting surface 4a of the substrate 4 and the optical semiconductor element 1 mounted on the mounting surface 4a, which is the upper surface of the substrate 4, and away from the mounting surface 4a of the substrate 4. The optical transmission path 2 and an optical coupling portion 3 for optically coupling the optical transmission path 2 and the optical semiconductor element 1 are provided.

光半導体素子1は、光信号を出射または入射させる部分として受発光部1aを有する。光半導体素子1が受光素子である場合は、受発光部1aは受光部である。光半導体素子1が発光素子である場合は、受発光部1aは発光部である。
発光素子としては、発光ダイオード(LED)、レーザダイオード(LD)、面発光レーザ(VCSEL)等が挙げられる。
受光素子としては、フォトダイオード(PD)等が挙げられる。
受発光部1aは、光半導体素子1の上面1cに設けられている。本発明における上下方向は、光半導体素子1が基板4に実装される実装面4aを基準とし、基板4から遠ざかる方向を上方(図1の上方)、基板4に近づく方向を下方(図1の下方)とする。また、前記の定義による上下方向に垂直な方向(図1の左右方向)を水平方向とする。本発明における上下方向および水平方向は、図2および図3に示すように透明樹脂31が未硬化で流動性を有する場合を除き、重力の方向に依存しない。
The optical semiconductor element 1 has a light emitting / receiving unit 1a as a part for emitting or entering an optical signal. When the optical semiconductor element 1 is a light receiving element, the light emitting / receiving unit 1a is a light receiving unit. When the optical semiconductor element 1 is a light emitting element, the light emitting / receiving unit 1a is a light emitting unit.
Examples of the light emitting element include a light emitting diode (LED), a laser diode (LD), and a surface emitting laser (VCSEL).
A photodiode (PD) etc. are mentioned as a light receiving element.
The light emitting / receiving unit 1 a is provided on the upper surface 1 c of the optical semiconductor element 1. The vertical direction in the present invention is based on the mounting surface 4a on which the optical semiconductor element 1 is mounted on the substrate 4, and the direction away from the substrate 4 is upward (upward in FIG. 1), and the direction approaching the substrate 4 is downward (in FIG. 1). Down). In addition, a direction perpendicular to the up-down direction (left-right direction in FIG. 1) according to the above definition is defined as a horizontal direction. The vertical direction and horizontal direction in the present invention do not depend on the direction of gravity unless the transparent resin 31 is uncured and has fluidity as shown in FIGS.

光半導体素子1は、基板4の実装面4aに形成された回路配線6に対して、接合材により電気的に接続されている。例えば、本形態例の場合は、光半導体素子1の上部(表面)に形成された電極(図示せず)とワイヤ配線7などからなる給電用配線により、回路配線6と電気的に接続されている。また、光半導体素子1の下面(裏面)1dと回路配線6とが、導電性接着剤(図示せず)により、電気的に接続されている。
基板4には、例えは、ガラスエポキシ基板、セラミック基板など、一般的な各種絶縁基板を使用することができる。ワイヤ配線7としては、例えば、金(Au)ワイヤ、アルミ(Al)ワイヤ、銅(Cu)ワイヤなどが挙げられる。
The optical semiconductor element 1 is electrically connected to the circuit wiring 6 formed on the mounting surface 4a of the substrate 4 by a bonding material. For example, in the case of the present embodiment, the circuit wiring 6 is electrically connected by a power supply wiring composed of an electrode (not shown) formed on the upper portion (surface) of the optical semiconductor element 1 and the wire wiring 7. Yes. Further, the lower surface (back surface) 1d of the optical semiconductor element 1 and the circuit wiring 6 are electrically connected by a conductive adhesive (not shown).
For the substrate 4, various general insulating substrates such as a glass epoxy substrate and a ceramic substrate can be used. Examples of the wire wiring 7 include a gold (Au) wire, an aluminum (Al) wire, a copper (Cu) wire, and the like.

光伝送路2としては、例えば石英系光ファイバ、プラスチック光ファイバ(POF)などの光ファイバや、石英光導波路、高分子光導波路などの基板型光導波路などが挙げられる。
光伝送路2は、光結合部3に対する光の出入射の方向が一定となるように、少なくとも端部2a付近では、光軸2bが直線状であることが好ましい。
この実施の形態の構造において、光伝送路2は、光ファイバ2Aとその先端部に装着されたファイバコネクタ2Cとからなり、このファイバコネクタ2Cは、光ファイバ2Aの先端部に装着された筒状のオス型コネクタ部材2Dと、このオス型コネクタ部材2Dの外周部に嵌め込まれるとともに光結合部3に密着されたメス型コネクタ部材2Eとから構成されている。前記オス型コネクタ部材2Dとメス型コネクタ部材2Eは、金属あるいはプラスチックなどからなる筒型部材であり、オス型コネクタ部材2Dは光ファイバ2Aの先端部に装着されている。また、前記メス型コネクタ部材2Eは筒型に形成されてその先端側開口部に透明ガラスなどからなる窓部材2Fが取り付けられていて、この窓部材2Fとその周囲のメス型コネクタ部材2Eを覆うように後述の光結合部3が密着されている。
Examples of the optical transmission line 2 include optical fibers such as silica-based optical fibers and plastic optical fibers (POF), and substrate-type optical waveguides such as quartz optical waveguides and polymer optical waveguides.
In the optical transmission line 2, it is preferable that the optical axis 2b is linear at least in the vicinity of the end 2a so that the direction of light entering and exiting the optical coupling unit 3 is constant.
In the structure of this embodiment, the optical transmission line 2 includes an optical fiber 2A and a fiber connector 2C attached to the tip of the optical fiber 2A. The fiber connector 2C is a cylindrical shape attached to the tip of the optical fiber 2A. The male connector member 2D and the female connector member 2E fitted into the outer peripheral portion of the male connector member 2D and in close contact with the optical coupling portion 3 are configured. The male connector member 2D and the female connector member 2E are cylindrical members made of metal, plastic, or the like, and the male connector member 2D is attached to the tip of the optical fiber 2A. The female connector member 2E is formed in a cylindrical shape, and a window member 2F made of transparent glass or the like is attached to the opening on the front end side thereof, and covers the window member 2F and the surrounding female connector member 2E. As described above, an optical coupling portion 3 described later is in close contact.

光半導体素子1は、その光軸1bが光伝送路2の光軸2b(特に端部2a付近における光軸2b)に所定の角度θで交差するように配置されている。光半導体素子1および光伝送路2の光軸1b,2bが互いに垂直(または略垂直)に配置されることが好ましい。   The optical semiconductor element 1 is arranged such that the optical axis 1b intersects the optical axis 2b of the optical transmission line 2 (particularly, the optical axis 2b in the vicinity of the end 2a) at a predetermined angle θ. The optical axes 1b and 2b of the optical semiconductor element 1 and the optical transmission line 2 are preferably arranged perpendicularly (or substantially perpendicular) to each other.

光結合部3は、伝送される光に対して透明な樹脂からなる。光結合部3を構成する樹脂は、光半導体素子1の受発光部1aの少なくとも一部および光伝送路2の先端を構成する窓部材2Fの端部2aの少なくとも一部にそれぞれ密着している。
ここでいう透明樹脂とは、光半導体素子1と光伝送路2との間を伝送する光を透過させることが可能なものを指している。従って、必ずしも可視光下で無色透明な色調のものに限定されるものではない。また、光が伝送する樹脂内の光路長が短いため、ある程度透明性があれば良い。
透明樹脂としては、例えば、UV硬化性樹脂や熱硬化性樹脂などを用いることができる。透明樹脂の具体例としては、アクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂等が挙げられる。
The optical coupling unit 3 is made of a resin that is transparent to transmitted light. The resin constituting the optical coupling part 3 is in close contact with at least a part of the light emitting / receiving part 1a of the optical semiconductor element 1 and at least a part of the end part 2a of the window member 2F constituting the tip of the optical transmission path 2. .
The transparent resin here refers to a resin capable of transmitting light transmitted between the optical semiconductor element 1 and the optical transmission line 2. Therefore, the color tone is not necessarily limited to a colorless and transparent tone under visible light. Further, since the optical path length in the resin through which light is transmitted is short, it is only necessary to have some degree of transparency.
As the transparent resin, for example, a UV curable resin or a thermosetting resin can be used. Specific examples of the transparent resin include acrylic resins, epoxy resins, and silicone resins.

光結合部3の形状は、図1では光結合部3が光伝送路2の端部2aの全面を覆い、光結合部3の上端が光伝送路2の先端上部のメス型コネクタ部材2Eまで付着しているが、図5に示す光結合構造5Aのように、光伝送路2の端部2aの一部が光結合部3Aの外側に露出されてもよい。
この場合、光結合部3Aを構成する樹脂は、光半導体素子1の光軸1bと光伝送路2の光軸2bとを含む面内(図5の紙面上の面内)およびその面外(図5の紙面の手前側および奥側)において、光伝送路2の端面2aの上端2cの高さ2d(図7参照)より下側の範囲内に収まり、光半導体素子1の受発光部1aから光結合部3の外面3aまでの距離や、光伝送路2の端面2aから光結合部3の外面3aまでの距離がより短くなる。また、光伝送路2のコア(図示せず)に対応する窓部材2Fの全断面積が光結合部3Aに覆われることが好ましい。
In FIG. 1, the shape of the optical coupling portion 3 is such that the optical coupling portion 3 covers the entire surface of the end portion 2 a of the optical transmission path 2, and the upper end of the optical coupling portion 3 extends to the female connector member 2 E at the upper end of the optical transmission path 2. Although attached, a part of the end 2a of the optical transmission line 2 may be exposed to the outside of the optical coupling portion 3A as in the optical coupling structure 5A shown in FIG.
In this case, the resin constituting the optical coupling portion 3A is in the plane including the optical axis 1b of the optical semiconductor element 1 and the optical axis 2b of the optical transmission path 2 (in the plane on the paper surface of FIG. 5) and out of the plane ( The front side and the back side of the paper surface of FIG. 5 are within the range below the height 2d (see FIG. 7) of the upper end 2c of the end surface 2a of the optical transmission line 2, and the light emitting / receiving portion 1a of the optical semiconductor element 1 The distance from the optical coupling unit 3 to the outer surface 3a and the distance from the end surface 2a of the optical transmission path 2 to the outer surface 3a of the optical coupling unit 3 become shorter. Moreover, it is preferable that the entire cross-sectional area of the window member 2F corresponding to the core (not shown) of the optical transmission path 2 is covered with the optical coupling portion 3A.

ここで光結合部3は、光半導体素子1が受光素子の場合には、光伝送路2から光結合部3に入射した光は、光結合部3を構成する透明樹脂とその外部の気体(例えば空気や乾燥窒素ガスなど)との界面3aとの屈折率差により反射されて光半導体素子1に入射する。
また、光半導体素子1が発光素子の場合には、光半導体素子1から光結合部3に入射した光は、光結合部3を構成する透明樹脂と外部の気体との界面3aとの屈折率差により反射されて光伝送路2に入射する。
Here, in the case where the optical semiconductor element 1 is a light receiving element, the optical coupling unit 3 is configured such that the light incident on the optical coupling unit 3 from the optical transmission path 2 is a transparent resin that constitutes the optical coupling unit 3 and an external gas ( For example, the light is reflected by the difference in refractive index from the interface 3 a with air or dry nitrogen gas, and enters the optical semiconductor element 1.
When the optical semiconductor element 1 is a light emitting element, the light incident on the optical coupling unit 3 from the optical semiconductor element 1 is a refractive index of the interface 3a between the transparent resin constituting the optical coupling unit 3 and the external gas. The light is reflected by the difference and enters the optical transmission line 2.

本形態例の光結合部3は、光半導体素子1と光伝送路2との間の光結合を容易に実現するため、以下のような構成となっている。
光結合部3の外面3aが外部の気体との界面を形成しており、光結合部3を構成する透明樹脂は、光伝送路2の光軸2bと光半導体素子1の光軸1bとが交差する交点Pの位置には存在せず、光結合部3の外面3a(光結合部3と外部の気体との界面)が、光半導体素子1の受発光部1aおよび光伝送路2の端部2aの側に凹んだ形状となっている。
The optical coupling unit 3 of the present embodiment has the following configuration in order to easily realize optical coupling between the optical semiconductor element 1 and the optical transmission line 2.
The outer surface 3a of the optical coupling part 3 forms an interface with an external gas, and the transparent resin constituting the optical coupling part 3 is composed of an optical axis 2b of the optical transmission path 2 and an optical axis 1b of the optical semiconductor element 1. The outer surface 3a of the optical coupling unit 3 (the interface between the optical coupling unit 3 and the external gas) is not located at the intersecting point P, and the end of the light emitting / receiving unit 1a and the optical transmission path 2 of the optical semiconductor element 1 The shape is recessed on the side of the portion 2a.

ここで、光結合部3の外面3aが凹んだ形状となるためには、少なくとも、
(1)受発光部1aに対向する位置Aが受発光部1a側に凹んだ形状の凹面部11、
(2)光伝送路2の端部2aに対向する位置Bが光伝送路2の端部2a側に凹んだ形状の凹面部12、
(3)受発光部1aに対向する位置Aと光伝送路2の端部2aに対向する位置Bとの間が凹んだ形状の凹面部13、を有することを必要とする。
光の伝送に関与しない部分、例えば、図1における光伝送路2の上側にかかっている部分3bや、光伝送路2の下側と光半導体素子1の上面1cとの間に挟まれた部分3cが凸形状になっているのは差し支えない。
Here, in order for the outer surface 3a of the optical coupling portion 3 to have a recessed shape, at least
(1) A concave surface portion 11 having a shape in which a position A facing the light emitting / receiving portion 1a is recessed toward the light emitting / receiving portion 1a,
(2) A concave surface portion 12 having a shape in which the position B facing the end 2a of the optical transmission path 2 is recessed toward the end 2a of the optical transmission path 2,
(3) It is necessary to have the concave surface portion 13 having a concave shape between the position A facing the light emitting / receiving section 1a and the position B facing the end 2a of the optical transmission line 2.
A portion that is not involved in light transmission, for example, a portion 3b that is on the upper side of the optical transmission line 2 in FIG. 1, or a portion that is sandwiched between the lower side of the optical transmission line 2 and the upper surface 1c of the optical semiconductor element 1 It is acceptable that 3c has a convex shape.

光半導体素子1が受光素子の場合、本形態例の光結合部3は、光結合部3の外面3aが凹んだ形状となっているため、図7に示すように、光伝送路2から出射し、光結合部3の外面3aで反射した光10を、光半導体素子1の受発光部1aに受光させる際、光結合部3の外面3aにおける反射位置を光半導体素子1および光伝送路2に近づけ、光結合部3内の光路長を短くすることができる。
光半導体素子1が発光素子であって、光半導体素子1の受発光部1aから出射した光10を光結合部3の外面3aで反射させ、光伝送路2に入射させる場合も同様である。
これは、図7に示すように、光が光伝送路2(あるいは受発光部1a)から出射する際には、ある程度の広がり角をもっており、光結合部3内を広がりながら進行するためである。
図8に示すように、光結合部3の外面3aが凸形状となっていると、光10が光結合部3の外面3aで反射する位置が遠くなり、光結合部3内の光路長が長くなるによって、光が拡散し、接続損失が増大することになる。
したがって、図1および図7に示すように、光結合部3の外面3aを凹んだ形状とすることにより、光結合部3内の光路長を短くし、接続損失を低減することができる。
When the optical semiconductor element 1 is a light receiving element, the optical coupling portion 3 of the present embodiment has a shape in which the outer surface 3a of the optical coupling portion 3 is recessed, so that it is emitted from the optical transmission line 2 as shown in FIG. When the light 10 reflected by the outer surface 3 a of the optical coupling unit 3 is received by the light emitting / receiving unit 1 a of the optical semiconductor element 1, the reflection position on the outer surface 3 a of the optical coupling unit 3 is set to the optical semiconductor element 1 and the optical transmission line 2. The optical path length in the optical coupling unit 3 can be shortened.
The same applies to the case where the optical semiconductor element 1 is a light emitting element and the light 10 emitted from the light emitting / receiving section 1a of the optical semiconductor element 1 is reflected by the outer surface 3a of the optical coupling section 3 and is incident on the optical transmission line 2.
This is because, as shown in FIG. 7, when light is emitted from the optical transmission line 2 (or light receiving and emitting unit 1 a), it has a certain spread angle and travels while spreading in the optical coupling unit 3. .
As shown in FIG. 8, when the outer surface 3a of the optical coupling unit 3 has a convex shape, the position where the light 10 is reflected by the outer surface 3a of the optical coupling unit 3 becomes far, and the optical path length in the optical coupling unit 3 becomes longer. As the length increases, the light diffuses and the connection loss increases.
Therefore, as shown in FIGS. 1 and 7, by forming the outer surface 3a of the optical coupling unit 3 into a concave shape, the optical path length in the optical coupling unit 3 can be shortened and the connection loss can be reduced.

また、図9に示すように、45°ミラーとして機能するように樹脂300を形成した場合、その反射面301の位置が遠く、光路が長いため、光10が広がってしまい、接続損失が大きくなってしまう。
図10に示すように、45°ミラーとなる樹脂310が大きく、光伝送路2の端面2aの上端2cの高さ2dを超える程度となると、端面2aから反射面311までの距離および光10の光路がさらに長くなる。
このため、光結合部3が上下方向に存在する範囲としては、光伝送路2の端面2aの上端2cの高さ2dより下側の範囲内に収まっていることが好ましい。
また、光結合部3が水平方向に存在する範囲としては、全体が光半導体素子1上(上面1cより上方)に収まることが好ましい。
As shown in FIG. 9, when the resin 300 is formed so as to function as a 45 ° mirror, the position of the reflection surface 301 is far and the optical path is long, so that the light 10 spreads and connection loss increases. End up.
As shown in FIG. 10, when the resin 310 that becomes a 45 ° mirror is large and exceeds the height 2d of the upper end 2c of the end surface 2a of the optical transmission line 2, the distance from the end surface 2a to the reflecting surface 311 and the light 10 The optical path becomes even longer.
For this reason, it is preferable that the range in which the optical coupling portion 3 exists in the vertical direction is within the range below the height 2d of the upper end 2c of the end face 2a of the optical transmission line 2.
Moreover, as a range where the optical coupling part 3 exists in a horizontal direction, it is preferable that the whole is settled on the optical semiconductor element 1 (above the upper surface 1c).

すなわち、本形態例の光結合部3は、これらの凹面部11,12,13を有することにより、透明樹脂の界面の形状について、反射面としての位置および角度を精密に制御しなくても、より低い作製精度で確実な光結合を実現することができる。また、光伝送路2の端部2aと光半導体素子1の受発光部1aとの間が単一の透明樹脂で構成された光結合部3で光結合され、極めて低コストに、かつ簡易な工程で作製可能である。
ここでいう単一の透明樹脂とは、成分(組成)が均一(単一)、特定の波長の光に対する透過率が均一、物理的に2層以上ではない(界面がない)など、いずれの意味も包含するものである。
That is, the optical coupling part 3 of the present embodiment has these concave surface parts 11, 12, and 13, so that the position and angle as the reflective surface can be precisely controlled with respect to the shape of the interface of the transparent resin. Reliable optical coupling can be realized with lower fabrication accuracy. In addition, the end portion 2a of the optical transmission line 2 and the light receiving / emitting portion 1a of the optical semiconductor element 1 are optically coupled by the optical coupling portion 3 made of a single transparent resin, which is extremely low cost and simple. It can be produced by a process.
The single transparent resin here means that the component (composition) is uniform (single), the transmittance for light of a specific wavelength is uniform, and is not physically two or more layers (no interface). The meaning is also included.

これらの凹面部11〜13は、それぞれ光半導体素子1の受発光部1aおよび光伝送路2の端部2aの位置に近い方が、透明樹脂の界面3aにおける反射によって光半導体素子1と光伝送路2との間を光結合する際に、光が拡散する範囲が狭くなり、損失を低減することができる。このため、光結合部3は、光半導体素子1の光軸1bと光伝送路2の光軸2bとが交差する交点Pの位置には前記樹脂が存在せず、樹脂の外面3aが受発光部1aに対向する位置Aが交点Pと受発光部1aとの間にあり、かつ、樹脂の外面3aが光伝送路2の端部2aに対向する位置Bが交点Pと光伝送路2の端部2aとの間にあることが好ましい。   These concave surface portions 11 to 13 are optically transmitted to and from the optical semiconductor element 1 by reflection at the interface 3a of the transparent resin, nearer to the positions of the light emitting / receiving portion 1a of the optical semiconductor element 1 and the end portion 2a of the optical transmission path 2. When optically coupling with the path 2, the range in which the light diffuses becomes narrow, and loss can be reduced. For this reason, the optical coupling portion 3 is such that the resin does not exist at the position of the intersection P where the optical axis 1b of the optical semiconductor element 1 and the optical axis 2b of the optical transmission line 2 intersect, and the outer surface 3a of the resin receives and emits light. The position A facing the portion 1a is between the intersection P and the light emitting / receiving portion 1a, and the position B where the outer surface 3a of the resin faces the end 2a of the optical transmission path 2 is between the intersection P and the optical transmission path 2. It is preferably between the end 2a.

さらに本形態例の光結合部3は、透明樹脂の周囲が空気で覆われているため、透明樹脂との屈折率差が大きくなり、界面における光の反射率を高めることができる。これにより、光の結合効率をより向上することができる。   Furthermore, since the periphery of the transparent resin is covered with air in the optical coupling unit 3 of this embodiment, the refractive index difference from the transparent resin is increased, and the reflectance of light at the interface can be increased. Thereby, the light coupling efficiency can be further improved.

基板4の実装面4aにおいて、光半導体素子1を受発光部1aが基板4の実装面4aの反対側(図1では上側)となるように実装することができるので、ダイボンディングやワイヤボンディングによる実装が可能になる。これにより、伝送特性に重要な配線を最短の線路長でつなぐことができ、ノイズが乗りにくく、良好な伝送特性が得られる。また、ボンディングの外観検査が容易であり、接続不良を発見するのが容易になる。   Since the optical semiconductor element 1 can be mounted on the mounting surface 4a of the substrate 4 such that the light emitting / receiving portion 1a is opposite to the mounting surface 4a (upper side in FIG. 1) of the substrate 4, it is possible to use die bonding or wire bonding. Implementation becomes possible. As a result, it is possible to connect wires important for transmission characteristics with the shortest line length, and it is difficult for noise to ride, and good transmission characteristics can be obtained. Further, it is easy to inspect the appearance of bonding, and it is easy to find a connection failure.

次に、本発明の光結合構造の製造方法の説明にあたって、前述した図1に示す構成の光結合構造5の製造方法を例示する。
図2に示すように、予め実装面4aに回路配線6が形成され、光半導体素子1が実装された基板4を用意し、光半導体素子1の受発光部1aに対して、精密ディスペンサ等の樹脂ディップ装置(注出装置)29を用いて、未硬化の透明樹脂31を塊状に(図2ではボール状に)塗布する工程を行う。
透明樹脂31は、光半導体素子1の上面1cに収まる範囲内で塗布することが望ましい。
Next, in the description of the manufacturing method of the optical coupling structure of the present invention, the manufacturing method of the optical coupling structure 5 having the configuration shown in FIG. 1 will be exemplified.
As shown in FIG. 2, a circuit wiring 6 is formed in advance on the mounting surface 4a and a substrate 4 on which the optical semiconductor element 1 is mounted is prepared, and a precision dispenser or the like is provided to the light emitting / receiving portion 1a of the optical semiconductor element 1. Using a resin dip device (pouring device) 29, a step of applying uncured transparent resin 31 in a lump shape (in a ball shape in FIG. 2) is performed.
It is desirable to apply the transparent resin 31 within a range that fits on the upper surface 1 c of the optical semiconductor element 1.

続いて、図3に示すように、光半導体素子1に対してコネクタ部材2D、2Eを装着した光ファイバ2Aの端部2aを、光半導体素子1上に盛り付けた塊状の液状の透明樹脂31に向けて(矢印Lの方向に)押し込む工程を行う。
そして、透明樹脂31に差し込んだ光伝送路2を光半導体素子1から遠ざけるように移動する。このとき、光伝送路2は、光半導体素子1からゆっくりと斜め上方向(矢印Rの方向)に引き上げる工程を行う。
Subsequently, as shown in FIG. 3, the end portion 2 a of the optical fiber 2 </ b> A in which the connector members 2 </ b> D and 2 </ b> E are attached to the optical semiconductor element 1 is formed into a massive liquid transparent resin 31 placed on the optical semiconductor element 1. A process of pushing in (in the direction of arrow L) is performed.
Then, the optical transmission path 2 inserted into the transparent resin 31 is moved away from the optical semiconductor element 1. At this time, the optical transmission line 2 performs a process of slowly pulling up from the optical semiconductor element 1 obliquely upward (in the direction of arrow R).

この後、透明樹脂31の種類に応じて、必要に応じて例えばUV(紫外線)の照射や加熱を行い、透明樹脂31を硬化させる工程を行う。
これにより、図1に示す如く光半導体素子1と光ファイバ2Aとを光学的に接続する(光結合する)光結合部3が形成され、光結合構造5が完成する。
Thereafter, according to the type of the transparent resin 31, for example, UV (ultraviolet light) irradiation or heating is performed as necessary to cure the transparent resin 31.
Thereby, as shown in FIG. 1, the optical coupling part 3 which optically connects (optically couples) the optical semiconductor element 1 and the optical fiber 2A is formed, and the optical coupling structure 5 is completed.

図3において光ファイバ2Aを斜め方向に引き上げた後の透明樹脂31の形状は、(1)透明樹脂31と光半導体素子1との間の界面張力、(2)透明樹脂31と光伝送路2との間の界面張力、および(3)透明樹脂31と外部の気体との間の表面張力で決定される。つまり、(A)光半導体素子1、光伝送路2、透明樹脂31の部材と、(B)光半導体素子1および光伝送路2の表面状態や透明樹脂31の粘度などの部材の状態と、(C)図2における透明樹脂31の塗布量や図3における光伝送路2の差込量および引き上げ量などの実装条件などに依存する。これら(A)、(B)、(C)の条件が同じであれば、自ずと透明樹脂31の形状は同じになる。   In FIG. 3, the shape of the transparent resin 31 after the optical fiber 2A is pulled up in the oblique direction is (1) the interfacial tension between the transparent resin 31 and the optical semiconductor element 1, and (2) the transparent resin 31 and the optical transmission line 2. And (3) surface tension between the transparent resin 31 and the external gas. That is, (A) a member of the optical semiconductor element 1, the optical transmission path 2, and the transparent resin 31, and (B) a state of the member such as the surface state of the optical semiconductor element 1 and the optical transmission path 2 and the viscosity of the transparent resin 31, (C) Depends on the mounting conditions such as the application amount of the transparent resin 31 in FIG. 2 and the insertion amount and pull-up amount of the optical transmission path 2 in FIG. If the conditions (A), (B), and (C) are the same, the shape of the transparent resin 31 is naturally the same.

光伝送路2のR方向への引き上げ量は、用いる光伝送路2や光半導体素子1の構造、透明樹脂31の塗布量などに応じて最適値が存在する。こうした最適値を予め調べておけば、上述した作製工程を全て自動化することが可能になり、より一層の省力化を実現できる。また、光結合部3を作製する際に光半導体素子1と光伝送路2との間に光を伝送させる必要はなく、パッシブ調心が可能である。樹脂の塗布量の変化などによってパッシブ調心の位置が最適位置から多少ずれても、光半導体素子1と光伝送路2との間が透明樹脂31でつながれているので、透明樹脂31の表面が光伝送路2と一緒に変形するため、光結合部3の結合効率が低下しにくく、位置合わせのトレランスが大きい。光を伝送しながら行うアクティブ調心では、光硬化性樹脂を用いると光ファイバの位置合わせ中に樹脂が硬化するおそれがあるが、パッシブ調心によれば、途中で樹脂が硬化するおそれがない。   The amount of pulling up of the optical transmission line 2 in the R direction has an optimum value according to the structure of the optical transmission line 2 and the optical semiconductor element 1 used, the coating amount of the transparent resin 31, and the like. If such an optimum value is checked in advance, it is possible to automate all the manufacturing processes described above, and it is possible to realize further labor saving. In addition, when the optical coupling unit 3 is manufactured, it is not necessary to transmit light between the optical semiconductor element 1 and the optical transmission line 2, and passive alignment is possible. Even if the position of the passive alignment is slightly deviated from the optimal position due to a change in the amount of resin applied, the transparent semiconductor 31 is connected to the surface of the transparent resin 31 because the optical semiconductor element 1 and the optical transmission path 2 are connected. Since it is deformed together with the optical transmission line 2, the coupling efficiency of the optical coupling unit 3 is hardly lowered, and the alignment tolerance is large. In active alignment performed while transmitting light, if a photocurable resin is used, the resin may be cured during the alignment of the optical fiber, but according to passive alignment, there is no possibility that the resin will be cured in the middle. .

このように、本形態例の光結合構造の製造方法によれば、光半導体素子1に透明樹脂31を塊状に盛り付けて、この透明樹脂31に光伝送路2を差し込んで斜め方向に引き上げた後、透明樹脂31を硬化させるだけで、光半導体素子1と光伝送路2とを光学的に接続する(光結合する)光結合部3を形成することが可能になる。このため、光結合部3の形成に際して、樹脂を象る金型等も必要なく、少ない工程かつ少ない構成部品で極めて低コストに光結合構造を製造することが可能になる。   As described above, according to the manufacturing method of the optical coupling structure of the present embodiment, the transparent resin 31 is placed in a lump shape on the optical semiconductor element 1, and the optical transmission line 2 is inserted into the transparent resin 31 and pulled up in an oblique direction. By simply curing the transparent resin 31, it is possible to form the optical coupling portion 3 that optically connects (optically couples) the optical semiconductor element 1 and the optical transmission path 2. For this reason, when the optical coupling part 3 is formed, it is possible to manufacture the optical coupling structure at an extremely low cost with a small number of steps and a small number of components without the need for a metal mold or the like.

従来、LEDなどの封止用途などにおいて、表面張力および界面張力という物性によって自ずと決まる形状を、凸レンズや凹レンズとして利用することは公知である。また、特許文献4には、半導体レーザ素子の後方出力光をモニタフォトダイオードに入射させるため、基板の段差に沿って透明樹脂を被覆した半導体レーザ装置が記載されている。
本形態例の光モジュールの製造方法は、透明樹脂を基板に付着させる必要がないので、光結合部3の形成に際して、基板4の加工工程(V溝や段差など)を追加する必要がないので、シリコン基板のように面異方性エッチングが利用可能な基板に限らず、ガラスエポキシ基板等のように加工性の低い基板であっても、低コストに基板作製が可能である。
2. Description of the Related Art Conventionally, it is known to use, as a convex lens or a concave lens, a shape that is naturally determined by physical properties such as surface tension and interface tension in sealing applications such as LEDs. Patent Document 4 describes a semiconductor laser device in which a transparent resin is coated along a step of a substrate so that backward output light of the semiconductor laser element is incident on a monitor photodiode.
Since the optical module manufacturing method of the present embodiment does not require the transparent resin to adhere to the substrate, it is not necessary to add a processing step (such as a V groove or a step) of the substrate 4 when forming the optical coupling portion 3. The substrate is not limited to a substrate that can be used for plane anisotropic etching such as a silicon substrate, but can be manufactured at low cost even with a substrate with low workability such as a glass epoxy substrate.

次に、本発明に係る光結合構造の製造方法の他の例について図4を元に説明する。
図4に示す第2形態例の構造は、図1に示す構造に対し、メス型コネクタ部材2Eから、光ファイバ2Aとオス型コネクタ部材2Dを引き抜いた状態と同等構造の光結合構造5Bを示す。
図4に示す光結合構造5Bを製造するには、例えば、図2〜図3を元に先に説明した製造方法における光ファイバ2Aに代えてダミーファイバ2Gにオス型コネクタ部材2Dを装着し、これにメス型コネクタ部材2Eを嵌合して一体化したものを図2〜図3を元に先に説明した製造方法に適用する。そして、光半導体素子1の上に盛り付けた樹脂にメス型コネクタ部材2Eを差し込んで斜め上方に引き上げてから樹脂を硬化させた後、メス型コネクタ部材2Eからオス型コネクタ部材2Dとダミーファイバ2Gを図4に示す矢印Sに示す如く引き抜くことで、図4に示す光結合構造5Bが完成する。
Next, another example of the method for manufacturing an optical coupling structure according to the present invention will be described with reference to FIG.
The structure of the second embodiment shown in FIG. 4 shows an optical coupling structure 5B having the same structure as that of the structure shown in FIG. 1 in which the optical fiber 2A and the male connector member 2D are pulled out from the female connector member 2E. .
To manufacture the optical coupling structure 5B shown in FIG. 4, for example, the male connector member 2D is attached to the dummy fiber 2G instead of the optical fiber 2A in the manufacturing method described above based on FIGS. What integrated and integrated the female connector member 2E to this is applied to the manufacturing method previously demonstrated based on FIGS. Then, after the female connector member 2E is inserted into the resin placed on the optical semiconductor element 1 and pulled up obliquely upward, the resin is cured, and then the male connector member 2D and the dummy fiber 2G are connected from the female connector member 2E. By pulling out as indicated by an arrow S shown in FIG. 4, the optical coupling structure 5B shown in FIG. 4 is completed.

図4に示す光結合構造5Bに対しては、別途目的の接続用の他の光ファイバにオス型コネクタ部材2Dを嵌め込み、オス型コネクタ部材2Dをメス型コネクタ部材2Eに挿入し、嵌合することにより、目的の光結合構造が完成する。   For the optical coupling structure 5B shown in FIG. 4, a male connector member 2D is fitted into another optical fiber for connection separately, and the male connector member 2D is inserted into the female connector member 2E and fitted. As a result, the desired optical coupling structure is completed.

図6に、第3形態例に係る光結合構造を備えた光結合構造の一例を示す。
図6に示す光結合構造9は、基板4の実装面4aに実装された光半導体素子1と、基板4の実装面4aに沿い、かつ基板4の実装面4aから離間して配置された光伝送路2と、光伝送路2と光半導体素子1との間を光学的に結合する光結合部3と、光結合部3とその周囲を覆うクラッド樹脂層8を備えている。具体的にクラッド樹脂層8は、ワイヤ配線7とその周囲、光半導体素子1とその周囲、光接合部3とその周囲、並びに、メス型コネクタ部材2Eとその周囲を覆うように基板4の上に形成されている。
FIG. 6 shows an example of an optical coupling structure provided with the optical coupling structure according to the third embodiment.
The optical coupling structure 9 shown in FIG. 6 includes an optical semiconductor element 1 mounted on the mounting surface 4a of the substrate 4 and light disposed along the mounting surface 4a of the substrate 4 and spaced from the mounting surface 4a of the substrate 4. A transmission path 2, an optical coupling section 3 that optically couples between the optical transmission path 2 and the optical semiconductor element 1, and a clad resin layer 8 that covers the optical coupling section 3 and its periphery are provided. Specifically, the clad resin layer 8 is formed on the substrate 4 so as to cover the wire wiring 7 and its periphery, the optical semiconductor element 1 and its periphery, the optical junction 3 and its periphery, and the female connector member 2E and its periphery. Is formed.

本形態例の光結合構造9は、光結合部3の周囲が、光結合部3を構成する透明樹脂(第1の樹脂)より屈折率が低い第2の樹脂からなるクラッド樹脂層8で覆われている点が第1形態例に係る光結合構造5と異なる。光半導体素子1、光伝送路2、基板4、回路配線6、ワイヤ配線7、オス型コネクタ部材2D、メス型コネクタ部材2E、窓部材2F等は、第1形態例に係る光結合構造5と同様に構成することができる。
クラッド樹脂層8は、光結合部3を構成する透明樹脂よりも屈折率の低い樹脂で形成されているので、光結合部3の中を伝送する光がクラッド樹脂層8の方に入射し散乱してしまうことを抑制することができる。さらに、クラッド樹脂層8の周囲を、光結合部3よりも高い屈折率を有する樹脂(図示せず)で封止することも可能になる。
The optical coupling structure 9 of this embodiment is covered with a clad resin layer 8 made of a second resin whose refractive index is lower than that of the transparent resin (first resin) constituting the optical coupling unit 3. This is different from the optical coupling structure 5 according to the first embodiment. The optical semiconductor element 1, the optical transmission line 2, the substrate 4, the circuit wiring 6, the wire wiring 7, the male connector member 2D, the female connector member 2E, the window member 2F, and the like are the same as the optical coupling structure 5 according to the first embodiment. It can be configured similarly.
Since the clad resin layer 8 is formed of a resin having a refractive index lower than that of the transparent resin constituting the optical coupling portion 3, light transmitted through the optical coupling portion 3 is incident on the clad resin layer 8 and scattered. Can be suppressed. Furthermore, the periphery of the clad resin layer 8 can be sealed with a resin (not shown) having a higher refractive index than that of the optical coupling portion 3.

ここでいう屈折率とは、光半導体素子1と光伝送路2との間を伝送する光の波長における屈折率を指している。第2の樹脂としては、例えば、UV硬化性樹脂や熱硬化性樹脂などを用いることができる。第2の樹脂の具体例としては、アクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂等が挙げられる。
クラッド樹脂層8は、図2〜図3に示すようにして光結合部3を形成した後に、第2の樹脂を外部から塗布して硬化することにより形成することができる。
The refractive index here refers to the refractive index at the wavelength of light transmitted between the optical semiconductor element 1 and the optical transmission line 2. For example, a UV curable resin or a thermosetting resin can be used as the second resin. Specific examples of the second resin include acrylic resins, epoxy resins, and silicone resins.
The clad resin layer 8 can be formed by forming the optical coupling portion 3 as shown in FIGS. 2 to 3 and then applying and curing a second resin from the outside.

光結合部3を構成する第1の樹脂は、光伝送路2の光軸2bと光半導体素子1の光軸1bとが交差する交点Pの位置には存在せず、光結合部3とクラッド樹脂層8との界面3aが、交点Pの位置とは反対側に凹んだ形状となっている。
本形態例の光結合構造9におけるクラッド樹脂層8は、光結合部3のクラッド樹脂として機能する。また、光結合部3は、光半導体素子1が受光素子の場合には、光伝送路2から光結合部3に入射した光は、光結合部3とクラッド樹脂層8との界面3aとの屈折率差により反射されて光半導体素子1に入射する。また、光半導体素子1が発光素子の場合には、光半導体素子1から光結合部3に入射した光は、光結合部3とクラッド樹脂層8との界面3aとの屈折率差により反射されて光伝送路2に入射する。
The first resin constituting the optical coupling part 3 does not exist at the position of the intersection P where the optical axis 2b of the optical transmission line 2 and the optical axis 1b of the optical semiconductor element 1 intersect, and the optical coupling part 3 and the clad The interface 3a with the resin layer 8 has a shape recessed on the opposite side to the position of the intersection P.
The clad resin layer 8 in the optical coupling structure 9 of this embodiment functions as a clad resin for the optical coupling portion 3. Further, when the optical semiconductor element 1 is a light receiving element, the optical coupling unit 3 is configured such that light incident on the optical coupling unit 3 from the optical transmission path 2 is coupled with the interface 3a between the optical coupling unit 3 and the clad resin layer 8. The light is reflected by the difference in refractive index and enters the optical semiconductor element 1. When the optical semiconductor element 1 is a light emitting element, the light incident on the optical coupling part 3 from the optical semiconductor element 1 is reflected by the refractive index difference between the optical coupling part 3 and the interface 3 a between the clad resin layer 8. Is incident on the optical transmission line 2.

さらに図6に示す例では、光伝送路2がクラッド樹脂層8によって基板4の実装面4aに固定されている。これにより、光伝送路2の端部2a付近の光軸2bの方向が動きにくく、光伝送路2に多少の外力が作用しても光結合の悪化を抑制することができる。
また、ワイヤ配線7はクラッド樹脂層8に覆われ、保護されているので、外部の応力によって破損しやすいワイヤ配線7(給電用配線)の断線を防止することができる。
また、光伝送路2の端部2a、光結合部3および光半導体素子1がクラッド樹脂層8により覆われているので、これらを外部の応力から保護することができる。従って、光半導体素子1と光伝送路2との光結合構造全体の機械的強度を高くすることができる。
このように、クラッド樹脂層8がワイヤ配線7の保護層、あるいは光結合構造の保護層として機能するように設けられた場合、簡便に保護層を形成することができる。
Further, in the example shown in FIG. 6, the optical transmission line 2 is fixed to the mounting surface 4 a of the substrate 4 by the clad resin layer 8. Thereby, the direction of the optical axis 2b in the vicinity of the end 2a of the optical transmission line 2 is difficult to move, and even if some external force acts on the optical transmission line 2, it is possible to suppress the deterioration of optical coupling.
Moreover, since the wire wiring 7 is covered and protected by the clad resin layer 8, it is possible to prevent the wire wiring 7 (feeding wiring) that is easily damaged by external stress from being disconnected.
In addition, since the end 2a of the optical transmission line 2, the optical coupling unit 3, and the optical semiconductor element 1 are covered with the clad resin layer 8, these can be protected from external stress. Therefore, the mechanical strength of the entire optical coupling structure between the optical semiconductor element 1 and the optical transmission line 2 can be increased.
Thus, when the clad resin layer 8 is provided so as to function as a protective layer for the wire wiring 7 or a protective layer for the optical coupling structure, the protective layer can be easily formed.

以下、実施例をもって本発明を具体的に説明する。
(実施例1)
図1〜3に示すように、光伝送路2としてクラッド径が125μm、コア径が50μmの石英系マルチモード光ファイバを用意し、この光ファイバの先端部に黄銅製の肉厚100μm、長さ3mmの筒型のオス型コネクタ部材を装着し、その外側に黄銅製の肉厚100μm、長さ3mmの筒型のメス型コネクタ部材を装着した。メス型コネクタ部材の先端部には厚さ0.5mmのガラス製の窓部材を備えている。光半導体素子1にはPD(受光部の開口径は80μm)を、透明樹脂31にはUV硬化樹脂(アクリル系樹脂)を、基板4にはガラスエポキシ基板を、ワイヤ配線7には金ワイヤを用い、PDの受光部上に透明樹脂31を2nl(ナノリットル)塗布した後、この透明樹脂に光ファイバの先端を差し込んで、斜め30°上方に40μm引き上げた後、UVを照射して透明樹脂31を硬化させることにより、図1に示す光結合構造5を作製した。光結合部3を構成する硬化後の樹脂の屈折率は1.58である。
Hereinafter, the present invention will be specifically described with reference to examples.
Example 1
As shown in FIGS. 1 to 3, a silica-based multimode optical fiber having a cladding diameter of 125 μm and a core diameter of 50 μm is prepared as the optical transmission line 2, and a brass wall thickness of 100 μm and a length are provided at the tip of the optical fiber. A 3 mm cylindrical male connector member was attached, and a cylindrical female connector member having a wall thickness of 100 μm and a length of 3 mm was attached to the outside thereof. A glass-type window member having a thickness of 0.5 mm is provided at the tip of the female connector member. The optical semiconductor element 1 is a PD (light receiving portion has an opening diameter of 80 μm), the transparent resin 31 is a UV curable resin (acrylic resin), the substrate 4 is a glass epoxy substrate, and the wire wiring 7 is a gold wire. Used, after applying 2 nl (nanoliter) of transparent resin 31 on the light receiving part of the PD, the tip of the optical fiber is inserted into this transparent resin, pulled upward by 30 μm obliquely, and then irradiated with UV to be transparent resin By curing 31, the optical coupling structure 5 shown in FIG. 1 was produced. The refractive index of the cured resin constituting the optical coupling unit 3 is 1.58.

透明樹脂として、粘度の異なる11種類の樹脂(A:0.02Pa・s、B:0.1Pa・s、C:0.7Pa・s、D:1.5Pa・s、E:3.2Pa・s、F:5.5Pa・s、G:15Pa・s、H:21Pa・s、I:26Pa・s、J:35Pa・s、K:50Pa・s)を用い、光結合部を形成した直後の当該光結合部の形状を観測した。その結果を表1に示す。   As transparent resins, 11 types of resins having different viscosities (A: 0.02 Pa · s, B: 0.1 Pa · s, C: 0.7 Pa · s, D: 1.5 Pa · s, E: 3.2 Pa · s) S: F: 5.5 Pa · s, G: 15 Pa · s, H: 21 Pa · s, I: 26 Pa · s, J: 35 Pa · s, K: 50 Pa · s), immediately after forming the optical coupling portion The shape of the optical coupling part was observed. The results are shown in Table 1.

Figure 2010282091
Figure 2010282091

また、サンプルD、H、Kの樹脂を用いて光伝送路と光半導体素子との位置関係を最適にした光モジュールを作製し、それぞれにおける接続損失を測定した。その結果を表2に示す。   In addition, optical modules in which the positional relationship between the optical transmission line and the optical semiconductor element was optimized were prepared using the resins of samples D, H, and K, and the connection loss in each was measured. The results are shown in Table 2.

Figure 2010282091
Figure 2010282091

表2の結果より、光結合部の形状が凹形状の場合、凸形状の場合に比べて接続損失が非常に小さいものとなった。   From the results in Table 2, when the optical coupling portion has a concave shape, the connection loss is very small compared to the convex shape.

θ…光軸同士の成す角度、P…光軸同士の交点、1…光半導体素子、1a…受発光部、1b…光半導体素子の光軸、1c…上面(表面)、1d…下面(裏面)、2…光伝送路、2A…光ファイバ、2a…光伝送路の端部(端面)、2b…光伝送路の光軸、2C…ファイバコネクタ、2D…オス型コネクタ部材、2E…メス型コネクタ部材、2F…窓部材、3…光結合部、3a…光結合部の外面(界面)、4…基板、4a…基板の実装面、5,5A、5B…光結合構造、7…ワイヤ配線(給電用配線)、8…クラッド樹脂層、9…光結合構造、11、12、13…凹面部。 θ: angle formed by optical axes, P: intersection of optical axes, 1 ... optical semiconductor element, 1a ... light emitting / receiving section, 1b ... optical axis of optical semiconductor element, 1c ... upper surface (front surface), 1d ... lower surface (back surface) 2) Optical transmission path, 2A ... Optical fiber, 2a ... End of optical transmission path (end face), 2b ... Optical axis of optical transmission path, 2C ... Fiber connector, 2D ... Male connector member, 2E ... Female type Connector member, 2F ... window member, 3 ... optical coupling portion, 3a ... outer surface (interface) of optical coupling portion, 4 ... substrate, 4a ... mounting surface of substrate, 5, 5A, 5B ... optical coupling structure, 7 ... wire wiring (Feeding wiring), 8... Clad resin layer, 9... Optical coupling structure, 11, 12, 13.

Claims (10)

上面に受発光部を有し、かつ下面の側で基板に実装された光半導体素子と、
前記光半導体素子の光軸に対して所定の角度で交差する光軸を有し、かつ前記基板の実装面から離間して配置された光伝送路と、
前記光半導体素子と前記光伝送路との間を光学的に結合する光結合部とを備え、
前記光結合部は、伝送される光に対して透明な樹脂からなり、前記樹脂は、前記光半導体素子の受発光部の少なくとも一部および前記光伝送路の端部の少なくとも一部にそれぞれ密着し、
前記光結合部を構成する前記樹脂の外面が、前記光半導体素子の受発光部および前記光伝送路の端部の側に凹んだ形状となっているとともに、
前記光伝送路が光ファイバと該光ファイバの先端部に取り付けられたファイバコネクタとを備え、前記ファイバコネクタの先端部が前記樹脂に密着してなることを特徴とする光結合構造。
An optical semiconductor element having a light emitting and receiving part on the upper surface and mounted on the substrate on the lower surface side;
An optical transmission line that has an optical axis that intersects the optical axis of the optical semiconductor element at a predetermined angle, and is spaced apart from the mounting surface of the substrate;
An optical coupling unit that optically couples between the optical semiconductor element and the optical transmission path;
The optical coupling portion is made of a resin that is transparent to transmitted light, and the resin is in close contact with at least a part of the light emitting / receiving unit of the optical semiconductor element and at least a part of the end of the optical transmission path. And
The outer surface of the resin constituting the optical coupling portion has a shape recessed on the side of the light emitting / receiving portion of the optical semiconductor element and the end of the optical transmission path,
The optical coupling structure is characterized in that the optical transmission path includes an optical fiber and a fiber connector attached to the tip of the optical fiber, and the tip of the fiber connector is in close contact with the resin.
前記ファイバコネクタが前記樹脂に密着されてその先端に窓部材を備えた筒形のメス型コネクタ部材と、前記光ファイバの先端部に装着されて前記メス型コネクタ部材に嵌め込まれた筒形のオス型コネクタ部材とを備えてなることを特徴とする請求項1に記載の光結合構造。   A cylindrical female connector member in which the fiber connector is in close contact with the resin and having a window member at the tip thereof, and a cylindrical male connector that is attached to the distal end portion of the optical fiber and fitted into the female connector member The optical coupling structure according to claim 1, further comprising a mold connector member. 上面に受発光部を有し、かつ下面の側で基板に実装された光半導体素子と、
前記光半導体素子の光軸に対して所定の角度で交差する光軸を有し、かつ前記基板の実装面から離間して配置される光伝送路接続用コネクタと、
前記光半導体素子と前記光伝送路との間を光学的に結合する光結合部とを備え、
前記光結合部は、伝送される光に対して透明な樹脂からなり、前記樹脂は、前記光半導体素子の受発光部の少なくとも一部および前記光伝送路の端部の少なくとも一部にそれぞれ密着し、
前記光結合部を構成する前記樹脂の外面が、前記光半導体素子の受発光部および前記光伝送路の端部の側に凹んだ形状となっているとともに、
前記光伝送路接続用コネクタは光伝送路としての光ファイバを接続可能としてなることを特徴とする光結合構造。
An optical semiconductor element having a light emitting and receiving part on the upper surface and mounted on the substrate on the lower surface side;
An optical transmission line connecting connector that has an optical axis that intersects the optical axis of the optical semiconductor element at a predetermined angle and that is disposed apart from the mounting surface of the substrate;
An optical coupling unit that optically couples between the optical semiconductor element and the optical transmission path;
The optical coupling portion is made of a resin that is transparent to transmitted light, and the resin is in close contact with at least a part of the light emitting / receiving unit of the optical semiconductor element and at least a part of the end of the optical transmission path. And
The outer surface of the resin constituting the optical coupling portion has a shape recessed on the side of the light emitting / receiving portion of the optical semiconductor element and the end of the optical transmission path,
An optical coupling structure characterized in that the optical transmission line connecting connector can connect an optical fiber as an optical transmission line.
前記光結合部は、前記光半導体素子の光軸と前記光伝送路の光軸とが交差する交点の位置には前記樹脂が存在せず、
前記樹脂の外面が前記受発光部に対向する位置が、前記交点と前記受発光部との間にあり、かつ、前記樹脂の外面が前記光伝送路の端部に対向する位置が、前記交点と前記光伝送路の端部との間にあることを特徴とする請求項1〜3のいずれかに記載の光結合構造。
In the optical coupling portion, the resin does not exist at the intersection point where the optical axis of the optical semiconductor element and the optical axis of the optical transmission path intersect,
The position where the outer surface of the resin faces the light emitting / receiving portion is between the intersection and the light emitting / receiving portion, and the position where the outer surface of the resin faces the end of the optical transmission path is the intersection. The optical coupling structure according to any one of claims 1 to 3, wherein the optical coupling structure is between the optical transmission line and an end of the optical transmission line.
前記光結合部を構成する前記樹脂は、前記半導体素子の上面より上方に位置する範囲内に収まっていることを特徴とする請求項1〜3のいずれかに記載の光結合構造。   The optical coupling structure according to any one of claims 1 to 3, wherein the resin constituting the optical coupling portion is within a range located above the upper surface of the semiconductor element. 前記光結合部を構成する前記樹脂は、前記光伝送路の端面の上端の高さより下側の範囲内に収まっていることを特徴とする請求項1〜3のいずれかに記載の光結合構造。   4. The optical coupling structure according to claim 1, wherein the resin constituting the optical coupling portion is within a range lower than a height of an upper end of an end face of the optical transmission path. . 前記光結合部の周囲が気体で覆われていることを特徴とする請求項1〜6のいずれかに記載の光結合構造。   The optical coupling structure according to claim 1, wherein the optical coupling portion is covered with a gas. 前記光結合部の周囲が光結合部を構成する樹脂より屈折率が低いクラッド樹脂層で覆われていることを特徴とする請求項1〜6のいずれかに記載の光結合構造。   The optical coupling structure according to claim 1, wherein the optical coupling portion is covered with a clad resin layer having a refractive index lower than that of the resin constituting the optical coupling portion. 上面に受発光部を有し、かつ下面の側で基板に実装された光半導体素子と、
前記光半導体素子の光軸に対して所定の角度で交差する光軸を有し、かつ前記基板の実装面から離間して配置された光伝送路と、
前記光半導体素子と前記光伝送路との間を光学的に結合する光結合部とを備え、
前記光結合部は、伝送される光に対して透明な樹脂からなり、前記樹脂は、前記光半導体素子の受発光部の少なくとも一部および前記光伝送路の端部の少なくとも一部にそれぞれ密着し、
前記光結合部を構成する前記樹脂の外面が、前記光半導体素子の受発光部および前記光伝送路の端部の側に凹んだ形状となっているとともに、
前記光伝送路が光ファイバと該光ファイバの先端部に取り付けられたコネクタとを備え、前記コネクタの先端部が前記樹脂に密着してなる光結合構造を製造する方法であって、
前記基板上に実装された光半導体素子の受発光部に対し、注出装置を用いて液状の透明樹脂を塊状に盛り付ける工程と、ファイバに取り付けたコネクタを前記塊状の透明樹脂中に押し込む工程と、前記透明樹脂の表面形状が凹面部を描くように前記コネクタを斜め上方に引き上げる工程と、前記透明樹脂を硬化させる工程を具備したことを特徴とする光結合構造の製造方法。
An optical semiconductor element having a light emitting and receiving part on the upper surface and mounted on the substrate on the lower surface side;
An optical transmission line that has an optical axis that intersects the optical axis of the optical semiconductor element at a predetermined angle, and is spaced apart from the mounting surface of the substrate;
An optical coupling unit that optically couples between the optical semiconductor element and the optical transmission path;
The optical coupling portion is made of a resin that is transparent to transmitted light, and the resin is in close contact with at least a part of the light emitting / receiving unit of the optical semiconductor element and at least a part of the end of the optical transmission path. And
The outer surface of the resin constituting the optical coupling portion has a shape recessed on the side of the light emitting / receiving portion of the optical semiconductor element and the end of the optical transmission path,
The optical transmission path includes an optical fiber and a connector attached to the tip of the optical fiber, and a method of manufacturing an optical coupling structure in which the tip of the connector is in close contact with the resin,
A step of placing a liquid transparent resin in a lump using a pouring device with respect to the light emitting and receiving part of the optical semiconductor element mounted on the substrate; and a step of pushing a connector attached to a fiber into the lump of transparent resin. A method for producing an optical coupling structure, comprising: a step of pulling up the connector obliquely upward so that a surface shape of the transparent resin describes a concave surface portion; and a step of curing the transparent resin.
前記塊状の透明樹脂中に押し込むコネクタを取り付けるファイバとしてダミーファイバを用い、前記透明樹脂を硬化させた後、前記ダミーファイバをコネクタから引き抜いて前記硬化させた透明樹脂に密着した状態でコネクタを残すことを特徴とする請求項9に記載の光結合構造の製造方法。   A dummy fiber is used as a fiber for attaching the connector to be pushed into the bulk transparent resin, and after the transparent resin is cured, the dummy fiber is pulled out of the connector and the connector is left in close contact with the cured transparent resin. The method for manufacturing an optical coupling structure according to claim 9.
JP2009136359A 2009-06-05 2009-06-05 Optical coupling structure and method of manufacturing the same Pending JP2010282091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009136359A JP2010282091A (en) 2009-06-05 2009-06-05 Optical coupling structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009136359A JP2010282091A (en) 2009-06-05 2009-06-05 Optical coupling structure and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010282091A true JP2010282091A (en) 2010-12-16

Family

ID=43538851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009136359A Pending JP2010282091A (en) 2009-06-05 2009-06-05 Optical coupling structure and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010282091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5857960B2 (en) * 2010-07-26 2016-02-10 コニカミノルタ株式会社 Optical element manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337550A (en) * 2005-05-31 2006-12-14 Sony Corp Optical coupler
JP2007178578A (en) * 2005-12-27 2007-07-12 Hitachi Cable Ltd Optical transmitter-receiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337550A (en) * 2005-05-31 2006-12-14 Sony Corp Optical coupler
JP2007178578A (en) * 2005-12-27 2007-07-12 Hitachi Cable Ltd Optical transmitter-receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5857960B2 (en) * 2010-07-26 2016-02-10 コニカミノルタ株式会社 Optical element manufacturing method

Similar Documents

Publication Publication Date Title
JP5265025B2 (en) Optical coupling structure and optical transceiver module
JP5386290B2 (en) Optical coupling structure and optical transceiver module
JP4180537B2 (en) Optical element sealing structure, optical coupler, and optical element sealing method
US8827572B2 (en) Side coupling optical fiber assembly and fabrication method thereof
US8079125B2 (en) Manufacturing method of multi-channel optical module
JP3955065B2 (en) Optical coupler
TWI634357B (en) Photoelectric conversion module
JP2006506657A (en) Integrated platform for active optical alignment of semiconductor devices with optical fibers
US20150241647A1 (en) Optoelectronic component
JP2011095295A (en) Optical fiber block of optical module and method of manufacturing the same
US20140072311A1 (en) Optoelectronic component
US20070133928A1 (en) Canted-fiber duplex optical assembly
JP5256082B2 (en) Optical coupling structure and optical transceiver module
JP2010278085A (en) Optical module and manufacturing method of the same
JP5466778B2 (en) Manufacturing method of optical module
JP2010049170A (en) Package for optical-electrical wiring, and lead frame having optical waveguide
JP5400421B2 (en) Optical device and manufacturing method thereof
JP2010217323A (en) Optical coupling structure and optical transmission and reception module
JP2004233687A (en) Optical waveguide substrate and optical module
JP2010282091A (en) Optical coupling structure and method of manufacturing the same
JP2011095294A (en) Optical module
JP2005134787A (en) Optical module and manufacturing method therefor
JP2015138227A (en) photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A977 Report on retrieval

Effective date: 20121115

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Effective date: 20131015

Free format text: JAPANESE INTERMEDIATE CODE: A02