JP2010273518A - 交流電動機の制御装置 - Google Patents

交流電動機の制御装置 Download PDF

Info

Publication number
JP2010273518A
JP2010273518A JP2009125605A JP2009125605A JP2010273518A JP 2010273518 A JP2010273518 A JP 2010273518A JP 2009125605 A JP2009125605 A JP 2009125605A JP 2009125605 A JP2009125605 A JP 2009125605A JP 2010273518 A JP2010273518 A JP 2010273518A
Authority
JP
Japan
Prior art keywords
current
sampling
phase
motor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009125605A
Other languages
English (en)
Inventor
Takaaki Degaki
貴章 出垣
Sakaki Okamura
賢樹 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009125605A priority Critical patent/JP2010273518A/ja
Publication of JP2010273518A publication Critical patent/JP2010273518A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

【課題】複数相の電流検出器の出力を並列ではなく逐次にサンプリングする構成の交流電動機制御において、電流検出誤差による制御上の悪影響を抑制する。
【解決手段】V相およびW相に設けられた電流センサの出力は、共通のサンプリング指示に対して、並列にではなく逐次にサンプリングされるので、相間でサンプリングタイミングに所定時間Tspの遅れが不可避に発生する。各サンプリング指示に対する複数相間の電流サンプリング順序は固定されない。具体的には、いずれかの相の電流が極値となる電気角に対応するタイミングでは当該相が一番先にサンプリングされるように、1周期(電気角360度)内で電流サンプリング順序が適宜変更される。
【選択図】図10

Description

この発明は、交流電動機の制御装置に関し、より特定的には、複数相に設けられた電流センサのサンプリング値に基づく電動機制御に関する。
従来より、交流電動機の制御に、インバータを用いた駆動システムが採用されている。たとえば、電気自動車やハイブリッド自動車、燃料電池自動車等の電動車両では、インバータによって走行用の交流電動機の出力トルクが制御されることが一般的である。このような交流電動機の制御においては、電動機の駆動電流を電流センサによって検出し、この検出値に基づく電流制御が一般的に適用される。
このような電流検出に基づく電動機制御では、電流検出誤差を除去することが、制御精度を確保する上で重要である。たとえば、特開2001−298992号公報(特許文献1)には、交流電動機の駆動時における駆動電流のオフセット量を算出するとともに、このオフセット量に基づいて駆動信号のデューティ比を補正する制御構成が記載されている。
また、特開2008−278573号公報(特許文献2)には、電流検出手段(電流センサ)のオフセットを正確に測定するための手法が記載されている。具体的には、三相モータを動作させるインバータ装置において、三相のうちの一相を非導通とし、電流検出手段を備える二相に電流を流すように制御した上で、その際の電流検出値に基づいてオフセット量を求めることが記載されている。
また、特開2004−32917号公報(特許文献3)、特開2004−120814号公報(特許文献4)および、特開2006−271045号公報(特許文献5)には、三相モータに代表される複数相のモータ制御において、相間でのばらつきに着目してモータ制御を高度化するための手法が記載されている。
特開2001−298992号公報 特開2008−278573号公報 特開2004−32917号公報 特開2004−120814号公報 特開2006−271045号公報
上記のような電流検出に基づく電動機制御では、所定の制御周期毎に電流センサ出力をサンプリングするとともに、サンプリングされた出力値をアナログ/デジタル変換(A/D変換)することによって、電流フィードバック制御に代表される制御演算に使用する電流検出値が取得される。
一方で、三相交流電動機に代表される多相交流電動機では、各相の電流検出値を取得するためには複数相に電流センサを配置する必要が生じる。たとえば、三相交流電動機では、最低限2相に電流センサを配置する必要がある。さらに、各制御周期において複数相の電流センサの出力をサンプリングする必要がある。この際に、複数相の電流を同時にサンプリングすることが理論的には好ましい。
しかしながら、このような並列サンプリング処理を実現するためには、入力ポートを複数相に対応して設けるともに、各相でのサンプリングを並列に処理する必要がある。かかる構成の実現には、A/Dコンバータや演算処理装置(CPU)の高度化が要求されるため、制御装置のコストが上昇する。
このため、コスト面からは、複数相の電流センサの出力を順番に逐次サンプリング処理することによって、各相の電流検出値を取得する構成が好ましい。その一方で、このようにサンプリングを逐次処理する場合には、同一タイミングに対応する各相の電流検出値の間に、サンプリングタイミングの差に起因する誤差が含まれる。このため、かかる誤差に起因して制御に悪影響が発生しないように考慮する必要がある。
この発明は、このような問題点を解決するためになされたものであって、この発明の目的は、複数相の電流検出器の出力を並列ではなく逐次にサンプリングする構成の交流電動機制御において、電流検出誤差による制御上の悪影響を抑制することである。
この発明による交流電動機の制御装置は、インバータによって印加電圧が制御される交流電動機の制御装置であって、複数の電流検出器と、電動機制御部と、サンプリングタイミング指示部と、サンプリング処理部と、サンプリング順序指定部とを備える。複数の電流検出器は、交流電動機の複数相にそれぞれ設けられ、複数相の相電流をそれぞれ検出するように構成される。サンプリングタイミング指示部は、所定の制御周期に従って電流サンプリング指示を発生するように構成される。サンプリング処理部は、電流サンプリング指示に応答して、複数の電流検出器のそれぞれによる検出値を1つずつ逐次にサンプリングするように構成される。電動機制御部は、サンプリング処理部によってサンプリングされた相電流を用いた制御演算に従って、交流電動機を制御するように構成される。サンプリング順序指定部は、電流サンプリング指示のタイミングが、複数相のうちの第1の相で相電流が極値をとるタイミングに対応する場合に、複数の電流検出器のうちの第1の相に対応する電流検出器の検出値が一番先にサンプリングされるように、サンプリング処理部におけるサンプリングの順序を指定するように構成される。
上記交流電動機の制御装置によれば、相電流が極値をとるタイミングにおいて相電流の振幅が検出される点に着目して、複数相の電流検出器の出力を並列ではなく逐次にサンプリングする構成においても、各相の電流振幅を等位相でサンプリングするようにサンプリングの順序を指定することができる。これにより、相電流にリップル電流が重畳されている場合にも、逐次サンプリング処理による複数相間でのサンプリングタイミングの差に起因して、電流振幅の検出値に相間でオフセットが生じることを防止できる。この結果、複数相の電流検出器の出力を1つずつ順番にサンプリングする構成としても、電流検出誤差によって制御に悪影響が生じることを回避できる。
好ましくは、サンプリング順序指定部は、電流サンプリング指示のタイミングにおける交流電動機の電気角に基づいて、サンプリングの順序を指定するように構成される。
このようにすると、代表的には交流電動機の回転角センサ(レゾルバ等)によって検知可能である交流電動機の電気角に基づいて、相電流が極値(極大値または極小値)となる相(第1の相)が存在する場合に、当該相の電流を一番先にサンプリングするように複数相の間でのサンプリング順序を決定することができる。
また好ましくは、サンプリング順序指定部は、過去の電流サンプリング指示における複数相の相電流のサンプリング値の比較に基づいて、今回の電流サンプリング指示におけるサンプリングの順序を指定するように構成される。
このようにすると、電気角を用いることなく、電流検出器の過去の出力に基づいて、相電流が極値(極大値または極小値)となる相(第1の相)が存在する場合に、当該相の電流を一番先にサンプリングするように複数相の間でのサンプリング順序を決定することができる。
さらに好ましくは、電動機制御部は、演算部と、PWM変調部と、搬送波制御部とを含む。演算部は、制御演算に従って交流電動機の各相の電圧指令を生成するように構成される。PWM変調部は、電圧指令と搬送波との電圧比較に基づいてインバータから交流電動機に印加される各相のパルス幅変調電圧を制御するように構成される。搬送波制御部は、電圧指令の周波数のk倍(k:2以上の整数)の周波数で搬送波を発生する。
このようにすると、搬送波周波数が低く制御周期が長いため、サンプリング回数が少なくなる第1のモード(同期PWM)において、逐次サンプリング処理による電流位相のずれに起因した各相電流の振幅の検出誤差を抑制するように、サンプリング順序を適切に指定することができる。
さらに好ましくは、搬送波制御部は、第1のモードの選択時に、電圧指令のk倍の周波数で搬送波を発生する一方で、第2のモードの選択時には、第1のモードの選択時における搬送波周波数よりも高い所定周波数で搬送波を発生するように構成される。そして、サンプリング順序指定部は、第2のモードの選択時には、電流サンプリング指示のタイミングに関係なく、サンプリング処理部におけるサンプリングの順序を所定順序に固定する。
このようにすると、搬送波周波数が高く制御周期が短い第2のモード(非同期PWM)では、サンプリング順序に起因する電流検出誤差(振幅誤差)が小さいことを考慮して、サンプリング順序を指定するための演算処理を非実行とできる。この結果、制御周期が短い第2のモードにおける制御装置の演算負荷を軽減することができる。
好ましくは、交流電動機は、三相交流電動機である。そして、複数の電流検出器は、三相にそれぞれ配置される。あるいは、複数の電流検出器は、三相のうちの二相にそれぞれ配置される。
このようにすると、各相あるいは2相のそれぞれに複数の電流検出器を配置した三相交流電動機に制御において、複数の電流検出器の出力を順番にサンプリングする構成としても、相電流の振幅検出の誤差に起因して制御精度が低下することを防止できる。
この発明によれば、複数相の電流検出器の出力を順番にサンプリングする構成の交流電動機制御において、電流検出誤差による制御上の悪影響を抑制することができる。
本発明の実施の形態に従う交流電動機の制御装置が適用されるモータ駆動制御システムの全体構成図である。 PWM制御の基本動作を説明する波形図である。 同期PWMでの搬送波を説明する波形図である。 本発明の実施の形態に従う交流電動機の制御装置によるPWM制御の構成を説明する機能ブロック図である。 図4に示された電流サンプリング部の構成を説明する機能ブロック図である。 順次サンプリング処理による問題点を説明する第1の波形図である。 順次サンプリング処理による問題点を説明する第2の波形図である。 本発明の実施の形態に従う交流電動機の制御装置による電流サンプリング処理の第1の例を説明する概念図である。 本実施の形態による電流サンプリング処理の第1の例の処理手順を示すフローチャートである。 本実施の形態による交流電動機の制御装置による順次サンプリング処理を説明する概念図である。 本発明の実施の形態に従う交流電動機の制御装置による電流サンプリング処理の第1の例の変形例を説明する概念図である。 本実施の形態による電流サンプリング処理の第1の例の変形例の処理手順を示すフローチャートである。 本実施の形態による電流サンプリング処理の第2の例の処理手順を示すフローチャートである。 本発明の実施の形態に従う交流電動機の制御装置による電流サンプリング処理の第2の例を説明する概念図である。 本実施の形態による電流サンプリング処理の第2の例の変形例の処理手順を示すフローチャートである。 本発明の実施の形態に従う交流電動機の制御装置による電流サンプリング処理の第2の例の変形例を説明する概念図である。
以下では、本発明の実施の形態について図面を参照して詳細に説明する。なお以下では、図中の同一または相当部分には同一符号を付して、その説明は原則的に繰返さないものとする。
図1は、本発明の実施の形態に従う交流電動機の制御装置が適用されるモータ駆動制御システムの全体構成図である。
図1を参照して、モータ駆動制御システム100は、直流電圧発生部10♯と、平滑コンデンサC0と、インバータ14と、交流電動機M1と、制御装置30とを備える。
交流電動機M1は、たとえば、電動車両(ハイブリッド自動車、電気自動車や燃料電池車等の電気エネルギによって車両駆動力を発生する自動車をいうものとする)の駆動輪を駆動するためのトルクを発生するための走行用電動機である。あるいは、この交流電動機M1は、エンジンにて駆動される発電機の機能を持つように構成されてもよく、電動機および発電機の機能を併せ持つように構成されてもよい。さらに、交流電動機M1は、エンジンに対して電動機として動作し、たとえば、エンジン始動を行ない得るようなものとしてハイブリッド自動車に組み込まれるようにしてもよい。すなわち、本実施の形態において、「交流電動機」は、交流駆動の電動機、発電機および電動発電機(モータジェネレータ)を含むものである。
直流電圧発生部10♯は、直流電源Bと、システムリレーSR1,SR2と、平滑コンデンサC1と、コンバータ12とを含む。
直流電源Bは、代表的には、ニッケル水素またはリチウムイオン等の二次電池や電気二重層キャパシタ等の再充電可能な蓄電装置により構成される。直流電源Bが出力する直流電圧VLおよび入出力される直流電流Ibは、電圧センサ10および電流センサ11によってそれぞれ検知される。
システムリレーSR1は、直流電源Bの正極端子および電力線6の間に接続され、システムリレーSR1は、直流電源Bの負極端子およびアース線5の間に接続される。システムリレーSR1,SR2は、制御装置30からの信号SEによりオン/オフされる。
コンバータ12は、リアクトルL1と、電力用半導体スイッチング素子Q1,Q2と、ダイオードD1,D2とを含む。電力用半導体スイッチング素子Q1およびQ2は、電力線7およびアース線5の間に直列に接続される。電力用半導体スイッチング素子Q1およびQ2のオン・オフは、制御装置30からのスイッチング制御信号SG1およびSG2によって制御される。
この発明の実施の形態において、電力用半導体スイッチング素子(以下、単に「スイッチング素子」と称する)としては、IGBT(Insulated Gate Bipolar Transistor)、電力用MOS(Metal Oxide Semiconductor)トランジスタあるいは、電力用バイポ
ーラトランジスタ等を用いることができる。スイッチング素子Q1,Q2に対しては、逆並列ダイオードD1,D2が配置されている。リアクトルL1は、スイッチング素子Q1およびQ2の接続ノードと電力線6の間に接続される。また、平滑コンデンサC0は、電力線7およびアース線5の間に接続される。
インバータ14は、電力線7およびアース線5の間に並列に設けられる、U相上下アーム15と、V相上下アーム16と、W相上下アーム17とから成る。各相上下アームは、電力線7およびアース線5の間に直列接続されたスイッチング素子から構成される。たとえば、U相上下アーム15は、スイッチング素子Q3,Q4から成り、V相上下アーム16は、スイッチング素子Q5,Q6から成り、W相上下アーム17は、スイッチング素子Q7,Q8から成る。また、スイッチング素子Q3〜Q8に対して、逆並列ダイオードD3〜D8がそれぞれ接続されている。スイッチング素子Q3〜Q8のオン・オフは、制御装置30からのスイッチング制御信号SG3〜SG8によって制御される。
代表的には、交流電動機M1は、3相の永久磁石型同期電動機であり、U,V,W相の3つのコイルの一端が中性点に共通接続されて構成される。さらに、各相コイルの他端は、各相上下アーム15〜17のスイッチング素子の中間点と接続されている。
コンバータ12は、基本的には、各スイッチング周期内でスイッチング素子Q1およびQ2が相補的かつ交互にオン・オフするように制御される。コンバータ12は、昇圧動作時には、直流電源Bから供給された直流電圧VLを直流電圧VH(インバータ14への入力電圧に相当するこの直流電圧を、以下「システム電圧」とも称する)へ昇圧する。この昇圧動作は、スイッチング素子Q2のオン期間にリアクトルL1に蓄積された電磁エネルギを、スイッチング素子Q1および逆並列ダイオードD1を介して、電力線7へ供給することにより行なわれる。
また、コンバータ12は、降圧動作時には、直流電圧VHを直流電圧VLに降圧する。この降圧動作は、スイッチング素子Q1のオン期間にリアクトルL1に蓄積された電磁エネルギを、スイッチング素子Q2および逆並列ダイオードD2を介して、電力線6へ供給することにより行なわれる。これらの昇圧動作または降圧動作における電圧変換比(VHおよびVLの比)は、上記スイッチング周期に対するスイッチング素子Q1,Q2のオン期間比(デューティ比)により制御される。なお、スイッチング素子Q1およびQ2をオ
ンおよびオフにそれぞれ固定すれば、VH=VL(電圧変換比=1.0)とすることもできる。
平滑コンデンサC0は、コンバータ12からの直流電圧を平滑化し、その平滑化した直流電圧をインバータ14へ供給する。電圧センサ13は、平滑コンデンサC0の両端の電圧、すなわち、システム電圧VHを検出し、その検出値を制御装置30へ出力する。
インバータ14は、交流電動機M1のトルク指令値が正(Trqcom>0)の場合には、平滑コンデンサC0から直流電圧が供給されると制御装置30からのスイッチング制御信号SG3〜SG8に応答した、スイッチング素子Q3〜Q8のスイッチング動作により直流電圧を交流電圧に変換して正のトルクを出力するように交流電動機M1を駆動する。また、インバータ14は、交流電動機M1のトルク指令値が零の場合(Trqcom=0)には、スイッチング制御信号SG3〜SG8に応答したスイッチング動作により、直流電圧を交流電圧に変換してトルクが零になるように交流電動機M1を駆動する。これにより、交流電動機M1は、トルク指令値Trqcomによって指定された零または正のトルクを発生するように駆動される。
さらに、モータ駆動制御システム100が搭載された電動車両の回生制動時には、交流電動機M1のトルク指令値Trqcomは負に設定される(Trqcom<0)。この場合には、インバータ14は、スイッチング制御信号SG3〜SG8に応答したスイッチング動作により、交流電動機M1が発電した交流電圧を直流電圧に変換し、その変換した直流電圧(システム電圧)を平滑コンデンサC0を介してコンバータ12へ供給する。なお、ここで言う回生制動とは、電動車両を運転するドライバーによるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。
電流センサ24は、交流電動機M1に流れる電流(相電流)を検出し、その検出値を制御装置30へ出力する。なお、三相電流iu,iv,iwの瞬時値の和は零であるので、図1に示すように2相分のモータ電流(たとえば、V相電流ivおよびW相電流iw)を検出するように配置してもよい。
回転角センサ(レゾルバ)25は、交流電動機M1のロータ回転角θを検出し、その検出した回転角θを制御装置30へ送出する。制御装置30では、回転角θに基づき交流電動機M1の回転速度および回転周波数ωeを算出できる。なお、回転角センサ25については、回転角θを制御装置30にてモータ電圧や電流から直接演算することによって、配置を省略してもよい。
制御装置30は、電子制御ユニット(ECU)により構成され、予め記憶されたプログラムを図示しないCPU(Central Processing Unit)で実行することによるソフトウェア処理および/または専用の電子回路によるハードウェア処理により、モータ駆動制御システム100の動作を制御する。
代表的な機能として、制御装置30は、入力されたトルク指令値Trqcom、電圧センサ10によって検出された直流電圧VL、電流センサ11によって検出された直流電流Ib、電圧センサ13によって検出されたシステム電圧VHおよび電流センサ24によって検出されるモータ電流iv,iw、回転角センサ25からの回転角θ等に基づいて、後述する制御方式により交流電動機M1がトルク指令値Trqcomに従ったトルクを出力するように、コンバータ12およびインバータ14の動作を制御する。すなわち、コンバータ12およびインバータ14を上記のように制御するためのスイッチング制御信号SG1〜SG8を生成して、コンバータ12およびインバータ14へ出力する。
コンバータ12の昇圧動作時には、制御装置30は、システム電圧VHをフィードバック制御し、システム電圧VHが電圧指令値に一致するようにスイッチング制御信号SG1,SG2を生成する。
また、制御装置30は、電動車両が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、交流電動機M1で発電された交流電圧を直流電圧に変換するようにスイッチング制御信号SG3〜SG8を生成してインバータ14へ出力する。これにより、インバータ14は、交流電動機M1で発電された交流電圧を直流電圧に変換してコンバータ12へ供給する。
さらに、制御装置30は、電動車両が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、インバータ14から供給された直流電圧を降圧するようにスイッチング制御信号SG1,SG2を生成し、コンバータ12へ出力する。これにより、交流電動機M1が発電した交流電圧は、直流電圧に変換され、降圧されて直流電源Bに供給される。
次に、図2および図3を用いて、PWM制御の動作について説明する。
図2を参照して、PWM制御では、搬送波160と、電圧指令170との電圧比較に基づき、インバータ14の各相のスイッチング素子のオン・オフを制御することによって、交流電動機M1の各相に疑似正弦波電圧としてのパルス幅変調電圧180が印加される。搬送波160は、所定周波数の三角波やのこぎり波によって構成することができる。以下では、三角波を例示する。
非同期PWMでは、搬送波160の周波数(以下、搬送波周波数と称する)は、交流電動機M1の回転速度(回転周波数)に同期して変化することなく、電磁騒音が感知され難い比較的高い所定周波数に固定される。
一方で、図3に示されるように、同期PWMでは、交流電動機M1の回転速度(回転周波数)に同期させて、交流電動機M1の回転周波数のk倍(k:2以上の整数)となるように、搬送波周波数が制御される。この結果、同期PWMでは、交流電動機M1の電気角360度(1周期)に含まれる搬送波160のキャリア数は一定値kに制御される。なお、本実施の形態では、交流電動機M1の回転周波数に同期させて正負1パルスの矩形波電圧が印加される、いわゆる矩形波電圧制御とは区別して同期PWMを適用するため、上記のようにk≧2としている。
相電圧指令170も、交流電動機M1の回転周波数に同期するので、この結果、搬送波
160および相電圧指令170の周波数比もk:1となる。
同期PWMでは、電気角1周期(360度)あたりのキャリア数を少なくしてもパルス幅変調電圧180(図2)の正負対称性が確保できる。このため、同期PWMの適用により、制御安定性を損なうことなく搬送波周波数を非同期PWMよりも低く設定することができるので、インバータ14の各スイッチング素子の単位時間当たりのスイッチング回数を低減させることにより、スイッチング損失(電力損失)を低下することができる。したがって、同期PWMの適用により、インバータ14での電力変換効率の向上により電動車両の燃費改善や、インバータ14の各スイッチング素子の温度上昇の抑制を図ることができる。
図4は、本発明の実施の形態に従う交流電動機の制御装置によるPWM制御の構成を説明する機能ブロック図である。なお、図4に示された各機能ブロックについては、当該ブロックに相当する機能を有する回路(ハードウェア)で構成してもよいし、予め設定されたプログラムに従って制御装置30(ECU)がソフトウェア処理を実行することにより実現してもよい。
図4を参照して、電流サンプリング部300は、V相およびW相の電流センサ24の出力値ivs,iwsをサンプリングすることによって、V相およびW相の電流検出値IvおよびIwを発生する。電流サンプリング部300の詳細な構成については後ほど説明する。
PWM制御部200は、電流サンプリング部300によってサンプリングされた相電流に従う電流検出値Iv,Iwを用いた後述の制御演算に従って、交流電動機M1を制御するように構成される。
PWM制御部200は、電流指令生成部210と、座標変換部220,250と、電圧指令生成部240と、PWM変調部260と、搬送波制御部270と、PWMモード選択部280と、回転周波数演算部290とを含む。
電流指令生成部210は、予め作成されたテーブル等に従って、交流電動機M1のトルク指令値Trqcomに応じて、d軸電流指令値Idcomおよびq軸電流指令値Iqcomを生成する。
座標変換部220は、回転角センサ25によって検出される交流電動機M1の回転角θを用いた座標変換(3相→2相)により、電流サンプリング部300からの電流検出値Iv,Iwを基に、d軸電流Idおよびq軸電流Iqを算出する。
電圧指令生成部240には、d軸電流の指令値に対する偏差ΔId(ΔId=Idcom−Id)およびq軸電流の指令値に対する偏差ΔIq(ΔIq=Iqcom−Iq)が入力される。電圧指令生成部240は、d軸電流偏差ΔIdおよびq軸電流偏差ΔIqのそれぞれについて、所定ゲインによるPI(比例積分)演算を行なって制御偏差を求め、この制御偏差に応じたd軸電圧指令値Vd♯およびq軸電圧指令値Vq♯を生成する。
座標変換部250は、交流電動機M1の回転角θを用いた座標変換(2相→3相)によって、d軸電圧指令値Vd♯およびq軸電圧指令値Vq♯をU相、V相、W相の各相電圧指令Vu,Vv,Vwに変換する。
PWMモード選択部280は、交流電動機M1の動作状態(回転速度、出力トルク、温度等)および/またはインバータ14の動作状態(スイッチング素子の温度等)に基づいて、同期PWMおよび非同期PWMの一方を選択し、選択結果を示すモード信号MDを生成する。
回転周波数演算部290は、回転角センサ25の出力(回転角θ)に基づいて、交流電動機M1の回転周波数ωeを演算する。
搬送波制御部270は、PWMモード選択部280からのモード信号MD、回転周波数演算部290によって演算された回転周波数ωeおよび、予め設定された同期PWMでの
キャリア数kに基づいて、搬送波周波数fcを設定する。なお、キャリア数kについては、固定値としてもよいが、交流電動機M1および/またはインバータ14の動作状態に応じて可変に設定してもよい。
搬送波制御部270は、非同期PWMが選択されている場合には、搬送波周波数fcを所定周波数に設定する。上述のように、この所定周波数は、可聴周波数帯を考慮して、相対的に電磁騒音が感知され難い周波数に設定される。なお、交流電動機M1の動作状態に応じて、搬送波周波数fcを変化させてもよい。ただし、このような変化において、搬送波と交流電動機の回転との間での同期は確保されない。
一方、搬送波制御部270は、同期PWMが選択されている場合には、定められたキャリア数kと、演算された回転周波数ωeとに基づいて搬送波周波数fcを設定する。図3で説明したように、同期PWMでの搬送波周波数fcは、fc=k・ωeに設定される。キャリア数kは、同期PWMでの搬送波周波数fcが非同期PWMでの搬送波周波数fcよりも低くなるように設定される。交流電動機M1として三相モータを使用する場合には、kは3の倍数とされるので、一例としてk=6に設定されるものとする。
PWM変調部260は、搬送波制御部270によって設定された搬送波周波数fcに従って搬送波160(図2,3)を発生するとともに、座標変換部250からの各相電圧指令Vu,Vv,Vw(図2,3での相電圧指令170に相当)と、搬送波160との電圧比較に従って、インバータ14のスイッチング制御信号SG3〜SG8を生成する。スイッチング制御信号SG3〜SG8に従って、インバータ14の各相上下アーム素子のオン・オフを制御することによって、交流電動機M1の各相に、図2のパルス幅変調電圧180に相当する疑似正弦波電圧が印加される。
なお、PWM変調における搬送波160の振幅は、インバータ14の入力直流電圧(システム電圧VH)に相当する。ただし、各相電圧指令Vu,Vv,Vwの振幅について、Vd♯,Vq♯に基づく本来の振幅値をシステム電圧VHで除算したものに変換すれば、PWM変調部260で用いる搬送波160の振幅を固定できる。
次に、図5を用いて、電流サンプリング部300の構成を説明する。
図5を参照して、電流サンプリング部300は、サンプリングタイミング指定部310と、サンプリング順序指定部320と、サンプリング処理部330とを含む。
サンプリングタイミング指定部310は、PWM制御部200の制御周期に従って、サンプリング処理部330によるサンプリングタイミングを指定する信号Fspを生成する。すなわち、信号Fspは、「電流サンプリング指示」に対応する。
サンプリングタイミング指定部310は、モード信号MDに従って、同期PWMおよび非同期PWMの間では、異なったタイミングで信号Fspを生成する。非同期PWMが選択されている場合には、サンプリングタイミング指定部310は、図示しないクロック信号等に従って、制御周期に対応する一定の時間間隔で信号Fspを生成する。
一方で、サンプリングタイミング指定部310は、同期PWMが選択されている場合には、基本的には、搬送波160と同期させて信号Fspを生成する。同期PWMでは、同期数kが予めわかっているため、搬送波160の周期(位相)と対応付けることにより、回転角θの所定間隔毎にサンプリング周期指示を発することができる。以下では、搬送波160の半周期毎に、電流サンプリング指示Fspを発生することとする。あるいは、回転角センサ25によって検出された回転角θに従って、サンプリングを指示する信号Fspを生成してもよい。
サンプリング処理部330は、サンプリングタイミング指定部310からの信号Fspに応答して、サンプリング順序指定部320によって指定された順序に従って、U相およびW相の電流センサ24の出力値ivs,iwsを順次サンプリングする。すなわち、サンプリング処理部330は、複数相に設けられた電流センサ24のそれぞれによる検出値を1つずつ順番にサンプリングするように構成される。したがって、複数相の電流センサ24による検出値を同時並列にサンプリングする構成と比較して、サンプリング処理部330のコストが低減できる。
さらに、サンプリング処理部330は、サンプリングされた出力値ivs,iwsに従って、電流検出値Iv,Iwを生成して、PWM制御部200の座標変換部220へ送出する。座標変換部220では、Iu+Iv+Iw=0に従って、u相電流Iuについても求めることができる。
サンプリング順序指定部320は、複数相間のサンプリング順序を指示する信号Forを生成する。信号Forは、サンプリング処理部330へ送出される。
図4の例では、信号Forは、V相およびW相の電流のいずれを先にサンプリングするかを指定する。仮に図4の構成において、U相、V相およびW相の各相に電流センサ24が設けられている場合には、信号Forによって、これら3つの相についての電流サンプリング順序が指定される。
ここで、図6および図7を用いて、複数相の電流を順次にサンプリングする際に生じる問題点について説明する。
図6には、V相およびW相の電流センサ24の出力値ivs,iwsの推移が示されている。これらの出力値ivs,iwsは、電気角360度を1周期とする正弦波状の電流に、高周波のリップル電流が重畳された波形を有する。リップル電流は、交流電動機M1の巻線等のインダクタンスに起因して、インバータ14でのスイッチングに応じて発生する。
図6には、搬送波160の半周期毎に生成される電流サンプリング指示(信号Fsp)に応答して,固定的にV相電流を先にサンプリング(S1,S3,S5,S7)し、その後にW相電流をサンプリング(S2,S4,S6,S8)したときの動作が示される。
順次サンプリング処理では、同一の電流サンプリング指示に対して、V相電流のサンプリングタイミングとW相電流のサンプリングタイミングとの間には、固定的な時間差Tspが生じる。図6の例では、W相電流のサンプリングタイミングは、固定的に、V相電流のサンプリングタイミングよりも所定時間Tsp遅れる。所定時間Tspは、出力値の取込処理やA/D変換に要する時間に相当するので、制御装置30の能力によって決まる。
サンプリング点S1、S5は、V相電流が極値をとるタイミングに対応し、サンプリング点S4、S8は、W相電流が極値をとるタイミングに対応する。各相電流が極値をとるタイミングは、電流振幅の検出タイミングに対応する。
しかしながら、図6での、サンプリング点S1およびS4の比較、ならびに、サンプリング点S5およびS8の比較から理解されるように、リップル電流による電流変化および固定的なサンプリング時間差Tspの組合せによって、電流振幅に対応する電流サンプリング値について、V相およびW相の間でオフセット的な電流差が発生する虞がある。
一般的には、ローパスフィルタを通過させた電流サンプリング値に従って、PWM制御に使用される電流検出値(Iv,Iw)が生成される。したがって、上述のような相間の検出電流差は、PWM制御による電流制御に対してオフセット誤差を与える。
具体的には、図7に示すように、PWM制御部200による電流フィードバック制御は、サンプリング点S1およびS4の間の電流差、ならびに、サンプリング点S5およびS
8の間の電流差を解消するように作用される。この結果、W相電流には、オフセット誤差Iofが直流分として重畳されてしまう。
したがって、本発明の実施の形態による交流電動機の制御装置では、複数相の電流センサからの出力値を順次サンプリング処理しても、図6および図7に示したような問題が発生しないように、複数相間の電流サンプリング順序を適切に変化させる。
なお、上記の問題は、交流電動機M1の電気角360度毎の制御回数(すなわち、電流サンプリング回数)が少なくなる同期PWMの適用時に顕著となる。このため、以下では、k=6の同期PWMでの電流サンプリング処理について例示する。
図8は、本発明の実施の形態に従う交流電動機の制御装置による電流サンプリング処理の第1の例を説明する概念図である。
図8を参照して、k=6の同期PWMでは、搬送波160の半周期毎、すなわち、電気角30度毎に電流サンプリング指示(図5の信号Fsp)が発生される。したがって、同期PWMでは、搬送波160のキャリア数のカウントおよび位相から今回の電流サンプリング指示に対応する電気角を求めることができる。一方、非同期PWMにおいても、回転角センサ25の出力(回転角θ)等に基づいて、発生された電流サンプリング指示に対応する電気角を求めることが可能である。
図8に示されるように、各相電流は、電気角120度ずつ位相がずれた関係であるので、いずれの電気角で極値(極大値または極小値)となるかは決まっている。具体的には、W相電流(Iw)は、電気角150度および330度でそれぞれ極小値および極大値をとり、V相電流(Iv)は、電気角30度および210度でそれぞれ極小値および極大値をとる。すなわち、電流サンプリング指示に対応する電気角を求めることによって、当該サンプリングタイミングにおいて、相電流が極値となる相の有無を判断するとともに、相電流が極値となる相を特定することが可能である。
本実施の形態による電流サンプリング処理では、複数相間の電流サンプリング順序を固定することなく、いずれかの相の電流が極値(極大値または極小値)となる電気角に対応するタイミングでは当該相が一番先にサンプリングされるように、1周期(電気角360度)内で電流サンプリング順序を変更する。
図9は、本実施の形態による電流サンプリング処理の第1の例の処理手順を示すフローチャートである。図9に示すフローチャートに従う制御処理は、電流サンプリング指示が発生される毎に制御装置30によって実行される。
図9を参照して、制御装置30は、電流サンプリング指示の発生に応答して、ステップS110により、電気角を求める。上述のように、同期PWMおよび非同期PWMのいずれにおいても、電気角を求めることができる。
さらに、制御装置30は、ステップS120により、ステップS110で求めた電気角が、W相電流が極値となる電気角であるか、すなわち、電気角が150度または330度であるか否かを判定する。
そして、ステップS120のYES判定時には、制御装置30は、W相電流が極値となるタイミングでの電流サンプリングであるため、ステップS130に処理を進めて、W相電流(すなわち、W相の電流センサ24の出力値iws)を先にサンプリングする。その後、制御装置30は、ステップS132により、残りのV相電流(すなわち、V相の電流センサ24の出力値ivs)をサンプリングする。
制御装置30は、ステップS210のNO判定時には、ステップS140に処理を進めて、V相電流を先にサンプリングする。その後、制御装置30は、ステップS142により、残りのW相電流をサンプリングする。これにより、電気角30度および210度に対応するサンプリングタイミングでは、極値をとるV相電流を先にサンプリングすることができる。
なお、V相電流およびW相電流のいずれも極値をとらない電気角(30度、150度、210度、330度以外の電気角)では、サンプリング順序は任意とすることができる。図9では処理の簡略化のため、電気角が150度または330度でないとき(S120のNO判定時)における処理を一定としているものである。
図10には、図9の処理手順に従った電流サンプリング処理が、図6と対比するように示される。
図10では、図6とは異なり、W相電流が極値をとるサンプリング点S4,S8は、同一の電流サンプリング指示に対応する、V相電流のサンプリング点S3,S6よりも先に設けられる。この結果、サンプリング点S1,S5にてサンプリングされるV相電流(極大値)と、サンプリング点S4,S8にてサンプリングされるW相電流(極大値)との間で、リップル電流による影響を揃えることができる。
したがって、逐次サンプリング処理によってV相およびW相の間でサンプリングに時間差(Tsp)が発生しても、図6で指摘したような、電流振幅の検出タイミングにおける相間の検出誤差が発生することを防止できる。この結果、図7に示したような、電流の検出誤差が電流フィードバック制御に反映される不具合を回避できる。
すなわち、複数相に配置された電流センサ24を逐次サンプリングする構成としても、電流検出誤差によって電動機制御に悪影響が生じることを回避できる。
なお、図4では、V相およびW相に電流センサ24が配置された構成を例示したが、U相、V相、W相の各々に電流センサ24を配置する構成としても、同様の電流サンプリング処理を実行することができる。この際の処理を、図8および図9による電流サンプリング処理(第1の例)の変形例として、図11および図12を用いて説明する。
図11には、図6に示したV相およびW相電流に加えて、U相電流(Iu)がさらに示される。各相の電流位相は、電気角で120度ずれているので、U相電流は、電気角90度で極大値をとる一方で、電気角270度で極小値をとる。なお、V相電流およびW相電流が極値をとる電気角については、図8で説明したとおりである。
図12を参照して、制御装置30は、電流サンプリング指示の発生に応答して、図9と同様に、ステップS110により電気角を求めるとともに、ステップS120により、W相電流が極値をとる電気角(150度または330度)であるか否かを判定する。
制御装置30は、ステップS120のYES判定時には、図9と同様のステップS130により、極値となるタイミングであるW相電流を一番先にサンプリングする。さらに、制御装置30は、ステップS132,S134により、W相電流のサンプリングの完了後に、U相電流およびW相電流を順次サンプリングする。ステップS132およびS134の順序は入換可能である。
制御装置30は、ステップS120のNO判定時には、ステップS125により、V相電流が極値をとる電気角(30度または210度)であるか否かを判定する。
制御装置30は、ステップS125のYES判定時には、ステップS140により、極値となるタイミングであるV相電流を一番先にサンプリングする。さらに、制御装置30は、ステップS142,S144により、W相電流のサンプリングの完了後に、W相電流およびU相電流を順次サンプリングする。ステップS142およびS144の順序は入換可能である。
制御装置30は、ステップS125のNO判定時には、ステップS150に処理を進めて、U相電流を一番先にサンプリングする。したがって、電気角90度および270度に対応するサンプリングタイミングでは、極値をとるU相電流を一番先にサンプリングすることができる。その後、制御装置30は、ステップS152,S154により、残りのV相電流およびW相電流を順次サンプリングする。ステップS152およびS154の順序は入換可能である。
また、電流センサ24が配置されたU相電流、V相電流およびW相電流のいずれも極値をとらない電気角(30度、90度、150度、210度、270度、330度以外の電気角)では、サンプリング順序は任意とすることができる。図12では処理の簡略化のため、電気角が30度、150度、210度、および330度のいずれでもでないとき(S120およびS125のNO判定時)の処理を一定としているものである。
このようにすると、各相に電流センサ24が配置された構成においても、逐次サンプリング処理によって相間で実際のサンプリングタイムミングに時間差が生じていても、相間での電流検出誤差を抑制できる。すなわち、図8〜図10で説明したのと同様に、複数相に配置された電流センサ24を逐次サンプリングする構成としても、電流検出誤差によって電動機制御に悪影響が生じることを回避できる。
なお、上記では、電流検出誤差の影響が大きくなる同期PWMを中心に説明したが、非同期PWM制御においても、電気角に基づいて同様の電流サンプリング処理を適用可能である点について、確認的に記載する。また、図4のPWM制御部についても、同期PWMおよび非同期PWMを選択可能な構成を例示したが、同期PWMまたは非同期PWMの一方を固定的に用いる場合にも、本実施の形態による電流サンプリング処理を適用可能である。
さらに、図4に例示した、同期PWMおよび非同期PWMを選択可能な構成では、同期PWMの適用時のみに上述の電流サンプリング処理を適用する一方で、非同期PWMの適用時には、電流サンプリング指示のタイミング(電気角)に関係なく、電流サンプリング順序を固定してもよい。このようにすると、制御周期が相対的に短い一方で、電流サンプリング回数が多いためサンプリング順序に起因する電流検出誤差が比較的小さくなる非同期PWMにおいて、制御装置30の処理負荷を軽減できる。
次に、本実施の形態による電流サンプリングの第2の例として、電気角を求めることなく、電流検出値のみに基づいて、第1の例と同様のサンプリング順序を指定するための制御処理手順を説明する。
図13は、本実施の形態による電流サンプリング処理の第2の例の処理手順を示すフローチャートである。図13では、V相およびW相に電流センサ24が配置された構成における処理手順が示される。図13に示すフローチャートに従う制御処理は、電流サンプリング指示が発生される毎に制御装置30によって実行される。
図13を参照して、制御装置30は、電流サンプリング指示の発生に応答して、ステップS210およびS212より、前回の電流サンプリング時におけるV相電流値およびW相電流値をそれぞれ読込む。
そして、制御装置30は、ステップS220では、W相電流(Iw)とV相電流(Iv)との間で絶対値を比較する。ステップS220では、|Iw|>|Iv|+αが成立するか否かが判定される。したがって、|Iw|=|Iv|のときは、S220はNO判定とされる。
そして、制御装置30は、ステップS220のYES判定時には、ステップS230に処理を進めて、W相電流(すなわち、W相の電流センサ24の出力値iws)を先にサンプリングする。その後、制御装置30は、ステップS232により、残りのV相電流(すなわち、V相の電流センサ24の出力値ivs)をサンプリングする。
反対に、ステップS220のNO判定時には、制御装置30は、ステップS240に処理を進めて、V相電流(すなわち、V相の電流センサ24の出力値ivs)を先にサンプリングする。その後、制御装置30は、ステップS242により、残りのW相電流(すなわち、W相の電流センサ24の出力値iws)をサンプリングする。
このようにすると、V相電流およびW相電流の推移と、V相およびW相の電流サンプリング順序は、図14に示すようになる。
図14を参照して、位相が120度ずれたV相電流およびW相電流は、電気角が0度、90度、180度、270度および360度で絶対値が等しくなる。ステップS220での判定式にマージン値αを設けたことから、電気角0度、90度、180度、270度および360度では、ステップS220はNO判定とされる。
この結果、電気角0度(360度)〜90度の期間および180度〜270度の期間では、V相電流が先にサンプリングされる一方で、電気角120度、150度、300度および330度のときには、W相電流が先にサンプリングされる。
この結果、V相電流が極値をとる電気角30度および210度では、V相電流を先にサンプリングすることができる。さらに、W相電流が極値をとる電気角150度および330度ではW相電流を先にサンプリングすることができる。
なお、いずれの相でも電流が極値とならない電気角では、サンプリング順序は任意とすることができるが、図13では処理の簡略化のため、これらのケースでは、共通にステップS240、S242に従った順序で電流がサンプリングされるものとしている。
このように、電流センサ24による検出値のみを用いても、上述した電流サンプリング処理の第1の例と同様に、いずれかの相の電流が極値(極大値または極小値)となる電気角に対応するタイミングでは、当該相が一番先にサンプリングされるように、1周期(電気角360度)内で電流サンプリング順序を決定することができる。
次に、U相、V相、W相の各々に電流センサ24を配置する構成に対して、図13および図14による電流サンプリング処理(第2の例)を適用するための制御処理手順を、図15および図16を用いて説明する。
図15を参照して、制御装置30は、図13と同様に、ステップS210およびS212により、前回の電流サンプリング時におけるV相電流値およびW相電流値をそれぞれ読込む。さらに、制御装置30は、ステップS214により、前回の電流サンプリング時におけるU相電流値を読込む。
そして、制御装置30は、図13と同様に、ステップS220により、|Iw|>|Iv|+αであるか否かを判定する。さらに、図13と同様に、ステップS220のYES判定時には、制御装置30は、ステップS230に処理を進めて、W相電流を一番先にサンプリングする。その後、制御装置30は、ステップS232,S234により、残りのU相電流およびV相電流を順次サンプリングする。ステップS232およびS234の順序は入換可能である。
一方で、ステップS220のNO判定時には、制御装置30は、ステップS225により、|Iv|>|Iu|+αであるか否かを判定する。そして、制御装置30は、ステップS220のYES判定時には、ステップS240に処理を進めて、V相電流を一番先にサンプリングする。その後、制御装置30は、ステップS242,S244により、残りのW相電流およびU相電流を順次サンプリングする。ステップS242およびS244の順序は入換可能である。
また、制御装置30は、ステップS225のNO判定時には、ステップS250に処理を進めて、U相電流を一番先にサンプリングする。その後、制御装置30は、ステップS252,S254により、残りのV相電流およびW相電流を順次サンプリングする。ステップS252およびS254の順序は入換可能である。
図16を参照して、図13と同様の|Iw|および|Iv|の比較に基づいて、W相電流が極値をとる電気角150度および330度では、ステップS230〜S234の処理により、W相電流が一番先にサンプリングされる。
また、V相電流が極値をとる電気角30度および210度では、前回の電流サンプリング時(電気角0度および180度)において|Iu|=0であるので、ステップS225がYES判定とされる。したがって、ステップS240〜S244の処理により、V相電流が一番先にサンプリングされる。
さらに、U相電流が極値をとる電気角90度および270度では、前回の電流サンプリング時(電気角60度および240度)において|Iu|=|Iv|であるので、ステップS225がNO判定とされる。したがって、ステップS250〜S254の処理により、U相電流が一番先にサンプリングされる。
このように、各相に電流センサ24を配置した構成においても、図13および図14と同様の電流サンプリング処理(第2の例)が実現できる。すなわち、電流検出値のみに基づいて、いずれかの相の電流が極値(極大値または極小値)となる電気角に対応するタイミングでは、当該相が一番先にサンプリングされるように、1周期(電気角360度)内で電流サンプリング順序を決定することができる。
なお、図13〜図16で説明した電流サンプリング処理の第2の例についても、ステップS220,S225でのマージン値αを適切に設定することによって、非同期PWMにも適用することが可能である。また、非同期PWMでは、前回の電流サンプリング時のみならず、それより以前の電流サンプリング時の検出値(あるいは、複数回の電流検出値の平均値やフィルタ処理値)に基づいて、ステップS220,S225の比較判定を行ってもよい。
さらに、図4に例示した、同期PWMおよび非同期PWMを選択可能な構成の他に、同期PWMまたは非同期PWMの一方を固定的に用いる場合にも、上述した電流サンプリング処理の第2の例を適用可能である点を確認的に記載する。
また、電流サンプリング処理の第2の例についても、同期PWMおよび非同期PWMを選択可能な構成では、同期PWMの適用時のみに上述の電流サンプリング処理を適用する一方で、非同期PWMの適用時には、電流サンプリング指示のタイミング(電気角)に関係なく、電流サンプリング順序を固定してもよい。
以上説明したように、本実施の形態に従う交流電動機の制御装置による電流サンプリング処理(第1および第2の例の各々)によれば、複数相に配置された電流センサ24を逐次サンプリングする構成としても、電流検出誤差によって電動機制御に悪影響が生じることを回避できる。
なお、本実施の形態では、交流電動機M1として三相電動機を例示したが、三相以外の多相電動機に対しても本発明による電流サンプリング処理を適用することができる。
また、図1では、好ましい構成例として、インバータ14への入力電圧(システム電圧VH)を可変制御可能なように、モータ駆動システムの直流電圧発生部10♯がコンバータ12を含む構成を示したが、直流電圧発生部10♯は本実施の形態に例示した構成には限定されない。すなわち、インバータ入力電圧が可変であることは必須ではなく、直流電源Bの出力電圧がそのままインバータ14へ入力される構成(たとえば、コンバータ12の配置を省略した構成)に対しても本発明を適用可能である。
さらに、モータ駆動システムの負荷となる交流電動機についても、本実施の形態では、電動車両(ハイブリッド自動車、電気自動車等)に車両駆動用として搭載された永久磁石モータを想定したが、それ以外の機器に用いられる任意の交流電動機を負荷とする構成についても、本願発明を適用可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明は、複数相に設けられた電流センサのサンプリング値に基づく電動機制御に適用することができる。
5 アース線、6、7 電力線、10,13 電圧センサ、10♯ 直流電圧発生部、11,24 電流センサ、12 コンバータ、14 インバータ、15 U相上下アーム、16 V相上下アーム、17 W相上下アーム、25 回転角センサ、30 制御装置(ECU)、100 モータ駆動制御システム、160 搬送波、170 電圧指令、180 パルス幅変調電圧、200 PWM制御部、210 電流指令生成部、220,250 座標変換部、240 電圧指令生成部、260 PWM変調部、270 搬送波制御部、280 モード選択部、290 回転周波数演算部、300 電流サンプリング部、310 サンプリングタイミング指定部、320 サンプリング順序指定部、330 サンプリング処理部、B 直流電源、C0,C1 平滑コンデンサ、D1〜D8 逆並列ダイオード、fc 搬送波周波数、For 信号(サンプリング順序)、Fsp 信号(電流サンプリング指示)、Ib 直流電流、Id d軸電流、Idcom d軸電流指令値、Iq q軸電流、Iqcom q軸電流指令値、iu,iv,iw 三相電流(交流電動機)、Iv,Iw 電流検出値、ivs,iws 電流センサ出力値、k キャリア数(同期PWM)、L1 リアクトル、M1 交流電動機、MD モード信号(同期PWM/非同期PWM)、Q1〜Q8 電力用半導体スイッチング素子、S1〜S8 電流サンプリング点、SG1〜SG8 スイッチング制御信号、SR1,SR2 システムリレー、Trqcom トルク指令値、Tsp サンプリング時間差(相間)、Vd♯ d軸電圧指令値、VH システム電圧(直流電圧)、VL 直流電圧、Vu,Vv.Vw 各相電圧指令、Vq♯ q軸電圧指令値、ΔId d軸電流偏差、ΔIq q軸電流偏差、θ 回転角、ωe 回転周波数。

Claims (7)

  1. インバータによって印加電圧が制御される交流電動機の制御装置であって、
    前記交流電動機の複数相にそれぞれ設けられ、前記複数相の相電流をそれぞれ検出するように構成された複数の電流検出器と、
    所定の制御周期に従って電流サンプリング指示を発生するように構成されたサンプリングタイミング指示部と、
    前記電流サンプリング指示に応答して、前記複数の電流検出器のそれぞれによる検出値を1つずつ逐次にサンプリングするように構成されたサンプリング処理部と、
    前記サンプリング処理部によってサンプリングされた相電流を用いた制御演算に従って、前記交流電動機を制御するように構成された電動機制御部と、
    前記電流サンプリング指示のタイミングが、前記複数相のうちの第1の相で前記相電流が極値をとるタイミングに対応する場合に、前記複数の電流検出器のうちの前記第1の相に対応する電流検出器の検出値が一番先にサンプリングされるように、前記サンプリング処理部におけるサンプリングの順序を指定するように構成されたサンプリング順序指定部とを備える、交流電動機の制御装置。
  2. 前記サンプリング順序指定部は、前記電流サンプリング指示のタイミングにおける前記交流電動機の電気角に基づいて、サンプリングの順序を指定するように構成される、請求項1記載の交流電動機の制御装置。
  3. 前記サンプリング順序指定部は、過去の前記電流サンプリング指示における前記複数相の相電流のサンプリング値の比較に基づいて、今回の前記電流サンプリング指示におけるサンプリングの順序を指定するように構成される、請求項1記載の交流電動機の制御装置。
  4. 前記電動機制御部は、
    前記制御演算に従って前記交流電動機の各相の電圧指令を生成するように構成された演算部と、
    前記電圧指令と搬送波との電圧比較に基づいて前記インバータから前記交流電動機に印加される各相のパルス幅変調電圧を制御するように構成されたPWM変調部と、
    前記電圧指令の周波数のk倍(k:2以上の整数)の周波数で前記搬送波を発生するための搬送波制御部とを含む、請求項1〜3のいずれか1項に記載の交流電動機の制御装置。
  5. 前記搬送波制御部は、第1のモードの選択時に、前記電圧指令のk倍の周波数で前記搬送波を発生する一方で、第2のモードの選択時には、前記第1のモードの選択時における搬送波周波数よりも高い所定周波数で前記搬送波を発生するように構成され、
    前記サンプリング順序指定部は、前記第2のモードの選択時には、前記電流サンプリング指示のタイミングに関係なく、前記サンプリング処理部におけるサンプリングの順序を所定順序に固定する、請求項4記載の交流電動機の制御装置。
  6. 前記交流電動機は、三相交流電動機であり、
    前記複数の電流検出器は、三相にそれぞれ配置される、請求項1〜5のいずれか1項に記載の交流電動機の制御装置。
  7. 前記交流電動機は、三相交流電動機であり、
    前記複数の電流検出器は、三相のうちの二相にそれぞれ配置される、請求項1〜5のいずれか1項に記載の交流電動機の制御装置。
JP2009125605A 2009-05-25 2009-05-25 交流電動機の制御装置 Withdrawn JP2010273518A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009125605A JP2010273518A (ja) 2009-05-25 2009-05-25 交流電動機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009125605A JP2010273518A (ja) 2009-05-25 2009-05-25 交流電動機の制御装置

Publications (1)

Publication Number Publication Date
JP2010273518A true JP2010273518A (ja) 2010-12-02

Family

ID=43421088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009125605A Withdrawn JP2010273518A (ja) 2009-05-25 2009-05-25 交流電動機の制御装置

Country Status (1)

Country Link
JP (1) JP2010273518A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121202A (ja) * 2011-12-06 2013-06-17 Denso Corp 多相回転機の制御装置
WO2020179495A1 (ja) * 2019-03-05 2020-09-10 Ntn株式会社 回転角算出方法および回転角制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121202A (ja) * 2011-12-06 2013-06-17 Denso Corp 多相回転機の制御装置
WO2020179495A1 (ja) * 2019-03-05 2020-09-10 Ntn株式会社 回転角算出方法および回転角制御装置

Similar Documents

Publication Publication Date Title
JP5133834B2 (ja) 交流電動機の制御装置
US8232753B2 (en) Control device for electric motor drive apparatus
JP5696700B2 (ja) ロータ位置推定装置、電動機制御システムおよびロータ位置推定方法
US8278865B2 (en) Control device
US8373380B2 (en) Device and method for controlling alternating-current motor
JP4635703B2 (ja) モータ駆動システムの制御装置
EP2733844B1 (en) Vehicle and method for controlling vehicle
US9742324B2 (en) Integrated circuit
JP5760778B2 (ja) モータ駆動制御システム
JP2010124544A (ja) 交流電動機の制御装置
JP2010166677A (ja) 交流電動機の制御装置および電動車両
JP2007159368A (ja) モータ駆動システムの制御装置
JP2006311770A (ja) モータ駆動システムの制御装置
JPWO2012137300A1 (ja) 電動機の制御装置およびそれを備える電動車両、ならびに電動機の制御方法
JP5369630B2 (ja) 交流電動機の制御装置
JP2011087429A (ja) 交流電動機の制御装置および制御方法
JP2012023885A (ja) 交流電動機の制御装置および制御方法
JP2010284017A (ja) 交流電動機の制御装置
JP2010246207A (ja) 交流電動機の制御装置
JP5281370B2 (ja) 交流電動機の制御装置
JP2011109803A (ja) 電動機の制御装置
JP2011041366A (ja) インバータの故障検出装置
JP5210822B2 (ja) 交流電動機の制御装置およびそれを搭載した電動車両
JP2014050123A (ja) ロータ位置推定装置、電動機制御システムおよびロータ位置推定方法
JP2010273518A (ja) 交流電動機の制御装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120807