JP2010269342A - Method for selecting weld-material, and power generation plant - Google Patents

Method for selecting weld-material, and power generation plant Download PDF

Info

Publication number
JP2010269342A
JP2010269342A JP2009123358A JP2009123358A JP2010269342A JP 2010269342 A JP2010269342 A JP 2010269342A JP 2009123358 A JP2009123358 A JP 2009123358A JP 2009123358 A JP2009123358 A JP 2009123358A JP 2010269342 A JP2010269342 A JP 2010269342A
Authority
JP
Japan
Prior art keywords
welding material
parameter
calculated
carbide
metal base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009123358A
Other languages
Japanese (ja)
Other versions
JP5433302B2 (en
Inventor
Nobuhiko Saito
伸彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009123358A priority Critical patent/JP5433302B2/en
Publication of JP2010269342A publication Critical patent/JP2010269342A/en
Application granted granted Critical
Publication of JP5433302B2 publication Critical patent/JP5433302B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for selecting an optimum weld-material according to a combination of members and a portion of use by predicting presence or absence of formation of a decarburized layer in a welded joint of different kind materials. <P>SOLUTION: An absolute value Δg of difference between a carbide generation capability parameter of a metallic base metal and a carbide generation capability parameter of another metallic base metal, whose material kind is different from the metallic base metal, is calculated. An aging parameter L is calculated from the temperature and time in use of a member which is made by welding the metallic base metal and the other metallic base metal with a weld-material. A graph expressing an area of a condition under which a decarburized layer is formed and an area of a condition under which the decarburized layer is not formed previously drawn using the absolute value of difference in a carbide generation capability parameter and the aging parameter. In the graph, when an intersection point of a calculated Δg and a calculated L is in the area of a condition under which the decarburized layer is formed, an Inconel welding material is selected as the weld-material; when the intersection point is in the area of a condition under which the decarburized layer is not formed, a ferritic weld-material is selected as the weld-material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、配管などの材質が異なる発電用プラント部材同士を接続する溶接継手部に適用される溶接材料を選定する方法に関する。   The present invention relates to a method for selecting a welding material to be applied to a welded joint that connects power generation plant members having different materials such as piping.

火力発電や原子力発電に用いられる圧力容器や配管には、低合金鋼(主に1〜2%Cr系鋼)や高Cr鋼(主に9〜12%Cr系鋼)が用いられる。使用温度や作用応力などの部材の使用条件と、材料の許容応力を考慮して、上記材料からなる部材が使用される場所が決定される。このようにして決定された各部材は、溶接により接続されるが、このとき、低合金鋼と高Cr鋼とを溶接する異材溶接継手部が必要となる。   Low alloy steel (mainly 1-2% Cr steel) and high Cr steel (mainly 9-12% Cr steel) are used for pressure vessels and piping used for thermal power generation and nuclear power generation. The location where the member made of the material is used is determined in consideration of the use conditions of the member such as the working temperature and the working stress and the allowable stress of the material. Each member determined in this way is connected by welding. At this time, a dissimilar weld joint for welding low alloy steel and high Cr steel is required.

異材溶接継手部には、一般にインコネル系溶接材料及びフェライト系(共金系)溶接材料が用いられる。インコネル系溶接材料は、溶接継手部と高Cr鋼との界面に脱炭層が形成されにくいため、継手部でのクリープ強度及び靭性が良好となる。しかし、インコネル系溶接材料を使用すると、熱膨張の差に起因する熱応力によって損傷が発生する可能性がある。また、インコネル系溶接材料は、フェライト系溶接材料と比較して高価である上、溶接効率が悪いために、溶接に要するコストが高くなる。一方、フェライト系溶接材料は、溶接効率が良く、熱応力が小さいという利点がある。しかし、溶接継手部に含有される炭素が高Cr鋼に移動し、溶接継手部/高Cr鋼界面の溶接継手部側に脱炭層が形成されやすくなる。脱炭層により、クリープ強度及び靭性の低下が懸念される。   Generally, an Inconel welding material and a ferrite (metal alloy) welding material are used for the dissimilar weld joint. Inconel-based welding materials are less likely to form a decarburized layer at the interface between the welded joint and high Cr steel, and therefore the creep strength and toughness at the joint are good. However, when an Inconel welding material is used, damage may occur due to thermal stress caused by a difference in thermal expansion. Inconel welding materials are more expensive than ferrite welding materials and have poor welding efficiency, which increases the cost required for welding. On the other hand, ferritic welding materials have the advantages of good welding efficiency and low thermal stress. However, the carbon contained in the weld joint moves to the high Cr steel, and a decarburized layer is easily formed on the weld joint side of the weld joint / high Cr steel interface. Due to the decarburized layer, the creep strength and toughness may be reduced.

特許文献1では、低合金鋼の開先面にインコネル系溶接材料を肉盛溶接し、次に裏当金を装着してインコネル系溶接材料を更に肉盛溶接した後に、開先加工を行って、低合金鋼とステンレス鋼とを溶接する方法が開示されている。   In Patent Document 1, after welding the Inconel welding material on the groove surface of the low alloy steel, and then mounting the backing metal and further overlay welding the Inconel welding material, the groove processing is performed. A method of welding low alloy steel and stainless steel is disclosed.

特開昭59−10478号公報(特許請求の範囲、第2頁左上欄8〜20行、図2)JP 59-10478 (Claims, page 2, upper left column, lines 8 to 20, line 2)

上述のように、インコネル系溶接材料とフェライト系溶接材料は、互いに相反する利点と欠点とを有する。そのため、溶接部材が使用される温度や使用時間といった環境、熱応力、コストなどを考慮して、適切な溶接材料を選択する必要がある。   As described above, the Inconel welding material and the ferrite welding material have advantages and disadvantages that are contradictory to each other. For this reason, it is necessary to select an appropriate welding material in consideration of the environment such as the temperature at which the welding member is used and the usage time, thermal stress, cost, and the like.

本発明は、上記課題に鑑みなされたものであり、異材溶接継手での脱炭層形成有無を予測して、部材の組合せや使用部位に応じた最適な溶接材料を選定する方法を提供する。   This invention is made | formed in view of the said subject, predicts the presence or absence of decarburization layer formation in a dissimilar material welded joint, and provides the method of selecting the optimal welding material according to the combination and use site | part of a member.

本発明の溶接材料の選定方法は、以下の工程を含む。
金属母材に含まれる各炭化物生成元素の所定温度における炭化物生成反応標準自由エネルギーの比率と、前記炭化物生成元素の濃度との積を合計した値を炭化物生成能パラメータと定義したときに、一の金属母材の炭化物生成能パラメータと、前記一の金属母材と材質が異なる別の金属母材の炭化物生成能パラメータとの差の絶対値を算出する。前記一の金属母材と前記別の金属母材とが溶接材料で溶接された部材の使用温度及び使用時間から、時効パラメータを算出する。予め作成された、脱炭層が形成される条件の領域と脱炭層が形成されない条件の領域とを炭化物生成能パラメータの差の絶対値と時効パラメータとで表したグラフにおいて、前記算出された炭化物生成能パラメータの差の絶対値と、前記算出された時効パラメータとの交点が、前記脱炭層が形成される条件の領域にある場合に、前記溶接材料としてインコネル系溶接材料を選定する。前記交点が、脱炭層が形成されない条件の領域にある場合に、前記溶接材料としてフェライト系溶接材料を選定する。
The method for selecting a welding material of the present invention includes the following steps.
When a value obtained by summing up the products of the carbide generation reaction standard free energy ratio at a predetermined temperature of each carbide generating element contained in the metal base material and the concentration of the carbide generating element is defined as the carbide generating ability parameter, An absolute value of a difference between a carbide generating ability parameter of the metal base material and a carbide forming ability parameter of another metal base material different from the one metal base material is calculated. An aging parameter is calculated from a use temperature and a use time of a member in which the one metal base material and the another metal base material are welded with a welding material. In the graph prepared in advance, in which the decarburized layer formation condition region and the decarburization layer formation condition region are represented by the absolute value of the difference in carbide generation ability parameter and the aging parameter, the calculated carbide generation Inconel-based welding material is selected as the welding material when the intersection between the absolute value of the difference between the performance parameters and the calculated aging parameter is in a region where the decarburized layer is formed. When the intersection is in a region where the decarburized layer is not formed, a ferrite-based welding material is selected as the welding material.

上記発明において、前記脱炭層が形成される条件の領域が、式(1):
L≧26.783−0.77812Δg …(1)
(但し、L:時効パラメータ、Δg:炭化物生成能パラメータの差の絶対値)
で表され、前記時効パラメータが、式(2):
L=(T+273)(20+log(t)) …(2)
(但し、T:部材が使用される温度(℃)、t:使用時間(時間))
で表され、前記算出された炭化物生成能パラメータの差の絶対値と、前記算出された時効パラメータとが、前記式(1)の関係を満たす場合に前記溶接材料としてインコネル系溶接材料を選定し、前記算出された炭化物生成能パラメータの差の絶対値と、前記算出された時効パラメータとが、前記式(1)の関係を満たさない場合に前記溶接材料としてフェライト系溶接材料を選定しても良い。
In the above invention, the region under which the decarburized layer is formed has the formula (1):
L ≧ 26.783-0.77812Δg (1)
(However, L: Aging parameter, Δg: Absolute value of the difference in carbide forming ability parameter)
The aging parameter is expressed by the following formula (2):
L = (T + 273) (20 + log (t)) (2)
(However, T: temperature at which the member is used (° C.), t: use time (hour))
Inconel welding material is selected as the welding material when the calculated absolute value of the difference in the carbide forming ability parameter and the calculated aging parameter satisfy the relationship of the formula (1). The ferrite welding material may be selected as the welding material when the absolute value of the difference in the calculated carbide forming ability parameter and the calculated aging parameter do not satisfy the relationship of the formula (1). good.

本発明者は、上述のように定義される2つの金属母材の炭化物生成能パラメータの差の絶対値と時効パラメータとが、2つの金属母材をフェライト系溶接材料で溶接した場合における脱炭層の形成状況と相関があることを見出した。溶接される金属母材の材質と、溶接部材が使用される環境(温度及び時間)とが判れば、上述の工程によって、金属母材の組合せ及び使用環境に応じて最適な溶接材料を選定できる。例えば、金属部材の組合せ毎に高温長時間での時効試験を実施して脱炭層の形成を確認する必要が無くなるため、最適な溶接材料を、容易かつ迅速に選定可能となる。   The inventor determined that the decarburized layer in the case where the absolute value of the difference between the carbide forming ability parameters of the two metal base materials defined as described above and the aging parameter are welded to each other with a ferritic welding material. It was found that there is a correlation with the formation status of. If the material of the metal base material to be welded and the environment (temperature and time) in which the welding member is used are known, the optimum welding material can be selected according to the combination of the metal base materials and the use environment by the above-described steps. . For example, since it is not necessary to confirm the formation of the decarburized layer by performing an aging test at a high temperature for a long time for each combination of metal members, it is possible to easily and quickly select an optimum welding material.

本発明の発電用プラントは、前記一の金属母材で作製されるプラント部材と、前記別の金属母材で作製されるプラント部材とが、上記の方法により選定された溶接材料を用いて溶接されたものとされる。   In the power plant according to the present invention, a plant member made of the one metal base material and a plant member made of the other metal base material are welded using the welding material selected by the above method. It is assumed that.

本発明の選定方法を用いると、最適な溶接材料を迅速に選定できる。例えば、本発明の選定方法を用いて、高温長時間の使用によりフェライト系溶接材料では脱炭層が発生しやすい条件である部位にのみ、インコネル系溶接材料を適用することができる。こうすれば、高価で溶接効率が悪いインコネル系溶接材料で形成された溶接継手部の数を最小限に抑えることができるため、材料コスト及び溶接コストが低減される。更には、例えば脱炭層に起因して発生する溶接継手部の破損によるトラブルを未然に防止することができるために、保守管理コストが低減される。   By using the selection method of the present invention, the optimum welding material can be selected quickly. For example, by using the selection method of the present invention, the Inconel-based welding material can be applied only to a portion where the decarburized layer is likely to be generated in the ferrite-based welding material due to the use at a high temperature for a long time. In this way, the number of welded joints formed of an inconel welding material that is expensive and has poor welding efficiency can be minimized, so that material costs and welding costs are reduced. Furthermore, for example, trouble due to breakage of a welded joint caused by a decarburized layer can be prevented in advance, so that maintenance management costs are reduced.

本発明によれば、金属母材の組合せと使用環境とから、フェライト系溶接材料及びインコネル系溶接材料のいずれが溶接継手部として最適であるかを、容易かつ迅速に判断できる。インコネル系溶接材料で形成された溶接継手部を、例えば発電用プラントの設計段階で、必要に応じて効率良く配置できるために、材料コスト及び溶接コストが低減できる上、保守管理コストも低減できる。   According to the present invention, it is possible to easily and quickly determine which of a ferritic welding material and an inconel welding material is optimal as a weld joint from the combination of metal base materials and the usage environment. For example, at the design stage of the power generation plant, the weld joint formed of the Inconel welding material can be efficiently arranged as necessary, so that material costs and welding costs can be reduced, and maintenance management costs can also be reduced.

互いに材質が異なる鋼材をフェライト系溶接材料で溶接した場合に、時効試験によって脱炭層が形成された試験片と、脱炭層が形成されなかった試験片とを、ΔgとLとの関係でプロットしたグラフである。When steel materials different from each other were welded with a ferritic welding material, a test piece in which a decarburized layer was formed by an aging test and a test piece in which a decarburized layer was not formed were plotted in relation to Δg and L. It is a graph.

本発明の溶接材料の選定方法の一実施形態を以下に説明する。
発電用プラントの圧力容器や配管といったプラント部材に使用される低合金鋼や高Cr鋼などの金属母材には、炭化物を生成する元素であるCr,Mo,W,V,Nbが含有される。
An embodiment of the welding material selection method of the present invention will be described below.
Metal base materials such as low alloy steel and high Cr steel used for plant members such as pressure vessels and piping of power generation plants contain Cr, Mo, W, V, and Nb, which are elements that generate carbides. .

Cr,Mo,W,V,Nbそれぞれの鋼中での炭化物生成反応の標準エネルギーΔG(cal/mol)は、式(3)〜(7)で表される。(「金属データブック」、日本金属学会編、1999年、p.151参照)
Cr: ΔG=−55550+56.06T …(3)
Mo: ΔG=−16100+19.27T …(4)
W: ΔG=−37000+34.58T …(5)
V: ΔG=−40400+28.07T …(6)
Nb: ΔG=−50520+31.875T …(7)
ただし、式(3)〜(7)において、Tは温度(K)である。
The standard energy ΔG (cal / mol) of the carbide formation reaction in each steel of Cr, Mo, W, V, and Nb is expressed by equations (3) to (7). (Refer to “Metal Data Book”, Japan Institute of Metals, 1999, p. 151)
Cr: ΔG = −55550 + 56.06T (3)
Mo: ΔG = −16100 + 19.27T (4)
W: ΔG = −37000 + 34.58T (5)
V: ΔG = −40400 + 28.07T (6)
Nb: ΔG = −50520 + 31.875T (7)
However, in Formula (3)-(7), T is temperature (K).

ここで、発電用プラントの使用環境温度に相当する温度500℃での各元素のΔGを、式(3)〜(7)から算出する。温度500℃における各元素のΔGの比を、式(8)に示す。
ΔGCr:ΔGMo:ΔG:ΔG:ΔGNb
=1.2:0.3:2.6:1.9:1.0 …(8)
Here, ΔG of each element at a temperature of 500 ° C. corresponding to the use environment temperature of the power generation plant is calculated from the equations (3) to (7). The ratio of ΔG of each element at a temperature of 500 ° C. is shown in Formula (8).
ΔG Cr : ΔG Mo : ΔG W : ΔG V : ΔG Nb
= 1.2: 0.3: 2.6: 1.9: 1.0 (8)

式(8)で示す比が、各元素の炭化物生成能(炭化物の形成しやすさ)を表す。金属母材中に含有される炭化物生成元素の濃度は、母材の材質により異なる。金属母材の炭化物生成能パラメータgは、式(9)で定義される。
g=1.2CCr+0.3CMo+1.0C+1.9C+2.6CNb …(9)
ただし、式(9)において、CCr、CMo、C、C、CNbはそれぞれ、金属母材中のCr、Mo、W、V、Nbの濃度(wt%)である。
The ratio shown by Formula (8) represents the carbide | carbonized_material production ability (easiness of formation of a carbide | carbonized_material) of each element. The concentration of the carbide generating element contained in the metal base material varies depending on the material of the base material. The carbide generating ability parameter g of the metal base material is defined by Expression (9).
g = 1.2C Cr + 0.3C Mo + 1.0C W + 1.9C V + 2.6C Nb ... (9)
However, in the formula (9), C Cr , C Mo , C W , C V , and C Nb are the concentrations (wt%) of Cr, Mo, W, V, and Nb in the metal base material, respectively.

2つの金属母材それぞれについて、式(9)を用いて炭化物生成能パラメータgを算出する。2つの金属母材の炭化物生成能パラメータgの差の絶対値を、Δgと定義する。   For each of the two metal base materials, the carbide generating ability parameter g is calculated using Equation (9). The absolute value of the difference between the carbide forming ability parameters g of the two metal base materials is defined as Δg.

次に、2つの金属母材が溶接されてプラント部材とされた場合に、プラント部材が使用される温度及び使用時間から、時効パラメータを算出する。時効パラメータLは、式(2)で表される。
L=(T+273)(20+log(t)) …(2)
ただし、式(2)において、Tはプラント部材が使用される温度(℃)、tは使用時間(時間)である。
Next, when two metal base materials are welded to form a plant member, an aging parameter is calculated from the temperature at which the plant member is used and the usage time. The aging parameter L is expressed by equation (2).
L = (T + 273) (20 + log (t)) (2)
However, in Formula (2), T is the temperature (degreeC) in which a plant member is used, and t is use time (hour).

ここで、脱炭層が形成される条件の領域と脱炭層が形成されない条件の領域とを、ΔgとLとの関係で表したグラフを、予め作成しておく。以下に、上記グラフの作成方法を説明する。
表1に、溶接される金属母材の鋼種と、溶接施工方法を示す。鋼種には、P122(11Cr−2W−0.4Mo−1Cu−Nb−V鋼)、P91(9Cr−1Mo−Nb−V鋼)、P23(2.25Cr−1.6W鋼)、P22(2.25Cr−1Mo鋼)を用いた。
上記金属母材の溶接には、表1に示すフェライト系溶接材料を用いた。2種類の母材を溶接した後、表1に示す温度条件で2時間の後熱処理を実施し、試験片を得た。溶接直後及び後熱処理後の試験片について、浸透探傷試験(PT)、磁気探傷試験(MT)、超音波探傷試験(UT)、放射線探傷試験(RT)を実施し、溶接不良が無いことを確認した。
Here, a graph is created in advance in which the region of the condition where the decarburized layer is formed and the region of the condition where the decarburized layer is not formed are represented by the relationship between Δg and L. Below, the preparation method of the said graph is demonstrated.
Table 1 shows the steel type of the metal base material to be welded and the welding method. Steel types include P122 (11Cr-2W-0.4Mo-1Cu-Nb-V steel), P91 (9Cr-1Mo-Nb-V steel), P23 (2.25Cr-1.6W steel), P22 (2. 25Cr-1Mo steel).
Ferrite welding materials shown in Table 1 were used for welding the metal base material. After welding the two types of base materials, post-heat treatment was performed for 2 hours under the temperature conditions shown in Table 1 to obtain test pieces. Perform penetration testing (PT), magnetic testing (MT), ultrasonic testing (UT), and radiation testing (RT) on the test specimens immediately after welding and after heat treatment to confirm that there are no welding defects. did.

Figure 2010269342
Figure 2010269342

上記試験片を溶接面に対して垂直に切断し、複数の観察用試料を作製した。観察用試料について、電気炉を用いて、表2示す条件で時効試験を実施した。時効試験後、溶接面周辺部を研磨し、脱炭層の生成状況を光学顕微鏡で観察した。   The test piece was cut perpendicular to the weld surface to produce a plurality of observation samples. About the sample for observation, the aging test was implemented on the conditions shown in Table 2 using the electric furnace. After the aging test, the periphery of the weld surface was polished, and the state of formation of the decarburized layer was observed with an optical microscope.

Figure 2010269342
Figure 2010269342

図1は、時効試験によって脱炭層が形成された試験片と、脱炭層が形成されなかった試験片とを、ΔgとLとの関係でプロットしたグラフである。同図において、横軸は炭化物生成能パラメータの差の絶対値Δg、縦軸は時効パラメータLである。図1に斜線で示された領域が、脱炭層が形成される条件の領域(脱炭層形成領域)とされる。脱炭層が形成されない条件の領域、すなわち、図1で脱炭層形成領域以外の領域が、無脱炭層領域とされる。図1において、脱炭層形成領域は、式(1)で表される。
L≧26.783−0.77812Δg …(1)
FIG. 1 is a graph in which a test piece in which a decarburized layer is formed by an aging test and a test piece in which a decarburized layer is not formed are plotted in relation to Δg and L. In the figure, the horizontal axis represents the absolute value Δg of the difference between the carbide forming ability parameters, and the vertical axis represents the aging parameter L. A region indicated by hatching in FIG. 1 is a region (decarburized layer forming region) under a condition for forming a decarburized layer. A region under a condition where the decarburized layer is not formed, that is, a region other than the decarburized layer forming region in FIG. 1 is defined as a non-decarburized layer region. In FIG. 1, the decarburized layer forming region is represented by Formula (1).
L ≧ 26.783-0.77812Δg (1)

図1に例示されるグラフにおいて、上述のように算出した溶接される2つの金属母材のΔgと、時効パラメータLとの交点が、脱炭層形成領域にあるか、無脱炭層領域にあるかを判定する。交点が脱炭層形成領域にある場合は、2つの金属母材を溶接する溶接材料として、インコネル系溶接材料(例えば、WEL MIG 82)を選定する。交点が無脱炭層領域にある場合は、溶接材料としてフェライト系溶接材料を選定する。   In the graph illustrated in FIG. 1, whether the intersection between Δg of the two metal base materials to be welded calculated as described above and the aging parameter L is in the decarburized layer formation region or the non-decarburized layer region. Determine. When the intersection is in the decarburized layer forming region, an Inconel welding material (for example, WEL MIG 82) is selected as a welding material for welding two metal base materials. When the intersection is in the non-decarburized layer region, a ferrite-based welding material is selected as the welding material.

あるいは、式(1)を用いて、溶接材料を選定することも可能である。
溶接される2つの金属母材のΔgを、式(1)の右辺に代入して、数値を算出する。この数値と式(2)から算出されたLとが式(9)の関係を満たす場合、2つの金属母材を溶接する溶接材料として、インコネル系溶接材料を選定する。上述のように求めた式(1)の右辺の数値と式(2)から求めたLとが式(1)の関係を満たさない場合は、溶接材料としてフェライト系溶接材料を選定する。
Or it is also possible to select a welding material using Formula (1).
A numerical value is calculated by substituting Δg of two metal base materials to be welded into the right side of the equation (1). When this numerical value and L calculated from Equation (2) satisfy the relationship of Equation (9), an Inconel welding material is selected as a welding material for welding two metal base materials. When the numerical value on the right side of Equation (1) obtained as described above and L obtained from Equation (2) do not satisfy the relationship of Equation (1), a ferrite-based welding material is selected as the welding material.

以上のように、2つの金属母材の材質とプラント部材の使用条件(温度、時間)とが判れば、図1に例示される脱炭層形成領域を図示したグラフや、式(1)に例示される脱炭層形成領域を表した式を用いて、2つの金属母材を連結する溶接継手部に最適な溶接材料を選定することができる。   As described above, if the material of the two metal base materials and the use conditions (temperature, time) of the plant member are known, a graph illustrating the decarburized layer forming region illustrated in FIG. An optimum welding material can be selected for the welded joint portion that connects the two metal base materials using the formula representing the decarburized layer forming region.

Claims (3)

金属母材に含まれる各炭化物生成元素の所定温度における炭化物生成反応標準自由エネルギーの比率と、前記炭化物生成元素の濃度との積を合計した値を炭化物生成能パラメータと定義したときに、一の金属母材の炭化物生成能パラメータと、前記一の金属母材と材質が異なる別の金属母材の炭化物生成能パラメータとの差の絶対値を算出し、
前記一の金属母材と前記別の金属母材とが溶接材料で溶接された部材の使用温度及び使用時間から、時効パラメータを算出し、
予め作成された、脱炭層が形成される条件の領域と脱炭層が形成されない条件の領域とを炭化物生成能パラメータの差の絶対値と時効パラメータとで表したグラフにおいて、前記算出された炭化物生成能パラメータの差の絶対値と、前記算出された時効パラメータとの交点が、前記脱炭層が形成される条件の領域にある場合に、前記溶接材料としてインコネル系溶接材料を選定し、
前記交点が、脱炭層が形成されない条件の領域にある場合に、前記溶接材料としてフェライト系溶接材料を選定する溶接材料の選定方法。
When a value obtained by summing up the products of the carbide generation reaction standard free energy ratio at a predetermined temperature of each carbide generating element contained in the metal base material and the concentration of the carbide generating element is defined as the carbide generating ability parameter, Calculate the absolute value of the difference between the carbide generating capacity parameter of the metal base material and the carbide generating capacity parameter of another metal base material different from the one metal base material,
From the use temperature and use time of the member in which the one metal base material and the another metal base material are welded with a welding material, an aging parameter is calculated,
In the graph prepared in advance, in which the decarburized layer formation condition region and the decarburization layer formation condition region are represented by the absolute value of the difference in carbide generation ability parameter and the aging parameter, the calculated carbide generation When the intersection of the absolute value of the difference in the performance parameter and the calculated aging parameter is in the region of the conditions under which the decarburized layer is formed, an Inconel welding material is selected as the welding material,
A method for selecting a welding material, wherein a ferrite-based welding material is selected as the welding material when the intersection is in a region where a decarburized layer is not formed.
前記脱炭層が形成される条件の領域が、式(1):
L≧26.783−0.77812Δg …(1)
(但し、L:時効パラメータ、Δg:炭化物生成能パラメータの差の絶対値)
で表され、
前記時効パラメータが、式(2):
L=(T+273)(20+log(t)) …(2)
(但し、T:部材が使用される温度(℃)、t:使用時間(時間))
で表され、
前記算出された炭化物生成能パラメータの差の絶対値と、前記算出された時効パラメータとが、前記式(1)の関係を満たす場合に前記溶接材料としてインコネル系溶接材料を選定し、
前記算出された炭化物生成能パラメータの差の絶対値と、前記算出された時効パラメータとが、前記式(1)の関係を満たさない場合に前記溶接材料としてフェライト系溶接材料を選定する請求項1に記載の溶接材料の選定方法。
The region under conditions where the decarburized layer is formed is the formula (1):
L ≧ 26.783-0.77812Δg (1)
(However, L: Aging parameter, Δg: Absolute value of the difference in carbide forming ability parameter)
Represented by
The aging parameter is the formula (2):
L = (T + 273) (20 + log (t)) (2)
(However, T: temperature at which the member is used (° C.), t: use time (hour))
Represented by
When the calculated absolute value of the difference between the carbide generating parameters and the calculated aging parameter satisfy the relationship of the formula (1), an Inconel welding material is selected as the welding material,
The ferrite-based welding material is selected as the welding material when the absolute value of the difference between the calculated carbide forming ability parameters and the calculated aging parameter do not satisfy the relationship of the formula (1). The welding material selection method described in 1.
前記一の金属母材で作製されるプラント部材と、前記別の金属母材で作製されるプラント部材とが、請求項1または請求項2に記載の方法により選定された溶接材料を用いて溶接された発電用プラント。   A plant member made of the one metal base material and a plant member made of the other metal base material are welded using a welding material selected by the method according to claim 1 or claim 2. Power plant.
JP2009123358A 2009-05-21 2009-05-21 Welding material selection method and power generation plant Expired - Fee Related JP5433302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009123358A JP5433302B2 (en) 2009-05-21 2009-05-21 Welding material selection method and power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009123358A JP5433302B2 (en) 2009-05-21 2009-05-21 Welding material selection method and power generation plant

Publications (2)

Publication Number Publication Date
JP2010269342A true JP2010269342A (en) 2010-12-02
JP5433302B2 JP5433302B2 (en) 2014-03-05

Family

ID=43417806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009123358A Expired - Fee Related JP5433302B2 (en) 2009-05-21 2009-05-21 Welding material selection method and power generation plant

Country Status (1)

Country Link
JP (1) JP5433302B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127938B2 (en) 2011-07-28 2015-09-08 Massachusetts Institute Of Technology High-resolution surface measurement systems and methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149788A (en) * 1984-08-15 1986-03-11 Hitachi Ltd Steam turbine
JPS642782A (en) * 1987-06-23 1989-01-06 Mitsubishi Heavy Ind Ltd Welding method for cr-mo steel
JPH0494890A (en) * 1990-08-10 1992-03-26 Hitachi Ltd Erosion resistant coating material and method for forming this
JPH05156396A (en) * 1991-11-29 1993-06-22 Toyota Motor Corp Ni-base alloy for overlay
JPH0788652A (en) * 1993-09-24 1995-04-04 Ishikawajima Harima Heavy Ind Co Ltd Method of welding 21/4 cr-1 mo steel to austenitic stainless steel
JPH1183842A (en) * 1997-09-09 1999-03-26 Jgc Corp Remaining service life determination method for cr-mo steel heating furnace pipe
JP2001012202A (en) * 1999-06-25 2001-01-16 Kobe Steel Ltd Different kind materials welded turbine rotor and manufacture thereof
JP2004043962A (en) * 2002-05-14 2004-02-12 Nissan Motor Co Ltd Surface hardening treatment method for maraging steel and belt for belt type continuously variable transmission produced by the method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149788A (en) * 1984-08-15 1986-03-11 Hitachi Ltd Steam turbine
JPS642782A (en) * 1987-06-23 1989-01-06 Mitsubishi Heavy Ind Ltd Welding method for cr-mo steel
JPH0494890A (en) * 1990-08-10 1992-03-26 Hitachi Ltd Erosion resistant coating material and method for forming this
JPH05156396A (en) * 1991-11-29 1993-06-22 Toyota Motor Corp Ni-base alloy for overlay
JPH0788652A (en) * 1993-09-24 1995-04-04 Ishikawajima Harima Heavy Ind Co Ltd Method of welding 21/4 cr-1 mo steel to austenitic stainless steel
JPH1183842A (en) * 1997-09-09 1999-03-26 Jgc Corp Remaining service life determination method for cr-mo steel heating furnace pipe
JP2001012202A (en) * 1999-06-25 2001-01-16 Kobe Steel Ltd Different kind materials welded turbine rotor and manufacture thereof
JP2004043962A (en) * 2002-05-14 2004-02-12 Nissan Motor Co Ltd Surface hardening treatment method for maraging steel and belt for belt type continuously variable transmission produced by the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127938B2 (en) 2011-07-28 2015-09-08 Massachusetts Institute Of Technology High-resolution surface measurement systems and methods

Also Published As

Publication number Publication date
JP5433302B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
Zhu et al. Effects of temperature on tensile and impact behavior of dissimilar welds of rotor steels
Arunkumar et al. Effect of activated flux on the microstructure and mechanical properties of 9Cr-1Mo steel weld joint
Nivas et al. A comparative study on microstructure and mechanical properties near interface for dissimilar materials during conventional V-groove and narrow gap welding
Blagoeva et al. Qualification of P91 welds through small punch creep testing
Maurya et al. Influence of heat input on weld integrity of weldments of two dissimilar steels
Gope et al. Dissimilar welding of nickel based superalloy with stainless steel: influence of post weld heat treatment
Otto et al. Effect of phase formation due to holding time of vacuum brazed AISI 304L/NiCrSiB joints on corrosion fatigue properties
Wu et al. Influence of extra coarse grains on the creep properties of 9 percent CrMoV (P91) steel weldment
Aravindkumar et al. Investigations on microstructural characteristics and mechanical properties of 316 L stainless steel welded joints using nickel coated filler material by gas tungsten arc welding
Hytönen et al. Study of fusion boundary microstructure and local mismatch of SA508/alloy 52 dissimilar metal weld with buttering
Wojnowski et al. Metallurgical assessment of the softened HAZ region during multipass welding
Matias et al. Microstructure and corrosion properties of the AISI 904L weld cladding obtained by the electro slag process
JP5433302B2 (en) Welding material selection method and power generation plant
Pavlík et al. Influence of electron beam welding parameters on the properties of dissimilar copper–stainless steel overlapped joints
Bakkiyaraj et al. Estimating the mechanical properties of friction welded AISI410 MSS joints using empirical relationship
Bin Matlan et al. Dissimilar friction stir welding of carbon steel and stainless steel: Some observation on microstructural evolution and stress corrosion cracking performance
Guo et al. Microstructural characterization and mechanical behavior of Cr25Ni35NbM alloy dissimilar weld joint for application in a hydrogen reformer furnace
Jung et al. An experimental study on the prediction of back-bead geometry in pipeline using the GMA welding process
Li et al. Analysis of microstructure and properties of welded joint of high nitrogen steel by hybrid welding
Lessa et al. Microstructural behavior of SAF 2205 duplex stainless steel welded by friction hydro pillar processing
Ma et al. Evaluation of weld joint strength reduction factor due to creep in alloy 740H to P92 dissimilar metal weld joint
Gao et al. Investigation on residual stress in SA508/Inconel Metal/CF8A dissimilar welded joint for nuclear steam generator safe end using different processes
Thejasree et al. Investigations on laser beam welded Inconel 718 weldments
JP2012140685A (en) Welded joint
Zakaria et al. Effect of heat treatment on the microstructural evolution in weld Region of 304l pipeline steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

LAPS Cancellation because of no payment of annual fees