JP2010271192A - Method for detection of underwater harmful material - Google Patents

Method for detection of underwater harmful material Download PDF

Info

Publication number
JP2010271192A
JP2010271192A JP2009123427A JP2009123427A JP2010271192A JP 2010271192 A JP2010271192 A JP 2010271192A JP 2009123427 A JP2009123427 A JP 2009123427A JP 2009123427 A JP2009123427 A JP 2009123427A JP 2010271192 A JP2010271192 A JP 2010271192A
Authority
JP
Japan
Prior art keywords
sample water
oxygen concentration
dissolved oxygen
predetermined value
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009123427A
Other languages
Japanese (ja)
Other versions
JP5347711B2 (en
Inventor
Toshiro Kato
敏朗 加藤
Osamu Miki
理 三木
Kimio Ito
公夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009123427A priority Critical patent/JP5347711B2/en
Publication of JP2010271192A publication Critical patent/JP2010271192A/en
Application granted granted Critical
Publication of JP5347711B2 publication Critical patent/JP5347711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Activated Sludge Processes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method that facilitates reliably detecting an underwater harmful material. <P>SOLUTION: A sample water is formed by mixing a specimen liquid in which the presence of the mixed harmful material is detected, and a microorganism liquid for containing a breathing microorganism. A nutrition of the microorganism is contained in the sample water. When a residual oxygen concentration in the sample water is reduced to a predetermined value or below by the breath of the microorganism, the oxygen is temporarily supplied to the sample water so as to increase the residual oxygen concentration to the predetermined value or above. Then, when the residual oxygen concentration in the sample water is reduced to the predetermined value or below by the breath of the microorganism again, the oxygen is temporarily supplied so as to repetitively increase the residual oxygen concentration to the predetermined value or above. A temporal change in the residual oxygen concentration in the sample water is observed. The presence of the mixed harmful material in the specimen liquid is detected from a condition of the temporal change. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、上下水道、工業用水、工業排水、水処理プロセスの各工程水、河川水、湖沼水等を対象として、水中の微生物の呼吸活性に対する阻害性に基づいて水中の有害物質を検知する方法に関する。   The present invention is directed to water and sewage, industrial water, industrial wastewater, water treatment process water, river water, lake water, and the like, and detects harmful substances in water based on the inhibition of respiratory activity of microorganisms in water. Regarding the method.

河川・湖沼などの水道水源の保全、および、上下水道、工業用・排水、廃棄物処分場排水などの用・排水の水質管理を目的とした水質監視においては、週毎、月毎などで定期的に採水試料の化学分析が実施されている。しかしながら、生物学的な排水処理プロセスや水環境において問題となる有害物質は多種多様であり、個々の化学物質を網羅的に分析することには技術的及び/又は時間的な限界があるため、化学分析によらない総括的な生体毒性を評価するための生物検定法(以下、バイオアッセイという)が検討され、魚類の致死効果、ミジンコの遊泳阻害効果、藻類の生長阻害効果、発光細菌の発光阻害効果、大腸菌を用いたDNA損傷効果(umu試験)などを指標とした排水水質監視のバイオアッセイが実用化されている。   Periodic weekly, monthly, etc. for water quality monitoring for the purpose of preserving tap water sources such as rivers and lakes, and managing the quality of water and sewage, industrial / drainage, waste disposal site drainage, etc. In particular, chemical analysis of collected water samples has been carried out. However, because there are a wide variety of harmful substances that are problematic in biological wastewater treatment processes and the water environment, there are technical and / or time limitations to comprehensive analysis of individual chemicals. Bioassay methods (hereinafter referred to as bioassays) for evaluating overall biotoxicity not based on chemical analysis have been studied, lethal effects on fish, daphnia swimming inhibition effects, algal growth inhibition effects, and luminescence of luminous bacteria A bioassay for monitoring wastewater quality using an inhibitory effect, a DNA damage effect using E. coli (umu test) and the like as an index has been put into practical use.

一方、発酵等の工業プロセスの管理や医学における臨床検査などの分野においては、核酸、アミノ酸、脂質などの特定の化学成分の分析を目的として様々なバイオセンサーが開発されており、最近では、このようなバイオセンサーの環境計測への適用が検討されている。例えば、生物化学的酸素要求量(Biochemical Oxygen Demand:BOD)を対象とした、又は、重金属、シアン、リン酸、硝酸、硫酸、アンモニア、界面活性剤などの特定の成分を対象とした、微生物センサーや酵素センサーなどのバイオセンサーが提案されている。   On the other hand, various biosensors have been developed for the analysis of specific chemical components such as nucleic acids, amino acids, and lipids in the fields of industrial process management such as fermentation and clinical tests in medicine. The application of such biosensors to environmental measurements is being studied. For example, microbial sensors for biochemical oxygen demand (BOD) or specific components such as heavy metals, cyanide, phosphoric acid, nitric acid, sulfuric acid, ammonia, and surfactants Biosensors such as enzyme sensors have been proposed.

また、以下の特許文献1や特許文献2では、水質の総括的な有害性の評価を目的としたバイオセンサーとしては、環境変化に対する感受性が高い硝化細菌などの微生物を保持した固定化微生物膜を用いて、その呼吸阻害性に基づいて有害性を評価する方法が記載されている。   Moreover, in the following patent documents 1 and patent documents 2, as a biosensor aiming at the comprehensive assessment of water quality, an immobilized microbial membrane holding microorganisms such as nitrifying bacteria having high sensitivity to environmental changes is used. And a method for assessing toxicity based on its respiratory inhibition is described.

さらに、以下の特許文献3には、活性汚泥に対する種々の廃水の毒性を、活性汚泥に標準基質を添加し、その際の最大呼吸速度(1次測定)を求め、その後、更に検液を添加して内生呼吸に達したことを測定した後(2次測定)、再度、標準基質を添加して、その際の最大呼吸速度を求めて(3次測定)、1次測定時と3次測定時の最大呼吸速度の対比から、検液の毒性を評価する方法が記載されている。   Furthermore, in Patent Document 3 below, the toxicity of various wastewaters against activated sludge is obtained, a standard substrate is added to activated sludge, the maximum respiration rate (primary measurement) at that time is obtained, and then a test solution is further added. After measuring that it has reached endogenous respiration (secondary measurement), add the standard substrate again to determine the maximum respiration rate (third measurement), and at the first measurement and third measurement. A method for evaluating the toxicity of a test solution from the comparison of the maximum respiration rate at the time of measurement is described.

特開平11−153574公報Japanese Patent Laid-Open No. 11-153574 特開2001−165893公報JP 2001-165893 A 特開平10−151481公報JP 10-151481 A

特許文献1や特許文献2のような、微生物の呼吸活性の阻害性に基づいて有害物質の混入を検知する方法として実用化されている、微生物を保持した固定化微生物膜方式のバイオセンサーは、生物体の増殖や死滅などによって微生物群の生理状態が刻一刻と変化するため、維持管理が難しいという課題がある。また、毒性の強い検液に曝されると微生物の活性が回復不能となり、その都度、膜を交換しなければならないため、コスト高である。   A biosensor based on an immobilized microbial membrane that holds microorganisms that has been put to practical use as a method for detecting contamination of harmful substances based on the inhibition of respiratory activity of microorganisms, such as Patent Document 1 and Patent Document 2, There is a problem that maintenance is difficult because the physiological state of the microorganism group changes every moment due to the growth and death of organisms. In addition, when exposed to a highly toxic test solution, the activity of microorganisms cannot be recovered, and the membrane must be replaced each time, resulting in high costs.

また、特許文献3のような最大呼吸速度の差だけで有害物質の毒性を判断する方法では、有害物質の量が少ない場合に、明確には差異が判らない場合があった。   Further, in the method of determining toxicity of a harmful substance only by the difference in the maximum respiration rate as in Patent Document 3, when the amount of the harmful substance is small, the difference may not be clearly understood.

従って、本発明は、水処理プロセスの安定操業や自然水域の保全などに資する、用・排水や河川・湖沼水に混入した有害物質を簡便かつ確実に検知するため方法を提供することを目的とし、特に、従来のバイオセンサーのように固定化微生物膜を使用することなく、水中の有害物質を簡便かつ確実に検知する方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for easily and reliably detecting harmful substances mixed in water, water, rivers and lakes that contribute to stable operation of water treatment processes and preservation of natural water areas. In particular, an object of the present invention is to provide a method for easily and reliably detecting harmful substances in water without using an immobilized microbial membrane as in a conventional biosensor.

水中に生育する微生物は呼吸によって水中の溶存酸素を消費するため、水中の溶存酸素を連続的に計測すれば、そこに存在する微生物の呼吸活性の程度を判断できる。一方、有害物質が混入すると微生物の諸反応が阻害され、呼吸活性が低下する結果として水中の溶存酸素濃度の減少速度(酸素消費速度)が低下する。   Since microorganisms growing in water consume dissolved oxygen in water by respiration, if the dissolved oxygen in water is continuously measured, the degree of respiratory activity of microorganisms present therein can be determined. On the other hand, when harmful substances are mixed in, various reactions of microorganisms are inhibited, and as a result of the decrease in respiratory activity, the rate of decrease in dissolved oxygen concentration in water (oxygen consumption rate) decreases.

本発明者等は、この原理に基づいて水中の有害物質の検知方法を検討したが、微生物を含んだ試験水中に有害物質が多量に混入している場合には、微生物の呼吸活性が著しく急激に低下して酸素消費速度が極端に小さくなることから比較的容易に有害物質の存在を検知できるが、有害物質が比較的少量しか混入していない場合は、微生物の呼吸活性が低下するものの、その程度が比較的小さいため、単に酸素消費速度を観察しただけでは有害物質の有無を判定することが難しいことが判った。   The present inventors examined a method for detecting harmful substances in water based on this principle, but when a large amount of harmful substances are mixed in the test water containing microorganisms, the respiratory activity of the microorganisms is remarkably rapid. The oxygen consumption rate becomes extremely low and the presence of harmful substances can be detected relatively easily, but if only a relatively small amount of harmful substances are mixed, the respiratory activity of the microorganisms will decrease, Since the degree was relatively small, it was found that it was difficult to determine the presence or absence of harmful substances simply by observing the oxygen consumption rate.

また、水中の酸素濃度の値によっては、微生物の呼吸活性が酸素消費速度への支配的影響因子にはならず、酸素の供給や酸素の水への溶解が、酸素消費の律速となる場合があり、単に酸素消費速度の経時変化を観察しただけでは、微生物の呼吸活性に基づく有害物質の検知を安定的に行うことが難しいことが判った。   In addition, depending on the value of oxygen concentration in water, the respiratory activity of microorganisms may not be a dominant influence factor on the rate of oxygen consumption, and oxygen supply and oxygen dissolution in water may be the rate-limiting factor for oxygen consumption. It was found that it was difficult to stably detect harmful substances based on the respiratory activity of microorganisms simply by observing changes in oxygen consumption rate over time.

そこで、更に鋭意検討した結果、試料水中に酸素を一時的に供給して溶存酸素濃度を上昇させ、その後、微生物の呼吸により試料水中の溶存酸素濃度を低下させる工程を繰り返して行い、その繰り返し毎における溶存酸素濃度の経時変化を観察することで、その経時変化の状態から、有害物質の有無を、有害物質が比較的少量な場合においても、安定的に検知することができることを見出して、発明を為すに至った。   Therefore, as a result of further intensive studies, oxygen was temporarily supplied to the sample water to increase the dissolved oxygen concentration, and then the process of decreasing the dissolved oxygen concentration in the sample water by respiration of microorganisms was repeated. By observing the change in dissolved oxygen concentration over time, it was found that the presence or absence of harmful substances can be stably detected from the state of change over time even when the amount of harmful substances is relatively small. I came to do it.

すなわち、
(1)有害物質の混入の有無を検出したい検液と、好気呼吸する微生物を含んだ植種液とを混合して試料水とし、且つ、前記試料水には前記微生物の栄養分が含まれており、前記微生物の呼吸により前記試料水中の溶存酸素濃度が減少して所定値以下となったところで、前記試料水中に酸素を一時的に供給して前記溶存酸素濃度を前記所定値超に上昇させ、その後、再び、前記微生物の呼吸により前記試料水中の前記溶存酸素濃度が前記所定値以下となったところで、再度、酸素を一次的に供給して前記溶存酸素濃度を前記所定値超に上昇させることを繰り返して、前記試料水中の溶存酸素濃度の経時変化を観察し、その経時変化の状態から前記検液中の有害物質の混入の有無を検知することを特徴とする水中の有害物質の検知方法。
That is,
(1) Mixing a sample solution to detect the presence or absence of harmful substances with a seed solution containing aerobic microorganisms to obtain sample water, and the sample water contains nutrients of the microorganisms. When the dissolved oxygen concentration in the sample water decreases below the predetermined value due to respiration of the microorganisms, oxygen is temporarily supplied to the sample water to increase the dissolved oxygen concentration above the predetermined value. After that, when the dissolved oxygen concentration in the sample water becomes equal to or lower than the predetermined value due to respiration of the microorganism, oxygen is temporarily supplied again to increase the dissolved oxygen concentration to exceed the predetermined value. Observing the time-dependent change in the dissolved oxygen concentration in the sample water, and detecting the presence or absence of harmful substances in the test solution from the state of change over time. Detection method.

(2)前記溶存酸素濃度の所定値が、1〜5mg/Lの範囲内の一定値であることを特徴とする、(1)に記載の検知方法。   (2) The detection method according to (1), wherein the predetermined value of the dissolved oxygen concentration is a constant value within a range of 1 to 5 mg / L.

(3)前記試料水中に酸素を一時的に供給して前記溶存酸素濃度を前記所定値超に上昇させることを繰り返す際に、前記上昇後の最大溶存酸素濃度が、毎回、前記溶存酸素濃度の所定値よりも0.5mg/L以上高い所定値となるように、前記酸素の一時的供給量を制御することを特徴とする、(2)に記載の検知方法。   (3) When repeatedly supplying oxygen to the sample water and increasing the dissolved oxygen concentration to exceed the predetermined value, the maximum dissolved oxygen concentration after the increase is the dissolved oxygen concentration each time. The detection method according to (2), wherein the temporary supply amount of oxygen is controlled so as to be a predetermined value higher than the predetermined value by 0.5 mg / L or more.

(4)前記繰り返して一時的に供給する酸素の供給手段が、エアーポンプの一時的な稼動による前記試料水中への空気の供給によるものであることを特徴とする、(1)〜(3)のいずれか1項に記載の検知方法。   (4) The oxygen supply means that is repeatedly and temporarily supplied is by supplying air into the sample water by temporarily operating an air pump. (1) to (3) The detection method according to any one of the above.

(5)前記試料水のpHを計測し、前記pHが一定値に保持されるように、酸またはアルカリを添加することを特徴とする、(1)〜(4)のいずれか1項に記載の検知方法。   (5) The pH of the sample water is measured, and an acid or an alkali is added so that the pH is maintained at a constant value, according to any one of (1) to (4), Detection method.

(6)前記試料水の温度を一定に保持することを特徴とする、(1)〜(5)のいずれか1項に記載の検知方法。   (6) The detection method according to any one of (1) to (5), wherein the temperature of the sample water is kept constant.

(7)前記溶存酸素濃度の経時変化の状態から前記検液中の有害物質の混入の有無を検知する手段が、前記試料水中に酸素を一時的に供給して前記溶存酸素濃度を上昇させた後から、前記微生物の呼吸により前記試料水中の前記溶存酸素濃度が前記所定値以下となるまでの時間間隔が、前記繰り返しの度に、長くなることにより、有害物質が前記検液中に存在すると判断することを特徴とする、(1)〜(6)のいずれか1項に記載の検知方法。   (7) The means for detecting the presence or absence of harmful substances in the test solution from the state of change of the dissolved oxygen concentration with time increases the dissolved oxygen concentration by temporarily supplying oxygen into the sample water. After that, the time interval until the dissolved oxygen concentration in the sample water becomes equal to or less than the predetermined value due to the respiration of the microorganisms becomes longer each time the repetition is performed, so that harmful substances are present in the test solution. The detection method according to any one of (1) to (6), wherein the determination is performed.

(8)前記試料水中の溶存酸素濃度の経時変化を観測するとともに、別途、前記微生物に有害な物質を含まない標準水を比較検液として、前記比較検液と好気呼吸する微生物を含んだ植種液とを混合して比較試料水とし、且つ、前記比較試料水には前記微生物の栄養分が含まれており、前記微生物の呼吸により前記比較試料水中の溶存酸素濃度が減少して前記所定値以下となったところで、前記比較試料水中に酸素を一時的に供給して前記溶存酸素濃度を前記所定値超に上昇させ、その後、再び、前記微生物の呼吸により前記比較試料水中の前記溶存酸素濃度が前記所定値以下となったところで、再度、酸素を一次的に供給して前記溶存酸素濃度を前記所定値超に上昇させることを繰り返して、前記試料水中の溶存酸素濃度の経時変化を観察し、前記試料水中の溶存酸素濃度の経時変化と前記比較試料水中の溶存酸素濃度の経時変化とを比較し、両者の経時変化の状態の違いから有害物質の混入の有無を判定することを特徴とする、(1)〜(7)のいずれか1項に記載の検知方法。   (8) The time-dependent change in the dissolved oxygen concentration in the sample water was observed, and separately, a standard water not containing a substance harmful to the microorganism was used as a comparative test solution, and a microorganism that aerobically breathed with the comparative test solution was included. Mixing with the seeding liquid to make a comparative sample water, and the comparative sample water contains nutrients of the microorganism, and the dissolved oxygen concentration in the comparative sample water is reduced by the respiration of the microorganism, and the predetermined water is used. When the value is less than or equal to the value, oxygen is temporarily supplied to the comparative sample water to increase the dissolved oxygen concentration above the predetermined value, and then the dissolved oxygen in the comparative sample water again by respiration of the microorganisms. When the concentration falls below the predetermined value, the oxygen is temporarily supplied again, and the dissolved oxygen concentration is repeatedly increased to exceed the predetermined value to observe the time-dependent change in the dissolved oxygen concentration in the sample water. Comparing the time-dependent change in the dissolved oxygen concentration in the sample water with the time-dependent change in the dissolved oxygen concentration in the comparative sample water, and determining the presence or absence of harmful substances from the difference in the state of change over time of both The detection method according to any one of (1) to (7).

(9)前記溶存酸素濃度の経時変化の状態から前記検液中の有害物質の混入の有無を検知する手段が、前記試料水中に酸素を一時的に供給して前記溶存酸素濃度を上昇させた後から、前記微生物の呼吸により前記試料水中の前記溶存酸素濃度が前記所定値以下となるまでの間の平均酸素消費速度を算出し、且つ、前記比較試料水中に酸素を一時的に供給して前記溶存酸素濃度を上昇させた後から、前記微生物の呼吸により前記比較試料水中の前記溶存酸素濃度が前記所定値以下となるまでの間の平均酸素消費速度を算出し、前記算出した試料水における平均酸素消費速度と、前記算出した比較試料水における平均酸素消費速度とを、前記繰り返し毎に比較して、前記試料水における平均酸素消費速度が、前記比較試料水における平均酸素消費速度よりも小さくなることで、有害物質が前記検液中に存在すると判断することを特徴とする、(8)に記載の検知方法。   (9) The means for detecting the presence or absence of harmful substances in the test solution from the state of change of the dissolved oxygen concentration with time increases the dissolved oxygen concentration by temporarily supplying oxygen into the sample water. Thereafter, an average oxygen consumption rate is calculated until the dissolved oxygen concentration in the sample water becomes equal to or lower than the predetermined value due to respiration of the microorganisms, and oxygen is temporarily supplied to the comparative sample water. After increasing the dissolved oxygen concentration, calculate the average oxygen consumption rate until the dissolved oxygen concentration in the comparative sample water becomes equal to or lower than the predetermined value due to respiration of the microorganism, and in the calculated sample water The average oxygen consumption rate and the calculated average oxygen consumption rate in the comparative sample water are compared for each repetition, and the average oxygen consumption rate in the sample water is the average oxygen consumption rate in the comparative sample water. By smaller than degrees, harmful substances, characterized in that determined to exist in the test solution, the detection method described in (8).

本発明に係る水中の有害物質検知方法を、水処理工程の前段で行って、流入水の監視に適用することによって、水処理工程における活性汚泥への有害な影響を及ぼす成分の混入を速やかに検知でき、水処理を的確に運転管理することができる。   By carrying out the method for detecting harmful substances in water according to the present invention in the preceding stage of the water treatment process and applying it to the monitoring of influent water, the contamination of activated sludge in the water treatment process can be promptly mixed. It can be detected and the water treatment can be accurately managed.

また、有害物質検知の所望の目的に応じた微生物を含んだ植種液を選定することができ、さらに、選定した植種液に応じて、最適な成分を含んだ標準液を設定することができるため、極めて汎用性が高く、多くの有害物質に対して適用可能である。   In addition, a seed solution containing microorganisms can be selected according to the desired purpose of detecting harmful substances, and a standard solution containing optimum components can be set according to the selected seed solution. Therefore, it is extremely versatile and applicable to many harmful substances.

検液に混入した有害物質の毒性が低い場合、従来は検知できない、もしくは検知までに日単位等の長時間を要するが、本発明によれば分単位から時間単位程度の短時間で検知できる。   When the toxicity of the harmful substance mixed in the test solution is low, it cannot be detected conventionally, or it takes a long time such as a day until detection, but according to the present invention, it can be detected in a short time of minutes to hours.

本発明の呼吸活性測定装置の基本構成を模式的に示した概念図である。It is the conceptual diagram which showed typically the basic composition of the respiratory activity measuring apparatus of this invention. 酸素消費速度に及ぼすpHの影響例を示す図である。It is a figure which shows the example of the influence of pH which acts on an oxygen consumption rate. 酸素消費速度に対する温度の影響例を示す図である。It is a figure which shows the example of the influence of the temperature with respect to oxygen consumption rate. 温度管理手段をさらに付加した本発明の装置の概念図である。It is a conceptual diagram of the apparatus of this invention which further added the temperature management means. 溶存酸素濃度の経時変化の典型例を示す図である。It is a figure which shows the typical example of a time-dependent change of dissolved oxygen concentration. 溶存酸素濃度の経時変化から計算される呼吸活性の経時変化の典型例を示す図である。It is a figure which shows the typical example of the time-dependent change of respiratory activity calculated from the time-dependent change of dissolved oxygen concentration. エアーポンプから反応槽への通気量の経時変化の典型例を示す図である。It is a figure which shows the typical example of a time-dependent change of the ventilation | gas flow rate from an air pump to a reaction tank. 実施例1における比較試料水を検査した際の溶存酸素濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the dissolved oxygen concentration at the time of test | inspecting the comparative sample water in Example 1. FIG. 実施例1における試料水を検査した際の溶存酸素濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the dissolved oxygen concentration at the time of test | inspecting the sample water in Example 1. FIG. 実施例1における呼吸活性の経時変化を示す図である。It is a figure which shows the time-dependent change of the respiratory activity in Example 1. 実施例2−1における試料水のpHの経時変化を示す図である。It is a figure which shows the time-dependent change of pH of the sample water in Example 2-1. 実施例2−1における試料水の溶存酸素濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the dissolved oxygen concentration of the sample water in Example 2-1. 実施例2−2における試料水の溶存酸素濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the dissolved oxygen concentration of the sample water in Example 2-2. 実施例2−2における試料水のpHの経時変化を示す図である。It is a figure which shows the time-dependent change of pH of the sample water in Example 2-2.

本発明において、「試料水」とは溶存酸素濃度の計測に供する「検液」と「植種液」を混合した水試料を指し、「植種液」とは所定の微生物を含んだ液を指し、「検液」とは有害物質の混入の有無を判定したい液を指す。また、「比較試料水」とは有害物質を含まず、「試料水」と溶存酸素濃度の変化を比較するための、「標準水(比較検液)」と「植種液」とを混合した水試料を指す。また、「試料水」および「比較試料水」には、所定の微生物の呼吸活動に必要な栄養分を十分に含んでいる必要があり、検液中や標準水中や植種液中に含まれている栄養分で足りない場合は、別途、更に試料水に栄養分を添加して、微生物の呼吸活動に十分な栄養分を確保する。   In the present invention, “sample water” refers to a water sample obtained by mixing “test solution” and “planting solution” used for measurement of dissolved oxygen concentration, and “seeding solution” refers to a solution containing a predetermined microorganism. The “test liquid” refers to a liquid for which it is determined whether or not a harmful substance is mixed. In addition, “sample water” does not contain harmful substances, and “sample water” and “seed liquid” are mixed to compare changes in dissolved oxygen concentration with “sample water”. Refers to a water sample. In addition, the “sample water” and “comparative sample water” must contain sufficient nutrients necessary for the respiratory activity of the specified microorganism, and may be contained in the test solution, standard water, or seeding solution. If there is not enough nutrients, add additional nutrients to the sample water separately to ensure sufficient nutrients for microbial respiratory activity.

また、本発明で有害物質の有無を検知する対象となる水は、上下水道、工業用水、工業排水、水処理プロセスの各工程水、河川水、湖沼水、海水等が含まれる。   Moreover, the water which becomes the object which detects the presence or absence of a hazardous | toxic substance by this invention includes water and sewage, industrial water, industrial waste water, each process water of a water treatment process, river water, lake water, seawater, etc.

試料水の溶存酸素濃度の変化を計測する装置(以下、呼吸活性測定装置という)としては、例えば図1に示すような装置を用いることができる。すなわち、試料水を入れる反応槽1は、酸素供給手段としてエアーポンプ3に連結した散気管4を備え、試料水の計測手段として溶存酸素計2およびpH計10を備え、反応槽内の試料水の撹拌手段として、例えばマグネティックスターラー6に連動した撹拌子5を備えている。反応槽1は、大気に接している液面から酸素供給を抑えるためエアーポンプ3から槽内に供給された空気を排出するための排気口14を備えた半密閉式容器を用いることができる。また、エアーポンプ3から槽内に空気を供給するタイミングと同期して排気口14を開弁するように電磁弁を設置した密閉式容器を用いてもよい。   As an apparatus for measuring a change in dissolved oxygen concentration of sample water (hereinafter referred to as a respiratory activity measuring apparatus), for example, an apparatus as shown in FIG. 1 can be used. That is, the reaction tank 1 for containing the sample water includes a diffuser tube 4 connected to an air pump 3 as an oxygen supply means, a dissolved oxygen meter 2 and a pH meter 10 as sample water measurement means, and the sample water in the reaction tank. As a stirring means, for example, a stirrer 5 linked to a magnetic stirrer 6 is provided. The reaction tank 1 can be a semi-sealed container having an exhaust port 14 for discharging air supplied from the air pump 3 into the tank in order to suppress oxygen supply from the liquid level in contact with the atmosphere. Moreover, you may use the airtight container which installed the solenoid valve so that the exhaust port 14 might be opened synchronizing with the timing which supplies air in the tank from the air pump 3. FIG.

溶存酸素計2の計測値をデータ処理装置7で連続的に記録する。さらに、試料水中の溶存酸素濃度が予め設定した所定の数値以下となった場合にエアーポンプ3を動作させて、反応槽内にエアーを供給し、前記所定の数値超となったらエアーポンプ3を止める制御を行う。   The measured value of the dissolved oxygen meter 2 is continuously recorded by the data processing device 7. Further, when the dissolved oxygen concentration in the sample water is equal to or lower than a predetermined value set in advance, the air pump 3 is operated to supply air into the reaction tank, and when the concentration exceeds the predetermined value, the air pump 3 is turned on. Control to stop.

この所定の数値超となってエアーポンプ3を止める制御は、試料水中の溶存酸素濃度が予め設定した、前記所定の数値より高い、別の所定の数値を上回った場合にエアーポンプ3を停止させて、試料水中の溶存酸素濃度を一定濃度範囲となるように制御することが好ましい。隔膜式の溶存酸素電極を用いた場合、一般に応答速度の時間差のため所定濃度となったこと検知してエアーの供給を停止したとしても実際の溶存酸素濃度は計測値以上に高まっていることになり、結果として設定値に対して、例えば+1mg/L程度以上の溶存酸素濃度になる。したがって、溶存酸素濃度の設定範囲は、上限値と下限値の2点制御としてもよいが、下限値のみの1点制御でもよい。   The control for stopping the air pump 3 when it exceeds this predetermined value is to stop the air pump 3 when the dissolved oxygen concentration in the sample water exceeds a predetermined value that is higher than the predetermined value set in advance. Thus, it is preferable to control the dissolved oxygen concentration in the sample water so as to be in a certain concentration range. When a diaphragm type dissolved oxygen electrode is used, the actual dissolved oxygen concentration is generally higher than the measured value even if the supply of air is stopped by detecting that the concentration has reached a predetermined concentration due to the time difference in response speed. As a result, the dissolved oxygen concentration is, for example, about +1 mg / L or more with respect to the set value. Therefore, the setting range of the dissolved oxygen concentration may be two-point control of the upper limit value and the lower limit value, but may be one-point control of only the lower limit value.

微生物濃度が一定の場合、溶存酸素濃度の設定下限値は、低すぎると微生物汚泥フロック内部への酸素輸送効率が低下するため酸素の供給が反応の律速となり、また、高すぎると酸素の水への溶解効率が反応の律速となり、微生物の活性を正確に定量できない。従って、溶存酸素濃度の設定範囲は、1から5mg/Lの範囲であることが望ましく、より好適には2から3mg/Lの範囲が望ましい。一方、溶存酸素濃度の設定範囲の上限値は下限値に対して0.5mg/L以上であれば溶存酸素濃度の低下を正確に計測することができるが、前記した溶存酸素電極の応答速度の時間差のために上限値を設定しなくてもよい。但し、エアーポンプ3を連続的に稼動させると溶存酸素濃度の低下を観察できないため、上限値を設定しない場合、ポンプ3の稼動は下限値を上回るまでの一時的な稼動とすればよい。   If the microbial concentration is constant, the lower limit of the dissolved oxygen concentration setting is too low, the oxygen transport efficiency to the inside of the microbial sludge flocs will decrease, so the supply of oxygen will be the rate-limiting reaction, and if it is too high, The dissolution efficiency becomes the rate-limiting reaction, and the activity of microorganisms cannot be accurately determined. Therefore, the setting range of the dissolved oxygen concentration is preferably in the range of 1 to 5 mg / L, and more preferably in the range of 2 to 3 mg / L. On the other hand, if the upper limit value of the setting range of the dissolved oxygen concentration is 0.5 mg / L or more with respect to the lower limit value, it is possible to accurately measure the decrease in the dissolved oxygen concentration. It is not necessary to set an upper limit due to the time difference. However, since the decrease in dissolved oxygen concentration cannot be observed when the air pump 3 is continuously operated, if the upper limit value is not set, the pump 3 may be temporarily operated until the lower limit value is exceeded.

試料水中の微生物濃度は、植種液の添加量で調節することができる。試料水中の微生物濃度が高すぎると溶存酸素濃度の低下が著しくなるため、頻繁にエアーポンプ3が作動し、溶存酸素濃度の減少速度が正確に判定できない。また、酸素消費量が酸素供給量を上回ってしまい、酸素消費を計測できないため、最適な微生物濃度を設定しなければならない。最適な微生物濃度を設定するには、標準液と植種液を混合した試料水について試験を行い、溶存酸素濃度の時間変化が1〜100mg−O2/L/hとなる標準液と植種液との混合比もしくは標準液への植種液の添加率を採用することが好ましい。 The microorganism concentration in the sample water can be adjusted by the amount of seeding solution added. If the concentration of microorganisms in the sample water is too high, the dissolved oxygen concentration is significantly reduced. Therefore, the air pump 3 is frequently operated, and the decrease rate of the dissolved oxygen concentration cannot be accurately determined. In addition, since the oxygen consumption exceeds the oxygen supply, and the oxygen consumption cannot be measured, an optimal microbial concentration must be set. In order to set the optimal microbial concentration, a test is performed on the sample water in which the standard solution and the seeding solution are mixed, and the standard solution and the seeding in which the change in dissolved oxygen concentration with time is 1 to 100 mg-O 2 / L / h. It is preferable to employ a mixing ratio with the solution or an addition rate of the seeding solution to the standard solution.

また、酸素供給手段として酸素ボンベからの酸素ガスを供給する方法を採用すれば、酸素の溶解効率が高まるため、曝気時間の短縮や供給酸素量の増加などの利点がある。   In addition, if a method of supplying oxygen gas from an oxygen cylinder is adopted as the oxygen supply means, the oxygen dissolution efficiency is increased, and there are advantages such as shortening the aeration time and increasing the amount of supplied oxygen.

試料水のpHは図2に示すように呼吸活性に影響を及ぼすことから、有害物質の混入を正確に検知するためにpHをほぼ一定に保った条件下で測定することが望ましい。最適なpH条件は、検査に用いる植種液に含まれる微生物によって異なるが、例えば硝化細菌ではpH7から8が好ましく、鉄酸化細菌ではpH1〜4が好ましい。前記特許文献2においてはpH条件をほぼ一定に保つ方法として検液に予めpH緩衝溶液を添加する方法が記載されているが、pH緩衝溶液を添加したとしてもなおpH変化が生じることがあり、pH変化の影響を回避するために、試料水のpHを計測する手段を付与すること、および/または、試料水のpHを所定の範囲内に調節する手段を付与することが肝要である。反応進行に伴い試料水のpHが予め設定した数値の範囲を逸脱した場合にそれを検知してpHを調整するための手段として、pH調整剤タンク12に貯留したpH調整剤をpH計に連動して作動するpH調整剤ポンプ11によって反応槽1へ注入することができる。なお、pH調整剤は酸性化もしくはアルカリ性化の目的に応じて選定すればよく、例えば酸性化の目的には塩酸、硫酸などの無機酸もしくはその希釈水溶液を、また、アルカリ性化の目的には水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウムなどのアルカリ水溶液を用いることができる。これに対して酢酸やクエン酸などの有機酸は生物分解性があり、さらに呼吸活性を増進する恐れがあるため用いることはできない。さらに、pH計10の計測値をデータ処理装置7で連続的に記録すれば、試験作業の省力化や計測データの詳細な解析が可能となる。   Since the pH of the sample water affects the respiratory activity as shown in FIG. 2, it is desirable to measure under the condition that the pH is kept almost constant in order to accurately detect the contamination of harmful substances. The optimum pH condition varies depending on the microorganisms contained in the seeding liquid used for the test. For example, pH 7 to 8 is preferable for nitrifying bacteria, and pH 1 to 4 is preferable for iron-oxidizing bacteria. In Patent Document 2, a method of adding a pH buffer solution to a test solution in advance as a method of keeping pH conditions substantially constant is described, but even if a pH buffer solution is added, a pH change may still occur. In order to avoid the influence of pH change, it is important to provide means for measuring the pH of the sample water and / or to provide means for adjusting the pH of the sample water within a predetermined range. The pH adjuster stored in the pH adjuster tank 12 is linked to the pH meter as a means to detect and adjust the pH when the pH of the sample water deviates from the preset numerical range as the reaction proceeds. It can be injected into the reaction vessel 1 by the pH adjusting agent pump 11 that operates as described above. The pH adjuster may be selected according to the purpose of acidification or alkalinization. For example, an acid such as hydrochloric acid or sulfuric acid or a dilute aqueous solution thereof is used for the purpose of acidification, and water is used for the purpose of alkalinization. An aqueous alkali solution such as sodium oxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide can be used. On the other hand, organic acids such as acetic acid and citric acid cannot be used because they are biodegradable and may further increase respiratory activity. Furthermore, if the measured value of the pH meter 10 is continuously recorded by the data processing device 7, labor saving of test work and detailed analysis of measurement data can be performed.

さらに、生物反応は温度の影響を受けやすく、例えば図3に示すように温度が高まると微生物の呼吸にともなう酸素消費速度が高まる。一般に反応温度が10℃高まると生物反応の速度は2倍になるといわれている。したがって、測定結果の再現性の確保や信頼性の向上のために、試料水の温度調節手段として、例えば図4に示すような恒温水槽8と温調器9によって反応槽1の温度を調節することが望ましい。また、必要に応じて温度の計測値をデータ処理装置7で連続的に記録してもよい。   Furthermore, the biological reaction is easily influenced by temperature. For example, as shown in FIG. 3, when the temperature increases, the oxygen consumption rate accompanying the respiration of microorganisms increases. In general, it is said that the rate of biological reaction doubles when the reaction temperature increases by 10 ° C. Therefore, in order to ensure the reproducibility of the measurement results and improve the reliability, the temperature of the reaction tank 1 is adjusted by a constant temperature water tank 8 and a temperature controller 9 as shown in FIG. It is desirable. Moreover, you may record the measured value of temperature continuously with the data processor 7 as needed.

有害物質の混入を検知したい検液に代わって、植種液に含まれる微生物に適した栄養分を含む標準水を比較検液として、微生物を含んだ植種液を混合した比較試料水について溶存酸素濃度の変化を計測する対照区を設け、試験区と対照区との計測結果を比較することで、有害物質の混入を検知したい検液中の有害物質の混入を容易に判定することができる。   Instead of the test solution to detect the contamination of harmful substances, the reference sample water containing nutrients suitable for the microorganisms contained in the seeding solution is used as a comparative test solution, and the dissolved oxygen is added to the comparative sample water mixed with the seeding solution containing microorganisms. By providing a control group for measuring the change in concentration, and comparing the measurement results of the test group and the control group, it is possible to easily determine the contamination of the harmful substance in the test solution to be detected.

試験区と対照区の計測は、ひとつの呼吸活性測定装置を用いて順序を問わず順次実施してもよいが、前記呼吸活性測定装置を2式以上準備すれば、同時期に検査することができる。なお、呼吸活性装置を2式以上準備する場合であってもデータ処理装置7は1台のみで統合的にデータを管理してもよい。   The measurement in the test group and the control group may be performed sequentially regardless of the order using one respiratory activity measuring device, but if two or more respiratory activity measuring devices are prepared, they can be tested at the same time. it can. Even when two or more respiratory activation devices are prepared, the data processing device 7 may manage data in an integrated manner with only one data processing device 7.

溶存酸素濃度の経時変化は、試験水中の微生物の呼吸作用による低減と、溶存酸素濃度の所定の設定値を下回った際の酸素供給手段動作による増加との繰り返しパターンを示す。したがって、試験区と対照区の溶存酸素濃度の変化幅、すなわち溶存酸素濃度の下限値と上限値の差がほぼ等しい場合、前記繰り返しパターンの出現頻度もしくはその時間間隔もしくは酸素供給手段動作の頻度もしくはその時間間隔から呼吸活性の高低を判断できる。具体的には、溶存酸素濃度経時変化グラフの山間隔、谷間隔、ないしは溶存酸素濃度が低下する期間の傾きなどで判断できる。例えば、図5では試験区と対照区の溶存酸素の上限値と下限値の差がともに3mg/Lであり、対照区では溶存酸素濃度の変化の繰り返しパターン、ないしは上限値の出現間隔(山間隔)、ないしは下限値の出現間隔(谷間隔)が6分周期で観察されたのに対して、試験区のそれらは11分周期であったことから、試験区は対照区に比べて呼吸活性が低いと考えられ、試験水中に有害物質の混入のあると判断できる。また、図5において溶存酸素が減少している期間における傾き(酸素消費速度)を計算して表示すると図6のようになり、対照区では36mg/L/hであったのに対し、試験区では18mg/L/hであったことから試験区は対照区に比べて呼吸活性が低いと考えられ、試験水中に有害物質の混入のあると判断できる。また、図5において溶存酸素濃度が上昇した期間は、酸素供給手段が動作している期間を示しており、図7に示すように酸素供給手段からの通気量を観察すれば、対照区における動作間隔は5分であるのに対して、試験区のそれは10分と長くなっていたことから、試験区は対照区に比べて呼吸活性が低いと考えられ、試験水中に有害物質の混入のあると判断できる。   The time-dependent change in the dissolved oxygen concentration shows a repetitive pattern of a decrease due to the respiratory action of microorganisms in the test water and an increase due to the operation of the oxygen supply means when the dissolved oxygen concentration falls below a predetermined set value. Therefore, when the change range of the dissolved oxygen concentration in the test group and the control group, that is, the difference between the lower limit value and the upper limit value of the dissolved oxygen concentration is substantially equal, the frequency of occurrence of the repetitive pattern or its time interval or the frequency of the oxygen supply means operation or The level of respiratory activity can be determined from the time interval. Specifically, it can be determined by the peak interval, valley interval, or the slope of the period during which the dissolved oxygen concentration decreases in the dissolved oxygen concentration change graph. For example, in FIG. 5, the difference between the upper limit value and the lower limit value of dissolved oxygen in the test group and the control group is 3 mg / L. In the control group, the repeated pattern of the change in dissolved oxygen concentration, or the appearance interval of the upper limit value (mountain interval). ), Or the appearance interval (valley interval) of the lower limit value was observed at a cycle of 6 minutes, whereas those of the test group were at the cycle of 11 minutes. Therefore, the test group had respiratory activity compared to the control group. It is considered to be low, and it can be judged that there are harmful substances mixed in the test water. Also, the slope (oxygen consumption rate) in the period in which dissolved oxygen is decreasing in FIG. 5 is calculated and displayed as shown in FIG. 6, which was 36 mg / L / h in the control group, whereas Therefore, since it was 18 mg / L / h, it is considered that the test group has lower respiratory activity than the control group, and it can be judged that there is a contamination of harmful substances in the test water. Further, the period in which the dissolved oxygen concentration is increased in FIG. 5 indicates the period during which the oxygen supply means is operating. If the amount of ventilation from the oxygen supply means is observed as shown in FIG. The interval was 5 minutes, while that in the test group was 10 minutes longer. Therefore, the test group was considered to have lower respiratory activity than the control group, and there was contamination of harmful substances in the test water. It can be judged.

試料水中に有害物質の混入があると、溶存酸素濃度の低減が緩和もしくは停止するため、試験区および対照区におけるそれぞれの溶存酸素濃度の経時変化を比較した際に、試験区における前記繰り返しパターンもしくは酸素供給手段動作の頻度が対照区における前記繰り返しパターンもしくは酸素供給手段動作の頻度に比べて低い場合に、有害物質の混入を検知したい検液中に有害物質の混入があることが疑われると判断できる。なお、検液中に混入している有害物質が、用いた植種液中の微生物に対して重篤な毒性作用がある場合には、試験区における溶存酸素濃度の低減が完全に停止するため、対照区の結果と比較するまでもなく、試験区の結果のみから検液中の有害物質の混入を検知できる場合もあるが、対照区を設けて比較することにより、試験区における有害物質の混入の影響がより明瞭になるため、試験区単独で判定する場合に比べて、有害物質の混入をより迅速に判定できる。   If harmful substances are mixed in the sample water, the decrease in dissolved oxygen concentration will be eased or stopped, so when comparing the time-dependent changes in dissolved oxygen concentration in the test group and the control group, When the frequency of the oxygen supply means operation is low compared to the frequency of the repeated pattern or the oxygen supply means operation in the control section, it is determined that there is a suspicion that there is a contamination of the harmful substance in the test liquid for which contamination of the harmful substance is to be detected. it can. In addition, if harmful substances mixed in the test solution have serious toxic effects on the microorganisms in the used seeding solution, the reduction of dissolved oxygen concentration in the test zone will cease completely. In some cases, it is possible to detect the contamination of harmful substances in the test solution from the results of the test group alone, without comparing with the results of the control group. Since the influence of mixing becomes clearer, it is possible to determine the mixing of harmful substances more quickly than in the case where the test section alone determines.

また、溶存酸素濃度の変化量から一定時間あたりの酸素消費量、すなわち酸素消費速度を計算すれば、有害物質の混入の有無や微生物の呼吸活性に及ぼす影響の程度を定量的に判断できる。すなわち、試験区で得られた酸素消費速度が、対照区で得られた酸素消費速度よりも小さな値を示した場合に検液への有害物質の混入が疑われると判断できる。   Also, by calculating the oxygen consumption per fixed time, that is, the oxygen consumption rate, from the amount of change in the dissolved oxygen concentration, it is possible to quantitatively determine the presence or absence of harmful substances and the degree of influence on the respiratory activity of microorganisms. That is, when the oxygen consumption rate obtained in the test group shows a smaller value than the oxygen consumption rate obtained in the control group, it can be determined that the contamination of the test substance is suspected.

植種液は酸素を消費する活性を有している微生物を含んでいれば特に限定はないが、好気性従属栄養性細菌、通性嫌気性従属栄養性細菌、硝化細菌(アンモニア酸化細菌、亜硝酸酸化細菌)、鉄酸化細菌、硫黄酸化細菌を単独もしくは混合で用いることができる。嫌気性の従属栄養性細菌や硫酸還元菌などは水中の溶存酸素の消費がない、あるいは、溶存酸素の存在が生育に対して阻害的であるので適していない。あるいは、活性汚泥処理等の生物処理施設にあっては該施設の活性汚泥を植種液として用いれば、該施設への受入れ可能性を検定したい検液の評価や該施設の現状の処理性能診断により有効に活用することができる。   The seeding solution is not particularly limited as long as it contains microorganisms having an oxygen consuming activity, but aerobic heterotrophic bacteria, facultative anaerobic heterotrophic bacteria, nitrifying bacteria (ammonia-oxidizing bacteria, Nitrate oxidizing bacteria), iron oxidizing bacteria, and sulfur oxidizing bacteria can be used alone or in combination. Anaerobic heterotrophic bacteria and sulfate-reducing bacteria are not suitable because they do not consume dissolved oxygen in water or the presence of dissolved oxygen is inhibitory to growth. Alternatively, in the case of a biological treatment facility such as activated sludge treatment, if the activated sludge of the facility is used as a seeding solution, evaluation of the test solution to be tested for acceptability into the facility or diagnosis of the current treatment performance of the facility Can be used more effectively.

植種液の添加は、前記した試験区および対照区ともに、予め微生物植種液を検液もしくは標準液に混合した後に反応槽1へ注ぎ入れてもよいが、温度、pH等の検査条件を整えるために、まず検液もしくは標準液を反応槽1に注ぎ入れ、温度、pH等の検査条件が整えた後に植種液を添加することが望ましい。   In the addition of the seeding solution, both the test group and the control group described above may be poured into the reaction tank 1 after mixing the microorganism seeding solution in advance with the test solution or the standard solution. In order to prepare, it is desirable to first pour a test solution or a standard solution into the reaction tank 1 and add a seeding solution after adjusting inspection conditions such as temperature and pH.

ところで、対照区に用いる標準液は、用いる植種液に含まれる微生物の種類に適した成分を含有するものであればよく、例えば、従属栄養性細菌の場合は酢酸、クエン酸、グルコース、メタノール、フェノールなどの有機物質を含んだ標準液を用いることができ、硝化細菌の場合はアンモニウム塩、亜硝酸塩などの窒素成分を含んだ標準液を用いればよい。また、鉄酸化細菌の場合は二価鉄を含んだ標準液を用いればよく、硫黄酸化細菌の場合はチオ硫酸塩やチオシアン塩などの硫黄成分を含んだ標準液を用いればよい。   By the way, the standard solution used for the control group only needs to contain components suitable for the type of microorganism contained in the seeding solution to be used. For example, in the case of heterotrophic bacteria, acetic acid, citric acid, glucose, methanol Standard solutions containing organic substances such as phenol can be used. In the case of nitrifying bacteria, standard solutions containing nitrogen components such as ammonium salts and nitrites may be used. In the case of iron-oxidizing bacteria, a standard solution containing divalent iron may be used. In the case of sulfur-oxidizing bacteria, a standard solution containing sulfur components such as thiosulfate and thiocyanate may be used.

なお、有害物質の混入の有無を検知に要する試験時間は、溶存酸素濃度の変化を確認できる時間であれば特に限定はないが、試験時間が長時間にわたった場合、試験水中の栄養源が枯渇し、その結果として微生物の呼吸活性が低下することがあり、有害物質の混入の影響と誤判断する可能性があることから、10分から3時間の範囲とすることが好ましい。また、試験液中の微生物量の多寡が微生物の呼吸活性の程度に相関するため、10分から3時間の範囲で溶存酸素濃度の変化を確認できるように植種液の添加率を設定すればよい。前記した溶存酸素濃度の時間変化が1〜100mgO/L/hとなる植種液の添加率で試験すれば、10分から3時間の範囲で有害物質の混入の有無を検知できる。 The test time required to detect the presence or absence of harmful substances is not particularly limited as long as the change in dissolved oxygen concentration can be confirmed, but if the test time is long, the nutrient source in the test water Since it may be depleted and, as a result, the respiratory activity of microorganisms may be reduced, and it may be misjudged as an influence of contamination with harmful substances, the range of 10 minutes to 3 hours is preferable. In addition, since the amount of microorganisms in the test solution correlates with the degree of respiratory activity of the microorganisms, the seeding solution addition rate should be set so that the change in dissolved oxygen concentration can be confirmed in the range of 10 minutes to 3 hours. . If the test is performed with the addition rate of the seeding solution in which the time change of the dissolved oxygen concentration is 1 to 100 mgO 2 / L / h, it is possible to detect the presence or absence of harmful substances in the range of 10 minutes to 3 hours.

以下、実施例を示しながら、本発明の有効性について記す。
(実施例1)
本実施例では、本発明の方法によって検液中の有害物質の混入を検知できることを示す。
図1に示した呼吸活性測定装置を用いて、600mg/Lの濃度でフェノールを含有する標準水を比較検液として、コークス工場廃水処理設備から採取した活性汚泥を植種液として添加した比較試料水について溶存酸素濃度の経時変化を測定した。まず、容積500mLの反応槽に比較検液480mLを入れて測定を開始し、0.5時間経過時に植種液20mLを添加してさらに測定を継続した。なお、植種液のMLSS(Mixed Liquor Suspended Solid)濃度は14000mg/Lであった。また、溶存酸素濃度が3.5mg/L以下になった時にエアーポンプを動作させた。pHが8.0以下になった時に0.1N水酸化ナトリウム水溶液を添加した。溶存酸素濃度の経時変化を図8に示した。植種液を添加した時点以降で溶存酸素の消費と曝気による溶存酸素の供給の様子が顕著であり、微生物の呼吸活性、特にフェノール分解菌群が活発に活動していたことがわかる。
The effectiveness of the present invention will be described below with reference to examples.
Example 1
In this example, it is shown that contamination of harmful substances in a test solution can be detected by the method of the present invention.
1. Using the respiratory activity measuring apparatus shown in FIG. 1, a comparative sample in which standard water containing phenol at a concentration of 600 mg / L is used as a comparative test solution, and activated sludge collected from a coke factory wastewater treatment facility is added as a seeding solution. The change with time of dissolved oxygen concentration was measured for water. First, 480 mL of the comparative test solution was put into a 500 mL capacity reaction tank, and measurement was started. After 0.5 hours, 20 mL of the seeding solution was added and the measurement was further continued. In addition, the MLSS (Mixed Liquor Suspended Solid) concentration of the seeding solution was 14000 mg / L. The air pump was operated when the dissolved oxygen concentration was 3.5 mg / L or less. When pH became 8.0 or less, 0.1N sodium hydroxide aqueous solution was added. The change with time of the dissolved oxygen concentration is shown in FIG. The state of consumption of dissolved oxygen and supply of dissolved oxygen by aeration is remarkable after the time when the seeding solution is added, indicating that the respiratory activity of microorganisms, particularly the phenol-degrading bacteria group, was active.

次いで、同様の装置および同様の手順で、重金属の混入が疑われる実廃水を前記したフェノールを含む標準水に対して10%(v/v)で添加した検液を調製し、本混合液に対してコークス工場廃水処理活性汚泥を植種液として添加した試料水について溶存酸素濃度の経時変化を測定した。溶存酸素濃度の経時変化を図9に示した。植種液を添加した時点以降で溶存酸素の消費と曝気による溶存酸素の供給の様子が観察されたが、徐々に溶存酸素濃度の低下が鈍くなり、1.5時間目以降では溶存酸素の消費がほとんど観察されなくなった。すなわち、活発に生じていた微生物の呼吸活性が急速に阻害され、検液中に有害物質が混入していたことがわかる。検液に用いた実廃水を水質分析したところ、15mg/Lの鉛が検出されたことから、試料水では1.5mg/L程度の鉛濃度であり、この濃度は魚の限界致死量(致死にいたる下限濃度)に相当した。   Next, using the same apparatus and the same procedure, prepare a test solution in which actual wastewater suspected of being mixed with heavy metals is added at 10% (v / v) with respect to the standard water containing phenol as described above. On the other hand, changes in dissolved oxygen concentration over time were measured for sample water to which coke plant wastewater treatment activated sludge was added as a seeding solution. The change with time of the dissolved oxygen concentration is shown in FIG. The consumption of dissolved oxygen and the state of supply of dissolved oxygen by aeration were observed after the seeding solution was added, but the decrease in dissolved oxygen concentration gradually slowed down, and the consumption of dissolved oxygen after 1.5 hours. Almost disappeared. That is, it can be seen that the respiratory activity of the microorganisms that were actively generated was rapidly inhibited, and harmful substances were mixed in the test solution. The actual wastewater used for the test solution was analyzed for water. As a result, 15 mg / L of lead was detected. In the sample water, the lead concentration was about 1.5 mg / L. This concentration was the critical lethal dose (lethal to fish). Corresponded to the lower limit concentration).

溶存酸素の消費が停止したことを示す図9の結果からのみでも、検液中に有害物質の混入していたことを判断できるが、本図の結果と、検液の添加以外の検知条件を揃えた図8の結果とを比較することによって、検液中の有害物質の混入判定の確からしさを高めるとともに迅速に判定することができる。つまり、試験水の結果、すなわち図9の結果からは植種液添加から30分を経過した時点で著明な影響があったことが判別できるが、比較試験水の結果、すなわち図8の結果と比較することによって、より早期に判断できる。   It can be determined from the result of FIG. 9 that the consumption of dissolved oxygen has stopped that the harmful substances were mixed in the test solution. However, the results of this figure and the detection conditions other than the addition of the test solution were determined. By comparing the prepared results of FIG. 8 with each other, it is possible to increase the certainty of determining whether or not harmful substances are mixed in the test solution and to make a quick determination. That is, from the result of the test water, that is, the result of FIG. 9, it can be determined that there was a significant influence at the time when 30 minutes have passed since the seeding solution addition, but the result of the comparative test water, that is, the result of FIG. By comparing with, it can be judged earlier.

また、酸素供給手段であるエアーポンプが動作した頻度からも、有害物質の混入を判断できる。つまり、酸素供給手段であるエアーポンプが動作した頻度、すなわち図8および図9において溶存酸素濃度が増加した頻度は、比較試験水の結果(図8)では植種液添加後30分間で9回であったのに対して、試料水の結果(図9)では5回であったことから、試料水では呼吸速度が低下しており、試料水中に有害物質が混入していたと判断できる。   Further, the contamination of harmful substances can also be determined from the frequency of operation of the air pump as the oxygen supply means. In other words, the frequency at which the air pump as the oxygen supply means was operated, that is, the frequency at which the dissolved oxygen concentration increased in FIGS. 8 and 9, was 9 times in 30 minutes after adding the seeding solution in the result of the comparative test water (FIG. 8). On the other hand, since the sample water result (FIG. 9) was 5 times, the respiration rate was lowered in the sample water, and it can be determined that harmful substances were mixed in the sample water.

また、溶存酸素濃度の低下から計算される溶存酸素消費速度、すなわち呼吸活性の経時変化を図10に示した。比較試料水、試料水ともに呼吸速度は時間経過とともに低下したが、試料水は比較試料水に比べて急速に呼吸速度が低下した。しかしながら、比較試料水、試料水ともに植種液を添加した初期の呼吸速度が最も高く、ともに80mg/L/hと同程度であり、最大呼吸速度は同じであったことから、最大呼吸速度の対比から評価する前記特許文献3の方法では検知することが困難である。
以上、本発明の方法を用いることによって検液中の有害物質の混入を検知できた。
Further, FIG. 10 shows the dissolved oxygen consumption rate calculated from the decrease in the dissolved oxygen concentration, that is, the change over time in respiratory activity. In both the comparative sample water and the sample water, the respiration rate decreased with time, but the respiration rate of the sample water rapidly decreased as compared with the comparative sample water. However, both the comparative sample water and the sample water had the highest initial respiration rate when the seed solution was added, both of which were about 80 mg / L / h, and the maximum respiration rate was the same. It is difficult to detect by the method of Patent Document 3 evaluated from the comparison.
As described above, by using the method of the present invention, it was possible to detect contamination of harmful substances in the test solution.

(実施例2)
本実施例では、測定中の試料水のpHを調整することが測定結果の信頼性を高めることについて示す。実施例2−1ではpH調整を行い、実施例2−2ではpH調整を行わなかった。
まず、実施例2−1では、図4に示した呼吸活性測定装置を用いて、100mg/Lの濃度でアンモニア性窒素を含有する標準液に、硝化槽から採取した活性汚泥を植種液として添加した試料水について溶存酸素濃度の変化を経時的に測定した。まず、容積1000mLの反応槽に検液980mLおよび硝化槽活性汚泥20mLを入れて測定を開始した。なお、植種液に用いた活性汚泥のMLSS濃度は5000mg/Lであった。また、溶存酸素濃度が3.5mg/L以下になった時にエアーポンプを動作させた。pHが7.5以下になった時に水酸化ナトリウム水溶液を添加した。水温は30℃一定で実施した。また、実施例2−2では同じ試料水を用いて、測定中のpH調整をしない場合について測定した。
(Example 2)
In this example, it will be shown that adjusting the pH of the sample water being measured increases the reliability of the measurement results. In Example 2-1, pH adjustment was performed, and in Example 2-2, pH adjustment was not performed.
First, in Example 2-1, using the respiratory activity measuring apparatus shown in FIG. 4, the activated sludge collected from the nitrification tank was used as a seeding solution in a standard solution containing ammonia nitrogen at a concentration of 100 mg / L. Changes in dissolved oxygen concentration were measured over time for the added sample water. First, 980 mL of test solution and 20 mL of nitrification tank activated sludge were placed in a 1000 mL volume reactor, and measurement was started. Note that the MLSS concentration of the activated sludge used for the seeding solution was 5000 mg / L. The air pump was operated when the dissolved oxygen concentration was 3.5 mg / L or less. When the pH was 7.5 or lower, an aqueous sodium hydroxide solution was added. The water temperature was kept constant at 30 ° C. In Example 2-2, the same sample water was used and the pH was not adjusted during the measurement.

本実施例におけるpH経時変化は図11に示すように7.5でほぼ一定に維持することができ、図12に示すように溶存酸素の消費と曝気による溶存酸素の供給の規則的なパターンが持続し、前記標準液には有害物質が混入していないことが判断できた。   The pH change with time in this example can be maintained almost constant at 7.5 as shown in FIG. 11, and a regular pattern of consumption of dissolved oxygen and supply of dissolved oxygen by aeration is shown in FIG. It was determined that no harmful substances were mixed in the standard solution.

これに対して、pH調整をしなかった実施例2−2では図13に示すように溶存酸素の消費と曝気による溶存酸素の供給のパターンは徐々に緩やかになった。つまり、本比較例においては試料水中に有害物質の混入がないにも拘わらず、図13の結果から有害物質が混入していたと誤判断させる。しかしながら、図14に示すように反応進行につれ、pHが徐々に低下していた。これは、微生物の呼吸活性、特に硝化細菌による硝化反応の進行に伴ってアンモニアは亜硝酸さらには硝酸へと変換されるため酸性化したためであり、pH低下によって硝化反応が阻害されたため、図13に示したように溶存酸素の消費が徐々に緩和した。   In contrast, in Example 2-2 in which the pH was not adjusted, the pattern of consumption of dissolved oxygen and supply of dissolved oxygen by aeration gradually decreased as shown in FIG. That is, in this comparative example, it is erroneously determined that a harmful substance was mixed from the result of FIG. 13 even though no harmful substance was mixed in the sample water. However, as shown in FIG. 14, the pH gradually decreased as the reaction progressed. This is because the respiration activity of microorganisms, in particular, ammonia was converted to nitrite and nitric acid with the progress of the nitrification reaction by nitrifying bacteria, and the nitrification reaction was inhibited by pH reduction. As shown, the consumption of dissolved oxygen gradually eased.

つまり、pHが変化する試験条件下では有害物質の混入がなくとも呼吸活性が阻害され、結果判定を誤る可能性がある。したがって、本実施例で示したように、pH調節の手段を付加することによって、微生物の呼吸活性に対するpHの影響に起因した、有害物質の混入の誤判定を回避することでき、検液中の有害物質の混入を正確に検知できる。   That is, under the test conditions where the pH changes, even if no harmful substances are mixed, the respiratory activity is inhibited, and the result determination may be erroneous. Therefore, as shown in this example, by adding a pH adjusting means, it is possible to avoid misjudgment of harmful substances due to the influence of pH on the respiratory activity of microorganisms. Accurate detection of harmful substances.

1 反応槽
2 溶存酸素計
3 エアーポンプ
4 散気管
5 撹拌子
6 スターラー
7 データ処理装置
8 恒温水槽
9 温調器
10 pH計
11 pH調整剤ポンプ
12 pH調整剤タンク
13 酸化還元電位計
14 排気口
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Dissolved oxygen meter 3 Air pump 4 Aeration pipe 5 Stirrer 6 Stirrer 7 Data processing device 8 Thermostatic water tank 9 Temperature controller 10 pH meter 11 pH regulator pump 12 pH regulator tank 13 Redox potential meter 14 Exhaust port

Claims (9)

有害物質の混入の有無を検出したい検液と、好気呼吸する微生物を含んだ植種液とを混合して試料水とし、且つ、前記試料水には前記微生物の栄養分が含まれており、前記微生物の呼吸により前記試料水中の溶存酸素濃度が減少して所定値以下となったところで、前記試料水中に酸素を一時的に供給して前記溶存酸素濃度を前記所定値超に上昇させ、その後、再び、前記微生物の呼吸により前記試料水中の前記溶存酸素濃度が前記所定値以下となったところで、再度、酸素を一次的に供給して前記溶存酸素濃度を前記所定値超に上昇させることを繰り返して、前記試料水中の溶存酸素濃度の経時変化を観察し、その経時変化の状態から前記検液中の有害物質の混入の有無を検知することを特徴とする水中の有害物質の検知方法。   Mixing a test solution that wants to detect the presence of harmful substances and a seed solution containing aerobic microorganisms into sample water, and the sample water contains nutrients of the microorganisms, When the dissolved oxygen concentration in the sample water decreases to a predetermined value or less due to respiration of the microorganism, oxygen is temporarily supplied to the sample water to increase the dissolved oxygen concentration to exceed the predetermined value, and then Again, when the dissolved oxygen concentration in the sample water falls below the predetermined value due to respiration of the microorganism, oxygen is temporarily supplied again to increase the dissolved oxygen concentration above the predetermined value. A method for detecting harmful substances in water, characterized by observing changes in dissolved oxygen concentration in the sample water over time and detecting the presence or absence of harmful substances in the test solution based on the changes over time. 前記溶存酸素濃度の所定値が、1〜5mg/Lの範囲内の一定値であることを特徴とする、請求項1に記載の検知方法。   The detection method according to claim 1, wherein the predetermined value of the dissolved oxygen concentration is a constant value within a range of 1 to 5 mg / L. 前記試料水中に酸素を一時的に供給して前記溶存酸素濃度を前記所定値超に上昇させることを繰り返す際に、前記上昇後の最大溶存酸素濃度が、毎回、前記溶存酸素濃度の所定値よりも0.5mg/L以上高い所定値となるように、前記酸素の一時的供給量を制御することを特徴とする、請求項2に記載の検知方法。   When repeatedly supplying oxygen to the sample water and increasing the dissolved oxygen concentration to exceed the predetermined value, the maximum dissolved oxygen concentration after the increase is greater than the predetermined value of the dissolved oxygen concentration each time. 3. The detection method according to claim 2, wherein the temporary supply amount of oxygen is controlled so that the predetermined value is 0.5 mg / L or higher. 前記繰り返して一時的に供給する酸素の供給手段が、エアーポンプの一時的な稼動による前記試料水中への空気の供給によるものであることを特徴とする、請求項1〜3のいずれか1項に記載の検知方法。   The oxygen supply means for repeatedly and temporarily supplying oxygen is supplied by supplying air into the sample water by temporarily operating an air pump. The detection method described in 1. 前記試料水のpHを計測し、前記pHが一定値に保持されるように、酸またはアルカリを添加することを特徴とする、請求項1〜4のいずれか1項に記載の検知方法。   The detection method according to any one of claims 1 to 4, wherein the pH of the sample water is measured, and an acid or an alkali is added so that the pH is maintained at a constant value. 前記試料水の温度を一定に保持することを特徴とする、請求項1〜5のいずれか1項に記載の検知方法。   The detection method according to claim 1, wherein the temperature of the sample water is kept constant. 前記溶存酸素濃度の経時変化の状態から前記検液中の有害物質の混入の有無を検知する手段が、
前記試料水中に酸素を一時的に供給して前記溶存酸素濃度を上昇させた後から、前記微生物の呼吸により前記試料水中の前記溶存酸素濃度が前記所定値以下となるまでの時間間隔が、前記繰り返しの度に、長くなることにより、有害物質が前記検液中に存在すると判断することを特徴とする、請求項1〜6のいずれか1項に記載の検知方法。
Means for detecting the presence or absence of toxic substances in the test solution from the state of change in the dissolved oxygen concentration over time,
After the oxygen is temporarily supplied to the sample water to increase the dissolved oxygen concentration, the time interval until the dissolved oxygen concentration in the sample water becomes equal to or lower than the predetermined value due to respiration of the microorganism is The detection method according to any one of claims 1 to 6, wherein a harmful substance is determined to be present in the test solution by increasing the length of each repetition.
前記試料水中の溶存酸素濃度の経時変化を観測するとともに、別途、前記微生物に有害な物質を含まない標準水を比較検液として、前記比較検液と好気呼吸する微生物を含んだ植種液とを混合して比較試料水とし、且つ、前記比較試料水には前記微生物の栄養分が含まれており、前記微生物の呼吸により前記比較試料水中の溶存酸素濃度が減少して前記所定値以下となったところで、前記比較試料水中に酸素を一時的に供給して前記溶存酸素濃度を前記所定値超に上昇させ、その後、再び、前記微生物の呼吸により前記比較試料水中の前記溶存酸素濃度が前記所定値以下となったところで、再度、酸素を一次的に供給して前記溶存酸素濃度を前記所定値超に上昇させることを繰り返して、前記試料水中の溶存酸素濃度の経時変化を観察し、前記試料水中の溶存酸素濃度の経時変化と前記比較試料水中の溶存酸素濃度の経時変化とを比較し、両者の経時変化の状態の違いから有害物質の混入の有無を判定することを特徴とする、請求項1〜7のいずれか1項に記載の検知方法。   In addition to observing the change in dissolved oxygen concentration over time in the sample water, separately using a standard water that does not contain substances harmful to the microorganism as a comparative test solution, a seeding solution containing the comparative test solution and microorganisms that perform aerobic respiration And the comparative sample water contains nutrients of the microorganisms, and the dissolved oxygen concentration in the comparative sample water is reduced by the respiration of the microorganisms to be equal to or less than the predetermined value. At this point, oxygen is temporarily supplied to the comparative sample water to increase the dissolved oxygen concentration to exceed the predetermined value, and then the dissolved oxygen concentration in the comparative sample water is again increased due to respiration of the microorganism. When the oxygen concentration became equal to or lower than the predetermined value, oxygen was temporarily supplied again and the dissolved oxygen concentration was repeatedly increased to exceed the predetermined value, and the change with time in the dissolved oxygen concentration in the sample water was observed. Comparing the time-dependent change in dissolved oxygen concentration in the sample water and the time-dependent change in dissolved oxygen concentration in the comparative sample water, and determining the presence or absence of contamination of harmful substances from the difference in the state of both time-dependent changes, The detection method of any one of Claims 1-7. 前記溶存酸素濃度の経時変化の状態から前記検液中の有害物質の混入の有無を検知する手段が、
前記試料水中に酸素を一時的に供給して前記溶存酸素濃度を上昇させた後から、前記微生物の呼吸により前記試料水中の前記溶存酸素濃度が前記所定値以下となるまでの間の平均酸素消費速度を算出し、且つ、前記比較試料水中に酸素を一時的に供給して前記溶存酸素濃度を上昇させた後から、前記微生物の呼吸により前記比較試料水中の前記溶存酸素濃度が前記所定値以下となるまでの間の平均酸素消費速度を算出し、前記算出した試料水における平均酸素消費速度と、前記算出した比較試料水における平均酸素消費速度とを、前記繰り返し毎に比較して、前記試料水における平均酸素消費速度が、前記比較試料水における平均酸素消費速度よりも小さくなることで、有害物質が前記検液中に存在すると判断することを特徴とする、請求項8に記載の検知方法。
Means for detecting the presence or absence of toxic substances in the test solution from the state of change in the dissolved oxygen concentration over time,
The average oxygen consumption after the oxygen is temporarily supplied to the sample water to increase the dissolved oxygen concentration until the dissolved oxygen concentration in the sample water falls below the predetermined value due to respiration of the microorganisms After the velocity is calculated and oxygen is temporarily supplied to the comparative sample water to increase the dissolved oxygen concentration, the dissolved oxygen concentration in the comparative sample water is less than the predetermined value due to respiration of the microorganisms. And the average oxygen consumption rate in the calculated sample water and the calculated average oxygen consumption rate in the comparative sample water are compared for each repetition, and the sample is calculated. The average oxygen consumption rate in water is smaller than the average oxygen consumption rate in the comparative sample water, thereby determining that harmful substances are present in the test solution. Detection method described in.
JP2009123427A 2009-05-21 2009-05-21 Detection method of harmful substances in water Active JP5347711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009123427A JP5347711B2 (en) 2009-05-21 2009-05-21 Detection method of harmful substances in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009123427A JP5347711B2 (en) 2009-05-21 2009-05-21 Detection method of harmful substances in water

Publications (2)

Publication Number Publication Date
JP2010271192A true JP2010271192A (en) 2010-12-02
JP5347711B2 JP5347711B2 (en) 2013-11-20

Family

ID=43419332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009123427A Active JP5347711B2 (en) 2009-05-21 2009-05-21 Detection method of harmful substances in water

Country Status (1)

Country Link
JP (1) JP5347711B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005754A (en) * 2011-06-24 2013-01-10 Ihi Corp Aeration method and aeration apparatus
JP2015089548A (en) * 2013-11-07 2015-05-11 新日鐵住金株式会社 Sludge activity measuring apparatus and method for measuring sludge activity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106045046B (en) * 2016-07-22 2018-12-14 西安建筑科技大学 A method of activated sludge dephosphorizing efficiency is assessed based on breathing map

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223396A (en) * 1975-08-12 1977-02-22 Stamicarbon Waste water testing method of measuring level of poisonous substance checking activity of bacteria
JPS63113354A (en) * 1986-10-31 1988-05-18 Hitachi Ltd Water quality monitoring by aquatic animal
JP2003066029A (en) * 2001-06-01 2003-03-05 Kubota Corp Water quality inspection device and method
JP2004170198A (en) * 2002-11-19 2004-06-17 Ngk Insulators Ltd Method and apparatus for monitoring mixing of toxic material in raw water for city water
JP2005156204A (en) * 2003-11-21 2005-06-16 Fuji Electric Systems Co Ltd Monitoring method for toxic substance
JP2006349551A (en) * 2005-06-17 2006-12-28 Toshiba Corp Biosensor type abnormal water quality monitoring device
JP2008286534A (en) * 2007-05-15 2008-11-27 Toshiba Corp Biosensor type abnormal water quality detector
JP2009222667A (en) * 2008-03-18 2009-10-01 Metawater Co Ltd Toxic substance detecting method and toxic substance detector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223396A (en) * 1975-08-12 1977-02-22 Stamicarbon Waste water testing method of measuring level of poisonous substance checking activity of bacteria
JPS63113354A (en) * 1986-10-31 1988-05-18 Hitachi Ltd Water quality monitoring by aquatic animal
JP2003066029A (en) * 2001-06-01 2003-03-05 Kubota Corp Water quality inspection device and method
JP2004170198A (en) * 2002-11-19 2004-06-17 Ngk Insulators Ltd Method and apparatus for monitoring mixing of toxic material in raw water for city water
JP2005156204A (en) * 2003-11-21 2005-06-16 Fuji Electric Systems Co Ltd Monitoring method for toxic substance
JP2006349551A (en) * 2005-06-17 2006-12-28 Toshiba Corp Biosensor type abnormal water quality monitoring device
JP2008286534A (en) * 2007-05-15 2008-11-27 Toshiba Corp Biosensor type abnormal water quality detector
JP2009222667A (en) * 2008-03-18 2009-10-01 Metawater Co Ltd Toxic substance detecting method and toxic substance detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005754A (en) * 2011-06-24 2013-01-10 Ihi Corp Aeration method and aeration apparatus
JP2015089548A (en) * 2013-11-07 2015-05-11 新日鐵住金株式会社 Sludge activity measuring apparatus and method for measuring sludge activity

Also Published As

Publication number Publication date
JP5347711B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
King et al. Respirometric techniques
Dutka et al. Comparison of several microbiological toxicity screening tests
JP5347711B2 (en) Detection method of harmful substances in water
US20090076733A1 (en) Water Toxicity Detecting Apparatus and Method Using Sulfur Particles
Artiga et al. Multiple analysis reprogrammable titration analyser for the kinetic characterization of nitrifying and autotrophic denitrifying biomass
JP4355560B2 (en) How to monitor hazardous substances
AU710378B2 (en) Method for monitoring biological activity in fluids
Cui et al. A rapid and simple respirometric biosensor with immobilized cells of Nitrosomonas europaea for detecting inhibitors of ammonia oxidation
Zielinska et al. Respirometric activity of activated sludge in sequencing batch reactor depending on substrate and dissolved oxygen concentration
US5698412A (en) Method for monitoring and controlling biological activity in fluids
WO1997026525A9 (en) Method for monitoring biological activity in fluids
US5856119A (en) Method for monitoring and controlling biological activity in fluids
Kenny Nutrient optimization for pulp and paper wastewater treatment plants–An opportunity for major cost savings
JP3585905B2 (en) Test method for activated sludge activity and wastewater degradability
US20150203389A1 (en) Method and installation for wastewater process monitoring and control
TWI773233B (en) Method and apparatus for real-time monitoring activity of nitrifying bacteria
JP2001228110A (en) Biosensor-applied water quality meter
JP4866304B2 (en) Water quality measuring instrument applied to nitrifying bacteria biosensor
JP3678093B2 (en) Methods for detecting harmful substances in environmental water
JP4161111B2 (en) How to monitor hazardous substances in environmental water
EP0757017A2 (en) Method to monitor in liquids the concentration of substances which are degraded by acidifying or alkalizing microorganisms and related instrumentation
Saensing et al. Development of combined ultimate hybrid respirometer-Titrate meter to estimate kinetic parameters of activated sludge
JP2010071749A (en) Water-quality monitor
Leifheit et al. Automatic Measurement of the Inhibitory Effect of Toxic Effluents on Process Microorganisms in Waste Water Treatment
Hikuma et al. Use of microbial electrodes for observation of microbiological nitrogen elimination process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R151 Written notification of patent or utility model registration

Ref document number: 5347711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350