JP2010277979A - Method of detecting internal short-circuiting phenomenon at secondary battery having foil structure - Google Patents

Method of detecting internal short-circuiting phenomenon at secondary battery having foil structure Download PDF

Info

Publication number
JP2010277979A
JP2010277979A JP2009141647A JP2009141647A JP2010277979A JP 2010277979 A JP2010277979 A JP 2010277979A JP 2009141647 A JP2009141647 A JP 2009141647A JP 2009141647 A JP2009141647 A JP 2009141647A JP 2010277979 A JP2010277979 A JP 2010277979A
Authority
JP
Japan
Prior art keywords
secondary battery
magnetic flux
foil structure
short
internal short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009141647A
Other languages
Japanese (ja)
Inventor
Shuji Onita
周二 大仁田
Kazuhiro Toida
一弘 樋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009141647A priority Critical patent/JP2010277979A/en
Publication of JP2010277979A publication Critical patent/JP2010277979A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of detecting an internal short-circuiting phenomenon at a secondary battery having a foil structure. <P>SOLUTION: In the method of detecting the internal short-circuiting phenomenon at the secondary battery, magnetic flux generated by using the foil structure of the secondary battery is detected, and a magnetic flux detecting pickup is disposed on the same axis to measure various characteristics of the secondary battery, thereby making a preliminary determination on whether the secondary battery is nondefective or defective to prevent the occurrence of an abnormal phenomenon before and after the secondary battery is adopted in a real machine. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、エネルギー密度が増大しているフォイル構造を持つリチウムイオン電池やNi−MH電池などの二次電池において、発生する急速な放電など、そのため生じる高温部のため、反応液からのガス内圧により破裂するなどの熱暴走が起きることから、それらの防止を図らなければならないという問題や課題があり、二次電池の実機採用後の異常現象の発生を未然に防止するために、予め二次電池の良否を判断する二次電池の内部短絡現象を検知する方法である。  In the secondary battery such as a lithium ion battery or Ni-MH battery having a foil structure with an increased energy density, the present invention has a high temperature portion that occurs due to the rapid discharge that occurs, and therefore, the internal pressure of the gas from the reaction liquid. In order to prevent the occurrence of abnormal phenomena after adopting a secondary battery in advance, there is a problem and a problem that it is necessary to prevent such thermal runaway such as bursting by This is a method for detecting an internal short-circuit phenomenon of a secondary battery for judging the quality of the battery.

本発明に用いる二次電池は、フォイル構造を持つ二次電池であって、正極並びに負2つの電極とする薄膜を絶縁するために、その中間に電気的に絶縁する目的でセパレーターを挟み、筒状に巻き込んだ構造を持ち、比較的小さいインダクタンスを有しており、これを一組として収容ケースに電解液と共に密封入したものであり、円筒若しくは箱状の形態としている。  The secondary battery used in the present invention is a secondary battery having a foil structure, and in order to insulate a thin film as a positive electrode and a negative two electrode, a separator is sandwiched between them in order to electrically insulate the thin film. It has a structure wound in a shape and has a relatively small inductance, and this is sealed as a set together with an electrolytic solution in a housing case, and has a cylindrical or box shape.

本来フォイル構造における磁束発生のメカニズムは一対の電極面単位面積当たり全てにわたっての一様な起電力と仮定した場合、また電池端子も同じ機構上の位置から引き出したとすれば電流によってロール状の巻方法が無誘導巻になるため磁束が中和され外部へ出力されない。しかし実際は電極となる端子の引き出し位置「+極、−極」が同じではなくまた起電力に関係する発電表面の場所は一様ではないし前述の構造上からも非対称であるためインダクタンス値をもつものと思われる。  In the case of assuming that the mechanism of magnetic flux generation in the foil structure is a uniform electromotive force over the entire unit area of a pair of electrode surfaces, and if the battery terminal is also drawn from the same mechanism position, a roll-shaped winding method by current Since this is a non-inductive winding, the magnetic flux is neutralized and not output to the outside. However, in actuality, the lead positions of the electrodes that serve as electrodes are not the same as the “+ pole, − pole”, and the location of the power generation surface related to the electromotive force is not uniform and is asymmetric from the above structure, so that it has an inductance value. I think that the.

最近、二次電池は需要の拡大と利用の多様化にともなって技術的にも革新が進み、製品段階でも相次いで改良され、エネルギー密度が増大しており、万一放電が急速に行なわれた場合、その内部抵抗に多大の電流が流れるため、発熱し、高温部を生じたりすることがあり、それらのために反応液からのガス内圧により破裂に至る場合があり、思いがけない事故に見舞われることがあった。  Recently, secondary batteries have undergone technological innovations as demand grows and uses diversify, and they are continuously improved at the product stage, increasing energy density. In this case, since a large amount of current flows through the internal resistance, heat may be generated and a high-temperature part may be generated, which may cause explosion due to the internal gas pressure from the reaction solution, which causes an unexpected accident. There was a thing.

これらの現象は、製造過程での工程管理が不十分であったり、経年変化から起きたセパレーターのピンホールを介して、金属片を経由して電極間短絡したり、封入した電解液中に分散している不純物などが電解液と予想外の反応を起こし、金属の析出、更には成長して正負の電極間を隔てるセパレーターを突き破り、電極間で短絡するなど、未知な様々な要因により電池構成である電極同士が接触し、破壊に至る現象を起こし、ときには人体に影響を及ぼすことがある。など多様な原因があり、機器に搭載した後においては熱暴走から未然に防がなければならない。という課題があった。  These phenomena are insufficient in process control during the manufacturing process, or are short-circuited between electrodes via metal pins via separator pinholes caused by aging, or dispersed in the enclosed electrolyte. Impurity reacts with the electrolyte solution, metal deposition, further growth, break through the separator that separates the positive and negative electrodes, short circuit between the electrodes, etc. The electrodes are in contact with each other, causing a phenomenon leading to destruction, and sometimes affecting the human body. There are various causes, and after mounting on equipment, it must be prevented from thermal runaway. There was a problem.

発明が解決しようとする課題Problems to be solved by the invention

以上述べたように、種々の原因により増大するエネルギー密度によって二次電池の急速な放熱が原因で、高温部が発生し、それに伴う二次電池の破裂などの被害を防ぐことが必要になってきている。  As described above, due to the rapid heat dissipation of the secondary battery due to the energy density that increases due to various causes, it is necessary to prevent the damage such as the secondary battery from bursting due to the high temperature part. ing.

課題を解決するための手段Means for solving the problem

本発明では、前記課題を解決するために、二次電池のフォイル構造1を利用して発生する磁束を検知し、その同軸上に磁束検知ピックアップ3を配置し、二次電池の諸特性を測定し、二次電池が実機に採用された後の異常現象の発生を未然に防止するために、予め二次電池の良否の判断を行なうことを特徴とする二次電池の内部短絡現象を検知するものである。  In the present invention, in order to solve the above-mentioned problem, the magnetic flux generated by using the foil structure 1 of the secondary battery is detected, the magnetic flux detection pickup 3 is arranged on the same axis, and various characteristics of the secondary battery are measured. In order to prevent the occurrence of an abnormal phenomenon after the secondary battery is adopted in an actual machine, the internal battery short-circuit phenomenon is detected, in which the quality of the secondary battery is determined in advance. Is.

「図1A」の場合、即ち完成品となった被試験品の二次電池に外的ストレスとなる「温度、時間経過、外部からの気圧、物理的加圧力」を利用して磁束の変化から電極間短絡の様子を計測する。この場合は長期の試験結果を求める場合に適した方法である。  In the case of “FIG. 1A”, that is, from the change in magnetic flux by utilizing “temperature, time passage, external atmospheric pressure, physical pressure”, which is an external stress on the secondary battery of the product to be tested. The state of short circuit between electrodes is measured. In this case, this method is suitable for obtaining long-term test results.

一方、「図1B」製作途上の電極巻き込み直後の状態は蓄電機能は存在しない。収容ケース挿入前で電解液を含浸以前において外部から電極間に電圧を印加した後ケース挿入のための加圧整形ジグによってフォイル構造部分を物理的に電極と平行面を圧縮しこの加圧操作によって巻き込まれた未知の電極面で電気的短絡状態が発生し短絡が起きるか、この方式によって同様の磁束の変化を以って調べることができる。この場合は製品完成途上で行なうわけで短時間の試験結果で運用開始以降の保安状態を推察する。  On the other hand, the power storage function does not exist in the state immediately after the winding of the electrode in the process of “FIG. 1B”. Before impregnation with the electrolyte before inserting the housing case, after applying a voltage between the electrodes from the outside, the foil structure part is physically compressed by the pressure shaping jig for case insertion and the electrode and parallel plane are compressed by this pressing operation. Whether or not an electrical short-circuit state occurs on an unknown electrode surface that is involved and a short-circuit occurs can be examined by this method with a similar change in magnetic flux. In this case, the product is in the process of being completed, and the security status after the start of operation is inferred from the short test results.

本発明を図面に従って詳細に説明すると、図1A、図1Bは二次電池から磁束を検知するための構成図であって、磁力の作用する場所である磁束を検知するために、供試電池2の端面に電池端子5と起電圧端子7が配されており、磁束の発生方向9に磁束検知ピックアップ3を配置し、供試電池2内部のフォイル構造1に流れた電流の大きさが、磁束に比例する変化量を検知するものである。  The present invention will be described in detail with reference to the drawings. FIGS. 1A and 1B are configuration diagrams for detecting a magnetic flux from a secondary battery. In order to detect a magnetic flux where a magnetic force acts, a test battery 2 is shown. The battery terminal 5 and the electromotive voltage terminal 7 are arranged on the end face of the magnetic field, the magnetic flux detection pickup 3 is arranged in the magnetic flux generation direction 9, and the magnitude of the current flowing through the foil structure 1 inside the test battery 2 is determined by the magnetic flux. The amount of change in proportion to is detected.

図2は磁束から異常を電気的に検知するために模擬した実験回路であって、与える負荷としての変化量を示し、スイッチ6の“ON/OFF”に従い、電流が流れる様を波形(A)で示している。実際はこの条件を目的としているわけではなく、あくまでも二次電池内部の電気的異常現象を知るためであり、それに等価とみなせる一つの方法を提示しているわけである。  FIG. 2 is an experimental circuit that is simulated to electrically detect an abnormality from magnetic flux, and shows a change amount as a load to be applied. A waveform (A) shows a state in which a current flows according to “ON / OFF” of the switch 6. Is shown. Actually, this condition is not intended, but only to know the electrical abnormal phenomenon inside the secondary battery, and presents a method that can be regarded as equivalent to it.

波形(B)ではスイッチ6の開閉に同期して磁束量が発生するが、目的とする二次電池内部の短絡部分とその短絡の状況に応じた電磁波形が発生し、磁束検知ピックアップ3はその磁束の変化量の様子を電気的に正しく検知するもので、負荷抵抗器8が機能している。  In the waveform (B), the amount of magnetic flux is generated in synchronization with the opening and closing of the switch 6, but an electromagnetic waveform corresponding to the short-circuited portion in the target secondary battery and the short-circuit condition is generated. The load resistor 8 functions to detect the amount of change in magnetic flux correctly and electrically.

図3は磁束検知波形から二次電池の異常を発見するシステムの態様図で、磁束検知ピックアップ3で求めた微弱な電気信号を、増幅器4で拡大増幅し、定めた電圧レベルの大きさ即ち「図内の」では、信号a15と尖頭値設定11で定めた信号b16の大きさを尖頭値比較10で比較し、尖頭値を超えた場合に、データ処理開始命令が出され、アナログ信号がデジタル変換器12によってデジタルデータに変換され、さらに、デジタル処理部13で記録を開始し、波形の形状、大きさ、継続時間、発生回数などを総合的に分析する。  FIG. 3 is a diagram of a system for detecting an abnormality of the secondary battery from the magnetic flux detection waveform. The weak electric signal obtained by the magnetic flux detection pickup 3 is amplified and amplified by the amplifier 4, and the magnitude of a predetermined voltage level, that is, “ In the figure, the magnitude of the signal a15 and the signal b16 determined by the peak value setting 11 are compared by the peak value comparison 10, and when the peak value is exceeded, a data processing start command is issued, The signal is converted into digital data by the digital converter 12, and recording is started by the digital processing unit 13, and the shape, size, duration, number of occurrences, etc. of the waveform are comprehensively analyzed.

判定方法では、これ以外にも各種の解析方法が考えられるが、ここに示す方式は最も単純化した一方法として示しており、最終的には良否判定14を行いサンプル品の結果の判断を求めるものである。  Various analysis methods other than this are conceivable as the determination method, but the method shown here is shown as one of the simplest methods, and finally the pass / fail determination 14 is performed to determine the result of the sample product. Is.

発明の効果The invention's effect

本発明によれば、異常時に際しては、短絡電流も大きくなり、短絡場所が遠いほど言いかえれば捲数が短絡場所より遠いほど電気エネルギーが大きく、検知した磁束の測定値に異常を生じた二次電池は将来において何らかの事故の予兆があると考えて早期に発見し取り除くことが可能となった。  According to the present invention, in the event of an abnormality, the short-circuit current also increases, and in other words, the farther the short-circuit location is, the more the electrical energy is greater the farther the short-circuit location is from the short-circuit location. The secondary battery can be detected and removed at an early stage, assuming that there is some sign of an accident in the future.

また、軽負荷の電子機器に採用された二次電池はこの検査方法によって発生する検出コイルから得られた起電力の大きさからこの検査法に対し安定で十分なインダクタンス値を有していることが分かった。  In addition, secondary batteries used in light-load electronic equipment have a stable and sufficient inductance value for this inspection method due to the magnitude of the electromotive force obtained from the detection coil generated by this inspection method. I understood.

図1に示すフォイル構造1では、二次電池に負荷電流が生じれば筒がコイル構造となっているから、同軸上には原理上磁力が生じる筈であり、こうした点は、実際、実験により確認したものである。  In the foil structure 1 shown in FIG. 1, since the cylinder has a coil structure when a load current is generated in the secondary battery, a magnetic force should be generated in principle on the same axis. It has been confirmed.

同軸上に生じる磁束をえるために、同軸上に磁束検知ピックアップ3(例えばコイル式ピックアップ)など磁束検知器を配置し、発生した仮想の線である磁力線を捕まえ、その磁束の波形の分析を通して二次電池内部の特性を把握し、正常な製品か異常な製品かの判断を行なうものである。  In order to obtain the magnetic flux generated on the same axis, a magnetic flux detector such as a magnetic flux detection pickup 3 (for example, a coil-type pickup) is arranged on the same axis, and the generated magnetic line, which is an imaginary line, is captured. The characteristics inside the secondary battery are ascertained to determine whether the product is normal or abnormal.

同軸上に磁束検知ピックアップ3を配置し、完成品の場合では長期間の特性を調べて性能の良否を判断する。即ちエージングテストを実行する。この場合電解液の活性を加速するため、加熱したり、振動を加えたりするが、多くの試料から異常な傾向を把握し、磁気出力波形の分析結果で判断するものである。短時間で電池内部短絡を調べる[0007]の封入前工程に示す方法では機械的圧力値の規定した範囲に磁束変化が生じれば事故品と判断され短時間で所謂、印加圧力の一周期内で良否の判断ができる。  The magnetic flux detection pickup 3 is arranged on the same axis, and in the case of a finished product, long-term characteristics are examined to determine whether the performance is good or bad. That is, an aging test is executed. In this case, heating or vibration is applied in order to accelerate the activity of the electrolytic solution, but abnormal trends are grasped from many samples and judged by the analysis result of the magnetic output waveform. In the method shown in the pre-encapsulation process of [0007], which checks the internal short circuit of the battery in a short time, if a magnetic flux change occurs in the specified range of the mechanical pressure value, it is judged as an accident product, and the so-called applied pressure is within a short period of time. You can judge the quality.

検知した磁束の強さは二次電池内部の短絡場所により又、短絡を起こした部分の面積によっても端子からの見た抵抗値が異なるために変わる。そこで閾値を設定し、確実な判定を目指す。  The detected magnetic flux intensity varies depending on the short-circuit location in the secondary battery and also on the area of the short-circuited portion because the resistance value viewed from the terminal varies. Therefore, a threshold is set to aim for a reliable determination.

電池端子5に於ける起電圧または半製品に於ける外部からの電圧の印加何れに於いても電極同士が任意の部分で短絡した場合では一対の箔面は巻き込んだ筒状であるため電流と巻数の積にしたがって磁束を発生する、電池を運用している場合は短絡状況になくても常にある大きさの磁束が発生し負荷の利用状況により変動もある。  When the electrodes are short-circuited at an arbitrary part in either the electromotive voltage at the battery terminal 5 or the external voltage applied to the semi-finished product, the pair of foil surfaces are in the form of a rolled-up cylinder, so that the current and When a battery is operated that generates a magnetic flux according to the product of the number of turns, a certain amount of magnetic flux is always generated even if it is not in a short-circuit state, and may vary depending on the load usage.

二次電池が正常である場合では、目的範囲内の使用、即ち定常負荷状態では磁力がほぼ一様なレベルで生じているし、負荷を遮断すればその磁力も消滅する。内部短絡現象に至る場合には二次電池のエネルギーが普段の負荷より大きい場合や、又は短絡場所で一瞬に放電し、溶断後すぐに回復する場合、短絡が継続して破壊に至る場合など千差万別であるが、発生磁束の大きさは正常の範囲を大きく逸脱する。  When the secondary battery is normal, the magnetic force is generated at a substantially uniform level in use within the target range, that is, in a steady load state, and when the load is interrupted, the magnetic force disappears. When an internal short circuit occurs, the energy of the secondary battery is greater than the normal load, or when the battery is discharged instantaneously at the short circuit location and recovered immediately after fusing, the short circuit continues to cause destruction. Although the difference is exceptional, the magnitude of the generated magnetic flux greatly deviates from the normal range.

その場合、検知した磁気の測定値に異常を生じた二次電池は、将来において何らかの事故の予兆があると考えて、早期に発見し取り除くことが可能となる。  In that case, the secondary battery in which the detected magnetic measurement value is abnormal can be detected and removed at an early stage, assuming that there is a sign of some accident in the future.

磁束検知器である磁束検知ピックアップ3からの信号は、電磁コイルの場合、磁束検知ピックアップ3の特性により微分された波形での場合や、磁気抵抗素子などを使った場合には、磁気の絶対値を検知できるものなどがあり、検知信号の後段に置く増幅器4の回路に違いがあるが、磁束検知ピックアップ3の計測原理により最適な回路方式を選択し、目的とする現象の本質を拾い出すことになっている。  The signal from the magnetic flux detection pickup 3 which is a magnetic flux detector is an absolute value of magnetism in the case of an electromagnetic coil, a waveform differentiated by the characteristics of the magnetic flux detection pickup 3, or a magnetoresistive element or the like. Although there is a difference in the circuit of the amplifier 4 placed after the detection signal, the optimum circuit method is selected according to the measurement principle of the magnetic flux detection pickup 3 and the essence of the target phenomenon is extracted. It has become.

二次電池から磁束を検知するための構成図。The block diagram for detecting magnetic flux from a secondary battery. 二次電池から磁束を検知するための他の構成図。The other block diagram for detecting magnetic flux from a secondary battery. 磁束の異常を電気的に検知するために模擬した実験回路。Experimental circuit simulated to detect magnetic flux abnormality electrically. 磁束検知波形から電池の異常を発見するシステムの態様図。The mode figure of the system which discovers abnormality of a battery from a magnetic flux detection waveform.

1:フォイル構造 2:供試電池 3:磁束検知ピックアップ
4:増 幅 器 5:電池端子 6:スイッチ
7:起電圧端子 8:負荷抵抗器 9:磁束発生方向
10:尖頭値比較 11:尖頭値設定 12:デジタル変換器
13:データ処理部 14:良否判定 15:信号a
16:信 号b
1: foil structure 2: test battery 3: magnetic flux detection pickup 4: amplifier 5: battery terminal 6: switch 7: electromotive voltage terminal 8: load resistor 9: magnetic flux generation direction 10: peak value comparison 11: peak Initial value setting 12: Digital converter 13: Data processing unit 14: Pass / fail judgment 15: Signal a
16: Signal b

Claims (1)

二次電池のフォイル構造から発生する磁束を検知し、その同軸上に電磁ピックアップを配置し、二次電池の諸特性を測定し、二次電池が実機に採用される前後の異常現象の発生を未然に防止するために、予め二次電池の良否の判断を行なうことを特徴とする内部短絡現象を検知する方法。  The magnetic flux generated from the foil structure of the secondary battery is detected, the electromagnetic pickup is placed on the same axis, the characteristics of the secondary battery are measured, and the occurrence of abnormal phenomena before and after the secondary battery is adopted in the actual machine. A method for detecting an internal short-circuit phenomenon, characterized in that the quality of a secondary battery is determined in advance in order to prevent it beforehand.
JP2009141647A 2009-05-22 2009-05-22 Method of detecting internal short-circuiting phenomenon at secondary battery having foil structure Pending JP2010277979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009141647A JP2010277979A (en) 2009-05-22 2009-05-22 Method of detecting internal short-circuiting phenomenon at secondary battery having foil structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009141647A JP2010277979A (en) 2009-05-22 2009-05-22 Method of detecting internal short-circuiting phenomenon at secondary battery having foil structure

Publications (1)

Publication Number Publication Date
JP2010277979A true JP2010277979A (en) 2010-12-09

Family

ID=43424743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009141647A Pending JP2010277979A (en) 2009-05-22 2009-05-22 Method of detecting internal short-circuiting phenomenon at secondary battery having foil structure

Country Status (1)

Country Link
JP (1) JP2010277979A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087372A (en) * 2013-09-27 2015-05-07 トヨタ自動車株式会社 Secondary battery inspection method and secondary battery inspection device
JP2016531271A (en) * 2013-03-14 2016-10-06 カリフォルニア インスティチュート オブ テクノロジー Anomaly detection of electrical and electrochemical energy units
WO2018000437A1 (en) * 2016-07-01 2018-01-04 深圳市大疆创新科技有限公司 Metal battery, and battery management system and control method therefor
GB2586829A (en) * 2019-09-04 2021-03-10 Cdo2 Ltd Battery characterisation and monitoring system
US11073564B2 (en) 2015-10-01 2021-07-27 California Institute Of Technology Systems and methods for monitoring characteristics of energy units
WO2024062925A1 (en) * 2022-09-20 2024-03-28 日置電機株式会社 Detection system and detection method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10955483B2 (en) 2013-03-14 2021-03-23 California Institute Of Technology Systems and methods for detecting abnormalities in electrical and electrochemical energy units
JP2016531271A (en) * 2013-03-14 2016-10-06 カリフォルニア インスティチュート オブ テクノロジー Anomaly detection of electrical and electrochemical energy units
US11879946B2 (en) 2013-03-14 2024-01-23 California Institute Of Technology Systems and methods for detecting abnormalities in electrical and electrochemical energy units
US10353012B2 (en) 2013-03-14 2019-07-16 California Institute Of Technology Systems and methods for detecting abnormalities in electrical and electrochemical energy units
JP2019132849A (en) * 2013-03-14 2019-08-08 カリフォルニア インスティチュート オブ テクノロジー Abnormality detection in electrical and electrochemical energy unit
US11549993B2 (en) 2013-03-14 2023-01-10 California Institute Of Technology Systems and methods for detecting abnormalities in electrical and electrochemical energy units
JP2015087372A (en) * 2013-09-27 2015-05-07 トヨタ自動車株式会社 Secondary battery inspection method and secondary battery inspection device
US11073564B2 (en) 2015-10-01 2021-07-27 California Institute Of Technology Systems and methods for monitoring characteristics of energy units
US11567134B2 (en) 2015-10-01 2023-01-31 California Institute Of Technology Systems and methods for monitoring characteristics of energy units
US11031639B2 (en) 2016-07-01 2021-06-08 SZ DJI Technology Co., Ltd. Metal battery, and management system and control method thereof
WO2018000437A1 (en) * 2016-07-01 2018-01-04 深圳市大疆创新科技有限公司 Metal battery, and battery management system and control method therefor
GB2586829A (en) * 2019-09-04 2021-03-10 Cdo2 Ltd Battery characterisation and monitoring system
GB2586829B (en) * 2019-09-04 2022-12-14 Cdo2 Ltd Battery characterisation and monitoring system
WO2024062925A1 (en) * 2022-09-20 2024-03-28 日置電機株式会社 Detection system and detection method

Similar Documents

Publication Publication Date Title
JP7111235B2 (en) Lithium-ion battery evaluation method, lithium-ion battery manufacturing method, and test system
RU2693857C1 (en) Method of inspecting electric power accumulation device for short-circuit and method of manufacturing electric power accumulation device
US11380933B2 (en) Safety test method for determination of critical cell states by internal short provocation
JP2010277979A (en) Method of detecting internal short-circuiting phenomenon at secondary battery having foil structure
EP3731332B1 (en) Secondary battery for testing internal short circuit, and method and device for testing internal short circuit of secondary battery using same
CN112470325A (en) Method and system for detecting Internal Short Circuits (ISC) in a battery and battery cell implementing such an ISC detection method
US7239147B2 (en) Method and device for inspecting secondary battery precursor and method for manufacturing secondary battery using the inspection method
JP2010231948A (en) Method for inspecting internal short circuit of battery
WO2022257991A1 (en) Method for determining short-circuit point position in battery cell
JP2015510657A (en) Anomaly detection in electrochemical accumulator
KR102094539B1 (en) nondestructive inspection apparatus for battery
JP2022514967A (en) Battery safety test equipment and method
KR101487496B1 (en) Method and apparatus for checking insulation of pouch type secondary battery
US20190195959A1 (en) Method of evaluating power storage device, evaluation jig, and method of manufacturing power storage device
JP7218684B2 (en) Electric storage device inspection method and manufacturing method
JP2012221648A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP4313625B2 (en) Secondary battery manufacturing method and secondary battery precursor inspection apparatus
EP3951412B1 (en) Method for inspecting insulation of a secondary battery
US20180031637A1 (en) Battery testing device and method thereof
JP2014207154A (en) Method for inspecting nonaqueous electrolyte secondary battery
JP7453203B2 (en) Evaluation method of power storage device and manufacturing method of power storage device
JP2018055878A (en) Manufacturing method of battery
JP2014241238A (en) Inspection method of secondary battery
CN116774073A (en) Method for rapidly identifying self-discharge abnormality
CN116466247A (en) Insulation monitoring method and device for battery pack