JP2010275891A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2010275891A
JP2010275891A JP2009127459A JP2009127459A JP2010275891A JP 2010275891 A JP2010275891 A JP 2010275891A JP 2009127459 A JP2009127459 A JP 2009127459A JP 2009127459 A JP2009127459 A JP 2009127459A JP 2010275891 A JP2010275891 A JP 2010275891A
Authority
JP
Japan
Prior art keywords
flow rate
internal combustion
exhaust gas
amount
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009127459A
Other languages
Japanese (ja)
Other versions
JP5004036B2 (en
Inventor
Shigeto Yabaneta
茂人 矢羽田
Tomohiro Ueno
友博 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009127459A priority Critical patent/JP5004036B2/en
Priority to DE102010029325.3A priority patent/DE102010029325B4/en
Publication of JP2010275891A publication Critical patent/JP2010275891A/en
Application granted granted Critical
Publication of JP5004036B2 publication Critical patent/JP5004036B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0601Parameters used for exhaust control or diagnosing being estimated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine, acquiring flow rate of gas as a whole flowing in DPF, by adding recirculation quantity by low pressure EGR to intake air quantity and accurately estimating quantity of PM accumulated on DPF, using the same when a low pressure EGR pipe is equipped. <P>SOLUTION: ECU 9 estimates the accumulated quantity of PM on the DPF 7 from entire exhaust gas flow rate and differential pressure between, before and after the DPF 7 measured by a differential pressure sensor 70, and regenerates the DPF 7 by burning PM accumulated on the DPF 7, if the estimation value exceeds a prescribed value. The entire exhaust gas flow rate is total of exhaust gas recirculation quantity by the low pressure EGR pipe 6 and intake air quantity at a position of an air flow meter 30. The entire exhaust gas flow rate is obtained by converting mass flow rate of gas at a position of an engine 2 to volume flow rate, at a position of the DPF 7 by the temperature and the pressure of the DPF 7. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

今日、内燃機関に対してすぐれた排気浄化性能が求められている。特にディーゼルエンジンにおいては、エンジンから排出される黒煙などのいわゆる排気微粒子(粒子状物質、PM:Particulate Matter)の除去が重要である。この目的のために排気管の途中にディーゼルパティキュレートフィルタ(DPF:Diesel Particulate Filter)が装備されることが多い。   Today, excellent exhaust gas purification performance is required for internal combustion engines. Particularly in diesel engines, it is important to remove so-called exhaust particulates (particulate matter, PM) such as black smoke discharged from the engine. For this purpose, a diesel particulate filter (DPF) is often provided in the middle of the exhaust pipe.

DPFがPMを捕集することにより排気中のPMは大部分が除去されるが、DPF内にPMが堆積し続ける一方では、DPFは目詰まりを起こしてしまうので、堆積されたPMを燃焼して除去することで、DPFを再生する必要がある。DPF内に堆積したPMを燃焼するためにシリンダ内でメイン噴射後に燃料を噴射するポスト噴射などの手法が用いられる。   Although most of the PM in the exhaust gas is removed by the DPF collecting the PM, the PM continues to accumulate in the DPF, but the DPF clogs and burns the accumulated PM. It is necessary to regenerate the DPF. In order to burn PM accumulated in the DPF, a technique such as post injection in which fuel is injected after main injection in the cylinder is used.

DPFにおけるPMの堆積量の推定値が真値より小さいと、PM堆積量の推定値がDPF再生が必要だと判断されるレベルに達した時点で、PM堆積量の真値はさらに大きい。したがってPM堆積量が多すぎる状態で再生して過昇温が発生する可能性がある。過昇温が発生するとDPFが溶損したり破損したり、あるい担持された触媒が劣化する等の不具合が生じてしまう。   If the estimated value of the PM accumulation amount in the DPF is smaller than the true value, the true value of the PM accumulation amount is further greater when the estimated value of the PM accumulation reaches a level at which it is determined that the DPF regeneration is necessary. Accordingly, there is a possibility that overheating occurs due to regeneration in a state where the amount of accumulated PM is too large. If an excessive temperature rise occurs, problems such as melting or damage of the DPF or deterioration of the supported catalyst may occur.

逆にDPFにおけるPMの堆積量の推定値が真値より大きいと、PM堆積量の推定値がDPF再生が必要だと判断されるレベルに達した時点で、PM堆積量の真値はそのレベルには達していない。したがって不必要な頻度で再生して、再生のための燃料消費によって燃費を悪化させる可能性がある。   Conversely, if the estimated value of the PM deposition amount in the DPF is larger than the true value, when the estimated value of the PM deposition amount reaches a level at which it is determined that the DPF regeneration is necessary, the true value of the PM deposition amount is the level. Is not reached. Therefore, there is a possibility that regeneration is performed at an unnecessary frequency, and fuel consumption is deteriorated due to fuel consumption for regeneration.

以上より高精度にPM堆積量を推定する手法の開発が必要である。下記特許文献1では、DPFの再生時期を簡単かつ高精度に判定する技術が開示されている。   Therefore, it is necessary to develop a method for estimating the amount of accumulated PM with higher accuracy. In the following Patent Document 1, a technique for easily and accurately determining the regeneration timing of the DPF is disclosed.

特開2004−19523号公報JP 2004-19523 A

内燃機関においては、排気管から吸気管への排気再循環(EGR:Exhaust Gas Recirculation)のためのEGR管を備えるものがある。EGRによって排ガスを還流することでエンジン内の燃焼温度が低下し、エンジンからのNOxの排出量を減少できる。特に近年においては、ターボチャージャーを備える内燃機関において、排気ポートと排気タービンとの間の排気管から吸気通路へ排気を還流する第1のEGRと、排気タービンよりも下流側の排気管から、コンプレッサよりも上流側の吸気通路へ排気を還流する第2のEGRというように、EGRを2系統有するものがある。   Some internal combustion engines include an EGR pipe for exhaust gas recirculation (EGR) from the exhaust pipe to the intake pipe. By recirculating the exhaust gas by EGR, the combustion temperature in the engine is lowered, and the amount of NOx emitted from the engine can be reduced. Particularly in recent years, in an internal combustion engine equipped with a turbocharger, a first EGR that recirculates exhaust gas from an exhaust pipe between an exhaust port and an exhaust turbine to an intake passage, and an exhaust pipe downstream from the exhaust turbine, Some have two systems of EGR, such as a second EGR that recirculates exhaust gas to the intake passage on the upstream side.

排気通路の上流側から還流する第1のEGRを高圧EGR、他方の排気通路の下流側から還流する第2のEGRを低圧EGRとも呼ぶ。このようにEGRを2系統備えることにより、高負荷では、ターボチャージャーの過給による吸気圧上昇分により、高圧EGRでは排気通路から還流できるEGR量が確保できないことがあるため、ターボチャージャーの過給による吸気圧上昇の影響を受けないよう、コンプレッサより吸気通路上流側に連通する低圧EGRでEGRを実行することで、高負荷域で吸気圧が過給されている状況下でも、十分なEGR量を確保できる。   The first EGR returning from the upstream side of the exhaust passage is also called a high pressure EGR, and the second EGR returning from the downstream side of the other exhaust passage is also called a low pressure EGR. By providing two EGR systems in this way, at high loads, the amount of EGR that can be recirculated from the exhaust passage may not be ensured by high pressure EGR due to the increase in intake pressure due to turbocharger turbocharging. By executing EGR with the low pressure EGR communicating with the upstream side of the intake passage from the compressor, even if the intake pressure is supercharged in the high load range Can be secured.

DPFにおけるPM堆積量を推定する際に、DPFの上流側と下流側の圧力差(前後差圧、差圧、圧力損失、圧損)と、排気流量とを用いて推定する手法がある。この手法においてEGRが1系統(高圧EGR)のみの場合は排気流量をエアフロメータによって検出される吸気量と同じとみなしてもよい。しかし、2系統のEGRを有する場合は、排気流量を算出する際には低圧EGRによる還流量を吸気量に加算しなければならないが、従来技術において、この点は考慮されていない。   When estimating the PM accumulation amount in the DPF, there is a method for estimating the pressure difference between the upstream side and the downstream side of the DPF (front-rear differential pressure, differential pressure, pressure loss, pressure loss) and the exhaust gas flow rate. In this method, when the EGR is only one system (high pressure EGR), the exhaust flow rate may be regarded as the same as the intake air amount detected by the air flow meter. However, in the case of having two EGR systems, when calculating the exhaust gas flow rate, the recirculation amount by the low pressure EGR must be added to the intake air amount, but this point is not taken into consideration in the prior art.

そこで本発明が解決しようとする課題は、上記問題点に鑑み、低圧EGR管を装備する場合に、低圧EGRによる還流量を吸気量に加算することによりDPFに流入するガス全体の流量を取得して、これを用いてDPFに堆積したPM量を高精度に推定する内燃機関の排気浄化装置を提供することにある。   Therefore, in view of the above problems, the problem to be solved by the present invention is to obtain the flow rate of the entire gas flowing into the DPF by adding the recirculation amount by the low pressure EGR to the intake air amount when the low pressure EGR pipe is equipped. An object of the present invention is to provide an exhaust purification device for an internal combustion engine that uses this to estimate the amount of PM accumulated in the DPF with high accuracy.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を達成するために、本発明に係る内燃機関の排気浄化装置は、内燃機関の排気通路に配置されて粒子状物質を捕集するフィルタと、前記フィルタの下流から前記内燃機関の上流へ排気を還流する還流通路と、前記フィルタに流入する排気流量を算出する算出手段と、前記算出手段によって算出された前記排気流量と、前記フィルタの上流側と下流側の圧力差である前後差圧とから、前記フィルタにおける粒子状物質の堆積量を推定する推定手段と、を備え、前記算出手段は、前記フィルタに流入する排気流量を、吸気量と前記還流通路を還流する排気還流量との加算値である全排気流量として算出することを特徴とする。   In order to achieve the above object, an exhaust emission control device for an internal combustion engine according to the present invention includes a filter disposed in an exhaust passage of the internal combustion engine for collecting particulate matter, and from downstream of the filter to upstream of the internal combustion engine. A recirculation passage for recirculating exhaust gas, a calculation means for calculating an exhaust flow rate flowing into the filter, a pressure difference between the exhaust flow calculated by the calculation means and a pressure difference between the upstream side and the downstream side of the filter And an estimation means for estimating the accumulation amount of particulate matter in the filter, and the calculation means calculates an exhaust flow rate flowing into the filter as an intake air amount and an exhaust gas recirculation amount that recirculates in the recirculation passage. It is calculated as a total exhaust flow rate that is an added value.

これにより本発明に係る内燃機関の排気浄化装置では、フィルタの下流から内燃機関の上流へ排気を還流する還流通路における排気還流量を、吸気量に加算することによってフィルタに流入する全排気流量を算出して、それと、フィルタの前後差圧とから、フィルタにおける粒子状物質の堆積量を推定する。したがって、フィルタの下流から内燃機関の上流へ排気を還流する還流通路を装備する場合に、従来技術のように、フィルタへ流入する排気流量を吸気量のみによって求めないで還流通路の排気還流量も加算するので、高精度な排気流量が得られる。よって高精度な排気流量によって、精度よくフィルタにおける粒子状物質の堆積量が推定できる。   Thus, in the exhaust gas purification apparatus for an internal combustion engine according to the present invention, the exhaust gas recirculation amount in the recirculation passage that recirculates the exhaust gas from the downstream of the filter to the upstream of the internal combustion engine is added to the intake air amount to obtain the total exhaust flow rate flowing into the filter. The amount of particulate matter deposited on the filter is estimated from the calculated pressure difference across the filter. Therefore, when a recirculation passage for recirculating exhaust gas from the downstream of the filter to the upstream of the internal combustion engine is provided, the exhaust gas recirculation amount of the recirculation passage is not calculated by the intake air amount alone as in the prior art. Since the addition is performed, a highly accurate exhaust flow rate can be obtained. Therefore, it is possible to accurately estimate the amount of particulate matter deposited on the filter by the highly accurate exhaust flow rate.

また前記算出手段が算出する前記全排気流量は体積流量であり、前記算出手段は、前記内燃機関の位置で質量流量を取得し、その質量流量から前記フィルタの位置で前記体積流量を算出するとしてもよい。   Further, the total exhaust flow rate calculated by the calculation means is a volume flow rate, and the calculation means obtains a mass flow rate at the position of the internal combustion engine and calculates the volume flow rate at the position of the filter from the mass flow rate. Also good.

これにより内燃機関の位置で質量流量を取得し、それからフィルタの位置で体積流量を算出するので、内燃機関の位置での質量流量を基にして、フィルタの位置での温度や圧力等の数値に従って体積流量を適切に算出できる。よって適切な手順で、フィルタにおける粒子状物質の堆積量の推定で用いられる体積流量を算出することができる。   As a result, the mass flow rate is acquired at the position of the internal combustion engine, and then the volume flow rate is calculated at the position of the filter. Therefore, based on the mass flow rate at the position of the internal combustion engine, according to numerical values such as temperature and pressure at the position of the filter Volume flow rate can be calculated appropriately. Therefore, the volume flow rate used for estimating the amount of particulate matter deposited on the filter can be calculated by an appropriate procedure.

また前記算出手段は、前記フィルタに流入する前記全排気流量を、前記内燃機関での燃料噴射量による増加分を含めて算出するとしてもよい。   The calculating means may calculate the total exhaust flow rate flowing into the filter including an increase due to a fuel injection amount in the internal combustion engine.

これにより内燃機関での燃料噴射量による増加分を含めて、フィルタに流入する全排気流量を算出するので、高精度な排気流量によってフィルタの粒子状物質の堆積量を精度よく推定することができる。   As a result, the total exhaust flow rate flowing into the filter, including the increase due to the fuel injection amount in the internal combustion engine, is calculated, so the amount of particulate matter deposited on the filter can be accurately estimated from the highly accurate exhaust flow rate. .

また前記算出手段は、前記全排気流量を、吸気側マニホールド圧力、吸気側マニホールド温度、前記内燃機関の回転数、吸気量のうち少なくとも1つを用いて算出するとしてもよい。   Further, the calculating means may calculate the total exhaust flow rate using at least one of an intake side manifold pressure, an intake side manifold temperature, a rotational speed of the internal combustion engine, and an intake air amount.

これにより吸気側マニホールド圧力、吸気側マニホールド温度、内燃機関の回転数、吸気量のうち少なくとも1つを用いることにより、内燃機関における吸気マニホールドの状態などに基づいて、高精度に、フィルタに流入する全排気流量を求めることができる。したがって、それを用いてフィルタの粒子状物質の堆積量を精度よく推定することができる。   Accordingly, by using at least one of the intake side manifold pressure, the intake side manifold temperature, the rotational speed of the internal combustion engine, and the intake air amount, the air flows into the filter with high accuracy based on the state of the intake manifold in the internal combustion engine. The total exhaust flow rate can be determined. Therefore, it is possible to accurately estimate the amount of particulate matter deposited on the filter using the filter.

また前記算出手段は、前記全排気流量を、前記内燃機関の回転数と負荷相当量とを用いて算出するとしてもよい。   Further, the calculation means may calculate the total exhaust flow rate using a rotation speed of the internal combustion engine and a load equivalent amount.

これにより内燃機関の回転数と負荷相当量とを用いることにより簡易な方法でフィルタに流入する全排気流量を求めることができる。   Thus, the total exhaust flow rate flowing into the filter can be obtained by a simple method by using the rotational speed of the internal combustion engine and the load equivalent amount.

また前記算出手段は、前記全排気流量を、前記還流通路の温度と前記還流通路での圧力損失とを用いて算出するとしてもよい。   The calculating means may calculate the total exhaust flow rate using the temperature of the recirculation passage and the pressure loss in the recirculation passage.

これにより還流通路の温度と還流通路での圧力損失とを用いることにより、還流通路の状態から、高精度にフィルタに流入する全排気流量を求めることができる。したがって、それを用いてフィルタの粒子状物質の堆積量を精度よく推定することができる。   Thus, by using the temperature of the return passage and the pressure loss in the return passage, the total exhaust flow rate flowing into the filter can be obtained with high accuracy from the state of the return passage. Therefore, it is possible to accurately estimate the amount of particulate matter deposited on the filter using the filter.

また前記還流通路を還流する排気還流量を計測する計測手段を備え、前記算出手段は、前記全排気流量を、前記計測手段による計測値を用いて算出するとしてもよい。   The exhaust gas recirculation amount that recirculates in the recirculation passage may be measured, and the calculation unit may calculate the total exhaust gas flow using a measurement value obtained by the measurement unit.

これにより還流通路を還流する排気還流量を直接計測して、これを用いて全排気流量を算出するので、高精度にフィルタに流入する全排気流量を求めることができる。したがって、それを用いてフィルタの粒子状物質の堆積量を精度よく推定することができる。   As a result, the exhaust gas recirculation amount that recirculates in the recirculation passage is directly measured and the total exhaust gas flow rate is calculated using this, so that the total exhaust gas flow rate flowing into the filter can be obtained with high accuracy. Therefore, it is possible to accurately estimate the amount of particulate matter deposited on the filter using the filter.

また前記排気還流量に基づいて、前記推定手段による推定量を補正する補正手段を備えたとしてもよい。   Further, a correction unit that corrects the estimated amount by the estimation unit based on the exhaust gas recirculation amount may be provided.

これにより排気還流量に基づいて、フィルタにおける粒子状物質の推定量を補正するので、排気還流量が大きい場合に粒子状物質の推定量が誤差の影響が大きくなることを考慮して、推定量を補正することが可能となる。したがって補正された推定量に基づいて、フィルタの再生開始の判断などを適切に行うことができる。   As a result, the estimated amount of particulate matter in the filter is corrected based on the exhaust gas recirculation amount. Therefore, the estimated amount of particulate matter is considered to be affected by errors when the exhaust gas recirculation amount is large. Can be corrected. Therefore, it is possible to appropriately determine the start of filter regeneration based on the corrected estimated amount.

また前記補正手段は、前記排気還流量が大きい程、前記堆積量を増加側に補正するとしてもよい。   The correction means may correct the accumulation amount to an increase side as the exhaust gas recirculation amount increases.

これにより排気還流量が大きい場合に粒子状物質の推定量を誤差の影響を見積もって増加側に補正するので、補正された推定量に基づいて、排気還流量が大きい場合に誤差の影響で推定値が真値よりも小さくなって再生開始が遅れて、過昇温が発生する可能性が抑制できる。   As a result, when the exhaust gas recirculation amount is large, the estimated amount of the particulate matter is corrected to the increase side by estimating the influence of the error. Therefore, when the exhaust gas recirculation amount is large, it is estimated based on the corrected estimated amount. It is possible to suppress the possibility that overheating will occur because the value becomes smaller than the true value and the start of regeneration is delayed.

また前記推定手段による堆積量の推定値に基づいて前記フィルタに堆積された粒子状物質を燃焼させる再生の要否を判定する判定手段と、前記排気還流量が所定値以上の場合は、前記判定手段による前記フィルタの再生の要否の判定を停止する停止手段と、を備えたとしてもよい。   Determining means for determining the necessity of regeneration for burning the particulate matter deposited on the filter based on the estimated value of the accumulated amount by the estimating means; and when the exhaust gas recirculation amount is greater than or equal to a predetermined value, the determination Stop means for stopping the determination of necessity of regeneration of the filter by the means.

これにより排気還流量が所定値以上の場合は、フィルタの再生の要否の判定を停止するので、排気還流量が大きい場合に粒子状物質の推定量が誤差の影響が大きくなってフィルタの再生開始の判断が適切に行われずに再生時に過昇温が発生するなどの不具合が回避できる。   As a result, if the exhaust gas recirculation amount is greater than or equal to a predetermined value, the determination of whether or not the filter needs to be regenerated is stopped. It is possible to avoid problems such as excessive temperature rise during regeneration without proper start determination.

また前記内燃機関の回転数と、前記内燃機関の負荷相当量と、前記フィルタの温度とを用いて、前記フィルタにおける粒子状物質の堆積量を推定する副推定手段を備え、前記判定手段は、前記排気還流量が所定値以上の場合は、前記副推定手段による推定値に基づいて前記フィルタの再生の要否を判定するとしてもよい。   Further, it comprises sub-estimation means for estimating the amount of particulate matter deposited on the filter using the rotational speed of the internal combustion engine, the load equivalent amount of the internal combustion engine, and the temperature of the filter, and the determination means comprises: When the exhaust gas recirculation amount is greater than or equal to a predetermined value, the necessity of regeneration of the filter may be determined based on the estimated value by the sub-estimating means.

これにより排気還流量が所定値以上の場合は、内燃機関の回転数と負荷相当量とから粒子状物質の堆積量を推定する副推定手段を用いるので、排気還流量が大きい場合に、推定手段による推定では粒子状物質の推定量が誤差の影響が大きくなるが、その誤差の影響を受けにくい副推定手段によって推定精度を維持する。したがって排気還流量が大きい場合にも推定精度を低減させずに推定値を算出することができる。   As a result, when the exhaust gas recirculation amount is equal to or greater than a predetermined value, sub-estimation means for estimating the amount of particulate matter accumulated from the rotational speed of the internal combustion engine and the load equivalent amount is used. In the estimation by, the estimated amount of the particulate matter is greatly affected by the error, but the estimation accuracy is maintained by the sub-estimating means which is not easily affected by the error. Therefore, even when the exhaust gas recirculation amount is large, the estimated value can be calculated without reducing the estimation accuracy.

また前記判定手段は、前記停止手段が前記排気還流量が所定値以上であると判断した時点での前記推定手段による推定値を初期値として、前記副推定手段による推定値を積算することにより前記推定値を取得するとしてもよい。   The determining means integrates the estimated value by the sub-estimating means with the estimated value by the estimating means at the time when the stopping means determines that the exhaust gas recirculation amount is equal to or greater than a predetermined value as the initial value. An estimated value may be acquired.

これにより停止手段が排気還流量が所定値以上であると判断した時点での推定手段による推定値を初期値として、それに副推定手段による推定値を積算するので、停止手段が排気還流量が所定値以上であると判断した時点までの精度のよい推定値を引き継ぐことで、副推定手段への切替後の推定値の精度を低減させないことが可能となる。   As a result, when the stop means determines that the exhaust gas recirculation amount is greater than or equal to a predetermined value, the estimated value by the estimating means is used as an initial value, and the estimated value by the sub-estimating means is added to the initial value. It is possible to avoid reducing the accuracy of the estimated value after switching to the sub-estimating means by taking over the accurate estimated value up to the time point when it is determined that the value is greater than or equal to the value.

本発明における内燃機関の排気浄化装置の実施例での構成図。The block diagram in the Example of the exhaust gas purification apparatus of the internal combustion engine in this invention. 実施例1におけるDPF再生処理のフローチャート。3 is a flowchart of DPF regeneration processing according to the first embodiment. 実施例2におけるDPF再生処理のフローチャート。10 is a flowchart of DPF regeneration processing in Embodiment 2. 実施例3におけるDPF再生処理のフローチャート。10 is a flowchart of DPF regeneration processing according to the third embodiment. 実施例4におけるDPF再生処理のフローチャート。10 is a flowchart of DPF regeneration processing in Embodiment 4. 排気体積流量とDPF差圧とPM堆積量との関係を示す図。The figure which shows the relationship between exhaust volume flow volume, DPF differential pressure, and PM deposition amount. PM堆積量の補正係数を示す図。The figure which shows the correction coefficient of PM deposition amount.

以下、本発明の実施形態を図面を参照しつつ説明する。まず図1は、本発明に係る内燃機関の排気浄化装置1の実施例1における装置構成の概略図である。   Embodiments of the present invention will be described below with reference to the drawings. First, FIG. 1 is a schematic diagram of a device configuration in Embodiment 1 of an exhaust gas purification device 1 for an internal combustion engine according to the present invention.

図1には、4気筒のディーゼルエンジン2(以下では単にエンジンと称する)に対して構成された排気浄化装置1の例が示されている。エンジン2及び排気浄化装置1は、吸気管3、排気管4、高圧EGR管5、低圧EGR管6を備える。排気管4にはDPF7が配置されている。吸気管3及び排気管4にはターボチャージャ8が装備されている。そして各種装置を制御する電子制御装置9(ECU:Electronic Control Unit)が装備されている。エンジン2及び排気浄化装置1は自動車に搭載されているとすればよい。   FIG. 1 shows an example of an exhaust purification device 1 configured for a four-cylinder diesel engine 2 (hereinafter simply referred to as an engine). The engine 2 and the exhaust emission control device 1 include an intake pipe 3, an exhaust pipe 4, a high pressure EGR pipe 5, and a low pressure EGR pipe 6. A DPF 7 is disposed in the exhaust pipe 4. The intake pipe 3 and the exhaust pipe 4 are equipped with a turbocharger 8. An electronic control unit 9 (ECU: Electronic Control Unit) for controlling various devices is provided. The engine 2 and the exhaust emission control device 1 may be mounted on an automobile.

吸気管3を通じてエンジン2に空気が供給される。吸気管3、及びそれに連続して形成された吸気マニホールドにはエアフロメータ30、吸気スロットル31、吸気マニホールド温度センサ32(温度センサ)、吸気マニホールド圧力センサ33(圧力センサ)、インタークーラ34が配置されている。エアフロメータ30によって吸気量が計測される。ここでの吸気量は例えば単位時間当たりの質量流量とすればよい。また吸気スロットル31の開度が調節されることによってエンジン2に供給される吸気量が増減する。温度センサ32、圧力センサ33によって吸気マニホールド35内の温度、圧力が計測される。インタークーラ34は吸気を冷却して、より多くの空気をエンジン2に供給することを可能にする。   Air is supplied to the engine 2 through the intake pipe 3. An air flow meter 30, an intake throttle 31, an intake manifold temperature sensor 32 (temperature sensor), an intake manifold pressure sensor 33 (pressure sensor), and an intercooler 34 are arranged in the intake pipe 3 and the intake manifold formed continuously therewith. ing. The air flow meter 30 measures the intake air amount. The intake air amount here may be a mass flow rate per unit time, for example. Further, the amount of intake air supplied to the engine 2 increases or decreases as the opening of the intake throttle 31 is adjusted. The temperature sensor 32 and the pressure sensor 33 measure the temperature and pressure in the intake manifold 35. The intercooler 34 cools the intake air so that more air can be supplied to the engine 2.

エンジン2にはインジェクタ20、エンジン回転数センサ21が装備されている。インジェクタ20からの噴射によってシリンダ内に燃料が供給される。エンジン回転数センサ21によってエンジン2の(単位時間あたりの)回転数が計測される。エンジン回転数センサ21は、例えばエンジン2から連結されたクランクの回転角度を計測するクランク角センサとして、その検出値がECU8へ送られてエンジンの回転数が算出されるとすればよい。   The engine 2 is equipped with an injector 20 and an engine speed sensor 21. Fuel is supplied into the cylinder by the injection from the injector 20. The engine speed sensor 21 measures the speed of the engine 2 (per unit time). The engine speed sensor 21 may be, for example, a crank angle sensor that measures the rotation angle of a crank connected from the engine 2, and the detected value is sent to the ECU 8 to calculate the engine speed.

エンジン2に接続された排気管4へ排気が排出される。排気管4には、DPF7よりも上流側に、排気温度を計測する排気温度センサ40(温度センサ)が配置されている。温度センサ40によって排気温度が計測される。   Exhaust gas is discharged to an exhaust pipe 4 connected to the engine 2. In the exhaust pipe 4, an exhaust temperature sensor 40 (temperature sensor) that measures the exhaust temperature is disposed upstream of the DPF 7. The exhaust gas temperature is measured by the temperature sensor 40.

高圧EGR管5は、排気管4におけるエンジン2の排気ポートと排気タービン81の間の位置から吸気管3への排気再循環を行うために装備されている。高圧EGR管5には高圧EGRバルブ50、高圧EGRクーラ51が装備されている。高圧EGRバルブ50の開度調節によって高圧EGRにおける排気の還流量が調節される。高圧EGRクーラ51は還流される排気を冷却して、より多くの排気を還流することを可能にする。   The high pressure EGR pipe 5 is equipped to perform exhaust gas recirculation from the position between the exhaust port of the engine 2 and the exhaust turbine 81 in the exhaust pipe 4 to the intake pipe 3. The high pressure EGR pipe 5 is equipped with a high pressure EGR valve 50 and a high pressure EGR cooler 51. The recirculation amount of the exhaust gas in the high pressure EGR is adjusted by adjusting the opening degree of the high pressure EGR valve 50. The high pressure EGR cooler 51 cools the recirculated exhaust and allows more exhaust to recirculate.

低圧EGR管6は、排気管4における排気タービン81よりも下流側、図1ではDPF7の下流側から、吸気管3への排気再循環を行うために装備されている。低圧EGR管6には低圧EGRバルブ60、低圧EGRクーラ61、差圧センサ62、流量センサ63が装備されている。低圧EGRバルブ60の開度調節によって低圧EGRにおける排気の還流量が調節される。低圧EGRクーラ61は還流される排気を冷却して、より多くの排気を還流することを可能にする。差圧センサ62は、低圧EGR管6における上流部と下流部、図1では低圧EGRクーラ61の上流側と下流側の圧力差を計測する。流量センサ63は低圧EGR管6によって再循環される排気流量を計測する。   The low-pressure EGR pipe 6 is equipped to perform exhaust gas recirculation from the downstream side of the exhaust turbine 81 in the exhaust pipe 4 to the intake pipe 3 from the downstream side of the DPF 7 in FIG. The low pressure EGR pipe 6 is equipped with a low pressure EGR valve 60, a low pressure EGR cooler 61, a differential pressure sensor 62, and a flow rate sensor 63. By adjusting the opening of the low pressure EGR valve 60, the exhaust gas recirculation amount in the low pressure EGR is adjusted. The low pressure EGR cooler 61 cools the exhaust that is recirculated, allowing more exhaust to recirculate. The differential pressure sensor 62 measures the pressure difference between the upstream portion and the downstream portion in the low pressure EGR pipe 6, that is, the upstream side and the downstream side of the low pressure EGR cooler 61 in FIG. The flow sensor 63 measures the exhaust gas flow rate recirculated by the low pressure EGR pipe 6.

DPF7は、例えば代表的な構造として、いわゆるハニカム構造において入口側と出口側を交互に目詰めした構造とすればよい。エンジン2の運転中に排出される排気にはPM(粒子状物質)が含まれ、このPMはDPF7の上記構造のDPF壁を排気が通過するときに、このDPF壁の内部あるいは表面に捕集される。DPF7は酸化触媒が担持された酸化触媒付きDPFであるとすればよい。DPF7の入口側と出口側における排気圧の差である前後差圧を計測する差圧センサ70も装備されている。   For example, the DPF 7 may have a structure in which the inlet side and the outlet side are alternately clogged in a so-called honeycomb structure. The exhaust discharged during operation of the engine 2 contains PM (particulate matter), and this PM is collected inside or on the surface of the DPF wall when the exhaust gas passes through the DPF wall having the above structure of the DPF 7. Is done. The DPF 7 may be a DPF with an oxidation catalyst on which an oxidation catalyst is supported. A differential pressure sensor 70 that measures a front-rear differential pressure, which is a difference in exhaust pressure between the inlet side and the outlet side of the DPF 7, is also provided.

ターボチャージャ8は、コンプレッサ80と排気タービン81とを備える。排気タービン81が排気により回動して、その駆動力がコンプレッサ80に伝えられて吸気を圧縮する。これにより圧縮された空気をより多くエンジン2に供給することができる。   The turbocharger 8 includes a compressor 80 and an exhaust turbine 81. The exhaust turbine 81 is rotated by exhaust gas, and the driving force is transmitted to the compressor 80 to compress the intake air. As a result, more compressed air can be supplied to the engine 2.

図1における点線は情報の伝達経路を示している。ECU9は上記各種センサの計測値を取得し、各種装置を制御する。すなわちエンジン回転数センサ21、エアフロメータ30、温度センサ32、圧力センサ33、温度センサ40、差圧センサ62、70、流量センサ63の計測値がECU9へ送られる。またECU9によりインジェクタ20によるエンジン2への燃料噴射のタイミングや噴射量、吸気スロットル31、高圧EGRバルブ50、低圧EGRバルブ60の開度が調節、制御される。ECU9は通常のコンピュータと同様の構造を有するとして、各種演算をおこなうCPUや各種情報の記憶を行うメモリ90を有するとすればよい。   A dotted line in FIG. 1 indicates an information transmission path. ECU9 acquires the measured value of the said various sensors, and controls various apparatuses. That is, the measured values of the engine speed sensor 21, the air flow meter 30, the temperature sensor 32, the pressure sensor 33, the temperature sensor 40, the differential pressure sensors 62 and 70, and the flow rate sensor 63 are sent to the ECU 9. Further, the ECU 9 adjusts and controls the timing and amount of fuel injection by the injector 20 into the engine 2 and the opening degree of the intake throttle 31, the high pressure EGR valve 50, and the low pressure EGR valve 60. The ECU 9 may have a structure similar to that of an ordinary computer, and may include a CPU that performs various calculations and a memory 90 that stores various types of information.

実施例1では、以上の装置構成のもとで、DPF7の再生処理を行う。その処理手順が図2に示されている。図2(及び後述の図3、4、5)の処理手順はプログラム化してメモリ90に記憶しておき、ECU9がそれらを自動的に実行するとすればよい。図2(及び後述の図3、4、5)のフローチャートは、DPF7の再生中のみでなく、車両の運転中、常に、例えば周期的に処理し続ければよい。   In the first embodiment, the regeneration process of the DPF 7 is performed under the above-described apparatus configuration. The processing procedure is shown in FIG. The processing procedures of FIG. 2 (and FIGS. 3, 4, and 5 described later) may be programmed and stored in the memory 90, and the ECU 9 may automatically execute them. The flowchart of FIG. 2 (and FIGS. 3, 4, and 5 to be described later) may be processed not only during the regeneration of the DPF 7 but also during the operation of the vehicle, for example, periodically.

図2の処理ではまず、手順S10でECU9は、DPF7に流入する排気の体積流量を取得する。ここでDPF7に流入する排気は、エアフロメータ30を通る吸気量と、低圧EGR管6により還流する還流排気の合計とする。体積流量の取得は以下のAからDの4方法のうちのいずれかで実行する。なお以下で体積流量あるいは質量流量とは、単位時間当たりの体積流量あるいは質量流量を指すとする。   In the process of FIG. 2, first, in step S <b> 10, the ECU 9 acquires the volume flow rate of the exhaust gas flowing into the DPF 7. Here, the exhaust gas flowing into the DPF 7 is the sum of the intake air amount passing through the air flow meter 30 and the recirculated exhaust gas recirculated by the low pressure EGR pipe 6. The acquisition of the volume flow rate is executed by any one of the following four methods A to D. In the following, the volume flow rate or mass flow rate refers to the volume flow rate or mass flow rate per unit time.

なお方法AからDのいずれでも基本的な流れとして、まずエンジン2の位置で吸気と低圧EGR還流排気との合計のガスの質量流量を算出し、それをDPF7の位置での体積流量に変換する。この手順によりDPF7の位置での温度や圧力の変化にも適切に対処できる。またDPF7の位置での体積流量への変換において、インジェクタ20からの燃料噴射量による増加分も考慮する。   In any of the methods A to D, as a basic flow, first, the mass flow rate of the sum of the intake air and the low pressure EGR recirculation exhaust gas is calculated at the position of the engine 2 and is converted into the volume flow rate at the position of the DPF 7. . With this procedure, it is possible to appropriately cope with changes in temperature and pressure at the position of the DPF 7. Further, in the conversion to the volume flow rate at the position of the DPF 7, an increase due to the fuel injection amount from the injector 20 is also taken into consideration.

まず方法Aを説明する。方法Aでは、吸気マニホールド35の位置でエンジン2に供給されるガスの質量流量を求める。具体的には、まず吸気マニホールド35の位置での体積流量を算出する。この算出は、エンジン2の排気量とエンジン2の回転数(4サイクルエンジンの場合それに2分の1を乗じた数値)との積でよい。エンジン2の排気量は、個々のエンジン2ごとに既知の数値である。エンジン2の回転数はエンジン回転数センサ21により計測すればよい。   First, the method A will be described. In the method A, the mass flow rate of the gas supplied to the engine 2 at the position of the intake manifold 35 is obtained. Specifically, the volume flow rate at the position of the intake manifold 35 is first calculated. This calculation may be a product of the displacement of the engine 2 and the rotational speed of the engine 2 (in the case of a 4-cycle engine, a value obtained by multiplying it by one half). The displacement of the engine 2 is a known value for each engine 2. The rotational speed of the engine 2 may be measured by the engine rotational speed sensor 21.

次にこうして得られたエンジン2に供給されるガスの体積流量と、吸気マニホールド35における温度と圧力の数値とから、単位時間あたりにエンジン2に供給されるガスのモル数を算出する。この算出は、公知の気体の状態方程式により行える。吸気マニホールド35における温度と圧力の数値はそれぞれ温度センサ32と圧力センサ33とによって計測すればよい。   Next, the number of moles of gas supplied to the engine 2 per unit time is calculated from the volume flow rate of the gas supplied to the engine 2 and the numerical values of the temperature and pressure in the intake manifold 35 thus obtained. This calculation can be performed by a known gas equation of state. The numerical values of the temperature and pressure in the intake manifold 35 may be measured by the temperature sensor 32 and the pressure sensor 33, respectively.

次に、こうして得られた単位時間あたりにエンジン2に供給されるガスのモル数から、エンジン2に供給されるガスの質量流量を算出する。この算出は、エンジン2に供給されるガスの成分比率を考慮しつつ分子量を乗算すれば行える。こうして得られたエンジン2に供給されるガスの質量流量は、あきらかにDPF7に供給されるガスの質量流量に等しい。   Next, the mass flow rate of the gas supplied to the engine 2 is calculated from the number of moles of gas supplied to the engine 2 per unit time thus obtained. This calculation can be performed by multiplying the molecular weight while considering the component ratio of the gas supplied to the engine 2. The mass flow rate of the gas supplied to the engine 2 thus obtained is clearly equal to the mass flow rate of the gas supplied to the DPF 7.

最後に、こうして得られたDPF7に供給されるガスの質量流量を体積流量に変換する。この算出は次の式(E1)により行う。式(E1)で、V(m/sec)が、DPF7に供給されるガスの(単位時間あたりの)体積流量である。G(g/sec)が、DPF7に供給されるガスの(単位時間当たりの)質量流量であり、上記で算出したものである。
V(m/sec)
=[G(g/sec)/28.8(g/mol)]
×22.4×10−3(m/mol)
×[T(K)/273(K)]
×[101.3(kPa)/(P0(kPa)+Pmuf(kPa)+ΔP(kPa))]
+[Q(cc/sec)/207.3(g/mol)]
×0.84(g/cc)×6.75(mol)
×22.4×10−3(m/mol)
×[T(K)/273(K)]
×[101.3(kPa)/(P0(kPa)+Pmuf(kPa)+ΔP(kPa))] (E1)
Finally, the mass flow rate of the gas supplied to the DPF 7 thus obtained is converted into a volume flow rate. This calculation is performed by the following equation (E1). In the formula (E1), V (m 3 / sec) is a volume flow rate (per unit time) of the gas supplied to the DPF 7. G (g / sec) is the mass flow rate (per unit time) of the gas supplied to the DPF 7, which is calculated above.
V (m 3 / sec)
= [G (g / sec) /28.8 (g / mol)]
× 22.4 × 10 −3 (m 3 / mol)
× [T (K) / 273 (K)]
× [101.3 (kPa) / (P0 (kPa) + Pmuf (kPa) + ΔP (kPa))]
+ [Q (cc / sec) /207.3 (g / mol)]
× 0.84 (g / cc) × 6.75 (mol)
× 22.4 × 10 −3 (m 3 / mol)
× [T (K) / 273 (K)]
× [101.3 (kPa) / (P0 (kPa) + Pmuf (kPa) + ΔP (kPa))] (E1)

式(E1)で、Q(cc/sec)は、取得した燃料噴射量から算出した単位時間当たりの燃料噴射量であり、ECU9からの燃料噴射量指令値とすればよい。Tdpf(K)はDPF温度であり、温度センサ40で計測すればよい。ΔP(kPa)は、DPF7の前後差圧であり、差圧センサ70によって計測すればよい。P0(kPa)は大気圧である。PmufはDPF7出口位置から排気管出口位置までの消音装置等による圧力損失であり、Pmufはマップを用いることによってエンジン2の運転状態から算出しても良い。式(E1)の第2項がインジェクタ20からの燃料噴射量による増加分を示している。   In equation (E1), Q (cc / sec) is a fuel injection amount per unit time calculated from the acquired fuel injection amount, and may be a fuel injection amount command value from the ECU 9. Tdpf (K) is the DPF temperature and may be measured by the temperature sensor 40. ΔP (kPa) is the differential pressure across the DPF 7 and may be measured by the differential pressure sensor 70. P0 (kPa) is atmospheric pressure. Pmuf is a pressure loss due to a silencer or the like from the DPF 7 outlet position to the exhaust pipe outlet position, and Pmuf may be calculated from the operating state of the engine 2 by using a map. The second term of the equation (E1) indicates an increase due to the fuel injection amount from the injector 20.

次に方法Bを説明する。方法Bでは、マップを用いることによってエンジン2の運転条件からエンジン2から排出されるガスの質量流量を算出する。具体的にはまず、エンジン2の運転条件、すなわちエンジン2の回転数と負荷相当量との組から低圧EGR管3によって還流される排気の質量流量への関数関係を示すマップを予め求めておいてメモリ90に記憶させておく。そしてこのマップと実際の回転数と負荷相当量の数値から還流排気の質量流量を求め、それと吸気の質量流量とを加算して、エンジン2から排出されるガスの質量流量を算出する。エンジン2の回転数は回転数センサ21によって計測すればよい。負荷相当量は例えばインジェクタ20への燃料噴射量指令値とすればよい。   Next, method B will be described. In Method B, the mass flow rate of the gas discharged from the engine 2 is calculated from the operating conditions of the engine 2 by using a map. Specifically, first, a map showing a functional relationship between the operating conditions of the engine 2, that is, the mass flow rate of the exhaust gas recirculated by the low pressure EGR pipe 3 from the set of the engine speed and the load equivalent amount is obtained in advance. And stored in the memory 90. Then, the mass flow rate of the recirculated exhaust gas is obtained from this map, the actual number of revolutions, and the value corresponding to the load, and the mass flow rate of the intake air is added to calculate the mass flow rate of the gas discharged from the engine 2. The rotational speed of the engine 2 may be measured by the rotational speed sensor 21. The load equivalent amount may be, for example, a fuel injection amount command value to the injector 20.

こうして得られたエンジン2から排出されるガスの質量流量は、あきらかにDPF7に供給されるガスの質量流量に等しい。最後にDPF7に供給されるガスの質量流量を体積流量に変換する。この算出は上記と同様、式(E1)により行えばよい。   The mass flow rate of the gas discharged from the engine 2 obtained in this way is clearly equal to the mass flow rate of the gas supplied to the DPF 7. Finally, the mass flow rate of the gas supplied to the DPF 7 is converted into a volume flow rate. This calculation may be performed by the formula (E1) as described above.

次に方法Cを説明する。方法Cでは、低圧EGR管6の上流側と下流側との差圧と、温度とを用いて、低圧EGR管6による還流排気の質量流量を求め、それと吸気の質量流量とを加算して、エンジン2に流入するガス全体の質量流量を得る。   Next, method C will be described. In the method C, the mass flow rate of the recirculated exhaust gas by the low pressure EGR pipe 6 is obtained using the differential pressure between the upstream side and the downstream side of the low pressure EGR pipe 6 and the temperature, and the mass flow rate of the intake air is added. The mass flow rate of the entire gas flowing into the engine 2 is obtained.

具体的にはまず、低圧EGR管6における上流側と下流側との差圧と、低圧EGR管6を流れるガスの流量との間の関数関係を示すマップを予め求めておいて、メモリ90に記憶しておく。そして、そのマップと低圧EGR管6における差圧の計測値とから、低圧EGR管6を流れるガスの体積流量の推定値を算出する。低圧EGR管6における差圧は、差圧センサ62によって計測すればよい。   Specifically, first, a map showing a functional relationship between the differential pressure between the upstream side and the downstream side in the low pressure EGR pipe 6 and the flow rate of the gas flowing through the low pressure EGR pipe 6 is obtained in advance, and stored in the memory 90. Remember. Then, an estimated value of the volume flow rate of the gas flowing through the low pressure EGR pipe 6 is calculated from the map and the measured value of the differential pressure in the low pressure EGR pipe 6. The differential pressure in the low pressure EGR pipe 6 may be measured by the differential pressure sensor 62.

次に、こうして得られた体積流量と、低圧EGR管6における温度と圧力とから、低圧EGR管6を流れるガスの質量流量を算出する。この算出では、体積(流量)、温度、圧力から気体の状態方程式によってガスのモル数を求め、さらにガスの成分比率を考慮しながら分子量を乗算して質量流量を算出すればよい。なお低圧EGR管6における温度は、図1の温度センサ40で計測された数値で近似的に代用してもよいし、あるいは温度センサ40を低圧EGR管6にも装備して計測してもよい。低圧EGR管6における圧力は、低圧EGR管6の上流側の圧力として、近似値として大気圧値を用いてもよい。   Next, the mass flow rate of the gas flowing through the low pressure EGR pipe 6 is calculated from the volume flow rate thus obtained and the temperature and pressure in the low pressure EGR pipe 6. In this calculation, the mass flow rate may be calculated by obtaining the number of moles of gas from the volume (flow rate), temperature, and pressure by the gas equation of state, and further multiplying the molecular weight while considering the component ratio of the gas. Note that the temperature in the low-pressure EGR pipe 6 may be approximately substituted with the numerical value measured by the temperature sensor 40 in FIG. 1 or may be measured by mounting the temperature sensor 40 on the low-pressure EGR pipe 6. . As the pressure in the low pressure EGR pipe 6, an atmospheric pressure value may be used as an approximate value as the pressure on the upstream side of the low pressure EGR pipe 6.

こうして得た低圧EGR管6を流れるガスの質量流量に、エアフロメータ30で計測した吸気の質量流量を加算して、エンジン2に供給されるガス全体の質量流量を得る。こうして得られたエンジン2に供給されるガスの質量流量は、あきらかにDPF7に供給されるガスの質量流量に等しい。最後に、こうして得られたDPF7に供給されるガスの質量流量から、DPF7に供給されるガスの体積流量を算出する。この算出は上記式(E1)により行えばよい。   The mass flow rate of the entire gas supplied to the engine 2 is obtained by adding the mass flow rate of the intake air measured by the air flow meter 30 to the mass flow rate of the gas flowing through the low pressure EGR pipe 6 thus obtained. The mass flow rate of the gas supplied to the engine 2 thus obtained is clearly equal to the mass flow rate of the gas supplied to the DPF 7. Finally, the volume flow rate of the gas supplied to the DPF 7 is calculated from the mass flow rate of the gas supplied to the DPF 7 thus obtained. This calculation may be performed by the above formula (E1).

次に方法Dを説明する。方法Dでは、流量センサ63によって直接、低圧EGR管6を流れるガス流量を計測する。ガス流量は質量流量とすればよい。その後は上記方法Cと同様に、エアフロメータ30で計測した吸気の質量流量を加算して、エンジン2に供給されるガス全体の質量流量を得て、その後、こうして得られたエンジン2に供給されるガスの質量流量、すなわちDPF7に流入するガスの質量流量から、上記式(E1)によってDPF7に流入するガスの体積流量を算出する。   Next, method D will be described. In the method D, the flow rate of the gas flowing through the low pressure EGR pipe 6 is directly measured by the flow rate sensor 63. The gas flow rate may be a mass flow rate. Thereafter, in the same manner as in the method C, the mass flow rate of the intake air measured by the air flow meter 30 is added to obtain the mass flow rate of the entire gas supplied to the engine 2, and then supplied to the engine 2 thus obtained. From the mass flow rate of the gas, that is, the mass flow rate of the gas flowing into the DPF 7, the volume flow rate of the gas flowing into the DPF 7 is calculated by the above formula (E1).

図1から容易に理解されるように、エンジン2に供給されるガスの質量流量は、新気の質量流量と低圧EGR管3により還流される排気の質量流量との合計値である。上記方法AからDにおける算出によって、エアフロメータ30によって計測できる新気のみでなく、低圧EGR管3により還流される排気も合計した、エンジン2に供給されるガスの質量流量が算出できる。   As can be easily understood from FIG. 1, the mass flow rate of the gas supplied to the engine 2 is the sum of the mass flow rate of fresh air and the mass flow rate of exhaust gas recirculated by the low-pressure EGR pipe 3. By calculating in the above methods A to D, it is possible to calculate the mass flow rate of the gas supplied to the engine 2 that includes not only the fresh air that can be measured by the air flow meter 30 but also the exhaust gas recirculated by the low pressure EGR pipe 3.

なお方法A、B、Cを用いる場合は、図1において流量センサ63を装備しなくともよい。同様に方法B、C、Dを用いる場合は、図1において温度センサ32、圧力センサ33を装備しなくともよい。方法A、B、Dを用いる場合は、図1において差圧センサ62を装備しなくともよい。   In the case of using the methods A, B, and C, the flow sensor 63 in FIG. Similarly, when the methods B, C, and D are used, the temperature sensor 32 and the pressure sensor 33 in FIG. When the methods A, B, and D are used, the differential pressure sensor 62 may not be provided in FIG.

図2に戻って、次にS20でECU9はDPF7におけるPM堆積量を推定する。この推定では、例えば図6のように、DPF7の前後差圧と、DPF7に供給される排気の体積流量と、DPF7におけるPM堆積量との3つの量の関係を示すマップを予めメモリ90に記憶しておいて、このマップと、S10で取得した排気の体積流量と、DPF7の前後差圧の計測値とから、PM堆積量の推定値を取得する。   Returning to FIG. 2, next, in S <b> 20, the ECU 9 estimates the PM accumulation amount in the DPF 7. In this estimation, for example, as shown in FIG. 6, a map indicating the relationship among the three amounts of the differential pressure across the DPF 7, the volume flow rate of the exhaust gas supplied to the DPF 7, and the PM accumulation amount in the DPF 7 is stored in the memory 90 in advance. Then, the estimated value of the PM deposition amount is acquired from this map, the volume flow rate of the exhaust gas acquired in S10, and the measured value of the differential pressure across the DPF 7.

次にS40でECU9はPM堆積量が所定値M1以上であるか否かを判定する。所定値M1は、PM堆積量がM1以上の数値ならばDPF7の再生が必要だと判断される数値である。PM堆積量がM1以上の場合(S40:YES)はS50へ進み、M1未満の場合(S40:NO)はS10へ戻って上記手順を繰り返す。   Next, in S40, the ECU 9 determines whether or not the PM accumulation amount is equal to or greater than a predetermined value M1. The predetermined value M1 is a numerical value that determines that regeneration of the DPF 7 is necessary if the PM accumulation amount is a numerical value equal to or greater than M1. When the PM accumulation amount is M1 or more (S40: YES), the process proceeds to S50, and when it is less than M1 (S40: NO), the process returns to S10 and the above procedure is repeated.

S50でECU9は、DPF7の再生開始を指令する。DPF7の再生方法としては例えば、インジェクタ21からメイン噴射後のタイミングで燃料を噴射するポスト噴射を実行する。これによりポスト噴射により筒内に噴射されて未燃のまま排気管4に排出された未燃燃料が、DPF7に達して、DPF7に担持された触媒の作用で昇温して、DPF7に堆積したPMを燃焼させる。   In S50, the ECU 9 commands the start of regeneration of the DPF 7. As a regeneration method of the DPF 7, for example, post injection is performed in which fuel is injected from the injector 21 at a timing after the main injection. As a result, the unburned fuel injected into the cylinder by the post injection and discharged to the exhaust pipe 4 while remaining unburned reaches the DPF 7, is heated by the action of the catalyst carried on the DPF 7, and is deposited on the DPF 7. Burn PM.

次にS60でECU9は、PM堆積量が所定値M2以下であるか否かを判定する。所定値M2は、PM堆積量がM2以下ならば十分にPMは燃焼したのでDPF7の再生を終了してよいと判断される数値である。PM堆積量がM2以下の場合(S60:YES)はS70へ進み、M2より大きい場合(S60:NO)はS60を繰り返す。S70でECU9は、DPF7の再生終了を指令する。以上が実施例1である。   Next, in S60, the ECU 9 determines whether or not the PM accumulation amount is equal to or less than a predetermined value M2. The predetermined value M2 is a numerical value that determines that the regeneration of the DPF 7 may be terminated because the PM has sufficiently combusted if the PM accumulation amount is equal to or less than M2. If the PM deposition amount is less than or equal to M2 (S60: YES), the process proceeds to S70, and if greater than M2 (S60: NO), S60 is repeated. In S70, the ECU 9 commands the end of regeneration of the DPF 7. The above is the first embodiment.

次に実施例2を説明する。実施例2では、実施例1における図2を図3に変更する。それ以外は実施例1と同じでよい。以下で実施例1と異なる部分を説明する。   Next, Example 2 will be described. In the second embodiment, FIG. 2 in the first embodiment is changed to FIG. Otherwise, it may be the same as in the first embodiment. Hereinafter, parts different from the first embodiment will be described.

図2から図3への変更点は、S25が追加されたことである。S25ではPM堆積量の推定値を補正する。S25における補正は、補正前の推定値に補正係数を乗算することで行う。補正係数の例が図7に示されている。同図のとおり、補正係数の値は、低圧EGR量(低圧EGR管6によって還流される排気の流量)がゼロのときは1とし、低圧EGR量が増加するほど補正係数の値も増加するとすればよい。実施例2においてS40、S60で用いられる推定値は、S25で補正された推定値だとすればよい。   The change from FIG. 2 to FIG. 3 is that S25 is added. In S25, the estimated value of the PM accumulation amount is corrected. The correction in S25 is performed by multiplying the estimated value before correction by a correction coefficient. An example of the correction coefficient is shown in FIG. As shown in the figure, the correction coefficient value is 1 when the low pressure EGR amount (the flow rate of the exhaust gas recirculated by the low pressure EGR pipe 6) is zero, and the correction coefficient value increases as the low pressure EGR amount increases. That's fine. In the second embodiment, the estimated values used in S40 and S60 may be the estimated values corrected in S25.

一般にDPF7におけるPM堆積量の推定値には、低圧EGR還流量に起因する誤差の影響を受けるが、低圧EGR量が多い場合には、この誤差の影響が大きくなる。PM堆積量が誤差により真値よりも小さく推定されると、DPF7の再生の場合に過剰に堆積したPMが一気に燃焼して過昇温が発生する可能性がある。上記補正により、低圧EGR量が多い場合には、推定量を意図的に増加側に補正するので、低圧EGR量が多いことによる過昇温の発生が抑制できる。   In general, the estimated value of the PM accumulation amount in the DPF 7 is affected by an error caused by the low pressure EGR recirculation amount. However, when the low pressure EGR amount is large, the influence of this error becomes large. If the amount of accumulated PM is estimated to be smaller than the true value due to an error, the excessively accumulated PM may burn at a time when the DPF 7 is regenerated, and an excessive temperature rise may occur. With the above correction, when the low pressure EGR amount is large, the estimated amount is intentionally corrected to the increase side, so that it is possible to suppress the occurrence of overheating due to the large low pressure EGR amount.

次に実施例3を説明する。実施例3では、実施例1における図2を図4に変更する。それ以外は実施例1と同じでよい。以下で実施例1と異なる部分を説明する。   Next, Example 3 will be described. In the third embodiment, FIG. 2 in the first embodiment is changed to FIG. Otherwise, it may be the same as in the first embodiment. Hereinafter, parts different from the first embodiment will be described.

図2から図4への変更点は、S30が追加されたことである。S30では、低圧EGR量が所定値より小さいか否かが判定される。図2では所定値をG1としている。低圧EGR量が所定値G1より小さい場合(S30:YES)はS40へ進み、所定値G1以上の場合(S30:NO)はS10へ戻って上記手順を繰り返す。   The change from FIG. 2 to FIG. 4 is that S30 is added. In S30, it is determined whether or not the low pressure EGR amount is smaller than a predetermined value. In FIG. 2, the predetermined value is G1. When the low pressure EGR amount is smaller than the predetermined value G1 (S30: YES), the process proceeds to S40, and when it is equal to or larger than the predetermined value G1 (S30: NO), the process returns to S10 and the above procedure is repeated.

すなわち実施例3では、低圧EGR量が大きすぎると判断される場合にはS40、S50におけるDPF再生を開始するか否かの判定を行わないとする。これにより低圧EGR量が大きくてPM堆積量の推定値の誤差が大きい場合に、DPF再生時期を誤る可能性を低減させる。所定値G1の値は、こうした目的を満たすように適切に定めればよい。   That is, in Example 3, when it is determined that the low pressure EGR amount is too large, it is not determined whether or not to start the DPF regeneration in S40 and S50. As a result, when the low-pressure EGR amount is large and the error in the estimated value of the PM accumulation amount is large, the possibility of erroneous DPF regeneration timing is reduced. The value of the predetermined value G1 may be appropriately determined so as to satisfy such a purpose.

次に実施例4を説明する。実施例4では、実施例3における図4を図5に変更する。それ以外は実施例3と同じでよい。以下で実施例3と異なる部分を説明する。   Next, Example 4 will be described. In the fourth embodiment, FIG. 4 in the third embodiment is changed to FIG. Other than that may be the same as in the third embodiment. Hereinafter, parts different from the third embodiment will be described.

図4から図5への変更点は、S35が追加されたことである。S35では、第2PM堆積量を用いて、DPF7の再生開始の判定を行う。ここで第2PM堆積量とは、上記のようにDPF7の前後差圧を用いて推定されたPM堆積量ではなく、エンジン2の運転条件に基づいて推定されたPM堆積量を指す。   The change from FIG. 4 to FIG. 5 is that S35 is added. In S35, the start of regeneration of the DPF 7 is determined using the second PM accumulation amount. Here, the second PM accumulation amount is not the PM accumulation amount estimated using the differential pressure across the DPF 7 as described above, but the PM accumulation amount estimated based on the operating condition of the engine 2.

具体的には、エンジン2の運転条件、すなわちエンジン2の回転数と負荷相当量とから、エンジン2から排出されるPM量への関数関係を示すマップを予め求めておいてメモリ90に記憶しておく。そしてそのマップと実際のエンジン2の運転条件とから、エンジン2から排出されるPM量(これはDPF7へのPM堆積量と等しいとみなされる)を取得する。S35では第2PM堆積量が所定値M1以上であれば(S35:YES)S50へ進み、所定値M1未満であれば(S35:NO)S10へ戻って上記手順を繰り返す。なお第2PM堆積量は、S30が否定判断となった時点でのS20によるPM堆積量推定値を初期値として、それにマップと運転条件とから算出される推定値を積算して算出すればよい。   Specifically, a map showing a functional relationship to the PM amount discharged from the engine 2 from the operating conditions of the engine 2, that is, the engine speed and the load equivalent amount, is obtained in advance and stored in the memory 90. Keep it. Then, the PM amount discharged from the engine 2 (which is considered to be equal to the PM accumulation amount on the DPF 7) is acquired from the map and the actual operating conditions of the engine 2. In S35, if the second PM accumulation amount is not less than the predetermined value M1 (S35: YES), the process proceeds to S50, and if it is less than the predetermined value M1 (S35: NO), the process returns to S10 and the above procedure is repeated. The second PM accumulation amount may be calculated by integrating the estimated value calculated from the map and the operating condition with the PM accumulation amount estimated value in S20 at the time of negative determination in S30 as an initial value.

これにより実施例4では、低圧EGR量が大きくてPM堆積量の推定値の誤差が大きい場合には、運転条件から求めた推定値による判定に切り替えることにより、DPF再生開始時期を誤る可能性を抑制する。   As a result, in Example 4, when the low pressure EGR amount is large and the error in the estimated value of the PM accumulation amount is large, switching to the determination based on the estimated value obtained from the operating conditions may cause a mistake in the DPF regeneration start timing. Suppress.

上記実施例でS10の手順とECU9とが算出手段を構成する。S20の手順とECU9とが推定手段を構成する。S25の手順とECU9とが補正手段を構成する。S40の手順とECU9とが判定手段を構成する。S30の手順とECU9とが停止手段を構成する。S35の手順とECU9が副推定手段を構成する。なお上記実施例では内燃機関としてディーゼルエンジンを用いたが、これはディーゼルエンジンでなくともよく、例えばリーンバーンガソリンエンジンでもよい。   In the above embodiment, the procedure of S10 and the ECU 9 constitute the calculation means. The procedure of S20 and the ECU 9 constitute the estimation means. The procedure of S25 and the ECU 9 constitute correction means. The procedure of S40 and the ECU 9 constitute the determining means. The procedure of S30 and the ECU 9 constitute stop means. The procedure of S35 and the ECU 9 constitute sub-estimating means. In the above embodiment, a diesel engine is used as the internal combustion engine. However, this may not be a diesel engine, for example, a lean burn gasoline engine.

1 排気浄化装置
2 ディーゼルエンジン(内燃機関)
3 吸気管
4 排気管(排気通路)
5 EGR管(還流通路)
7 ディーゼルパティキュレートフィルタ(DPF、フィルタ)
8 電子制御装置(ECU)
20 インジェクタ
21 エンジン回転数センサ
30 エアフロメータ
32、40 温度センサ
33 圧力センサ
40 排気温度センサ
62、70 差圧センサ
63 流量センサ(計測手段)
1 Exhaust gas purification device 2 Diesel engine (internal combustion engine)
3 Intake pipe 4 Exhaust pipe (exhaust passage)
5 EGR pipe (reflux passage)
7 Diesel particulate filter (DPF, filter)
8 Electronic control unit (ECU)
DESCRIPTION OF SYMBOLS 20 Injector 21 Engine speed sensor 30 Air flow meter 32, 40 Temperature sensor 33 Pressure sensor 40 Exhaust temperature sensor 62, 70 Differential pressure sensor 63 Flow rate sensor (measuring means)

Claims (12)

内燃機関の排気通路に配置されて粒子状物質を捕集するフィルタと、
前記フィルタの下流から前記内燃機関の上流へ排気を還流する還流通路と、
前記フィルタに流入する排気流量を算出する算出手段と、
前記算出手段によって算出された前記排気流量と、前記フィルタの上流側と下流側の圧力差である前後差圧とから、前記フィルタにおける粒子状物質の堆積量を推定する推定手段と、
を備え、
前記算出手段は、前記フィルタに流入する排気流量を、吸気量と前記還流通路を還流する排気還流量との加算値である全排気流量として算出することを特徴とする内燃機関の排気浄化装置。
A filter disposed in the exhaust passage of the internal combustion engine for collecting particulate matter;
A recirculation passage for recirculating exhaust gas from downstream of the filter to upstream of the internal combustion engine;
Calculating means for calculating an exhaust flow rate flowing into the filter;
Estimating means for estimating the amount of particulate matter deposited on the filter from the exhaust flow rate calculated by the calculating means and a front-rear differential pressure that is a pressure difference between the upstream side and the downstream side of the filter;
With
The exhaust gas purification apparatus for an internal combustion engine, wherein the calculating means calculates an exhaust flow rate flowing into the filter as a total exhaust flow rate that is an addition value of an intake air amount and an exhaust gas recirculation amount that recirculates in the recirculation passage.
前記算出手段が算出する前記全排気流量は体積流量であり、前記算出手段は、前記内燃機関の位置で質量流量を取得し、その質量流量から前記フィルタの位置で前記体積流量を算出する請求項1に記載の内燃機関の排気浄化装置。   The total exhaust flow rate calculated by the calculation unit is a volume flow rate, and the calculation unit obtains a mass flow rate at a position of the internal combustion engine and calculates the volume flow rate at a position of the filter from the mass flow rate. 2. An exhaust emission control device for an internal combustion engine according to 1. 前記算出手段は、前記フィルタに流入する前記全排気流量を、前記内燃機関での燃料噴射量による増加分を含めて算出する請求項1又は2に記載の内燃機関の排気浄化装置。   The exhaust emission control device for an internal combustion engine according to claim 1 or 2, wherein the calculation means calculates the total exhaust flow rate flowing into the filter including an increase due to a fuel injection amount in the internal combustion engine. 前記算出手段は、前記全排気流量を、吸気側マニホールド圧力、吸気側マニホールド温度、前記内燃機関の回転数、吸気量のうち少なくとも1つを用いて算出する請求項1乃至3のいずれか1項に記載の内燃機関の排気浄化装置。   4. The calculation unit according to claim 1, wherein the calculation unit calculates the total exhaust flow rate using at least one of an intake side manifold pressure, an intake side manifold temperature, a rotational speed of the internal combustion engine, and an intake amount. 2. An exhaust gas purification apparatus for an internal combustion engine according to 1. 前記算出手段は、前記全排気流量を、前記内燃機関の回転数と負荷相当量とを用いて算出する請求項1乃至3のいずれか1項に記載の内燃機関の排気浄化装置。   The exhaust gas purification device for an internal combustion engine according to any one of claims 1 to 3, wherein the calculation means calculates the total exhaust gas flow rate using a rotation speed and a load equivalent amount of the internal combustion engine. 前記算出手段は、前記全排気流量を、前記還流通路の温度と前記還流通路での圧力損失とを用いて算出する請求項1乃至3のいずれか1項に記載の内燃機関の排気浄化装置。   The exhaust gas purification device for an internal combustion engine according to any one of claims 1 to 3, wherein the calculation means calculates the total exhaust gas flow rate using a temperature of the recirculation passage and a pressure loss in the recirculation passage. 前記還流通路を還流する排気還流量を計測する計測手段を備え、
前記算出手段は、前記全排気流量を、前記計測手段による計測値を用いて算出する請求項1乃至3のいずれか1項に記載の内燃機関の排気浄化装置。
Measuring means for measuring the amount of exhaust gas recirculated through the recirculation passage;
The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the calculation means calculates the total exhaust gas flow using a measurement value obtained by the measurement means.
前記排気還流量に基づいて、前記推定手段による推定量を補正する補正手段を備えた請求項1乃至7のいずれか1項に記載の内燃機関の排気浄化装置。   The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 7, further comprising correction means for correcting an estimated amount by the estimation means based on the exhaust gas recirculation amount. 前記補正手段は、前記排気還流量が大きい程、前記堆積量を増加側に補正する請求項8に記載の内燃機関の排気浄化装置。   9. The exhaust gas purification apparatus for an internal combustion engine according to claim 8, wherein the correction means corrects the accumulation amount to an increase side as the exhaust gas recirculation amount increases. 前記推定手段による堆積量の推定値に基づいて前記フィルタに堆積された粒子状物質を燃焼させる再生の要否を判定する判定手段と、
前記排気還流量が所定値以上の場合は、前記判定手段による前記フィルタの再生の要否の判定を停止する停止手段と、
を備えた請求項1乃至9のいずれか1項に記載の内燃機関の排気浄化装置。
Determination means for determining whether or not regeneration is required to burn the particulate matter deposited on the filter based on the estimated value of the accumulation amount by the estimation means;
When the exhaust gas recirculation amount is equal to or greater than a predetermined value, stop means for stopping the determination of whether or not the filter needs to be regenerated by the determination means;
An exhaust purification device for an internal combustion engine according to any one of claims 1 to 9, further comprising:
前記内燃機関の回転数と、前記内燃機関の負荷相当量と、前記フィルタの温度とを用いて、前記フィルタにおける粒子状物質の堆積量を推定する副推定手段を備え、
前記判定手段は、前記排気還流量が所定値以上の場合は、前記副推定手段による推定値に基づいて前記フィルタの再生の要否を判定する請求項10に記載の内燃機関の排気浄化装置。
Sub-estimation means for estimating the amount of particulate matter deposited on the filter using the rotational speed of the internal combustion engine, the load equivalent amount of the internal combustion engine, and the temperature of the filter,
The exhaust emission control device for an internal combustion engine according to claim 10, wherein when the exhaust gas recirculation amount is equal to or greater than a predetermined value, the determination unit determines whether or not the filter needs to be regenerated based on an estimated value by the sub-estimating unit.
前記判定手段は、前記停止手段が前記排気還流量が所定値以上であると判断した時点での前記推定手段による推定値を初期値として、前記副推定手段による推定値を積算することにより前記推定値を取得する請求項11に記載の内燃機関の排気浄化装置。   The determining means integrates the estimated values by the sub-estimating means with the estimated value by the estimating means at the time when the stopping means determines that the exhaust gas recirculation amount is equal to or greater than a predetermined value as the initial value. The exhaust emission control device for an internal combustion engine according to claim 11, wherein a value is acquired.
JP2009127459A 2009-05-27 2009-05-27 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5004036B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009127459A JP5004036B2 (en) 2009-05-27 2009-05-27 Exhaust gas purification device for internal combustion engine
DE102010029325.3A DE102010029325B4 (en) 2009-05-27 2010-05-26 Exhaust emission control device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009127459A JP5004036B2 (en) 2009-05-27 2009-05-27 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010275891A true JP2010275891A (en) 2010-12-09
JP5004036B2 JP5004036B2 (en) 2012-08-22

Family

ID=43028778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009127459A Expired - Fee Related JP5004036B2 (en) 2009-05-27 2009-05-27 Exhaust gas purification device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP5004036B2 (en)
DE (1) DE102010029325B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108439A1 (en) * 2012-01-20 2013-07-25 三菱重工業株式会社 Engine exhaust purification system
CN110630354A (en) * 2019-09-30 2019-12-31 潍柴动力股份有限公司 DPF control method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104258638A (en) * 2014-09-30 2015-01-07 东莞市高朗实业有限公司 Electric air supply air filter, electric welding variable-light goggles, and controller of electric air supply air filter and electric welding variable-light goggles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222043A (en) * 2002-01-30 2003-08-08 Mazda Motor Corp Engine control unit
JP2004019529A (en) * 2002-06-14 2004-01-22 Denso Corp Exhaust gas purifying device of internal combustion engine
JP2008175079A (en) * 2007-01-16 2008-07-31 Toyota Motor Corp Exhaust system of internal combustion engine
JP2008286071A (en) * 2007-05-16 2008-11-27 Toyota Motor Corp Vehicle and method for controlling same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042476B2 (en) 2002-06-14 2008-02-06 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP3868336B2 (en) 2002-06-17 2007-01-17 株式会社竹中工務店 Molded floor board support member and stepped floor forming method
JP4513593B2 (en) 2005-02-15 2010-07-28 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP4415963B2 (en) 2006-03-17 2010-02-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222043A (en) * 2002-01-30 2003-08-08 Mazda Motor Corp Engine control unit
JP2004019529A (en) * 2002-06-14 2004-01-22 Denso Corp Exhaust gas purifying device of internal combustion engine
JP2008175079A (en) * 2007-01-16 2008-07-31 Toyota Motor Corp Exhaust system of internal combustion engine
JP2008286071A (en) * 2007-05-16 2008-11-27 Toyota Motor Corp Vehicle and method for controlling same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108439A1 (en) * 2012-01-20 2013-07-25 三菱重工業株式会社 Engine exhaust purification system
US9724643B2 (en) 2012-01-20 2017-08-08 Mitsubishi Heavy Industries, Ltd. Exhaust gas purification system for engine
CN110630354A (en) * 2019-09-30 2019-12-31 潍柴动力股份有限公司 DPF control method and device

Also Published As

Publication number Publication date
DE102010029325A1 (en) 2010-12-02
JP5004036B2 (en) 2012-08-22
DE102010029325B4 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
JP3801135B2 (en) Engine exhaust gas purification device
US7137247B2 (en) Regeneration apparatus and method for particulate filter applicable to engine exhaust gas purifying device
US7607295B2 (en) Particulate accumulation amount estimating system
US20100154387A1 (en) Abnormality detection device for reductant addition valve
US20100242443A1 (en) Exhaust aftertreatment device
JP5168089B2 (en) Catalyst diagnostic device
JP5093617B2 (en) Exhaust gas purification device for internal combustion engine
JP5376051B2 (en) Abnormality detection apparatus and abnormality detection method for EGR system
JP2010196498A (en) Pm emission estimation device
JP6252337B2 (en) Engine control device
JP2009002281A (en) Intake air amount detection device
JP4556800B2 (en) Engine back pressure control device
JP5004036B2 (en) Exhaust gas purification device for internal combustion engine
US11536209B2 (en) Control device, engine, and control method of engine
JP2008111409A (en) Failure detection system for differential pressure sensor
JP5206601B2 (en) Exhaust gas recirculation control device
WO2013018895A1 (en) Air flow rate sensor calibration device
JP6222138B2 (en) Emission estimation device for internal combustion engine
JP2010106734A (en) Egr control method for internal combustion engine, and internal combustion engine
JP2007016722A (en) Exhaust emission control device of engine
JP5111534B2 (en) EGR control device for internal combustion engine
JP2010090708A (en) Control device for internal combustion engine
JP5110203B2 (en) EGR control system for internal combustion engine
JP7206625B2 (en) Control device for internal combustion engine
JP5815296B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5004036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees