JP2010276006A - Pump number control by pump shaft power - Google Patents

Pump number control by pump shaft power Download PDF

Info

Publication number
JP2010276006A
JP2010276006A JP2009142728A JP2009142728A JP2010276006A JP 2010276006 A JP2010276006 A JP 2010276006A JP 2009142728 A JP2009142728 A JP 2009142728A JP 2009142728 A JP2009142728 A JP 2009142728A JP 2010276006 A JP2010276006 A JP 2010276006A
Authority
JP
Japan
Prior art keywords
pump
control
pressure
number control
shaft power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009142728A
Other languages
Japanese (ja)
Inventor
Shigeru Ogura
滋 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009142728A priority Critical patent/JP2010276006A/en
Publication of JP2010276006A publication Critical patent/JP2010276006A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems of conventional water supply secondary pump number control in which since the number control is performed by a system using a two-position regulator by load flow measurement or by use of a number control controller, attachment of a flowmeter to a pipe is needed, the cost is increased due to the necessity of the flowmeter body and incidental piping work and wiring work and, further, although appropriate flow control is performed by pump rotating speed according to the number control by adopting an inverter for water supply pressure control, pump shaft power is not taken into consideration since the increase/decrease number of pumps is determined based on a pump rated flow rate. <P>SOLUTION: In the pump number control, setting of a flowmeter is dispensed with, and pressure control that is indispensable for variable flow water supply control is used. In response to a pressure signal from a terminal pressure transmitter or terminal differential pressure transmitter, a number control controller calculates the pump shaft power from a control output of a pressure regulator according to the frequency state of an inverter pump under operation, the number of operating pumps and the state of a control bypass valve, and increase/decrease stage determination is executed based on the calculation result to perform the pump number control with an appropriate pump shaft power. This number control includes a high energy saving effect. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱交換器用熱源送水二次ポンプの台数制御に関するものである。  The present invention relates to control of the number of heat source water supply secondary pumps for heat exchangers.

従来の送水二次ポンプ台数制御は負荷流量計測による冷水または温水の負荷流量を流量計で計測し、二位置調節器のオンオフにて台数制御を実施する方式または台数制御コントローラにポンプの流量定格値を設定し一定時間の平均値演算した結果で負荷に合ったポンプ台数を増減段して負荷に送水する方式が広く知られている。  Conventional control of the number of secondary water pumps uses a flow meter to measure the load flow of cold water or hot water by load flow measurement, and controls the number of units by turning on and off the two-position controller. A method of supplying water to the load by increasing / decreasing the number of pumps suitable for the load based on the result of calculating the average value for a certain period of time is widely known.

特開2000−265967JP 2000-265967 A 特開平8−261190JP-A-8-261190

従来の送水二次ポンプ台数制御は負荷流量計測による二位置調節器のオンオフにて台数制御する方式または台数制御コントローラで台数制御をするため、流量計を送水配管に取付ける必要があり流量計本体と配管工事および配線工事が必要で費用が高額になる。  The conventional control of the number of secondary water pumps controls the number of units by turning on and off the two-position controller based on load flow measurement, or the number control controller controls the number of units, so it is necessary to attach a flow meter to the water supply pipe. Piping work and wiring work are necessary, and the cost is high.

近年ではポンプ台数制御に合わせて送水圧力制御にインバータを採用してポンプ回転数を制御してより適切な流量制御を実施しているがポンプ増減段をポンプ定格流量にて判断するためポンプ軸動力が考慮されていない。  In recent years, an inverter has been adopted to control the number of pumps to control the pump rotation speed by controlling the pump rotation speed. Is not taken into account.

また送水圧力制御も送水元圧力制御より送水負荷側の末端にて圧力制御する末端圧制御または末端差圧制御方式で、負荷側の熱交換器流量に合った送水で省エネルギー効果が得られることから近年多くの送水二次ポンプで採用されているが、この末端に取付けた圧力発信器または差圧発信器を有効に利用していない。  Also, the water pressure control is a terminal pressure control or terminal differential pressure control system that controls the pressure at the terminal on the water supply load side than the water source pressure control, and energy saving effect is obtained by water supply that matches the flow rate of the heat exchanger on the load side. In recent years, it has been adopted in many water secondary pumps, but the pressure transmitter or differential pressure transmitter attached to this end is not used effectively.

本発明は末端圧発信器または末端差圧発信器からの圧力制御で圧力調節器の制御出力信号から運転中のポンプインバータ周波数状態と圧力バイパス弁開度状態から台数制御コントローラがポンプの軸動力演算とバイパス流量を判断しポンプの台数制御をするものである。  In the present invention, the pressure control from the terminal pressure transmitter or the terminal differential pressure transmitter is used to calculate the shaft power of the pump based on the pump inverter frequency state and the pressure bypass valve opening state during operation from the control output signal of the pressure regulator. The bypass flow rate is judged and the number of pumps is controlled.

本発明は下記に記載されるような効果がある。  The present invention has the following effects.

流量計本体と配管工事および配線工事が不必要で費用が軽減できる。  The flow meter body, piping work and wiring work are unnecessary and the cost can be reduced.

ポンプにはインバータが必要だが台数制御コントローラがポンプの軸動力を考慮してポンプの台数制御を適正に判断して熱交換器負荷に対応できため無駄なエネルギーを使わずランニングコストの低減と省エネルギー効果が多くなり、地球温暖化ガスO2排出量の削減に貢献できる。  Although an inverter is required for the pump, the unit controller can properly determine the number control of the pump in consideration of the shaft power of the pump and respond to the heat exchanger load, thus reducing the running cost without using wasted energy and saving energy Can contribute to the reduction of global warming gas O2 emissions.

本発明の台数制御コントローラ制御ブロック図の実施例である。It is an Example of the unit control controller control block diagram of this invention. 台数制御コントローラのブロック図である。It is a block diagram of a number control controller. 熱交換器用熱源計装図である。It is a heat source instrumentation figure for heat exchangers. (A)は圧力調節器制御出力グラフである。(B)はインバータ動作とバイパス弁開度作動グラフである。(A) is a pressure regulator control output graph. (B) is an inverter operation | movement and a bypass valve opening degree operation | movement graph. (C)はポンプ流量比例曲線図である。(D)はポンプ吐出圧比例曲線図である。(E)はポンプ軸動力比例曲線図である。(C) is a pump flow rate proportional curve. (D) is a pump discharge pressure proportional curve. (E) is a pump shaft power proportional curve diagram. 熱交換器用熱源送水配管抵抗線図とポンプ運転圧力線図である。It is a heat source water supply piping resistance diagram for heat exchangers, and a pump operation pressure diagram. 送水配管抵抗線図とポンプ運転圧力線図よる台数制御の増断判断図である。It is an increase / decision judgment figure of unit control by a water supply piping resistance diagram and a pump operation pressure diagram.

図3は熱交換器用熱源計装図で送水配管末端に取付けた末端差圧発信器3から圧力信号を圧力用調節器2に入力し制御された制御出力信号を変換器4に入力して出力をポンプ用インバータ6で送水ポンプ5の回転数制御と圧力制御バイパス弁7の開度調整により適切な送水圧制御を実施する。  FIG. 3 is a heat source instrumentation diagram for a heat exchanger. A pressure signal is input to a pressure regulator 2 from a terminal differential pressure transmitter 3 attached to the end of a water supply pipe, and a controlled control output signal is input to a converter 4 for output. The pump inverter 6 performs appropriate water pressure control by controlling the rotational speed of the water pump 5 and adjusting the opening of the pressure control bypass valve 7.

圧力用調節器2からの制御出力を台数制御コントローラに入力し、制御出力信号と運転台数により軸動力演算の結果で増減段判断を実行しポンプ台数制御をする。  The control output from the pressure controller 2 is input to the unit control controller, and the number of pumps is controlled by executing the increase / decrease stage determination based on the result of the shaft power calculation based on the control output signal and the number of operating units.

図4、(A)図は圧力制御用調節器の制御信号グラフでその信号を変換器4に入力して変換器4出力の一例として(B)図グラフのようにポンプ用インバータを50%から100%周波数で動作させ、圧力制御バイパス弁を0%から100%で作動させた場合を示している。  FIGS. 4A and 4B are control signal graphs of the pressure control regulator, and the signals are input to the converter 4 as an example of the output of the converter 4B. As shown in the graph of FIG. It shows a case where the operation is performed at a frequency of 100% and the pressure control bypass valve is operated from 0% to 100%.

図5はポンプ回転数による変化グラフで流量(C)図と吐出圧力(D)図およびポンプ用三相電動モータの軸動力(E)図であり流量は比例して吐出圧力は2乗に比例する、またポンプ用三相電動モータの軸動力は3乗に比例するため、周波数100%で運転しているときは流量、吐出圧、軸動力は100%で周波数を60%に変えると理論上流量は60%になり吐出圧は36%でポンプ用三相電動モータの軸動力は21.6%になる。  FIG. 5 is a graph showing the flow rate (C), the discharge pressure (D), and the shaft power (E) of the three-phase electric motor for the pump. The flow rate is proportional and the discharge pressure is proportional to the square. The shaft power of the three-phase electric motor for pumps is proportional to the third power, so when operating at a frequency of 100%, the flow rate, discharge pressure, shaft power is 100% and the frequency is changed to 60%. The flow rate is 60%, the discharge pressure is 36%, and the shaft power of the pump three-phase electric motor is 21.6%.

このことから1台のポンプで100%の運転より、60%の2台運転の方がポンプ用三相電動モータの軸動力43.2%の消費で送水流量が120%と多くなる。  Therefore, 60% of the two pumps consume 43.2% of the shaft power of the pump three-phase electric motor and 120% of the water supply flow rate is higher than that of 100% with one pump.

図6は熱交換器用熱源送水配管の抵抗線図13で流量が増加すると配管抵抗も増加していく、このときの送水圧として送水ポンプが負荷側の送水圧力として必要な圧力14の線図になる。  FIG. 6 is a resistance diagram of the heat source water supply piping for the heat exchanger. As the flow rate increases, the piping resistance also increases. As a water supply pressure at this time, the water pump shows a pressure 14 required as a load side water supply pressure. Become.

また図6にポンプ台数制御時の定格運転のポンプ1台運転9a、2台運転10a、3台運転11a、4台運転12aおよびインバータ最低設定周波数の一例として1台運転9b、2台運転10b、3台運転11b、4台運転12bの圧力線図を示してある。  FIG. 6 shows a single operation 9b, a two operation 10b as an example of the pump single operation 9a, a two operation 10a, a three operation 11a, a four operation 12a, and an inverter minimum set frequency in the rated operation when controlling the number of pumps. The pressure diagram of 3 unit operation 11b and 4 unit operation 12b is shown.

従来の流量制御によるポンプ台数制御はポンプの定格値により増段ポイント15を設定し、流量が増段設定流量を一定時間超えるとポンプ増段を実行して減段ポイント16を一定時間下回るとポンプ減段を実行する。  In the conventional control of the number of pumps by the flow rate control, the step increase point 15 is set according to the rated value of the pump, and when the flow rate exceeds the step increase set flow rate for a certain time, the pump step increase is executed and when the flow rate control falls below the step decrease point 16 for a certain time. Perform step reduction.

図7は本発明の実施例をグラフに示した抵抗線図13と供給圧力として必要な圧力14の線図に加え定格運転のポンプ1台運転9a、2台運転10aとインバータによる最低設定周波数の一例として1台運転9b、台運転10bを示した圧力線図にポンプ1台をインバータ運転で周波数を増加させたときの圧力線図9cが示してあります。  FIG. 7 is a graph showing the resistance diagram 13 of the embodiment of the present invention and the diagram of the pressure 14 required as the supply pressure, in addition to the rated operation of the single pump operation 9a, the dual operation 10a, and the minimum set frequency by the inverter. As an example, a pressure diagram 9c when the frequency is increased by inverter operation of one pump is shown in the pressure diagram showing single operation 9b and stand operation 10b.

この圧力線図を確認するとインバータにより周波数を増加させた1台運転の圧力線図9cが最低周波数で2台運転した時の圧力線図10bを越えてしまうポイントが発生します。このときに1台運転で周波数を上げた軸動力と2台最低周波数で運転した軸動力を比較した結果、2台運転の軸動力が少なければ2台のポンプで負荷側に送水する方が適切かつ省エネルギーな台数制御が可能になる。  If this pressure diagram is confirmed, there will be a point where the pressure diagram 9c of the single unit operation with the frequency increased by the inverter exceeds the pressure diagram 10b when two units are operated at the lowest frequency. At this time, as a result of comparing the shaft power increased in frequency with one unit and the shaft power operated at the lowest frequency of two units, it is more appropriate to feed water to the load side with two pumps if the shaft power of two units is small In addition, energy-saving unit control is possible.

ポンプの増減段は台数制御コントローラのプログラム演算で最適軸動力を判断させポンプ増段を実行し減段は送水流量が減ることでインバータの周波数が最低になったのち圧力制御バイパス弁7が開き始めの一定開度を超えたときポンプ減段を実行する。  The increase / decrease stage of the pump determines the optimum shaft power by the program calculation of the unit controller, and the pump increase stage is executed. In the decrease stage, the pressure control bypass valve 7 begins to open after the frequency of the inverter becomes the minimum by reducing the water flow rate. Pump destage is executed when the predetermined opening is exceeded.

図3では末端差圧発信器3で末端差圧を測定する形態を示したが、末端にある熱交換器上流配管部から取出した圧力発信器の形態であっても本発明の効果は同一である。  Although FIG. 3 shows a form in which the terminal differential pressure is measured by the terminal differential pressure transmitter 3, the effect of the present invention is the same even in the form of the pressure transmitter taken out from the heat exchanger upstream pipe at the terminal. is there.

図1は台数制御コントローラ制御ブロック図で示すように圧力制御信号によりポンプ軸動力を演算して運転台数を掛算した値とポンプ最低周波数に運転台数プラス1台の軸動力を掛けた値を比較判断し、増断タイマーの設定タイムアップ後にポンプ増断をする。  Figure 1 shows a comparison of the value obtained by calculating the pump shaft power by the pressure control signal and multiplying the number of operating units by the pressure control signal and the value obtained by multiplying the minimum pump frequency by the number of operating units plus one shaft power Then, the pump is cut off after the set-up timer is up.

なお、ポンプ最低周波数に運転台数プラス1台の軸動力を掛けた値には運転台数により運転台数補正値を付加することでポンプ吐出圧補正を実施する。  The pump discharge pressure correction is carried out by adding the operation number correction value to the value obtained by multiplying the minimum pump frequency by the number of operating units plus one shaft power.

また減段は、圧力制御信号でポンプ用インバータの最低周波数に落ちた後に圧力制御バイパス弁が一定開度以上で減段タイマーの設定タイムアップ後にポンプ減段をする。  The step-down step is performed after the pressure control bypass valve is over a certain opening degree after the pressure control signal falls to the lowest frequency of the pump inverter, and the step-down timer is set up after the step-down timer is set up.

増断または減段が実行された後は圧力制御を安定させる時間として効果待ちタイマーを設定し、つぎの増減断判断を実行する。  After the increase or decrease step is executed, an effect waiting timer is set as the time to stabilize the pressure control, and the next increase / decrease determination is executed.

図2は台数制御コントローラのブロック図を示してあるが、圧力制御部とインバータ出力信号および圧力制御バイパス出力信号を備えた形態であっても本発明の効果は同一である。  FIG. 2 shows a block diagram of the unit control controller, but the effect of the present invention is the same even if the pressure control unit, the inverter output signal, and the pressure control bypass output signal are provided.

1、台数制御コントローラ
2、差圧力調節器
3、差圧発信器
4、変換器
5、送水ポンプ
6、インバータ
7、バイパス弁
8、熱交換器
9、1台運転時ポンプ吐出圧力線図
10、2台運転時ポンプ吐出圧力線図
11、3台運転時ポンプ吐出圧力線図
12、4台運転時ポンプ吐出圧力線図
13、送水配管圧力損失線図
14、必要送水圧力線図
15、ポンプ増段ポイント
16、ポンプ減段ポイント
201、圧力制御信号
401、インバータ動作グラフ
402、圧力制御バイパス弁動作グラフ
1. Unit control controller 2, differential pressure regulator 3, differential pressure transmitter 4, converter 5, water pump 6, inverter 7, bypass valve 8, heat exchanger 9, pump discharge pressure diagram when one unit is operating 10, Pump discharge pressure diagram for two-unit operation 11, pump discharge pressure diagram for three-unit operation 12, pump discharge pressure diagram for four-unit operation 13, water supply pipe pressure loss diagram 14, required water supply pressure diagram 15, pump increase Stage point 16, pump reduction stage 201, pressure control signal 401, inverter operation graph 402, pressure control bypass valve operation graph

Claims (1)

回転数の制御可能な複数台のポンプを備え末端圧制御または末端差圧制御を使用して負荷流量計を使わないポンプ台数制御方法において、圧力制御出力信号によりポンプ軸動力を台数制御コントローラで仮想演算しポンプ運転増段要求と送水圧力制御バイパス弁開度によるポンプ運転減段要求によりポンプ台数を制御させることを特徴とするポンプの運転台数制御方法。  In the pump number control method that uses multiple pressure-controllable pumps and does not use a load flow meter using terminal pressure control or terminal differential pressure control, the pump shaft power is virtually controlled by the number control controller using the pressure control output signal. A method for controlling the number of pumps to be operated, wherein the number of pumps is controlled by a pump operation step increase request and a pump operation step reduction request based on a water supply pressure control bypass valve opening.
JP2009142728A 2009-05-26 2009-05-26 Pump number control by pump shaft power Pending JP2010276006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142728A JP2010276006A (en) 2009-05-26 2009-05-26 Pump number control by pump shaft power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142728A JP2010276006A (en) 2009-05-26 2009-05-26 Pump number control by pump shaft power

Publications (1)

Publication Number Publication Date
JP2010276006A true JP2010276006A (en) 2010-12-09

Family

ID=43423175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142728A Pending JP2010276006A (en) 2009-05-26 2009-05-26 Pump number control by pump shaft power

Country Status (1)

Country Link
JP (1) JP2010276006A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418703A (en) * 2011-11-29 2012-04-18 深圳市宏事达实业发展有限公司 Online matching control device for intelligent water pump system
JP2014145493A (en) * 2013-01-28 2014-08-14 Shin Nippon Air Technol Co Ltd Pump operation unit number decision control method in two-pump type heat source equipment
CN104884809A (en) * 2012-12-17 2015-09-02 Itt制造企业有限责任公司 Optimized technique for staging and de-staging pumps in a multiple pump system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418703A (en) * 2011-11-29 2012-04-18 深圳市宏事达实业发展有限公司 Online matching control device for intelligent water pump system
CN104884809A (en) * 2012-12-17 2015-09-02 Itt制造企业有限责任公司 Optimized technique for staging and de-staging pumps in a multiple pump system
US10082804B2 (en) 2012-12-17 2018-09-25 Itt Manufacturing Enterprises Llc Optimized technique for staging and de-staging pumps in a multiple pump system
JP2014145493A (en) * 2013-01-28 2014-08-14 Shin Nippon Air Technol Co Ltd Pump operation unit number decision control method in two-pump type heat source equipment

Similar Documents

Publication Publication Date Title
CN110274361B (en) Water multi-connected air conditioning system and control method of variable-frequency water pump thereof
TWI295340B (en) Operation method of energy-saving fluid transporting machineries in parallel array with constant pressure
JP4106054B2 (en) Stability control system and method for centrifugal compressors operated in parallel
EP2372127A1 (en) Control device for waste heat recovery system
JP2007240131A (en) Optimization control of heat source unit and accessory
CN110793173B (en) Water pump frequency conversion control method based on dynamic change of worst air conditioner tail end
CN104534628A (en) Control method and system of variable-frequency cooling water pump
CN109681416A (en) The control method of cooling pump
KR20120117355A (en) Variable flow heating control system and heating control method using thereof
JP2010276006A (en) Pump number control by pump shaft power
JP4669335B2 (en) Control method of heat transfer device in air conditioning heat source system
JP2007092582A (en) Fluid control device and fluid control method
CN205783571U (en) A kind of central air conditioner cooling system energy-saving control apparatus
JP5261153B2 (en) Heat source system
WO2013016883A1 (en) Flow-changing cyclic heat pump water heater
JP4939612B2 (en) Compressor control device and control method
CN101363654B (en) Power-saving device of central air-conditioning
CN109307316A (en) Energy-saving control method and heat exchange station for frequency conversion pump group
KR101367857B1 (en) Booster pump control system having complex inverter type and control method thereof
CN203024338U (en) Energy-saving control device of central air conditioner and central air conditioner
JP2009036422A (en) Heat source system
JPH08291798A (en) Water feed device
JP5313848B2 (en) Water supply pressure control system and method
JP6832732B2 (en) Refrigeration system
CN201322411Y (en) Electricity-saving device for central air conditioner