JP2010276469A - 画像処理装置及び測距装置の画像処理方法 - Google Patents

画像処理装置及び測距装置の画像処理方法 Download PDF

Info

Publication number
JP2010276469A
JP2010276469A JP2009129205A JP2009129205A JP2010276469A JP 2010276469 A JP2010276469 A JP 2010276469A JP 2009129205 A JP2009129205 A JP 2009129205A JP 2009129205 A JP2009129205 A JP 2009129205A JP 2010276469 A JP2010276469 A JP 2010276469A
Authority
JP
Japan
Prior art keywords
pixel
image
filter
pixels
saturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009129205A
Other languages
English (en)
Inventor
Hisaki Tsuboi
央樹 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2009129205A priority Critical patent/JP2010276469A/ja
Publication of JP2010276469A publication Critical patent/JP2010276469A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Image Input (AREA)

Abstract

【課題】フォトンの量が少ない夜間や日陰においても、測距に必要な撮像画像を得ることができる画像処理装置及び測距装置の画像処理方法を提供する。
【解決手段】飽和順位のうち、原色フィルタ(R、G、B)より上位であるフィルタ(例えばW、Mg、Cy、Ye,Riフィルタ)を通して得られた(例えばW、Mg、Cy、Ye,Ri画素からなる)画像信号同士を比較することで、少なくともR画素、G画素、B画素からなる画像信号よりもS/N比が大きな信号に基づいて、最適な対応点探索を行える。
【選択図】図11

Description

本発明は、一対の撮像素子により対象物までの距離を測定できる画像処理装置及び測距装置の画像処理方法に関するものである。
例えば図1に示すように、自律して移動するロボットRBT等において、前方の障害物OBを検出して危険を警告したり、これを自動的に回避するために、対象物までの距離を測ることが行われる。ここで、対象物までの距離を計測する測距装置としては、超音波やレーザ光など電磁波の反射を利用するものがある。しかるに、超音波やレーザ光などを用いた測距装置では、対象物までの距離を比較的正確に測定できるものの、測距範囲が比較的狭く、また対象物を誤って捉えた場合の判断が困難であるという問題がある。これに対し、特許文献1に示すように、ステレオカメラ(立体視法)により一対の撮像素子を用いて撮像画像を取得し、その撮像画像を画像処理することで測距を行う装置が提案されている。
特開2009−14445号公報
ところで、一般的なデジカメ等に使用される固体撮像素子(CCD/CMOS)は,可視青色光(B)・可視緑色光(G)・可視赤色光(R)を透過する原色フィルタを、各画素に応じて図2(a)に示すように物理的に配列(いわゆるBayer配列構造)している。このような撮像素子は、図3(a)に示すような日中の撮像では問題がないが、図3(b)に示すような夜間もしくは日陰ではフォトンの量が少なくなるため、S/N比が小さい画像信号が出力され、測距に必要な画像の比較を有効に行えないという問題がある。一方、赤外光を透過する一様な赤外フィルタを、画素の前に図2(b)に示すように物理的に配列している赤外線カメラにおいては、夜間等の撮影においても、十分なフォトンを得ることができるが、出力された画像信号には色データがないため,いわゆる白黒のグレースケール画像しか撮影できないという問題がある。同様の問題は、監視カメラMC(図1)にステレオカメラを搭載した場合にも生じる。
本発明の目的は、フォトンの量が少ない夜間や日陰においても、測距に必要な撮像画像を得ることができる画像処理装置及び測距装置の画像処理方法を提供することである。
請求項1に記載の画像処理装置は、予め定める間隔だけ離間して設けられ、対象物からの光を複数の異なるフィルタを介して受光することによりそれぞれ画素信号に変換する複数の画素を備えた一対の撮像素子と、前記一対の撮像素子から出力された画像信号同士を比較することにより前記離間方向における撮像素子間の視差を求める視差検出手段と、前記視差検出手段によって求められた視差に基づいて、対象物までの距離を逐次求める距離計測手段と、を有する画像処理装置において、
前記異なるフィルタにおいて前記撮像素子の画素が飽和しやすいフィルタの飽和順位のうち、原色フィルタより上位であるフィルタを通して得られた画像信号又は画像データ同士を比較することを特徴とする。尚、本明細書中、「画素が飽和する」とは、「画素が取得したデータが飽和する」ことを意味するものとする。
近年,夜間の撮像でもカラー画像を可能とする為,R・G・B・Irいずれかの複数帯域に感度を持つ,いわゆる補色フィルタを採用した固体撮像素子が開発された。図4(a)は、補色フィルタの一例にかかる配列を示す図である。図4(a)に示す補色フィルタは、各画素に対応して、可視波長領域と赤外波長領域とを有感度波長帯域とするYeフィルタ、Riフィルタ、Irフィルタ、及びWフィルタとで1つの単位フィルタ群を形成している。尚、これに対して、従来のRフィルタ、Gフィルタ、Bフィルタを原色フィルタと呼ぶ。
図4(a)の例では、単位フィルタ群において、第1行第1列にRiフィルタが配列され、第2行第1列にWフィルタが配列され、第1行第2列にYeフィルタが配列され、第2行第2列にIrフィルタが配列されている。これらのフィルタにそれぞれ対応した画素を、それぞれRi画素、W画素,Ye画素及びIr画素と呼ぶ。但し、以上は一例であり、他のパターンでRi画素、Ir画素、W画素、及びYe画素を千鳥状に配列してもよい。
Ye画素はYeフィルタを備えているため、Yeの可視カラー画像成分である画像成分Ye(原画像成分)および赤外画像成分を撮像する。Ri画素はRiフィルタを備えているため、Riの可視カラー画像成分である画像成分Ri(原画像成分)および赤外画像成分を撮像する。Ir画素はIrフィルタを備えているため、赤外画像成分である画像成分Ir(原画像成分)を撮像する。W画素はフィルタを備えていないため、可視輝度画像成分と画像成分Irとを含む輝度画像成分である画像成分W(原画像成分)を撮像する。このように、4つのフィルタは分光透過特性が互いに異なる。
図5は、Ye、Ri、Irフィルタの分光透過特性を示した図であり、縦軸は透過率(感度)を示し、横軸は波長(nm)を示している。なお、点線で示すグラフはフィルタが取り外された状態における画素の分光感度特性を示している。この分光感度特性は、600nm付近でピークを有し、上に凸の曲線を描いて変化していることが分かる。また、図5では、400nm〜700nmが可視波長領域とされ、700nm〜1100nmが赤外波長領域とされ、400nm〜1100nmが有感度波長帯域とされている。
図5に示すように、Yeフィルタは、可視波長領域の青色領域を除く前記有感度波長帯域の光を透過する特性を有する。よって、Yeフィルタは主にイエローの光と赤外光とを透過する。
Riフィルタは、可視波長領域の青色領域及び緑色領域を除く有感度波長帯域の光を透過する特性を有する。よって、Riフィルタは主に赤の光と赤外光とを透過する。
Irフィルタは、可視波長領域を除く有感度波長帯域、すなわち赤外波長帯域の光を透過する特性を有する。Wはフィルタを備えていない場合を示し、画素の有感度波長帯域の光が全て透過される。
他に似たような特性を実現するには、Ye、Ri、Irの代わりにYe、M(マゼンタ)+Ir、C(シアン)+Ir(但し、M+Irは、グリーンのみを遮蔽し、C+Irはレッドのみを遮蔽する。)でも実現可能である。ただし、Ri画素、Ir画素、Ye画素は、分光透過特性を急峻にすることができ、例えば、M+IrフィルタやC+Irフィルタに比べて、分光透過特性が良好である。つまり、M+Irフィルタ及びC+Irフィルタは、それぞれ、有感度波長帯域のうち、中央の一部の領域である緑色領域及び赤色領域のみを遮蔽する特性を有しており、このようなフィルタに、Riフィルタ、Irフィルタ、Yeフィルタのような急峻な分光透過特性を持たせることは困難である。そのため、M+Irフィルタ及びC+Irフィルタは、それぞれ、演算してもRGB画像成分を精度良く抽出することができない。よって、Ri画素、Ir画素、Ye画素、W画素で撮像素子を構成することで、撮像素子の高性能化を図ることができる。更に、図4(b)〜(f)に示すような補色フィルタを用いることもできる。尚、図4(g)は、各フィルタの相関関係を示す図である。
図6は、補色フィルタを用いた撮像素子からの画像信号を補間処理するフローチャートを示す図である。まず、補色フィルタを用いた撮像素子に1フレームの原画像データを撮像させる。これにより、画像成分Ye、Ri、Ir、Wが得られる(ステップS1)。
ここで、撮像素子は、Ye画素により画像成分Yeを撮像し、Ri画素により画像成分Riを撮像し、Ir画素により画像成分Irを撮像し、W画素により画像成分Wを撮像する。
次に、画像成分Ye,Ri,Ir,Wに色補間処理を施す。更に、dR=Ri−Ir、dG=Ye−Ri、dB=W−Yeの演算を行い色信号dR、dG、dBを算出する(ステップS2)。
次に、Y=0.3dR+0.59dG+0.11dB、Cb=dB−Y、Cr=dR−Yの演算を行い、輝度信号Y、色差信号Cr,Cbを算出する(ステップS3)。
次に、色差信号Cr、Cbにスムージング処理を行い、色差信号Crs、Cbsを算出する(ステップS4)。ここで,スムージング処理としては、例えば、5×5等の比較的小サイズのローパスフィルタを用いて繰り返し処理し、色差信号Cb、Crを多重解像度化するフィルタ処理であるカスケードフィルタ処理を採用してもよい。また、比較的サイズの大きな所定サイズのローパスフィルタを用いたフィルタ処理を採用してもよい。
また、発光する被写体に対してはぼけることなく、エッジ以外の領域を平滑化するエッジ保存フィルタ(画素間の信号レベル差がある基準値より小さい場合いに平滑化し、基準値より大きい部分は平滑化しないフィルタ)処理を採用してもよい。なお、発光していることを検出するのは、赤外成分と可視光成分とを比較することにより推測できる。
このように、色差信号Cb,Crにスムージング処理を行うことで、色差信号Cb、Crに含まれるノイズ成分がぼかされ、色差信号Cb、CrのS/N比を向上させることができる。
次に、Yadd(1/4)×(Ri+Ir+W+Ye)の演算を行い、輝度信号Yaddを算出する(ステップS5)。
次に、Crm=Crs×Yadd/Y、Cbm=Cbs×Yadd/Yとして、色差信号Crm、Cbmを算出する(ステップS6)。
次に、ステップS2の逆変換することで、輝度信号Yadd、色差信号Crm、Cbmから色信号dR´、dG´、dB´を算出する(ステップS7)。以上のようにして、色補間処理を行うことができる。
このような補色フィルタを用いることで、日中の撮像のみならず、夜間や日陰の撮像を行って、適正な色補間処理を行うことでカラー画像を形成するために必要なRGB信号を得ることができる。一方、補色フィルタを通した光を受光した画素からの信号を用いて、対象物までの距離を測定することもできる。
まず、特開2009−14445号公報に記載された技術により、対象物までの距離を求める方法について説明する。図7は、ステレオカメラで対象物までの距離を測定する状態を示す図である。図7において、一対の撮像素子を備えたカメラ1,2は、予め定める基線間隔Lだけ離間して、かつ光軸が相互に平行となるように配置される。カメラ1,2で撮像された対象物の撮像画像は、例えば対応点探索手法であるSAD(Sum of Absolute Difference)法を用いて画素単位で対応点探索を行い、各カメラ1,2間の左右方向における対象物に対する視差を求め、求められた視差に基づいて、以下の式に基づき対象物までの距離を求めることができる。
図7において、少なくとも焦点距離(f)、撮像素子(CCD)の画素数、1画素の大きさ(μ)が相互に等しい2台のカメラ1,2を用い、所定の基線長(L)だけ前記左右に離間させて光軸1X,2Xを平行に配置して対象物OBを撮影する。このとき、図3(a)の例では、カメラ1の撮像面1b上で左側の木の先端の画素番号(左端又は右端から数えるものとする)がx1,カメラ2における撮像面2b上で同じ左側の木の先端の画素番号がx2であったとする(yは等しいと仮定)と、撮像面1b,2b上の視差(ずれ画素数)はd(=x1−x2)であり、対象物OBまでの距離(Z)は、斜線を施して示す三角形が相似である。従って、
Z:f=L:μ×d
の関係より、
Z=(L×f)/(μ×d)・・・(1)
で求めることができる。
以上の測距における重要な画像処理の一つは、2つのカメラから得られた撮像画像において、画素単位で対応点探索を行って、精度良く同一の対象物(図3(a)の例では左の木の先端)に対応する画素を見つけだすことである。従来技術での対応点探索は、RGB信号から色補間処理を行って、2枚の撮像画像に対してそれぞれ3つの画像データを作成し、少なくとも1つの画像データ同士を比較して、同じ信号値を持つ画素があった場合、同一の対象物と推定するものである。この処理をパターンマッチングという。
図8(a)においては、原色フィルタについて色補間処理を示す図である。かかる色補間処理において、隣接する2つのR画素の間のG画素からの信号を、これを挟むR画素の信号の平均値に置き換えることにより、R画素の信号のみからなる第1の画像データ(フレームデータ又は画像信号ともいう)を形成し、隣接する2つのG画素の間のR画素又はB画素からの信号を、これを挟むG画素の信号の平均値に置き換えることにより、G画素の信号のみからなる第2の画像データを形成し、隣接する2つのB画素の間のG画素からの信号を、これを挟むB画素の信号の平均値に置き換えることにより、B画素の信号のみからなる第3の画像データを形成する。
図8(b)においては、補色フィルタの一例について色補間処理を示す図である。かかる色補間処理において、隣接する2つのRi画素の間のYe画素又はW画素からの信号を、これを挟むRi画素の信号の平均値に置き換えることにより、Ri画素の信号のみからなる第1の画像データを形成し、隣接する2つのYe画素の間のRi画素又はIr画素からの信号を、これを挟むYe画素の信号の平均値に置き換えることにより、Ye画素の信号のみからなる第2の画像データを形成し、隣接する2つのW画素の間のRi画素又はIr画素からの信号を、これを挟むW画素の信号の平均値に置き換えることにより、W画素の信号のみからなる第3の画像データを形成し、隣接する2つのIr画素の間のW画素又はYe画素からの信号を、これを挟むIr画素の信号の平均値に置き換えることにより、Ir画素の信号のみからなる第4の画像データを形成する。
ここで、R画素、G画素、B画素のいずれかについてパターンマッチングをする場合、夜間や日陰での撮像画像においては、画素値が低くなりすぎてノイズに隠れやすくなり、精度の良いパターンマッチングが行えない恐れがある。これに対し、補色フィルタの一例についての例えばW画素は、有感度波長帯域全域で感度があるため、日中のみならず、夜間や日陰での撮像画像においても、比較的画素値が高くなる。これを言い換えると、W画素は、R画素、G画素、B画素に対して飽和しやすいということである。
本発明者の研究結果によれば、図8(b)の補色フィルタに関しては、図9に示すような飽和順位があることがわかった。より具体的には、W画素が最も飽和しやすく、次いで、Ye画素、Ri画素と続き、原色フィルタを挟んで、Ir画素は最も飽和しにくい。別な補色フィルタにかかる飽和順位を、図10に示す。図10の飽和順位において、W画素が最も飽和しやすく、次いで、補色フィルタ画素グループ中のMg(マゼンタ)フィルタを持つMg画素、Cy(シアン)フィルタを持つCy画素、Ye画素が飽和しやすく、これに対し原色フィルタ画素グループ中のB画素、G画素、R画素、及びIr画素は比較的飽和しにくい。
本発明者は、画素が飽和しやすいフィルタの飽和順位が、図9又は図10に示すようになることを導出したことに基づいて、この飽和順位に従って、原色フィルタ(R、G、B)より上位であるフィルタ(例えばW、Mg、Cy、Ye,Riフィルタ)を通して得られた(例えばW、Mg、Cy、Ye,Ri画素からなる)画像データ同士を比較することで、少なくともR画素、G画素、B画素からなる画像データよりもS/N比が大きな信号に基づいて、最適な対応点探索を行えることを見出したのである。これにより夜間や日陰の撮像でも、有効な測距を行うことができる。尚、「画素が飽和しやすいフィルタの飽和順位」とは、「センサ感度が良い順」又は「分光感度帯が広い順」と同義であるため、これらを相互に置き換えて用いることもできる。
請求項2に記載の画像処理装置は、前記上位であるフィルタを通して対象物からの光が入射したときに画素が飽和したときは、前記視差検出手段は、画素が飽和したフィルタより前記飽和順位で下位であるフィルタを通して得られた画像信号同士を比較することを特徴とする。原色フィルタより上位であるフィルタ(例えばW、Mg、Cy、Ye,Riフィルタ)を通過する光はフォトンの量が比較的多いので、それを受光する画素(例えばW、Mg、Cy、Ye,Ri画素)は感度が高い反面、飽和し易いという特性がある。画素が飽和してしまうと、信号値が等しい画素が多数存在するようになり、測距エラーであるいわゆるオクルージョン現象を招き、精度の良いステレオマッチングを行えない恐れがある。そこで、あるフィルタを通して対象物からの光が入射したときに画素が飽和したときは、前記視差検出手段は、画素が飽和したフィルタより前記飽和順位で下位であるフィルタを通して得られた画像信号同士を比較することで、精度の良い測距を行えるようにしている。
請求項3に記載の画像処理装置は、前記視差検出手段が、あるフィルタを通して得られた画像信号により形成される1画像における画素平均値を求め、前記画素平均値が閾値以上である場合、画素が飽和したと判断することを特徴とする。これにより飽和したか否かを容易に判定できる。
請求項4に記載の画像処理装置は、あるフィルタを通して対象物からの光が入射したときに一部の領域の画素が飽和したときは、前記視差検出手段は、飽和した一部の領域の画素については、飽和したフィルタより前記飽和順位で下位であるフィルタを通して得られた画像信号同士を比較することを特徴とする。例えば、太陽などの高輝度の被写体が画面に写り込んだような場合、太陽以外の画像は有効に利用できることがある。そこで、太陽光などが直接入射して一部の領域の画素が飽和したときは、前記視差検出手段は、飽和した一部の領域の画素については、飽和したフィルタより前記飽和順位で下位であるフィルタを通して得られた画像信号同士を比較することで、適正な処理を行えるようにしている。
請求項5に記載の画像処理装置は、前記視差検出手段が、あるフィルタを通して得られた画像信号により形成される一部の領域の画素平均値を求め、前記画素平均値が閾値以上である場合、一部の領域の画素が飽和したと判断することを特徴とする。これにより飽和したか否かを容易に判定できる。
請求項6に記載の画像処理装置は、前記一対の撮像素子から出力される画像信号同士をフィルタ毎に比較したときに、画素信号の値が等しい画素の位置が一致するフィルタを選定し、選定されたフィルタを通して得られた画像信号同士を比較することを特徴とする。これにより精度の高いステレオマッチングを行える。
請求項7に記載の画像処理方法は、予め定める間隔だけ離間して設けられ、対象物からの光を複数の異なるフィルタを介して受光することによりそれぞれ画素信号に変換する複数の画素を備えた一対の撮像素子と、前記一対の撮像素子から出力された画像信号同士を比較することにより前記離間方向における撮像素子間の視差を求める視差検出手段と、前記視差検出手段によって求められた視差に基づいて、対象物までの距離を逐次求める距離計測手段と、を有する測距装置の画像処理方法において、
前記異なるフィルタにおいて前記撮像素子の画素が飽和しやすいフィルタの飽和順位のうち、上位であるフィルタを通して対象物からの光が入射したときに画素が飽和しなければ、前記上位であるフィルタを通して得られた画像信号同士を比較し、
前記上位であるフィルタを通して対象物からの光が入射したときに画素が飽和したときは、画素が飽和したフィルタより前記飽和順位で下位であるフィルタを通して得られた画像信号又は画像データ同士を比較することを特徴とすることを特徴とする。本発明の効果は、上述した請求項1他と同様である。
本発明によれば、フォトンの量が少ない夜間や日陰においても、測距に必要な撮像画像を得ることができる画像処理装置及び測距装置の画像処理方法を提供することができる。
本発明の測距装置を搭載したロボットを示す図である。 RGB原色フィルタと赤外フィルタとを示す図である。 一対のカメラを用いて撮影した日中(a)と夜間(b)のフレームをそれぞれ示す図である。 補色フィルタの例を示す図である。 Ye、Ri、Irフィルタの分光透過特性を示した図であり、縦軸は透過率(感度)を示し、横軸は波長(nm)を示している。 補色フィルタを用いた撮像素子からの画像信号を補間処理するフローチャートを示す図である。 ステレオカメラで対象物までの距離を測定する状態を示す図である。 原色フィルタと補色フィルタの色補間処理の差を示す図である。 飽和順位の例を示す図である。 飽和順位の例を示す図である。 本実施の形態にかかる測距装置10のブロック図である。 測距装置10の動作を説明するための模式図である。 測距装置10の動作を説明するためのフローチャート図である。 別な実施の形態にかかる測距装置10の動作を説明するための模式図である。 一部の画素値のみを置き換えて作成したフレームを示す図である。
以下、本発明の実施の形態にかかる測距装置10について説明する。図11は、本実施の形態にかかる、撮像ユニットを兼ねる測距装置10のブロック図である。図11において、測距装置10は、ロボット等に搭載され、ボディ左右に設けられた一対の基準カメラ1及び参照カメラ2の撮像画像から、ステレオ法によって対象物までの距離を計測するシステムである。
撮像手段であるカメラ1,2は、図7に示すように、予め定めた基線間隔Lだけ離間して、かつ光軸が相互に平行となるようにボディに搭載される。カメラ1,2において、対象物の光はレンズ1a、2aを通過して、補色フィルタを有する撮像素子1b、2bの撮像面に入射し、変換された画像信号は画像処理部1c、2cに入力されて画像処理され、上述したようにdR’、dG’、dB’からなる画像データとして出力されることとなる。制御部1d、2dは、外部から制御信号を入力し、撮像素子1b、2b及び画像処理部1c、2cを制御する。本発明によれば、図6に示すような画像処理を施すことで、原色フィルタを用いたのと同様なカラー画像を得ることができる。
次に、測距に必要な画像処理について説明する。画像処理部1c、2cは、予め実験やシミュレーションで求めた、補色フィルタにおいて撮像素子1b、2bの画素が飽和しやすいフィルタの飽和順位を記憶しており、この飽和順位に照らして、上位であるフィルタ(例えばWフィルタ)を通して対象物からの光が入射したときに、閾値(例えばLin−Logセンサであれば、変極点以上又は以下の値が好ましい)と比較して画素が飽和したか否かを判断する。画像処理部1c、2cは、上位であるフィルタを通して対象物からの光が入射したときに画素が飽和しなかったと判断したときは、そのフィルタを通して得られた画像信号をステレオ処理部3に出力し、飽和したと判断したときは、画素が飽和したフィルタより飽和順位で下位であるフィルタ(例えばYeフィルタ)を通して得られた画像信号を、ステレオ処理部3に出力する。この2つの画像信号に基づいて、ステレオ処理部3によりステレオマッチングを含む画像処理が行われ、画像処理された信号に基づいて、図7を参照して説明した式に基づき、演算部4で対象物までの距離を測定する。本実施の形態では、ステレオ処理部3及び演算部4が視差検出手段を構成し、演算部4が距離計測手段を構成する。
図12は、測距装置10の動作を説明するための模式図である。まず、画像処理部1c、2cは、図12(a)に示す元画像データから、図8(b)を参照して説明したようにして、図12(b)に示す4画素に対応した4枚のフレームデータを作成する。次に、画像処理部1c、2cは、各フレームデータ内の画素平均値(画素値の平均)を計算する。画素値は256段階で表せるものとする。ここで、図12(c)に示すように、W画素のフレームでは画素平均値が255,Ye画素のフレームでは画素平均値が200,Ri画素のフレームでは画素平均値が180,Ir画素のフレームでは画素平均値が150であったものとする。
画像処理部1c、2cは、画素が飽和しているか否かの閾値を240とする。よって、図12(d)に示すように、画素平均値が閾値以上であるW画素のフレームでは飽和が生じていると判断し、飽和順位で次のYe画素のフレームを選択し、図12(e)に示すように、カメラ1,2から得られた2つのYe画素のフレームの画像信号を、ステレオ処理部3に出力する。ステレオ処理部3は、2つのYe画素のフレームを用いてステレオマッチング処理を行うこととなる。
図13は、測距装置10の動作を説明するためのフローチャート図である。画像処理部1cは、ステップS101で基準カメラ用の各フィルタに応じたフレームを取得し、画像処理部2cは、ステップS102で参照カメラ用の各フィルタに応じたフレームを取得する。画像処理部1c、2cは、ステップS103で、上述したように閾値と比較してW画素のフレームが飽和しているか否かを判断し、飽和していないと判断すれば、ステップS104でW画素のフレームの画像信号をステレオ処理部3に出力し、ステレオ処理部3は、2つのW画素のフレームを用いてステレオマッチング処理を行い、ステップS110でマッチング結果を演算部4に出力する。
これに対し、ステップS103で、W画素のフレームが飽和していると判断した場合、画像処理部1c、2cは、更にステップS105で、上述したように閾値と比較してYe画素のフレームが飽和しているか否かを判断し、飽和していないと判断すれば、ステップS106でYe画素のフレームの画像信号をステレオ処理部3に出力し、ステレオ処理部3は、2つのYe画素のフレームを用いてステレオマッチング処理を行い、ステップS110でマッチング結果を演算部4に出力する。
これに対し、ステップS105で、Ye画素のフレームが飽和していると判断した場合、画像処理部1c、2cは、更にステップS107で、上述したように閾値と比較してRi画素のフレームが飽和しているか否かを判断し、飽和していないと判断すれば、ステップS108でRi画素のフレームの画像信号をステレオ処理部3に出力し、ステレオ処理部3は、2つのRi画素のフレームを用いてステレオマッチング処理を行い、ステップS110でマッチング結果を演算部4に出力する。
これに対し、ステップS107で、Ri画素のフレームが飽和していると判断した場合、画像処理部1c、2cは、ステップS109でIr画素のフレームの画像信号をステレオ処理部3に出力し、ステレオ処理部3は、2つのIr画素のフレームを用いてステレオマッチング処理を行い、ステップS110でマッチング結果を演算部4に出力する。
本実施の形態の変形例として、図4(e)に示す補色フィルタをカメラ1,2の撮像素子1b、2bに備えた場合、図13のフローチャートにおいて、WをYeに置き換え、YeをMgに置き換え、RiをCyに置き換え、IrをGに置き換えればよい。その他の補色フィルタについても同様である。
但し、図4(b)、(c)、(d)に示す3色の補色フィルタについては、飽和順位に基づいて上位のフィルタから飽和しているか否かの判断が2回になる点のみが異なる。
図14は、別な実施の形態にかかる測距装置10の動作を説明するための模式図である。図12に示す実施の形態と同様に、画像処理部1c、2cは、図14(a)に示す元画像データから、図8(b)を参照して説明したようにして、図14(b)に示す4画素に対応した4枚のフレームデータを作成する。次に、画像処理部1c、2cは、各フレームデータ内の画素平均値を計算する。ここで、図14(c)に示すように、W画素のフレームでは画素平均値が255,Ye画素のフレームでは画素平均値が200,Ri画素のフレームでは画素平均値が180,Ir画素のフレームでは画素平均値が150であったものとする。
画像処理部1c、2cは、画素が飽和しているか否かの閾値を240として、図14(d)に示すように、画素平均値が閾値以上であるW画素のフレームでは飽和が生じていると判断するが、飽和が生じていないフレーム全てを選択する。具体的には、画像処理部1c、2cは、Ye画素のフレーム、Ri画素のフレーム、Ir画素のフレームを選択し、図14(e)に示すように、カメラ1,2から得られた2組のYe画素のフレーム、Ri画素のフレーム、Ir画素のフレームの画像信号を、ステレオ処理部3に出力する。ステレオ処理部3は、2つのYe画素のフレーム、Ri画素のフレーム、Ir画素のフレーム同士をそれぞれ比較してステレオマッチング処理を行う。
このとき、基準カメラ1の目標画素のYe画素値に対して、参照カメラ2のYe画素値が一致する画素が100番目であり、基準カメラ1の目標画素のRi画素値に対して、参照カメラ2のRi画素値が一致する画素が110番目であり、基準カメラ1の目標画素のIr画素値に対して、参照カメラ2のIr画素値が一致する画素が100番目であるとする。かかる場合、画像処理部1c、2cは、多数決の原理に基づき、基準カメラ1の目標画素には、参照カメラ2の100番目の画素が対応すると判断するので(図14(f))、これを図7を参照して説明した式(1)に代入して視差を求めることができる。
尚、撮像シーンによっては、画面上に太陽などの高輝度の被写体が画面に写り込むこともあるが、太陽光以外の光が入射する画素は飽和しておらず、有効に利用できることがある。そこで、画像処理部1c、2cは、例えばW画素から出力された画素値について閾値を超えたか否かの判断を行い、一部の領域のW画素値が閾値を超えているが、残りは超えていないと判断したときは、飽和した一部の領域のW画素については、図15に示すようにYe画素値に置き換えてフレームを作成し、その画像信号同士を比較することで、適正なマッチング処理を行えるようにできる。
本発明は、ロボットカメラや監視カメラ等に適用可能であるが、用途はそれに限られない。
1,2 カメラ
1a、2a レンズ
1b、2b 撮像素子
1c、2c 画像処理部
1d、2d 制御部
3 ステレオ処理部
4 演算部
10 測距装置

Claims (7)

  1. 予め定める間隔だけ離間して設けられ、対象物からの光を複数の異なるフィルタを介して受光することによりそれぞれ画素信号に変換する複数の画素を備えた一対の撮像素子と、前記一対の撮像素子から出力された画像信号同士を比較することにより前記離間方向における撮像素子間の視差を求める視差検出手段と、前記視差検出手段によって求められた視差に基づいて、対象物までの距離を逐次求める距離計測手段と、を有する画像処理装置において、
    前記異なるフィルタにおいて前記撮像素子の画素が飽和しやすいフィルタの飽和順位のうち、原色フィルタより上位であるフィルタを通して得られた画像信号又は画像データ同士を比較することを特徴とする画像処理装置。
  2. 前記上位であるフィルタを通して対象物からの光が入射したときに画素が飽和したときは、前記視差検出手段は、画素が飽和したフィルタより前記飽和順位で下位であるフィルタを通して得られた画像信号同士を比較することを特徴とする請求項1に記載の画像処理装置。
  3. 前記視差検出手段は、あるフィルタを通して得られた画像信号により形成される1画像における画素平均値を求め、前記画素平均値が閾値以上である場合、画素が飽和したと判断することを特徴とする請求項1又は2に記載の画像処理装置。
  4. あるフィルタを通して対象物からの光が入射したときに一部の領域の画素が飽和したときは、前記視差検出手段は、飽和した一部の領域の画素については、飽和したフィルタより前記飽和順位で下位であるフィルタを通して得られた画像信号同士を比較することを特徴とする請求項1に記載の画像処理装置。
  5. 前記視差検出手段は、あるフィルタを通して得られた画像信号により形成される一部の領域の画素平均値を求め、前記画素平均値が閾値以上である場合、一部の領域の画素が飽和したと判断することを特徴とする請求項4に記載の画像処理装置。
  6. 前記一対の撮像素子から出力される画像信号同士をフィルタ毎に比較したときに、画素信号の値が等しい画素の位置が一致するフィルタを選定し、選定されたフィルタを通して得られた画像信号同士を比較することを特徴とする請求項1〜5のいずれかに記載の画像処理装置。
  7. 予め定める間隔だけ離間して設けられ、対象物からの光を複数の異なるフィルタを介して受光することによりそれぞれ画素信号に変換する複数の画素を備えた一対の撮像素子と、前記一対の撮像素子から出力された画像信号同士を比較することにより前記離間方向における撮像素子間の視差を求める視差検出手段と、前記視差検出手段によって求められた視差に基づいて、対象物までの距離を逐次求める距離計測手段と、を有する測距装置の画像処理方法において、
    前記異なるフィルタにおいて前記撮像素子の画素が飽和しやすいフィルタの飽和順位のうち、上位であるフィルタを通して対象物からの光が入射したときに画素が飽和しなければ、前記上位であるフィルタを通して得られた画像信号同士を比較し、
    前記上位であるフィルタを通して対象物からの光が入射したときに画素が飽和したときは、画素が飽和したフィルタより前記飽和順位で下位であるフィルタを通して得られた画像信号又は画像データ同士を比較することを特徴とすることを特徴とする画像処理方法。
JP2009129205A 2009-05-28 2009-05-28 画像処理装置及び測距装置の画像処理方法 Pending JP2010276469A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009129205A JP2010276469A (ja) 2009-05-28 2009-05-28 画像処理装置及び測距装置の画像処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009129205A JP2010276469A (ja) 2009-05-28 2009-05-28 画像処理装置及び測距装置の画像処理方法

Publications (1)

Publication Number Publication Date
JP2010276469A true JP2010276469A (ja) 2010-12-09

Family

ID=43423570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009129205A Pending JP2010276469A (ja) 2009-05-28 2009-05-28 画像処理装置及び測距装置の画像処理方法

Country Status (1)

Country Link
JP (1) JP2010276469A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186755A (ja) * 2011-03-08 2012-09-27 Canon Inc 画像処理装置、画像処理方法、およびプログラム
JP2013225289A (ja) * 2012-03-21 2013-10-31 Ricoh Co Ltd 複眼カメラ装置、及びそれを備えた車両
WO2015083499A1 (ja) * 2013-12-02 2015-06-11 コニカミノルタ株式会社 画像処理装置、該方法および該プログラム
JP2015222200A (ja) * 2014-05-22 2015-12-10 日本電信電話株式会社 画像処理方法及び画像処理システム
JP2016180708A (ja) * 2015-03-24 2016-10-13 キヤノン株式会社 距離計測装置、距離計測方法、およびプログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186755A (ja) * 2011-03-08 2012-09-27 Canon Inc 画像処理装置、画像処理方法、およびプログラム
JP2013225289A (ja) * 2012-03-21 2013-10-31 Ricoh Co Ltd 複眼カメラ装置、及びそれを備えた車両
WO2015083499A1 (ja) * 2013-12-02 2015-06-11 コニカミノルタ株式会社 画像処理装置、該方法および該プログラム
JP2015222200A (ja) * 2014-05-22 2015-12-10 日本電信電話株式会社 画像処理方法及び画像処理システム
JP2016180708A (ja) * 2015-03-24 2016-10-13 キヤノン株式会社 距離計測装置、距離計測方法、およびプログラム

Similar Documents

Publication Publication Date Title
JP5527448B2 (ja) 画像入力装置
US20200128172A1 (en) Image sensor and electronic apparatus
JP6492055B2 (ja) 双峰性の画像を取得するための装置
US7460160B2 (en) Multispectral digital camera employing both visible light and non-visible light sensing on a single image sensor
US10171757B2 (en) Image capturing device, image capturing method, coded infrared cut filter, and coded particular color cut filter
JP5976676B2 (ja) レンズ部の縦の色収差を利用したイメージングシステム及びその操作方法
JP4346634B2 (ja) 目標物検出装置
JP5397788B2 (ja) 画像入力装置
US8248496B2 (en) Image processing apparatus, image processing method, and image sensor
JP2016048815A (ja) 画像処理装置、画像処理方法、及び、画像処理システム
JP2010276469A (ja) 画像処理装置及び測距装置の画像処理方法
JP2011176710A (ja) 撮像装置
JP6353233B2 (ja) 画像処理装置、撮像装置、及び画像処理方法
JP6692749B2 (ja) マルチスペクトルカメラ
JP2012010141A (ja) 画像処理装置
JP5464008B2 (ja) 画像入力装置
JP6794989B2 (ja) 映像処理装置、撮影装置、映像処理方法及びプログラム
JP2012008845A (ja) 画像処理装置
JP6640555B2 (ja) カメラシステム
US9906705B2 (en) Image pickup apparatus
JP4993275B2 (ja) 画像処理装置
JP2010171950A (ja) 撮像装置および撮像装置の色補正方法
WO2011162155A1 (ja) 撮像装置
WO2015156045A1 (ja) 画像処理装置、撮像装置および撮像方法
JP2020022085A (ja) 画像信号処理装置