JP2010276840A - Method for manufacturing light emitting device - Google Patents

Method for manufacturing light emitting device Download PDF

Info

Publication number
JP2010276840A
JP2010276840A JP2009129037A JP2009129037A JP2010276840A JP 2010276840 A JP2010276840 A JP 2010276840A JP 2009129037 A JP2009129037 A JP 2009129037A JP 2009129037 A JP2009129037 A JP 2009129037A JP 2010276840 A JP2010276840 A JP 2010276840A
Authority
JP
Japan
Prior art keywords
welding
holding member
optical axis
emitting device
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009129037A
Other languages
Japanese (ja)
Other versions
JP5453927B2 (en
Inventor
Masaki Omori
雅樹 大森
Hidenori Matsuo
英典 松尾
Takeshi Sasamuro
岳 笹室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2009129037A priority Critical patent/JP5453927B2/en
Publication of JP2010276840A publication Critical patent/JP2010276840A/en
Application granted granted Critical
Publication of JP5453927B2 publication Critical patent/JP5453927B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Laser Beam Processing (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture highly productively a light emitting device which can firmly fix its optical component by precisely adjusting its position and incorporating a high precision and high reliability optical system. <P>SOLUTION: A method for manufacturing a light emitting device 100 includes: a holder 20 to hold an optical component 25; a support 30 to support the holder 20 by being fit into the holder 20 in an optical axis direction 40 of the optical component 25; and a light source unit 10 having a light source 15 to radiate light to the optical component 25. This method includes a process of welding the holder 20 and the support 30. In the process of welding, it can adjust the position of the holder 20 in the optical axis 40 direction by making the welding area 50 larger on the holder 20 and the support 30. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発光装置の製造方法に関し、特に光学部品を所定位置に溶接して固定する方法に関する。   The present invention relates to a method of manufacturing a light emitting device, and more particularly to a method of welding and fixing an optical component at a predetermined position.

従来、レンズや光ファイバなどの光学部品を備えた発光装置の製造方法において、これらの光学部品を筐体や支持部材の所定位置に固定する方法として、信頼性や生産性の観点から、溶接による固定方法が採用されている。この方法では、例えばレンズホルダ等の保持部材に光学部品を搭載し、予め光学部品・保持部材の位置調整を行った後、保持部材および筐体・支持部材の一部に高出力のレーザ光を照射して両部材を溶接固定する。   Conventionally, in a method of manufacturing a light emitting device having optical components such as lenses and optical fibers, as a method of fixing these optical components to predetermined positions of a housing and a support member, from the viewpoint of reliability and productivity, by welding A fixing method is adopted. In this method, for example, an optical component is mounted on a holding member such as a lens holder, the position of the optical component / holding member is adjusted in advance, and then a high-power laser beam is applied to a part of the holding member and the housing / support member. Irradiate and fix both members by welding.

例えば特許文献1には、光ファイバを有する光結合装置において、半導体レーザが設置されたケースの側面に予め取り付けられたパイプの端面に、レンズホルダの略全周囲をレーザ溶接により固定する方法が記載されている。この方法では、レンズホルダの中心軸に対して120°間隔で3分岐されたレーザ照射ヘッドからレーザ照射を行い、ケースを順次回転させてレーザ溶接を繰り返すことで、光出力損失を増加させずに固定できるとされている。   For example, Patent Document 1 describes a method of fixing almost the entire circumference of a lens holder by laser welding to an end face of a pipe previously attached to a side surface of a case where a semiconductor laser is installed in an optical coupling device having an optical fiber. Has been. In this method, laser irradiation is performed from a laser irradiation head that is branched into three at 120 ° intervals with respect to the central axis of the lens holder, and laser welding is repeated by sequentially rotating the case without increasing optical output loss. It can be fixed.

また特許文献2には、光ファイバを保持するフェルールの先端部を挿入保持するホルダと光学レンズ部品との当接部分を、円周方向に亘って三等分するようにYAGレーザ等で同時に溶接することで、レーザの衝撃による光学レンズ部品の位置ずれを防止できることが記載されており、またそのホルダとフェルールとも同様にレーザ溶接されている。   Also, in Patent Document 2, welding is simultaneously performed with a YAG laser or the like so that the contact portion between the optical lens component and the holder for inserting and holding the tip of the ferrule that holds the optical fiber is divided into three equal parts in the circumferential direction. Thus, it is described that the positional deviation of the optical lens component due to the impact of the laser can be prevented, and the holder and the ferrule are similarly laser-welded.

特開2000−121886号公報JP 2000-121886 A 特開2003−279793号公報JP 2003-279793 A 特開2001−111155号公報JP 2001-111155 A 特開平9−311252号公報Japanese Patent Laid-Open No. 9-311252 特開昭63−161419号公報JP 63-161419 A 米国特許出願公開番号2008/0019011号US Patent Application Publication No. 2008/0019011

しかしながら、上記特許文献1、2等に記載されたレーザ溶接による保持部材の固定方法によれば、溶融部分の膨張および凝固後の収縮などに伴う保持部材の位置ずれを低減することはできるが、それでもミクロンオーダの微量の位置ずれが残存する。特に、ホログラフィックデータストレージのような高密度光記録・再生装置用の光源など、出射光に高い光学性能が要求される発光装置の製造においては、光学部品の高精度の位置調整が要求され、また溶接による固定方法では一旦溶接を行えば元の状態に戻すことが困難なため、このような微量の位置ずれであっても、調整作業を煩雑にし、歩留まりの低下に繋がる要因となる。   However, according to the fixing method of the holding member by laser welding described in Patent Documents 1 and 2, etc., it is possible to reduce the displacement of the holding member due to expansion of the melted portion and shrinkage after solidification, Still, a small amount of misalignment of micron order remains. In particular, in the manufacture of light-emitting devices that require high optical performance for emitted light, such as light sources for high-density optical recording / reproducing devices such as holographic data storage, high-precision position adjustment of optical components is required, In addition, since it is difficult to return to the original state once welding is performed by the fixing method by welding, even such a small amount of misalignment becomes a factor that makes adjustment work complicated and leads to a decrease in yield.

本発明はかかる課題に鑑みてなされたものであり、本発明の目的は、光学部品の位置を精密に調整しながら該光学部品を強固に固定でき、高精度で且つ信頼性の高い光学系を備えた発光装置を生産性良く製造することができる発光装置の製造方法を提供することである。   The present invention has been made in view of such problems, and an object of the present invention is to provide a highly accurate and highly reliable optical system that can firmly fix the optical component while precisely adjusting the position of the optical component. It is an object of the present invention to provide a method for manufacturing a light emitting device capable of manufacturing the provided light emitting device with high productivity.

本発明に係る発光装置の製造方法は、下記(1)〜(7)の構成により、上記目的を達成することができる。
(1) 光学部品を保持する保持部材と、前記光学部品の光軸方向に前記保持部材と嵌合して該保持部材を支持する支持部材と、前記光学部品に光を入射する光源を有する光源部と、を具備する発光装置の製造方法であって、前記保持部材と前記支持部材とを溶接する溶接工程を備え、該溶接工程において、前記保持部材および前記支持部材に形成される溶接部の面積を大きくすることにより、前記保持部材の前記光軸方向の位置を調整することを特徴とする。
(2) 前記支持部材は筒状体であって、一端が前記光源部と接合されており、前記溶接部の面積を大きくすることにより、前記保持部材が前記光源部に近づく方向に変位することを特徴とする。
(3) 前記支持部材は円筒状であって、前記保持部材は該支持部材に嵌入されており、前記溶接部は、前記支持部材上から貫通溶接することにより形成することを特徴とする。
(4) 前記溶接部は、前記光軸を中心として略等配された複数の箇所に同時形成することを繰り返して該面積を大きくすることを特徴とする。
(5) 前記溶接部は、前記光軸を中心として周回方向に該面積を大きくすることを特徴とする。
(6) 前記溶接部は、前記光軸に対して略垂直な1つの面上に形成することを特徴とする。
(7) 前記溶接部は、レーザ溶接により形成し、該レーザ溶接において、レーザ光を前記光軸に対し略垂直に照射することを特徴とする。
The manufacturing method of the light emitting device according to the present invention can achieve the above object by the following configurations (1) to (7).
(1) A light source having a holding member that holds an optical component, a support member that fits and supports the holding member in the optical axis direction of the optical component, and a light source that makes light incident on the optical component A welding process for welding the holding member and the support member, and in the welding process, a welding portion formed on the holding member and the support member. The position of the holding member in the optical axis direction is adjusted by increasing the area.
(2) The support member is a cylindrical body, one end of which is joined to the light source part, and the holding member is displaced in a direction approaching the light source part by increasing the area of the welded part. It is characterized by.
(3) The support member is cylindrical, the holding member is fitted into the support member, and the welding portion is formed by through welding from above the support member.
(4) The welded portion is characterized in that the area is increased by repeating the simultaneous formation at a plurality of locations that are substantially equally distributed around the optical axis.
(5) The welded portion is characterized in that the area is increased in the rotation direction around the optical axis.
(6) The welding portion is formed on one surface substantially perpendicular to the optical axis.
(7) The welding portion is formed by laser welding, and in the laser welding, a laser beam is irradiated substantially perpendicularly to the optical axis.

本発明の発光装置の製造方法によれば、溶接に伴う保持部材の変位を制御し、該変位作用を利用して光学部品の光軸方向の位置を調整することができる。すなわち、溶接の増進つまり溶接部の形成量、面積を変化させることにより保持部材を精密に変位させ、光学部品の位置を高精度に調整することができる。   According to the method for manufacturing a light emitting device of the present invention, the displacement of the holding member accompanying welding can be controlled, and the position of the optical component in the optical axis direction can be adjusted using the displacement action. That is, by increasing welding, that is, by changing the formation amount and area of the welded portion, the holding member can be precisely displaced, and the position of the optical component can be adjusted with high accuracy.

実施の形態に係る発光装置およびその製造方法を説明する概略断面斜視図である。It is a schematic cross-sectional perspective view explaining the light-emitting device which concerns on embodiment, and its manufacturing method. 実施の形態に係る発光装置の製造方法を説明する概略断面図である。It is a schematic sectional drawing explaining the manufacturing method of the light-emitting device which concerns on embodiment. 実施の形態に係る発光装置の製造方法の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the manufacturing method of the light-emitting device which concerns on embodiment. 溶接回数と保持部材の変位との関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of welding and the displacement of a holding member. 溶接回数とパワー値との関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of welding and a power value.

以下、発明の実施の形態について適宜図面を参照して説明する。ただし、以下に説明する発光装置およびその製造方法は、本発明の技術思想を具体化するためのものであって、本発明を以下のものに特定しない。特に、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、以下に記載されている実施の形態についても同様に、特に排除する記載が無い限りは各構成等を適宜組み合わせて適用できる。   Hereinafter, embodiments of the invention will be described with reference to the drawings as appropriate. However, the light emitting device and the manufacturing method thereof described below are for embodying the technical idea of the present invention, and the present invention is not limited to the following. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the components described below are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. Similarly, the embodiments described below can be applied by appropriately combining the components and the like unless otherwise specified.

図1は、本発明の実施の形態に係る発光装置およびその製造方法を説明する概略断面斜視図である。図1に示す例の発光装置100は、主として光源部10と、光学部品25を保持する保持部材20と、該保持部材20を支持する支持部材30と、から構成されている。光源部10は、基体11の内部に半導体レーザ素子がステム上に実装された半導体レーザ装置である光源15を保持している。保持部材20は、コリメータレンズである光学部品25を内部に保持する、例えばレンズホルダである。支持部材30は、例えばスリーブなどの筒状体であって、保持部材20が光軸40(Z軸)に沿って可動であるように、光学部品の光軸40の方向に保持部材20と嵌合されている。また支持部材30は、光学部品の光軸40と光源15の中心軸とが一致するように予め調整され、その一端が光源部10と接合されている。   FIG. 1 is a schematic cross-sectional perspective view illustrating a light emitting device and a method for manufacturing the same according to an embodiment of the present invention. The light emitting device 100 of the example shown in FIG. 1 mainly includes a light source unit 10, a holding member 20 that holds the optical component 25, and a support member 30 that supports the holding member 20. The light source unit 10 holds a light source 15 which is a semiconductor laser device in which a semiconductor laser element is mounted on a stem inside a base body 11. The holding member 20 is, for example, a lens holder that holds the optical component 25 that is a collimator lens. The support member 30 is a cylindrical body such as a sleeve, for example, and is fitted with the holding member 20 in the direction of the optical axis 40 of the optical component so that the holding member 20 is movable along the optical axis 40 (Z axis). Are combined. The support member 30 is adjusted in advance so that the optical axis 40 of the optical component coincides with the central axis of the light source 15, and one end thereof is joined to the light source unit 10.

上記のような構成において、保持部材20と支持部材30との嵌合部の一部を溶接して両部材同士を固着する。この溶接工程において、溶接部50には両部材の溶融、凝固により溶接ビードが形成される。この溶接部50の形成により、保持部材20の光軸40方向への変位作用を奏させ、溶接部50つまり溶接ビードの形成量、面積を変化させることによって、光学部品25の光軸40方向の位置を調整することができる。また本実施の形態のように、支持部材30が光源部10に接合されている場合、溶接部50の形成により保持部材20は、光源部10に近づく方向に変位する傾向が見出されている。これは、溶接部50の形成による構成部材の収縮によるものと考えられる。なお、1回の点状の溶接部50(溶接点)の形成による保持部材20の光軸方向への変位はサブミクロンオーダで可能であり、精密な位置調整が可能である。また、溶接部50の形成により可能な保持部材20の光軸方向への最大変位量は数μm〜数十μm程度であり、保持部材20の光軸40方向の位置の粗調整を予め行った状態で溶接することが好ましい。   In the above configuration, a part of the fitting portion between the holding member 20 and the support member 30 is welded to fix the two members together. In this welding process, a weld bead is formed in the weld 50 by melting and solidifying both members. By forming the welded portion 50, the holding member 20 is displaced in the direction of the optical axis 40, and the amount and area of the welded portion 50, that is, the weld bead, are changed, thereby changing the optical component 25 in the direction of the optical axis 40. The position can be adjusted. Further, as in the present embodiment, when the support member 30 is joined to the light source unit 10, it is found that the holding member 20 tends to be displaced in a direction approaching the light source unit 10 due to the formation of the welded portion 50. . This is considered to be due to the contraction of the constituent members due to the formation of the weld 50. In addition, the displacement of the holding member 20 in the optical axis direction by forming the spot-like welded portion 50 (welding point) once is possible on the submicron order, and precise position adjustment is possible. Further, the maximum displacement amount of the holding member 20 in the optical axis direction that is possible by forming the welded portion 50 is about several μm to several tens μm, and rough adjustment of the position of the holding member 20 in the optical axis 40 direction was performed in advance. It is preferable to weld in a state.

以下、この溶接工程について詳述する。図2は、本発明の実施の形態に係る発光装置の製造方法の一例を説明する、溶接部における概略断面図である。また図3は、本発明の実施の形態に係る発光装置の製造方法の一例をより具体的に示す概略斜視図である。   Hereinafter, this welding process will be described in detail. FIG. 2 is a schematic cross-sectional view of a welded portion for explaining an example of a method for manufacturing a light emitting device according to an embodiment of the present invention. FIG. 3 is a schematic perspective view more specifically showing an example of the method for manufacturing the light emitting device according to the embodiment of the present invention.

本発明において、溶接方法は、溶接部50つまり溶接ビードを1mm以下の径に絞ることができるものが好ましく、これにより精密な変位作用を奏させることができる。特に、精密かつ信頼性、生産性に優れるレーザ溶接により行うことが好ましい。レーザ溶接は、レーザ光を熱源とし、金属などに集光した状態で照射して局部的に溶融、凝固させることによって接合する方法である。なかでも、YAGレーザは集光性に優れ、また光ファイバを用いてスポット径を小さくすることができる。また更に集光性に優れる高出力のファイバレーザを用いてもよい。COレーザは出力を高めることができ、1mm以上の比較的肉厚の大きい金属も溶接することができる。このほか、電子ビーム溶接なども適用できる。 In the present invention, the welding method is preferably one in which the welded portion 50, that is, the weld bead, can be narrowed to a diameter of 1 mm or less, and thereby a precise displacement action can be achieved. In particular, it is preferable to carry out by laser welding which is precise, reliable and excellent in productivity. Laser welding is a method of joining by using a laser beam as a heat source, irradiating the laser beam in a focused state, and locally melting and solidifying. Among these, the YAG laser is excellent in light condensing performance, and the spot diameter can be reduced using an optical fiber. Further, a high-power fiber laser excellent in light condensing performance may be used. The CO 2 laser can increase the output and can weld a metal having a relatively large thickness of 1 mm or more. In addition, electron beam welding or the like can be applied.

また図1,2に示すように、本発明における溶接は、保持部材20と支持部材30との嵌合部において、その周部上からの貫通溶接により行うことが好ましい。貫通溶接は、複数の溶接部50を形成する場合に、溶接点の位置精度に依存せず、各溶接部50の形状が揃ったものとなりやすく、溶接による保持部材20の光軸方向の変位作用を制御しやすい。このほか、保持部材20と支持部材30との嵌合部の外縁をすみ肉溶接してもよい。   As shown in FIGS. 1 and 2, the welding in the present invention is preferably performed by penetration welding from the periphery of the fitting portion between the holding member 20 and the support member 30. Through welding, when forming a plurality of welded portions 50, the shape of each welded portion 50 is likely to be uniform without depending on the position accuracy of the welding point, and the displacement action of the holding member 20 in the optical axis direction due to welding. Easy to control. In addition, the outer edge of the fitting portion between the holding member 20 and the support member 30 may be fillet welded.

また、溶接部50は、図2,3に示すように、光学部品25の光軸40を中心として周回方向に略等配された複数個所に同時形成することにより、保持部材20の光軸方向への変位作用を制御しやすくなる。また光軸40に垂直な方向の位置ずれを抑制する効果もある。また溶接をレーザ溶接により行う場合には、保持部材20の変位がレーザ出力にも依存するため、各溶接部50を同じレーザ出力で形成することで、変位作用の制御性を高めることができる。すなわち、光軸40中心に向かって照射される各レーザ光を出力(強度)とその向きとを各々有するベクトルとして考えると、その各ベクトルの合成が零ベクトルとなることが好ましい。1回の溶接において同時形成する溶接部50の数は限定されないが、特に120°間隔で等配されていることが好ましく、レーザ溶接では120°間隔で等配された3分岐のレーザ出射部(レーザ出射ポート)60からレーザ照射を行うことが好ましい。   Further, as shown in FIGS. 2 and 3, the welded portion 50 is simultaneously formed at a plurality of locations substantially equally arranged in the circumferential direction around the optical axis 40 of the optical component 25, so that the optical axis direction of the holding member 20 is formed. It becomes easy to control the displacement action to. In addition, there is an effect of suppressing the positional deviation in the direction perpendicular to the optical axis 40. Further, when welding is performed by laser welding, the displacement of the holding member 20 also depends on the laser output, so that the controllability of the displacement action can be improved by forming each welded portion 50 with the same laser output. That is, when considering each laser beam irradiated toward the center of the optical axis 40 as a vector having an output (intensity) and its direction, it is preferable that the combination of the vectors becomes a zero vector. The number of welds 50 to be simultaneously formed in one welding is not limited, but it is particularly preferable that the welds 50 be equally spaced at 120 ° intervals. In laser welding, three-branch laser emitting portions (equally spaced at 120 ° intervals ( Laser irradiation is preferably performed from the laser emission port 60).

さらに好ましくは、まず光軸40を中心として周回方向に略等配された複数個所に、同時に、第1の溶接部を形成する。次に、保持部材20と支持部材30との嵌合部における第1の溶接部とは異なる部位に、新たに第2の溶接部を同様に形成する。そして、これを順次繰り返すことにより、溶接部50の形成を増進させ溶接部50の総面積を徐々に大きくしていくことで、溶接による保持部材20の光軸方向への変位作用を好適に制御することができる。   More preferably, first, first welds are simultaneously formed at a plurality of locations that are substantially equally distributed in the circumferential direction around the optical axis 40. Next, a second welded portion is newly formed in the same manner at a portion different from the first welded portion in the fitting portion between the holding member 20 and the support member 30. Then, by repeating this sequentially, the formation of the welded portion 50 is promoted and the total area of the welded portion 50 is gradually increased, thereby suitably controlling the displacement action of the holding member 20 in the optical axis direction by welding. can do.

なお、保持部材20の光軸方向への変位作用は、溶接部50の形成量、面積の変化に伴って生じるため、第1の溶接部と第2の溶接部とを離間して形成することで、効率良く変位作用を奏させることができる。ただし、例えば溶接をレーザ溶接により行う場合は、レーザ光の照射中心が離間していればよく、形成される円形状の溶接ビードの一部が、近隣の溶接部同士で重なり合っていてもよい。また保持部材20を最適位置に調整するために必要な溶接部50の形成量、数は未知であり、上記等配された複数個所への同時溶接を繰り返す場合には、第2の溶接部はその直前の第1の溶接部の近隣に形成することが好ましい。例えば保持部材20又は支持部材30の径が10〜20mm程度で、レーザ光のスポット径が300〜500μm程度の場合、保持部材20と支持部材30とを光軸40を中心として2〜4°回転させて順次溶接を行う。   In addition, since the displacement effect | action of the holding member 20 to the optical axis direction arises with the formation amount and area change of the welding part 50, it forms apart the 1st welding part and the 2nd welding part. Thus, the displacement action can be efficiently performed. However, for example, when welding is performed by laser welding, it is only necessary that the irradiation centers of the laser beams are separated from each other, and some of the formed circular weld beads may overlap each other in the adjacent welded portions. Also, the amount and number of welds 50 required to adjust the holding member 20 to the optimum position are unknown, and when repeating the simultaneous welding to a plurality of the above-mentioned equally distributed locations, the second weld is It is preferable to form in the vicinity of the immediately preceding first weld. For example, when the diameter of the holding member 20 or the supporting member 30 is about 10 to 20 mm and the spot diameter of the laser beam is about 300 to 500 μm, the holding member 20 and the supporting member 30 are rotated by 2 to 4 degrees around the optical axis 40. Welding is performed sequentially.

なお、この場合、溶接工程の少なくとも途中段階において、保持部材20と支持部材30の嵌合部の周部には、複数の溶接部50が集合して形成された溶接領域51と、未だ溶接されていない未溶接領域55が交互に形成される。本発明では、溶接による光学部品25の光軸方向の位置調整完了後において、上述の未溶接領域55が残存していてもよい。このとき、溶接領域51では、溶接部50が第1の間隔(溶接部同士が重なり合って第1の間隔が0となる場合を含む)で分布しており、各溶接領域51は第1の間隔より大きい第2の間隔(未溶接領域55の幅)で互いに離間されている。このような未溶接領域55を残存させることにより、全周を溶接する場合に比べて、溶接による残留応力を分散させて緩和することができる。なお、発光装置の耐環境性の観点においては、溶接部50は3点以上形成することが好ましい。また保持部材20と支持部材30とはその全周を溶接する必要はないが、光学部品25の最適位置への調整のため、結果的に略全周が溶接されてもよい。   In this case, at least in the middle of the welding process, a welding region 51 in which a plurality of welds 50 are gathered is still welded to the periphery of the fitting part of the holding member 20 and the support member 30. Unwelded areas 55 that are not formed are alternately formed. In the present invention, after the position adjustment of the optical component 25 in the optical axis direction by welding is completed, the above-described unwelded region 55 may remain. At this time, in the welded region 51, the welded portions 50 are distributed at a first interval (including a case where the welded portions overlap each other and the first interval becomes 0), and each welded region 51 has a first interval. They are separated from each other by a larger second spacing (the width of the unwelded area 55). By leaving such an unwelded region 55, it is possible to disperse and relieve residual stress due to welding as compared with the case of welding the entire circumference. In addition, from the viewpoint of environment resistance of the light emitting device, it is preferable to form three or more welds 50. In addition, the holding member 20 and the support member 30 do not need to be welded on the entire circumference, but the entire circumference may be welded as a result in order to adjust the optical component 25 to the optimum position.

図4は、レーザ照射角、つまり光軸40に対して垂直な方向からのレーザ光の傾斜角が0°、−15°、および+30°の場合において、YAGレーザによる溶接回数と保持部材20の光軸方向の変位量との関係を各々示したグラフである。1回の溶接におけるレーザ照射条件は、出力0.9kW、照射時間(パルス幅)4msecで、光軸40を中心として120°間隔で等配された3ポートから同時照射するものであり、光軸40を回転中心軸として周回方向に溶接を繰り返す。また、1〜5回目までの溶接と6〜10回までの溶接とで、光軸40に平行な方向に溶接箇所を変更している。なお、保持部材20の光軸方向の変位は保持部材20から光源部10へ向かう方向をマイナス方向とし、レーザ光の照射角は光軸に垂直な面(X−Y平面)から光源部10側に傾斜する方向をマイナス方向とする。   FIG. 4 shows the number of times of welding by the YAG laser and the holding member 20 when the laser irradiation angle, that is, the inclination angle of the laser light from the direction perpendicular to the optical axis 40 is 0 °, −15 °, and + 30 °. It is a graph which showed each relationship with the displacement amount of an optical axis direction. Laser irradiation conditions in one welding are an output of 0.9 kW, an irradiation time (pulse width) of 4 msec, and simultaneous irradiation from three ports equally spaced at 120 ° intervals around the optical axis 40. The welding is repeated in the circumferential direction with 40 as the rotation center axis. Moreover, the welding location is changed in the direction parallel to the optical axis 40 by the 1st to 5th welding and the 6 to 10th welding. Note that the displacement of the holding member 20 in the optical axis direction is a minus direction in the direction from the holding member 20 toward the light source unit 10, and the irradiation angle of the laser beam is from the plane perpendicular to the optical axis (XY plane) to the light source unit 10 side. The direction that tilts to the minus direction is the minus direction.

図4に示すように、いずれのレーザ照射角においても、溶接により保持部材20がマイナス方向へ変位する傾向が見て取れる。また図4から、光軸に平行な方向に溶接箇所を変更した1〜5回目の溶接と6〜10回目の溶接とで、変位の傾向が若干ながら変化していることが伺え、保持部材20の変位の方向や量は、保持部材20と支持部材30の嵌合部における光軸方向の溶接位置にも依存している。溶接部50は、光軸40に平行な方向に溶接部50を増やしてもよいが、光軸40を中心として周回方向に増やすほうが、保持部材20の光軸方向への変位作用を制御しやすく、好ましい。さらに詳しくは、図2に示すように、光軸40に対して略垂直な1つの面上に溶接部50を形成することが好ましく、これにより比較的安定した光軸方向の変位作用が得られ、また溶接部50の形成を小さい領域に収めることができる。例えば1回の溶接部の形成を終える毎に、嵌合された保持部材20と支持部材30とを光軸40を中心軸として回転させ順次溶接を行い、これを繰り返せば、作業性が良い。   As shown in FIG. 4, it can be seen that the holding member 20 tends to be displaced in the minus direction by welding at any laser irradiation angle. Moreover, it can be seen from FIG. 4 that the tendency of displacement slightly changes between the 1st to 5th weldings and the 6th to 10th weldings in which the welding location is changed in the direction parallel to the optical axis. The displacement direction and amount also depend on the welding position in the optical axis direction at the fitting portion between the holding member 20 and the support member 30. Although the welded part 50 may increase the welded part 50 in a direction parallel to the optical axis 40, it is easier to control the displacement action of the holding member 20 in the optical axis direction when the welded part 50 is increased in the circumferential direction around the optical axis 40. ,preferable. More specifically, as shown in FIG. 2, it is preferable to form the welded portion 50 on one surface substantially perpendicular to the optical axis 40, thereby obtaining a relatively stable displacement action in the optical axis direction. Moreover, the formation of the weld 50 can be accommodated in a small area. For example, every time the formation of one welded portion is completed, the fitted holding member 20 and support member 30 are rotated about the optical axis 40 as a central axis, and welding is performed sequentially.

また図4を見れば、特にレーザ光の照射角0°で溶接した場合において、他の照射角−15°および+30°の場合に比べて、保持部材20のマイナス方向への変位が安定的に得られており、サブミクロンオーダの調整が制御性良く行えることがわかる。このように、溶接をレーザ溶接により行う場合、レーザ光を光軸40に対して略垂直に照射すれば、保持部材20の光軸方向への変位作用を制御しやすく、選択的に一方向に緩やかに変位させることができ、好ましい。ただし、本明細書でいう「略垂直」とは、上述した機能を実質的に発揮できればよく、例えば光軸40に対して90°±5°程度の範囲を含むものとすることができる。   In addition, as shown in FIG. 4, especially when welding is performed at a laser beam irradiation angle of 0 °, the holding member 20 is more stably displaced in the negative direction than the other irradiation angles of −15 ° and + 30 °. It can be seen that submicron order adjustment can be performed with good controllability. Thus, when welding is performed by laser welding, if the laser beam is irradiated substantially perpendicularly to the optical axis 40, the displacement action of the holding member 20 in the optical axis direction can be easily controlled, and selectively in one direction. It can be displaced gently, which is preferable. However, the term “substantially perpendicular” in the present specification is not limited as long as the above-described function can be substantially exhibited, and can include, for example, a range of about 90 ° ± 5 ° with respect to the optical axis 40.

なお、本発明の溶接による光学部品の光軸方向の位置調整は、調整治具等により保持部材20が固定、支持されていない状態で行うことが好ましく、これにより残留応力の発生を抑制しながら光軸方向の変位作用を制御しやすくすることができる。例えば保持部材20の一部を調整治具により支持した状態で粗調整および支持部材30への仮溶接を行った後、該調整治具による保持部材20の支持を解き、上述の溶接部50の形成による光軸方向の位置調整を行うと良い。   The position adjustment in the optical axis direction of the optical component by welding according to the present invention is preferably performed in a state where the holding member 20 is not fixed or supported by an adjustment jig or the like, thereby suppressing the occurrence of residual stress. It is possible to easily control the displacement action in the optical axis direction. For example, after performing rough adjustment and temporary welding to the support member 30 in a state where a part of the holding member 20 is supported by the adjustment jig, the support of the holding member 20 by the adjustment jig is released, and It is preferable to adjust the position in the optical axis direction by formation.

以下、本発明の発光装置の製造方法における各部材、構成について説明する。   Hereafter, each member and structure in the manufacturing method of the light-emitting device of this invention are demonstrated.

(光源部)
光源部10は、少なくとも、光学部品25に光を入射する光源15と、該光源15を内部に固定・保持する基体11と、から構成される。光源15は、半導体レーザ(LD:LASER Diode)、発光ダイオード(LED:Light Emitting Diode)などの半導体発光素子、有機EL(Electro-Luminescence)素子、又はこれらの素子が実装された光源装置のほか、ハロゲンランプなどのランプ光源などを用いることができる。紫外光や短波長の可視光を発光可能な窒化物半導体発光素子は、高精度、高分解能の光学系に好適な光源であるが、他方そのような性能を実現するために高精度の光学調整が必要となるため、本発明の発光装置の製造方法が特に効果を奏する。
(Light source)
The light source unit 10 includes at least a light source 15 that makes light incident on the optical component 25 and a base body 11 that fixes and holds the light source 15 inside. The light source 15 is a semiconductor light emitting element such as a semiconductor laser (LD: LASER Diode) or a light emitting diode (LED), an organic EL (Electro-Luminescence) element, or a light source device in which these elements are mounted, A lamp light source such as a halogen lamp can be used. Nitride semiconductor light-emitting elements capable of emitting ultraviolet light and short-wavelength visible light are suitable light sources for high-precision, high-resolution optical systems, but on the other hand, high-precision optical adjustment to achieve such performance Therefore, the method for manufacturing a light emitting device of the present invention is particularly effective.

光源15を保持する基体11は、ステンレス鋼のほか、光源の放熱性、機械的強度、組立精度などの観点から、クラッド材、例えば鉄材料でクラッドした鋼材を用いて構成することができる。また、基体11への光源15の固定は、基体11に光源15と嵌合する凹部を設け、該凹部内に光源15を嵌入してレーザ溶接により行う。このほかネジ止め及び/又は接着剤の塗布などにより固定してもよい。   The base body 11 holding the light source 15 can be configured by using a clad material, for example, a steel material clad with an iron material, from the viewpoint of heat dissipation, mechanical strength, assembly accuracy and the like of the light source in addition to stainless steel. Further, the light source 15 is fixed to the base body 11 by providing a concave portion that fits the light source 15 in the base body 11 and inserting the light source 15 into the concave portion by laser welding. In addition, it may be fixed by screwing and / or applying an adhesive.

(光学部品)
光学部品25には、レンズ、ミラー、プリズム、光学フィルタなどの光学素子のほか、レーザロッドや波長変換用の非線形光学結晶などの光学結晶、あるいは光ファイバなどを用いることができる。特に、光学部品25が開口数(NA)の高い(例えば0.4≦NA)コリメータレンズなどの場合、レンズの光軸方向の位置精度がビーム平行度の精度に大きく影響し高精度の位置調整が必要となるため、本発明の発光装置の製造方法が特に効果を奏する。このほか、例えば光学部品がミラーやプリズムなどの光偏向素子であって、レンズ等による集束光の焦点位置を高精度に調整することが必要な光学系などにも、本発明の発光装置の製造方法を適用できる。
(Optical parts)
In addition to optical elements such as lenses, mirrors, prisms, and optical filters, the optical component 25 may be an optical crystal such as a laser rod or a nonlinear optical crystal for wavelength conversion, or an optical fiber. In particular, when the optical component 25 is a collimator lens having a high numerical aperture (NA) (for example, 0.4 ≦ NA) or the like, the positional accuracy in the optical axis direction of the lens greatly affects the accuracy of the beam parallelism, and high-accuracy position adjustment is performed. Therefore, the method for manufacturing a light emitting device of the present invention is particularly effective. In addition, the light-emitting device of the present invention can be manufactured, for example, in an optical system in which an optical component is a light deflection element such as a mirror or a prism, and the focal position of focused light by a lens or the like needs to be adjusted with high accuracy. The method can be applied.

(保持部材)
保持部材20は、光学部品25を保持する各種ホルダなどであり、例えば光学部品25がレンズの場合にはそのレンズホルダ又は鏡筒である。保持部材20は、少なくとも溶接可能な材料で構成され、例えばステンレス鋼(オーステナイト系、フェライト系、マルテンサイト系)、鉄鋼材料(機械構造用炭素鋼、一般構造用圧延鋼)、スーパーインバー、コバールなどを用いることができ、特に温度依存性の点でスーパーインバー、コバール等が好ましい。溶接性、耐食性が優れ比較的安価なステンレス鋼も適している。保持部材20は、光学部品25の光軸40を中心軸とする筒状体であって、その内部に光学部品25を保持し、光学部品25への入射光を光軸方向にそのまま透過させる形態であれば、光学系および発光装置の小型化を図ることができ好ましい。また保持部材20が支持部材30に嵌入する嵌合構造の場合、保持部材20の外面の断面形状は、支持部材30と嵌合し光軸40の方向に比較的滑らかな変位、またその制御が可能なように、小さい表面粗さで加工しやすい円形が好ましい。またその嵌合構造において、保持部材20の先端部を一時的に支持して保持部材20の光軸方向の位置の粗調整を行う際には、図1に示すように、保持部材20が支持部材30より突出していることが好ましい。なお、保持部材20への光学部品25の固定は、保持部材20の内面に光学部品25の位置決めをするための突起部を設け、該突起部に光学部品25を当接させ、接着剤の塗布などにより行う。
(Holding member)
The holding member 20 is various holders for holding the optical component 25. For example, when the optical component 25 is a lens, the holding member 20 is a lens holder or a lens barrel. The holding member 20 is made of at least a weldable material, such as stainless steel (austenite, ferrite, martensite), steel material (mechanical structural carbon steel, general structural rolled steel), super invar, kovar, and the like. In particular, Super Invar, Kovar, etc. are preferable from the viewpoint of temperature dependency. Stainless steel, which has excellent weldability and corrosion resistance and is relatively inexpensive, is also suitable. The holding member 20 is a cylindrical body having the optical axis 40 of the optical component 25 as a central axis, holds the optical component 25 therein, and transmits the incident light to the optical component 25 as it is in the optical axis direction. If so, the optical system and the light emitting device can be reduced in size, which is preferable. Further, in the case of a fitting structure in which the holding member 20 is fitted into the support member 30, the cross-sectional shape of the outer surface of the holding member 20 is fitted with the support member 30 and is displaced relatively smoothly in the direction of the optical axis 40, and the control thereof is performed. As possible, a circle that is easy to process with a small surface roughness is preferred. In the fitting structure, when the tip of the holding member 20 is temporarily supported to roughly adjust the position of the holding member 20 in the optical axis direction, the holding member 20 is supported as shown in FIG. Projecting from the member 30 is preferable. The optical component 25 is fixed to the holding member 20 by providing a protrusion for positioning the optical component 25 on the inner surface of the holding member 20, and contacting the optical component 25 with the protrusion to apply the adhesive. Etc.

(支持部材)
支持部材30は、光軸40の方向に保持部材20と嵌合して該保持部材20を支持する部材であり、筒状体、各種スリーブなどである。支持部材30は、溶接可能なように上述の保持部材20と同様の材料により構成することができ、スーパーインバー、コバール等が好ましい。溶接性、耐食性が優れ比較的安価なステンレス鋼も適している。また保持部材20が支持部材30に嵌入する嵌合構造の場合、支持部材30の内面の断面形状は、上述のように保持部材20との嵌合のため円形であることが好ましい。さらに支持部材30の周部を貫通溶接する場合には、外面も内面と同じ円形である円筒形が好ましい。特に内面と外面とが略同心円状、つまりその肉厚が部位に依らず略一定であることで、各溶接部50の形状、深さが揃ったものとなりやすく、溶接による保持部材20の光軸方向の変位作用を制御しやすい。なお、支持部材30の溶接部50を形成する部分の肉厚は、貫通溶接が可能な厚さにすることが好ましく、YAGレーザを使用する場合には0.30mm以下が好ましく、より好ましくは0.25mm以下とする。また図1,2に示すように、保持部材20と支持部材30との嵌合部において、支持部材30に他の部位より肉厚の小さい薄肉部31を設けて、該薄肉部31において溶接部50を形成するようにしてもよい。全体の肉厚を小さくするより、その一部を薄肉部31とすることで、支持部材30の加工時の面精度、および加工後の機械的強度を高めることができる。
(Support member)
The support member 30 is a member that fits and supports the holding member 20 in the direction of the optical axis 40, and is a cylindrical body, various sleeves, or the like. The support member 30 can be made of the same material as the above-described holding member 20 so that it can be welded, and Super Invar, Kovar or the like is preferable. Stainless steel, which has excellent weldability and corrosion resistance and is relatively inexpensive, is also suitable. In the case of a fitting structure in which the holding member 20 is fitted into the support member 30, the cross-sectional shape of the inner surface of the support member 30 is preferably circular for fitting with the holding member 20 as described above. Furthermore, when the peripheral part of the supporting member 30 is welded through, a cylindrical shape whose outer surface is the same circular shape as the inner surface is preferable. In particular, since the inner surface and the outer surface are substantially concentric, that is, the thickness thereof is substantially constant regardless of the portion, the shape and depth of each welded portion 50 are likely to be uniform, and the optical axis of the holding member 20 by welding is easily obtained. Easy to control the displacement action of direction. Note that the thickness of the portion of the support member 30 that forms the welded portion 50 is preferably set to a thickness that allows through welding, and is preferably 0.30 mm or less, more preferably 0 when a YAG laser is used. .25 mm or less. As shown in FIGS. 1 and 2, in the fitting portion between the holding member 20 and the support member 30, the support member 30 is provided with a thin portion 31 having a smaller thickness than other portions, and the thin portion 31 has a welded portion. 50 may be formed. Rather than reducing the overall wall thickness, a portion of the thin portion 31 is used to increase the surface accuracy during processing of the support member 30 and the mechanical strength after processing.

また、保持部材20と支持部材30との嵌合構造は、保持部材20の内部に光学部品25を保持する場合が多く、発光装置の小型化のため、保持部材20を支持部材30に嵌入する形態が好ましいが、これに限らず、支持部材30を保持部材20に嵌入する構造であってもよい。   In addition, the fitting structure between the holding member 20 and the support member 30 often holds the optical component 25 inside the holding member 20, and the holding member 20 is fitted into the support member 30 in order to reduce the size of the light emitting device. Although a form is preferable, not only this but the structure which inserts the support member 30 in the holding member 20 may be sufficient.

(光源部と支持部材の接合)
保持部材20と支持部材30とを光軸方向に嵌合させる場合、光源15に対する光学素子25の光軸40に垂直な方向(X−Y面内)の位置調整は、光源部10と支持部材30との位置関係をX−Y方向に変化させて行う。光源部10と支持部材30とを接合する場合には、溶接を用いてもよい。例えば光学部品の光軸40と光源15の中心軸(光軸)とが一致するように調整した後、図1に示すように、光源部の基体11と支持部材30の接合部(界面)近傍の周部(側面)を溶接して固定する。保持部材20と支持部材30の嵌め合いは、例えば下記実施例では隙間が5〜35μm(精転合;JIS―B0401規格)程度の精密嵌め合いであって、光源15に対する光学部品25のX−Y面内の位置精度は、この工程における調整および固定によりほぼ決定される。この溶接においても、レーザ溶接を用いることが好ましく、また光軸40を中心として周回方向に略等配された複数個所を同時溶接することにより、溶接による位置ずれを抑制することができる。
(Join the light source and support member)
When the holding member 20 and the support member 30 are fitted in the optical axis direction, the position adjustment in the direction perpendicular to the optical axis 40 of the optical element 25 with respect to the light source 15 (in the XY plane) is performed. This is performed by changing the positional relationship with the XY direction in the XY direction. When joining the light source part 10 and the support member 30, you may use welding. For example, after adjusting so that the optical axis 40 of the optical component and the central axis (optical axis) of the light source 15 coincide with each other, as shown in FIG. 1, the vicinity of the joint (interface) between the base 11 of the light source unit and the support member 30 Weld and fix the perimeter (side) of. The fitting between the holding member 20 and the supporting member 30 is a precise fitting with a gap of about 5 to 35 μm (fine conversion; JIS-B0401 standard) in the following embodiment, for example. The positional accuracy in the Y plane is substantially determined by adjustment and fixation in this process. Also in this welding, it is preferable to use laser welding, and by simultaneously welding a plurality of locations that are substantially equally arranged in the circumferential direction around the optical axis 40, it is possible to suppress misalignment due to welding.

なお、図1に示すように、溶接により変形を伴う光源部の基体11や保持部材20は、複数の部材で構成してもよい。すなわち、少なくとも、光源15や光学部品25を保持する内側の第1部材(12,21)と、該第1部材の外側にあって他の構成要素と溶接固定される部位を含む第2部材(13,22)と、から構成し、第1部材と第2部材とはネジ止めなど脱着可能な固定方法により接合する。これにより、内側の第1部材は、外側の第2部材に保護され、溶接による固着および変形を伴わず元の形状を維持できるため、溶接後も個別に取り出し再利用することができる。   In addition, as shown in FIG. 1, you may comprise the base | substrate 11 and the holding member 20 of the light source part which deform | transform by welding, with a some member. That is, at least a first member (12, 21) that holds the light source 15 and the optical component 25, and a second member that includes a portion that is outside the first member and is fixed by welding to other components ( 13 and 22), and the first member and the second member are joined by a detachable fixing method such as screwing. As a result, the inner first member is protected by the outer second member and can maintain its original shape without being fixed and deformed by welding, so that it can be individually taken out and reused even after welding.

(外部共振器型レーザ装置)
ホログラフィックデータストレージなど高密度光記録・再生装置用の光源として用いる波長可変の外部共振器型レーザ装置においては、光源15として、出射側端面に反射防止膜(ARコート:Anti-Reflection Coating)が設けられ、モニタ側端面に高反射率の反射膜が設けられた半導体レーザ素子をステムに実装した半導体レーザ装置を用いる。光学素子25はコリメータレンズとし、該コリメータレンズの前方に回転機構搭載の回折格子を配置し、該回折格子にコリメータレンズからの平行光を照射して、その回折光の一部を選択的にレーザ素子に帰還させて、単一縦モードでレーザ発振させる。このような外部共振器型レーザ装置において安定したレーザ発振を得るには、コリメータレンズからの出射光が高精度の平行光である必要があり、本発明の溶接工程において、コリメータレンズを、その光軸方向の位置を調整して高精度のビーム平行度を達成すると共に、耐環境性良好に固定することができる。
(External cavity laser device)
In a variable wavelength external resonator type laser device used as a light source for a high-density optical recording / reproducing apparatus such as a holographic data storage, an antireflection film (AR coating: Anti-Reflection Coating) is provided as a light source 15 on the end face of the emission side. A semiconductor laser device is used in which a semiconductor laser element provided on the monitor side end surface and provided with a reflective film having a high reflectance is mounted on the stem. The optical element 25 is a collimator lens, a diffraction grating equipped with a rotation mechanism is arranged in front of the collimator lens, and the parallel light from the collimator lens is irradiated onto the diffraction grating, and a part of the diffracted light is selectively lasered. The laser is fed back to the element and oscillated in a single longitudinal mode. In order to obtain stable laser oscillation in such an external resonator type laser device, it is necessary that the emitted light from the collimator lens is a highly accurate parallel light. In the welding process of the present invention, the collimator lens The axial position can be adjusted to achieve high precision beam parallelism and can be fixed with good environmental resistance.

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。   Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

本実施例の発光装置100は、図1に示すような、半導体レーザ装置15がレーザホルダ11に固定された光源部10と、コリメータレンズ25を保持するレンズホルダ20と嵌合かつ接合されたスリーブ30から構成されるレンズユニット70と、が接合されて構成される。半導体レーザ装置15は、ステムに発光中心波長405nmの窒化物半導体レーザ素子が実装されたものであり、コリメータレンズ25によりその平行光を出射可能な光源装置である。   The light emitting device 100 of this embodiment includes a sleeve that is fitted and joined to a light source unit 10 in which a semiconductor laser device 15 is fixed to a laser holder 11 and a lens holder 20 that holds a collimator lens 25 as shown in FIG. And a lens unit 70 composed of 30 lenses. The semiconductor laser device 15 is a light source device in which a nitride semiconductor laser element having an emission center wavelength of 405 nm is mounted on a stem, and the parallel light can be emitted by the collimator lens 25.

レーザホルダ11は、ステンレス製であり、半導体レーザ装置15を保持する円盤状の第1レーザホルダ12と、その外縁を包囲するリング状の第2レーザホルダ13と、からなっており、第1および第2レーザホルダ12,13はネジで互いに連結され、一体化されている。またレンズホルダ20は、ステンレス製で、レーザホルダ11と同様にコリメータレンズ25を内部に保持する第1レンズホルダ21と、その外側を包囲する筒状の第2レンズホルダ22と、がネジで連結されて構成されている。スリーブ30は、ステンレス製で、外径が15mmの円筒形であり、レーザ溶接部を形成するための肉厚0.25mmの薄肉部31がその先端部に設けられ、該薄肉部31以外の肉厚は0.9mmである。このような発光装置100において、光源部10に対してレンズユニット70を、次のようにYAGレーザ溶接により位置調整し且つ接合する。   The laser holder 11 is made of stainless steel and includes a disk-shaped first laser holder 12 that holds the semiconductor laser device 15 and a ring-shaped second laser holder 13 that surrounds the outer edge thereof. The second laser holders 12 and 13 are connected to each other with screws and integrated. The lens holder 20 is made of stainless steel, and like the laser holder 11, a first lens holder 21 that holds the collimator lens 25 inside and a cylindrical second lens holder 22 that surrounds the outside are connected by screws. Has been configured. The sleeve 30 is made of stainless steel and has a cylindrical shape with an outer diameter of 15 mm. A thin-walled portion 31 having a thickness of 0.25 mm for forming a laser welded portion is provided at the distal end thereof. The thickness is 0.9 mm. In such a light emitting device 100, the position of the lens unit 70 is adjusted and joined to the light source unit 10 by YAG laser welding as follows.

まず、図3に示すように、発光装置100の光学調整をするための光学系を備える調整治具は、少なくとも、XYZ各軸の調整機構を備える第1および第2調整治具80,90と、YAGレーザ溶接するための複数のレーザ出射部60を備えるレーザ出射光学部と、から構成されている。光源部10を搭載する第1調整治具80は、XYZ各軸回りの回転調整機構も備えている。そして、光源部10を第1調整治具80上に設置し、その光源部10上にレンズユニット70を搭載し、レンズホルダ20の先端部を第2調整治具90により保持させる。レーザ出射部60は、第1調整治具80上に設置した光源部10およびレンズユニット70に向かって、Z軸回りに120°間隔で等配し、Z軸に対して垂直にレーザ光を照射可能なように設置する。そして、第1および第2調整治具80,90により、発光装置100の光軸角度(X−Y軸)およびフォーカス(Z軸)を予め調整しておく。   First, as shown in FIG. 3, the adjustment jig including an optical system for optical adjustment of the light emitting device 100 includes at least first and second adjustment jigs 80 and 90 including an adjustment mechanism for each axis of XYZ. And a laser emission optical part including a plurality of laser emission parts 60 for YAG laser welding. The first adjustment jig 80 on which the light source unit 10 is mounted also includes a rotation adjustment mechanism around each axis of XYZ. Then, the light source unit 10 is installed on the first adjustment jig 80, the lens unit 70 is mounted on the light source unit 10, and the tip end portion of the lens holder 20 is held by the second adjustment jig 90. The laser emitting unit 60 is equally distributed around the Z axis at 120 ° intervals toward the light source unit 10 and the lens unit 70 installed on the first adjustment jig 80, and irradiates the laser beam perpendicularly to the Z axis. Install as possible. Then, the optical axis angle (XY axis) and focus (Z axis) of the light emitting device 100 are adjusted in advance by the first and second adjustment jigs 80 and 90.

次に、光源部10およびレンズユニット70の接合界面の周部に、YAGレーザ光を出力2kW、照射時間(パルス幅)4msecで照射し溶接する。レーザ溶接は3回(合計9箇所)程度行って、半導体レーザ装置15に対するコリメータレンズ25のX−Y方向の位置を固定する。   Next, a YAG laser beam is irradiated to the peripheral portion of the bonding interface between the light source unit 10 and the lens unit 70 at an output of 2 kW and an irradiation time (pulse width) of 4 msec and welded. Laser welding is performed about 3 times (9 places in total) to fix the position of the collimator lens 25 in the XY direction with respect to the semiconductor laser device 15.

最後に、Z軸方向の調整、固定を次のように行う。第2調整治具90をZ軸方向に移動させ、レンズホルダ20を光源部10から離れる方向に所定量、例えば干渉計によるパワー値(ゼルニケ多項式のフォーカスの項の2倍;Power Term)の測定値で+1.2λ(RMS・λ)相当分オフセットさせる。なお、本実施例において、コリメータレンズ25のNAは約0.6であり、上記パワー値における±0.1λの変化は、コリメータレンズ25のZ軸方向の±0.8μm程度の変位に相当する。その後、支持部材30の薄肉部31にYAGレーザ光を出力2kW、照射時間4msecで照射して貫通溶接した後、レンズホルダ20を第2調整治具90から開放する。このとき、まだ+0.9λ程度のパワー値が残存している。このパワー値を0に近づけるため、第1調整治具80をZ軸回りに約3°回転調整させる毎に上記レーザ照射条件と同条件で貫通溶接を繰り返す。なお、このとき形成される1つの溶接ビードは直径が300〜500μm程度の円形状で、各溶接ビードの間隔(中心間距離)は300〜500μm程度である。   Finally, adjustment and fixing in the Z-axis direction are performed as follows. The second adjustment jig 90 is moved in the Z-axis direction, and the lens holder 20 is measured in a direction away from the light source unit 10 by a predetermined amount, for example, a power value (twice the focus term of the Zernike polynomial); The value is offset by an amount equivalent to + 1.2λ (RMS · λ). In this embodiment, the NA of the collimator lens 25 is about 0.6, and a change of ± 0.1λ in the power value corresponds to a displacement of about ± 0.8 μm in the Z-axis direction of the collimator lens 25. . Thereafter, the thin-walled portion 31 of the support member 30 is irradiated with a YAG laser beam with an output of 2 kW and an irradiation time of 4 msec for penetration welding, and then the lens holder 20 is released from the second adjustment jig 90. At this time, a power value of about + 0.9λ still remains. In order to bring this power value close to 0, through welding is repeated under the same conditions as the laser irradiation conditions every time the first adjustment jig 80 is rotated about 3 ° around the Z axis. One weld bead formed at this time has a circular shape with a diameter of about 300 to 500 μm, and the interval (distance between centers) of each weld bead is about 300 to 500 μm.

図5は、このときの溶接回数とパワー値(ビーム平行度)の変化との関係を示すものである。図5に示すように、溶接回数の増加すなわち溶接部50の形成量、面積の増大に伴ってパワー値が緩やかに減少しており、溶接後のビーム平行度を観察することによって、Z軸(光軸)方向において所望の位置精度に調整が可能である。また溶接回数の増加、つまり溶接部の面積の拡大に伴って、保持部材20と支持部材30との固着が次第に強固になるため、同条件で溶接を繰り返しても、1回の溶接によるパワー値の変化量、すなわち保持部材20の光軸方向の変位量が徐々に小さくなっており、精密な位置調整を行うことができる。   FIG. 5 shows the relationship between the number of weldings and the change in power value (beam parallelism) at this time. As shown in FIG. 5, the power value gradually decreases as the number of weldings increases, that is, the formation amount and area of the welded portion 50, and by observing the beam parallelism after welding, Adjustment to a desired position accuracy in the (optical axis) direction is possible. Further, as the number of weldings increases, that is, as the area of the welded portion increases, the holding member 20 and the support member 30 become more firmly fixed, so even if welding is repeated under the same conditions, the power value by one welding , That is, the amount of displacement of the holding member 20 in the optical axis direction is gradually reduced, and precise position adjustment can be performed.

本発明の発光装置の製造方法およびそれにより製造される発光装置は、出射光に高精度の光学性能を要する光源、発光装置に好適であり、ホログラフィックデータストレージなど高密度光記録・再生装置用光源のほか、レーザディスプレイ、レーザプリンタ、光通信デバイスなどの光源に利用することができる。   INDUSTRIAL APPLICABILITY The light emitting device manufacturing method of the present invention and the light emitting device manufactured thereby are suitable for light sources and light emitting devices that require high-precision optical performance for emitted light, and for high density optical recording / reproducing devices such as holographic data storage. In addition to the light source, it can be used for a light source such as a laser display, a laser printer, and an optical communication device.

10…光源部(11…基体(12…第1部材、13…第2部材)、15…光源)
20…保持部材(21…第1部材、22…第2部材)
25…光学部品
30…支持部材(31…薄肉部)
40…光軸
50…溶接部
51…溶接領域
55…未溶接領域
60…レーザ出射部
70…レンズユニット
80…第1調整治具
90…第2調整治具
100…発光装置
DESCRIPTION OF SYMBOLS 10 ... Light source part (11 ... Base | substrate (12 ... 1st member, 13 ... 2nd member), 15 ... Light source)
20 ... Holding member (21 ... First member, 22 ... Second member)
25 ... Optical component 30 ... Support member (31 ... Thin part)
DESCRIPTION OF SYMBOLS 40 ... Optical axis 50 ... Welding part 51 ... Welding area | region 55 ... Unwelded area | region 60 ... Laser emission part 70 ... Lens unit 80 ... 1st adjustment jig 90 ... 2nd adjustment jig 100 ... Light-emitting device

Claims (7)

光学部品を保持する保持部材と、
前記光学部品の光軸方向に前記保持部材と嵌合して該保持部材を支持する支持部材と、
前記光学部品に光を入射する光源を有する光源部と、を具備する発光装置の製造方法であって、
前記保持部材と前記支持部材とを溶接する溶接工程を備え、
該溶接工程において、前記保持部材および前記支持部材に形成される溶接部の面積を大きくすることにより、前記保持部材の前記光軸方向の位置を調整することを特徴とする発光装置の製造方法。
A holding member for holding an optical component;
A support member that fits and supports the holding member in the optical axis direction of the optical component;
A light source unit having a light source that makes light incident on the optical component, and a manufacturing method of a light emitting device comprising:
A welding step of welding the holding member and the support member;
In the welding process, the position of the holding member in the optical axis direction is adjusted by increasing the area of the welded portion formed on the holding member and the support member.
前記支持部材は筒状体であって、一端が前記光源部と接合されており、
前記溶接部の面積を大きくすることにより、前記保持部材が前記光源部に近づく方向に変位することを特徴とする請求項1に記載の発光装置の製造方法。
The support member is a cylindrical body, and one end is joined to the light source unit,
The method for manufacturing a light emitting device according to claim 1, wherein the holding member is displaced in a direction approaching the light source part by increasing an area of the welded part.
前記支持部材は円筒状であって、前記保持部材は該支持部材に嵌入されており、
前記溶接部は、前記支持部材上から貫通溶接することにより形成することを特徴とする請求項1又は2に記載の発光装置の製造方法。
The support member is cylindrical, and the holding member is fitted into the support member;
The method for manufacturing a light emitting device according to claim 1, wherein the welded portion is formed by penetration welding from above the support member.
前記溶接部は、前記光軸を中心として略等配された複数の箇所に同時形成することを繰り返して該面積を大きくすることを特徴とする請求項1乃至3のいずれか1項に記載の発光装置の製造方法。   4. The method according to claim 1, wherein the welded portion is repeatedly formed at a plurality of locations substantially equally arranged around the optical axis to increase the area. 5. Manufacturing method of light-emitting device. 前記溶接部は、前記光軸を中心として周回方向に該面積を大きくすることを特徴とする請求項1乃至4のいずれか1項に記載の発光装置の製造方法。   5. The method of manufacturing a light emitting device according to claim 1, wherein the welded portion has a larger area in a circumferential direction around the optical axis. 前記溶接部は、前記光軸に対して略垂直な1つの面上に形成することを特徴とする請求項5に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 5, wherein the weld is formed on one surface substantially perpendicular to the optical axis. 前記溶接部は、レーザ溶接により形成し、
該レーザ溶接において、レーザ光を前記光軸に対し略垂直に照射することを特徴とする請求項1乃至6のいずれか1項に記載の発光装置の製造方法。
The weld is formed by laser welding,
7. The method for manufacturing a light emitting device according to claim 1, wherein in the laser welding, laser light is irradiated substantially perpendicularly to the optical axis.
JP2009129037A 2009-05-28 2009-05-28 Method for manufacturing light emitting device Expired - Fee Related JP5453927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009129037A JP5453927B2 (en) 2009-05-28 2009-05-28 Method for manufacturing light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009129037A JP5453927B2 (en) 2009-05-28 2009-05-28 Method for manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JP2010276840A true JP2010276840A (en) 2010-12-09
JP5453927B2 JP5453927B2 (en) 2014-03-26

Family

ID=43423865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009129037A Expired - Fee Related JP5453927B2 (en) 2009-05-28 2009-05-28 Method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP5453927B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053401A (en) * 2012-09-06 2014-03-20 Shimadzu Corp Laser device and manufacturing method therefor
JP2014131002A (en) * 2012-11-30 2014-07-10 Panasonic Corp Mounting member of optical device, mounting method of optical device, gas sensor
JP2016126146A (en) * 2014-12-26 2016-07-11 日亜化学工業株式会社 Light source device, and projector with light source device
JP2017085036A (en) * 2015-10-30 2017-05-18 日亜化学工業株式会社 Light-emitting device
JP2018120136A (en) * 2017-01-26 2018-08-02 オリンパス株式会社 Method of assembling optical unit
WO2018139235A1 (en) * 2017-01-26 2018-08-02 オリンパス株式会社 Optical unit
CN111805082A (en) * 2020-07-14 2020-10-23 大连藏龙光电子科技有限公司 Surface mounting and welding method for controlling tracking error of coaxial optical device
CN112719595A (en) * 2021-01-19 2021-04-30 大连优迅科技股份有限公司 Communication laser ware accuse temperature coupling welding set

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296480B2 (en) 2017-10-31 2022-04-05 Mitsubishi Electric Corporation Laser light source apparatus and method of manufacturing the same
CA3105111A1 (en) 2018-04-13 2019-10-17 Mitsubishi Electric Corporation Laser light source apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263906A (en) * 1985-09-17 1987-03-20 Matsushita Electric Ind Co Ltd Production of coupling device between semiconductor laser and optical fiber
JPS63132211A (en) * 1986-11-22 1988-06-04 Sony Corp Positioning method for optical fiber
JPS63163416A (en) * 1986-12-26 1988-07-06 Toshiba Corp Manufacture of optical semiconductor device
JP2005043479A (en) * 2003-07-23 2005-02-17 Eudyna Devices Inc Optical axis adjusting method, optical module manufacturing method, optical axis adjusting device, and optical module
JP2007049125A (en) * 2005-07-11 2007-02-22 Fujifilm Corp Laser module
JP2007225696A (en) * 2006-02-21 2007-09-06 Mitsubishi Electric Corp Optical module manufacturing method, optical module, and optical module member
JP2009115980A (en) * 2007-11-05 2009-05-28 Olympus Corp Method for manufacturing optical system unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263906A (en) * 1985-09-17 1987-03-20 Matsushita Electric Ind Co Ltd Production of coupling device between semiconductor laser and optical fiber
JPS63132211A (en) * 1986-11-22 1988-06-04 Sony Corp Positioning method for optical fiber
JPS63163416A (en) * 1986-12-26 1988-07-06 Toshiba Corp Manufacture of optical semiconductor device
JP2005043479A (en) * 2003-07-23 2005-02-17 Eudyna Devices Inc Optical axis adjusting method, optical module manufacturing method, optical axis adjusting device, and optical module
JP2007049125A (en) * 2005-07-11 2007-02-22 Fujifilm Corp Laser module
JP2007225696A (en) * 2006-02-21 2007-09-06 Mitsubishi Electric Corp Optical module manufacturing method, optical module, and optical module member
JP2009115980A (en) * 2007-11-05 2009-05-28 Olympus Corp Method for manufacturing optical system unit

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053401A (en) * 2012-09-06 2014-03-20 Shimadzu Corp Laser device and manufacturing method therefor
JP2014131002A (en) * 2012-11-30 2014-07-10 Panasonic Corp Mounting member of optical device, mounting method of optical device, gas sensor
JP2016126146A (en) * 2014-12-26 2016-07-11 日亜化学工業株式会社 Light source device, and projector with light source device
JP2017085036A (en) * 2015-10-30 2017-05-18 日亜化学工業株式会社 Light-emitting device
JP2018120136A (en) * 2017-01-26 2018-08-02 オリンパス株式会社 Method of assembling optical unit
WO2018139235A1 (en) * 2017-01-26 2018-08-02 オリンパス株式会社 Optical unit
JP2018120137A (en) * 2017-01-26 2018-08-02 オリンパス株式会社 Optical unit
WO2018139180A1 (en) * 2017-01-26 2018-08-02 オリンパス株式会社 Method for assembling optical unit
US11141817B2 (en) 2017-01-26 2021-10-12 Olympus Corporation Optical unit
CN111805082A (en) * 2020-07-14 2020-10-23 大连藏龙光电子科技有限公司 Surface mounting and welding method for controlling tracking error of coaxial optical device
CN111805082B (en) * 2020-07-14 2022-07-08 大连藏龙光电子科技有限公司 Surface mounting and welding method for controlling tracking error of coaxial optical device
CN112719595A (en) * 2021-01-19 2021-04-30 大连优迅科技股份有限公司 Communication laser ware accuse temperature coupling welding set

Also Published As

Publication number Publication date
JP5453927B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5453927B2 (en) Method for manufacturing light emitting device
US11271357B2 (en) Optical arrangements with disk-shaped laser-active mediums
US5530714A (en) External cavity laser
JP2017529694A (en) Multi-beam fiber laser system
JP5184775B2 (en) Optical processing equipment
JP4647314B2 (en) LIGHT SOURCE DEVICE, ITS MANUFACTURING METHOD, AND RECORDING DEVICE
US20220072662A1 (en) Laser processing device and laser processing method using same
US20060127012A1 (en) Method and apparatus for a fiber optic housing and aligning device
US9093812B2 (en) Method of manufacturing a semiconductor laser module
JP2007171703A (en) Shape-variable mirror and laser working device using shape-variable mirror
JP2008544859A (en) Laser welding system and method
JP2008297578A (en) Device for improving residual stress in pipe and adjustment method therefor
JPH08304668A (en) Laser welding method for fixing optical element
JP2016102864A (en) Optical module and method for manufacturing the same
JP3040720B2 (en) Laser processing head and laser processing method
JP5190421B2 (en) Compact thermal lens compensating head
JP4584683B2 (en) Condensing head for laser welding
JP2004273545A (en) Semiconductor laser device, semiconductor laser system, and method of manufacturing semiconductor laser device
EP2732905B1 (en) Laser cutting apparatus and method using an adjustable optical fibre
JP2009229686A (en) Variable shape mirror and laser beam machining apparatus using variable shape mirror
JP6739067B2 (en) Semiconductor laser device
JP4650925B2 (en) Manufacturing method of light source device
WO2018139180A1 (en) Method for assembling optical unit
JP2008062293A (en) Laser welding method
US20230381888A1 (en) Laser Beam Brilliance Enhancing Beam Splitting for Laser Welding/Brazing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Ref document number: 5453927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees