JP2010269292A - Method of controlling starting operation of gas dissolving device - Google Patents

Method of controlling starting operation of gas dissolving device Download PDF

Info

Publication number
JP2010269292A
JP2010269292A JP2009125832A JP2009125832A JP2010269292A JP 2010269292 A JP2010269292 A JP 2010269292A JP 2009125832 A JP2009125832 A JP 2009125832A JP 2009125832 A JP2009125832 A JP 2009125832A JP 2010269292 A JP2010269292 A JP 2010269292A
Authority
JP
Japan
Prior art keywords
pump
gas
gas dissolving
rotational speed
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009125832A
Other languages
Japanese (ja)
Other versions
JP4982524B2 (en
Inventor
Yasunari Maeda
康成 前田
Yoshiyasu Ito
良泰 伊藤
Shigeyuki Yamaguchi
重行 山口
Kyoko Tsutsumi
恭子 堤
Hitoshi Kitamura
仁史 北村
Hisanori Shibata
尚紀 柴田
Kenji Adachi
研治 安達
So Yamamoto
壮 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009125832A priority Critical patent/JP4982524B2/en
Publication of JP2010269292A publication Critical patent/JP2010269292A/en
Application granted granted Critical
Publication of JP4982524B2 publication Critical patent/JP4982524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Accessories For Mixers (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Devices For Medical Bathing And Washing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To ensure the safe and stable starting of a gas dissolving device by restraining the no-load running of a pump in an early starting stage of the gas dissolving device. <P>SOLUTION: This gas dissolving device 1 includes a dissolving tank 2 which mixes a fluid flowing way inside with a gas and produces the gas-dissolved fluid and a pump 3 which supplies the fluid into the dissolving tank 2. During the early starting stage of the device 1, the pump 3 is operated at the rotation number not idling during a specified preset time, and thereafter, the number of rotation of the pump 3 is increased and the operation is shifted to a steady state. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、微細気泡が発生する湯水の生成などに利用可能な気体溶解装置の起動時の運転制御方法に関する。   The present invention relates to an operation control method at the time of startup of a gas dissolving apparatus that can be used for generating hot water in which fine bubbles are generated.

湯水に発生する微細気泡は、入浴の効能を高めることができ、そのような微細気泡が発生する液体を生成することのできる気体溶解装置は、微細気泡発生浴槽に組み込まれている(特許文献1)。   Fine bubbles generated in the hot water can enhance the effect of bathing, and a gas dissolving device capable of generating a liquid in which such fine bubbles are generated is incorporated in a fine bubble generation bath (Patent Document 1). ).

一方、浴槽内の湯水を一旦吸い込んだ後、浴槽に設けた噴射口から噴射させて循環し、マッサージ効果を実現した噴流発生浴槽が提供され、ジェットバスとして広く認知されている。   On the other hand, after the hot water in the bathtub is once sucked, it is circulated by being sprayed from an injection port provided in the bathtub, and a jet generating bathtub that realizes a massage effect is provided, which is widely recognized as a jet bath.

本出願人は、上記噴流発生浴槽について、浴槽内の湯水の水位を水位検知手段によって検知し、検知した水位が所定位置よりも低くなった場合に、湯水の循環を行うポンプを停止する制御方式を提案している(特許文献2)。具体的には、上記制御方式は、ポンプに空気が吸引されることにともなうエアがみ状態にあるか否かを、ポンプに備えたモータの回転数や電流値に基づいて判定するものである。   The present applicant detects the water level of the hot water in the bathtub by the water level detection means for the jet generating bathtub, and stops the pump that circulates the hot water when the detected water level is lower than the predetermined position. (Patent Document 2). Specifically, the above-described control method determines whether or not the pump is in a state of air due to air being sucked into the pump based on the rotation speed and current value of the motor provided in the pump. .

それに対し、水などの溶媒となる流体に空気などの溶質となる気体を溶解タンク内で混合し、気体が溶解した液体を生成する上記気体溶解装置の場合は、溶解タンクに流体を供給するポンプの運転を停止すると、液体の生成時に溶解タンク内で圧縮された気体が、圧力開放にともない膨張する。膨張した気体は、圧力損失の小さいポンプの吸い込み側に逆流し、その近辺に残留する。このように気体が残存する状態で次にポンプの運転を開始すると、その初期において、残存する気体が混入した気液混合流体がポンプ内部に流入する。この気液混合流体は、気体量が、定常時の気液混合流体に比べて多いものであり、ポンプに備えたモータは、定常時よりも高速で回転してしまい、ポンプは、エアがみ状態に対応する空運転をする。空運転すると、流体の供給量が減少し、微細気泡の安定した発生が困難となる。また、空運転はポンプに過負荷を与えるため、発熱などにともない故障や発火などの原因となり、空運転を抑制することは、気体溶解装置の安全性を高めるために是非とも要望される。   On the other hand, in the case of the gas dissolving device described above, in which a gas that is a solute such as air is mixed with a fluid that is a solvent such as water in a dissolution tank to generate a liquid in which the gas is dissolved, a pump that supplies the fluid to the dissolution tank When the operation is stopped, the gas compressed in the dissolution tank when the liquid is generated expands as the pressure is released. The expanded gas flows back to the suction side of the pump having a small pressure loss and remains in the vicinity thereof. When the operation of the pump is started in the state where the gas remains in this way, the gas-liquid mixed fluid mixed with the remaining gas flows into the pump at the initial stage. This gas-liquid mixed fluid has a larger amount of gas than the steady-state gas-liquid mixed fluid, and the motor provided in the pump rotates at a higher speed than in the steady state. Run idle according to the condition. When idling, the amount of fluid supplied decreases, making it difficult to stably generate fine bubbles. In addition, since the idling operation gives an overload to the pump, it may cause a failure or ignition due to heat generation and the like, and suppression of the idling operation is definitely desired in order to improve the safety of the gas dissolving apparatus.

特開2007−313464号公報JP 2007-313464 A 特開2007−159670号公報JP 2007-159670 A

特許文献1に記載した制御方式は、噴流発生浴槽におけるエアがみ状態を防止する技術ではあるが、エアがみ状態にあるときにはポンプを停止するため、この制御方式を気体溶解装置に適用すると、再運転開始時にほぼ必ずポンプが停止することとなる。したがって、気体溶解装置の起動がきわめて不安定となることが予想される。   The control method described in Patent Document 1 is a technique for preventing the air stagnation state in the jet generation bathtub, but when the air stagnation state stops the pump, when this control method is applied to the gas dissolving device, The pump will almost always stop at the start of re-operation. Therefore, it is expected that the start of the gas dissolving apparatus becomes extremely unstable.

本発明は、以上のとおりの事情に鑑みてなされたものであり、気体溶解装置の起動初期におけるポンプの空運転を抑制し、安全かつ安定に起動することのできる気体溶解装置の起動運転制御方法を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and controls the start-up operation of the gas dissolving apparatus that can suppress the idle operation of the pump at the initial start of the gas dissolving apparatus and can be started safely and stably. It is an issue to provide.

本発明は、上記の課題を解決するために、以下の特徴を有している。   The present invention has the following features in order to solve the above problems.

第1の発明は、内部に流入した流体を気体と混合し、気体が溶解した液体を生成する溶解タンクと、溶解タンクに流体を供給するポンプとを備えた気体溶解装置の起動運転制御方法であって、気体溶解装置の起動初期は、あらかじめ定めた設定時間の間、空運転しない回転数でポンプを運転し、その後、ポンプの回転数を上昇させ、定常運転に移行することを特徴としている。   1st invention is the starting operation control method of the gas dissolving apparatus provided with the dissolution tank which mixes the fluid which flowed in the inside with gas, and produces | generates the liquid which the gas melt | dissolved, and the pump which supplies a fluid to a dissolution tank The initial stage of starting the gas dissolving apparatus is characterized in that the pump is operated at a rotational speed that does not run idly for a predetermined set time, and then the rotational speed of the pump is increased to shift to a steady operation. .

第2の発明は、上記第1の発明の特徴において、前記設定時間の経過後、ポンプに備えたモータの供給電力に対するポンプの回転数が、あらかじめ定めた設定回転数以下となっている場合に、モータの供給電力を増加させてポンプの回転数を上昇させることを特徴としている。   According to a second aspect of the present invention, in the feature of the first aspect of the invention, after the set time has elapsed, the number of revolutions of the pump relative to the power supplied to the motor provided in the pump is equal to or less than a preset number of revolutions. Further, the present invention is characterized in that the rotational speed of the pump is increased by increasing the power supplied to the motor.

上記第1の発明によれば、気体溶解装置の起動初期は、あらかじめ定めた設定時間の間、空運転しない回転数でポンプを運転するので、定常運転のときよりも低速回転するポンプによって、気液比が一時的に高くなっている気液混合流体を溶解タンク内に送り込むことができる。ポンプの吸い込み側に残存する気体を溶解タンク内に排出することができ、ポンプはほとんど空回転せず、安全かつ安定に気体溶解装置を起動することができる。気液混合流体の気液比が低くなったときは、高速運転に切り換え、ポンプの回転数を高くすることによって、ポンプの流量特性を所定のものに確保することができ、定常運転にスムーズに移行する。   According to the first aspect of the present invention, since the pump is operated at a rotational speed at which the gas dissolving apparatus is not idling for a predetermined set time at the initial startup time, the gas is dissolved by the pump that rotates at a lower speed than in the steady operation. The gas-liquid mixed fluid whose liquid ratio is temporarily high can be sent into the dissolution tank. The gas remaining on the suction side of the pump can be discharged into the dissolution tank, the pump hardly rotates idly, and the gas dissolution apparatus can be started safely and stably. When the gas-liquid ratio of the gas-liquid mixed fluid becomes low, switching to high speed operation and increasing the pump rotation speed can ensure the pump flow rate characteristics to a predetermined level, and smooth smooth operation. Transition.

上記第2の発明によれば、上記第1の発明の効果に加え、ポンプに備えたモータの供給電力に対するポンプの回転数が、あらかじめ定めた設定回転数以下となっている場合に、モータの供給電力を増加させてポンプの回転数を上昇させるので、ポンプを高速運転に切り換える際にも空運転は抑制され、定常運転への移行をより一層スムーズに行うことができる。   According to the second invention, in addition to the effect of the first invention, when the rotational speed of the pump with respect to the power supplied to the motor provided in the pump is equal to or less than a predetermined rotational speed, Since the pump power is increased by increasing the power supply, idle operation is suppressed even when the pump is switched to high speed operation, and the transition to steady operation can be performed more smoothly.

本発明の気体溶解装置の起動運転制御方法が適用された気体溶解装置を例示した斜視図である。It is the perspective view which illustrated the gas dissolving device to which the starting operation control method of the gas dissolving device of the present invention was applied. 図1に示した気体溶解装置が組み込まれた微細気泡発生浴槽を例示した構成図である。It is the block diagram which illustrated the fine bubble generation bathtub in which the gas dissolving apparatus shown in FIG. 1 was integrated. 本発明の気体溶解装置の起動運転制御方法の概要を示したグラフである。It is the graph which showed the outline | summary of the starting operation control method of the gas dissolving apparatus of this invention. 本発明の気体溶解装置の起動運転制御方法の原理となる、モータに印加する電圧とポンプの回転数の関係を概略的に示したグラフである。It is the graph which showed roughly the relationship between the voltage applied to a motor, and the rotation speed of a pump used as the principle of the starting operation control method of the gas dissolving apparatus of this invention. モータの供給電力を増加させたとき、ねらいとする回転数よりも高い回転数となった場合の運転制御について示したグラフである。It is the graph shown about the operation control at the time of having set the rotational speed higher than the target rotational speed when the electric power supplied to the motor is increased.

上記のとおり、図1は、本発明の気体溶解装置の起動運転制御方法が適用された気体溶解装置を例示した斜視図であり、図2は、図1に示した気体溶解装置が組み込まれた微細気泡発生浴槽を例示した構成図である。   As described above, FIG. 1 is a perspective view illustrating a gas dissolving apparatus to which the start-up operation control method for a gas dissolving apparatus according to the present invention is applied, and FIG. 2 incorporates the gas dissolving apparatus shown in FIG. It is the block diagram which illustrated the fine bubble generation bathtub.

気体溶解装置1は、やや縦長で箱状の形状を有する中空な溶解タンク2と、溶解タンク2に流体を供給するポンプ3を備え、溶解タンク2内で流入する流体を気体と混合し、気体が溶解した液体を生成する。溶解タンク2とポンプ3とは、溶解タンク2に設けられた流入管接続部4に、ポンプ3の吐出側3bに一端部が接続された流入管5の他端部が接続されることによって配管接続されており、溶解タンク2とポンプ3は互いに連通している。   The gas dissolution apparatus 1 includes a hollow dissolution tank 2 having a slightly vertical and box shape, and a pump 3 for supplying fluid to the dissolution tank 2, and the fluid flowing in the dissolution tank 2 is mixed with the gas. Produces a dissolved liquid. The dissolution tank 2 and the pump 3 are connected to the inflow pipe connecting portion 4 provided in the dissolution tank 2 by connecting the other end of the inflow pipe 5 having one end connected to the discharge side 3b of the pump 3. The dissolution tank 2 and the pump 3 are in communication with each other.

また、気体溶解装置1では、溶解タンク2の上壁部2aに一端部6aが接続された気体循環経路6が、他端部6bにおいて、流入管5と流入管接続部4との接続部に配設された気体循環エジェクタ7に接続されている。また、溶解タンク2の流出管接続部8には、図2に示した微細気泡発生浴槽9の浴槽10に空気が溶解した湯水を供給するための流出管11の一端部が接続されている。   Further, in the gas dissolving device 1, the gas circulation path 6 having one end 6a connected to the upper wall 2a of the dissolving tank 2 is connected to the connecting portion between the inflow pipe 5 and the inflow pipe connecting portion 4 at the other end 6b. The gas circulation ejector 7 provided is connected. Moreover, the outflow pipe connection part 8 of the dissolution tank 2 is connected to one end part of the outflow pipe 11 for supplying hot water in which air is dissolved to the bathtub 10 of the fine bubble generation bathtub 9 shown in FIG.

ポンプ3の吸い込み側3aには、浴槽10に連通して一端部が接続された吸い込み配管12の他端部が接続されている。吸い込み配管12の一端部は、浴槽10内の湯水13を吸い込むために浴槽10内部に連通する吸い込み口14に連通し、一端部が流出管接続部8に接続された流出管11の他端部は、浴槽10内部に連通し、浴槽10内に空気が溶解した湯水を吐出するための吐出口15に連通している。図1には、吸い込み口14と吐出口15をともに備えた吸い込み・吐出プラグ16を例示している。吸い込み・吐出プラグ16は、浴槽10の槽壁部に取り付けられるものであり、吸い込み口14から吸い込み配管12に連通する第1流路と、吐出口15から流出管11に連通する第2流路とを備えている。これら第1流路および第2流路は、吸い込み・吐出プラグ16において互いに独立しており、相互に連通してはいない。   The suction side 3 a of the pump 3 is connected to the other end portion of the suction pipe 12 that communicates with the bathtub 10 and has one end portion connected thereto. One end portion of the suction pipe 12 communicates with the suction port 14 communicating with the inside of the bathtub 10 to suck the hot water 13 in the bathtub 10, and the other end portion of the outflow pipe 11 connected to the outflow pipe connection portion 8. Communicates with the inside of the bathtub 10 and communicates with the discharge port 15 for discharging hot water in which the air is dissolved in the bathtub 10. FIG. 1 illustrates a suction / discharge plug 16 having both a suction port 14 and a discharge port 15. The suction / discharge plug 16 is attached to the tank wall of the bathtub 10, and includes a first flow path communicating from the suction port 14 to the suction pipe 12 and a second flow path communicating from the discharge port 15 to the outflow pipe 11. And. The first flow path and the second flow path are independent from each other in the suction / discharge plug 16 and do not communicate with each other.

さらに、気体溶解装置1では、流入管5を通じて溶解タンク2内に導入する湯水13(流体)に空気(気体)を混合し、気液混合流体を生成するために、気体供給口17が溶解タンク2の上壁部2aの上方に配置され、ポンプ3の吸い込み側3aと吸い込み配管12との接続部付近に気体導入エジェクタ18が介設されている。気体供給口17と気体導入エジェクタ18とは気体導入配管19を介して連通接続されている。   Furthermore, in the gas dissolving apparatus 1, in order to mix the hot water 13 (fluid) introduced into the dissolution tank 2 through the inflow pipe 5 with air (gas) and generate a gas-liquid mixed fluid, the gas supply port 17 is provided in the dissolution tank. A gas introduction ejector 18 is interposed near the connection portion between the suction side 3a of the pump 3 and the suction pipe 12. The gas supply port 17 and the gas introduction ejector 18 are connected in communication via a gas introduction pipe 19.

図2に示した微細気泡発生浴槽9では、さらに、流出管接続部8と吐出口15とを連通して接続する流出管11の途中に、圧力開放部となるベンチュリ20が設けられている。   In the fine bubble generating bathtub 9 shown in FIG. 2, a venturi 20 serving as a pressure release portion is further provided in the middle of the outflow pipe 11 that connects the outflow pipe connection portion 8 and the discharge port 15 in communication.

このような気体溶解装置1および微細気泡発生浴槽9では、ポンプ3の作動によって浴槽10内の湯水13を吸い込み口14から吸い込み、吸い込み配管12および流入管5を通じて溶解タンク2に送り出す。溶媒となる湯水13は、溶解タンク2内に単独の流体として噴出し、または気体供給口17から吸引される浴室内の空気と混合され、気液混合流体として噴出し、溶解タンク2内に貯留していた空気または気体供給口17から吸引される空気(いずれも溶質となる)が湯水13中に溶解する。なお、本願では、上記単独の流体および気液混合流体をまとめて「流体」と記載している。   In such a gas dissolving device 1 and the fine bubble generating bath 9, the hot water 13 in the bath 10 is sucked from the suction port 14 by the operation of the pump 3, and sent out to the melting tank 2 through the suction pipe 12 and the inflow pipe 5. Hot water 13 serving as a solvent is jetted into the dissolution tank 2 as a single fluid, or mixed with the air in the bathroom sucked from the gas supply port 17, jetted out as a gas-liquid mixed fluid, and stored in the dissolution tank 2. The air or the air sucked from the gas supply port 17 (both become solutes) is dissolved in the hot water 13. In the present application, the single fluid and the gas-liquid mixed fluid are collectively described as “fluid”.

所定濃度に空気が溶解した湯水13は、流出管接続部8を通じて溶解タンク2の外部に流出し、流出管11を経て吐出口15から浴槽10内に送り出される。空気が溶解した湯水13は、浴槽10内に貯留する湯水13と混合され、このときまたはベンチュリ20を経た後、湯水13中に溶解した空気が、圧力の低下にともない浴槽10やベンチュリ20内で析出して微細気泡が発生する。   Hot water 13 in which air is dissolved at a predetermined concentration flows out of the dissolution tank 2 through the outflow pipe connecting portion 8, and is sent out from the discharge port 15 into the bathtub 10 through the outflow pipe 11. The hot water 13 in which the air is dissolved is mixed with the hot water 13 stored in the bathtub 10, and at this time or after passing through the venturi 20, the air dissolved in the hot water 13 in the bathtub 10 and the venturi 20 as the pressure decreases. Precipitates to generate fine bubbles.

浴槽10内の湯水13は、ポンプ3の作動によって循環し、この循環が繰り返されて浴槽10内の湯水13の気泡量が増加し、浴槽10内の湯水13は微細気泡によって白濁し、牛乳風呂のような趣を与える。   The hot water 13 in the bathtub 10 circulates by the operation of the pump 3, and this circulation is repeated to increase the amount of bubbles in the hot water 13 in the bathtub 10, and the hot water 13 in the bathtub 10 becomes cloudy due to fine bubbles, and the milk bath Give a taste like.

なお、気体溶解装置1および微細気泡発生浴槽9は、ポンプ3の作動および停止を行う制御部21を備え、制御部21は、ポンプ3に電気的に接続されている。制御部21は、たとえばON/OFFのスイッチ入力などによって、ポンプ3の作動、停止を切り換え、気体溶解装置1および微細気泡発生浴槽9の作動と停止を実現する。   The gas dissolving device 1 and the fine bubble generating bathtub 9 include a control unit 21 that operates and stops the pump 3, and the control unit 21 is electrically connected to the pump 3. The control unit 21 switches between operation and stop of the pump 3 by, for example, ON / OFF switch input, and realizes operation and stop of the gas dissolving device 1 and the fine bubble generating bathtub 9.

気体溶解装置1では、溶解タンク2に湯水13を供給するポンプ3の運転をOFFのスイッチ入力などによって停止すると、上記のとおり、液体の生成時に溶解タンク2内で圧縮された空気が、圧力開放にともなって膨張する。膨張した空気は、圧力損失の小さいポンプ3の吸い込み側3aに逆流し、ポンプ3内やその近辺に残留する。このように空気が残存する状態において気体溶解装置1を再び起動し、ポンプ3の運転を開始すると、起動初期には、残存する空気が混入した気液混合流体がポンプ3の内部に流入する。この気液混合流体は、気体量が、定常時の上記気液混合流体に比べて多いものであり、ポンプ3に備えたモータは、定常時よりも高速で回転してしまい、ポンプ3は、エアがみ状態に対応する空運転をする。空運転すると、流体の供給量が減少し、微細気泡の安定した発生が困難となる。また、空運転はポンプ3に過負荷を与えるため、発熱などにともない故障や発火などの原因となり、危険である。   In the gas dissolving apparatus 1, when the operation of the pump 3 for supplying the hot water 13 to the dissolving tank 2 is stopped by an OFF switch input or the like, the air compressed in the dissolving tank 2 when the liquid is generated is released as described above. It expands with it. The expanded air flows back to the suction side 3a of the pump 3 with a small pressure loss, and remains in or near the pump 3. When the gas dissolving apparatus 1 is started again in the state where air remains in this way and the operation of the pump 3 is started, the gas-liquid mixed fluid mixed with the remaining air flows into the pump 3 at the initial stage of starting. This gas-liquid mixed fluid has a larger amount of gas than the gas-liquid mixed fluid at the time of steady operation, and the motor provided in the pump 3 rotates at a higher speed than at the time of steady operation. Perform idle operation corresponding to air stagnation. When idling, the amount of fluid supplied decreases, making it difficult to stably generate fine bubbles. Further, since the idling operation gives an overload to the pump 3, it causes a failure or ignition due to heat generation and is dangerous.

そこで、気体溶解装置1では、起動初期は、あらかじめ定めた設定時間の間、空運転しない回転数でポンプ3を運転し、その後、ポンプ3の回転数を上昇させ、定常運転する。   Therefore, in the gas dissolving apparatus 1, at the initial stage of startup, the pump 3 is operated at a rotational speed at which the idle operation is not performed for a preset time, and then the rotational speed of the pump 3 is increased to perform a steady operation.

すなわち、吸い込み側3aに逆流して残存する空気が再び湯水13とともにポンプ3の内部に流入する間は、気液比が定常時に比べて高いので、図3に示したように、所定の設定時間、ポンプ3を低速運転する。具体的には、設定時間の間は、ポンプ3に備えたモータに定常時よりは低い低電圧を印加する。また、必要に応じて、ポンプ3の回転数を検出し、高回転とならないように、低電圧を維持する。ポンプ3の回転数の検出では、たとえば、ポンプ3の回転に応じて変化するパルス電圧を所定時間ごとにサンプリングし、パルス数をカウントし、カウントしたパルス数があらかじめ設定した閾値を超えるか否かを判定することで行うことができる。なお、設定時間は、ポンプ3の流量特性などを考慮し、シミュレーションを行ってあらかじめ定めることができる。   That is, while the air remaining after flowing back to the suction side 3a flows into the pump 3 together with the hot water 13 again, the gas-liquid ratio is higher than that in the steady state. Therefore, as shown in FIG. The pump 3 is operated at a low speed. Specifically, during the set time, a low voltage lower than that in a steady state is applied to the motor provided in the pump 3. Further, if necessary, the number of rotations of the pump 3 is detected, and a low voltage is maintained so as not to cause a high rotation. In detecting the number of rotations of the pump 3, for example, a pulse voltage that changes in accordance with the rotation of the pump 3 is sampled every predetermined time, the number of pulses is counted, and whether or not the counted number of pulses exceeds a preset threshold value. This can be done by determining. The set time can be determined in advance by performing a simulation in consideration of the flow rate characteristics of the pump 3 and the like.

このように、気体溶解装置1の起動初期には、あらかじめ定めた設定時間の間、ポンプ3を低速運転し、回転数を空運転しない程度に低く抑えるので、残存する空気が混入し、気液比が一時的に高くなっている気液混合流体を溶解タンク2内に送り込むことができる。ポンプ3の吸い込み側3aに残存する気体を溶解タンク2内に排出することができ、ポンプ3はほとんど空回転せず、気体溶解装置1は、安全かつ安定に起動する。   In this way, at the initial start-up time of the gas dissolving apparatus 1, the pump 3 is operated at a low speed for a predetermined set time, and the rotational speed is kept low to such an extent that it does not run idly. The gas-liquid mixed fluid whose ratio is temporarily high can be sent into the dissolution tank 2. The gas remaining on the suction side 3a of the pump 3 can be discharged into the dissolution tank 2, the pump 3 hardly rotates idly, and the gas dissolution apparatus 1 starts up safely and stably.

設定時間が経過した後は、気液混合流体の気液比が、ポンプ3がほとんど空運転しない程度に低くなっているので、ポンプ3の回転数を、図3に示したように、定常時などの目標回転数にまで上昇させ、定常運転に移行する。ポンプ3に備えたモータに印加する電圧を次第に高くすることによって回転数を上昇させ、ポンプ3を高速運転に切り換え、回転数を高くすることによって、ポンプ3の流量特性が所定のものとして確保され、定常運転にスムーズに移行する。   After the set time has elapsed, the gas-liquid ratio of the gas-liquid mixed fluid is so low that the pump 3 hardly performs idling. Therefore, the rotational speed of the pump 3 is set to the steady state as shown in FIG. The target rotational speed is increased to a steady operation. By gradually increasing the voltage applied to the motor provided in the pump 3, the rotational speed is increased, the pump 3 is switched to high speed operation, and the rotational speed is increased, so that the flow rate characteristic of the pump 3 is ensured as a predetermined one. Smooth transition to steady operation.

また、設定時間の経過後に、ポンプ3を低速運転から高速運転に切り換える際には、ポンプ3に備えたモータに供給する電力(供給電力)に対するポンプ3の回転数が、あらかじめ定めた設定回転数以下となっている場合に、モータの供給電力を増加させてポンプ3の回転数を上昇させることが好ましい。モータの供給電力とポンプ3の回転数は、図4に示したように、あらかじめシミュレーションを行ってその関係を求めることができる。ねらいとする回転数に対応する、モータの印加電圧は、ほぼ一義的に決まるので、そのときの供給電力に対するポンプ3の回転数を上記と同様にして検出し、ねらいの回転数である設定回転数以下であると判定したときは、モータの供給電力を増加させる。   Further, when the pump 3 is switched from the low speed operation to the high speed operation after the set time has elapsed, the rotation speed of the pump 3 with respect to the power (supply power) supplied to the motor provided in the pump 3 is set to a predetermined set rotation speed. In the following cases, it is preferable to increase the rotational speed of the pump 3 by increasing the power supplied to the motor. As shown in FIG. 4, the relationship between the power supplied to the motor and the rotational speed of the pump 3 can be obtained by performing a simulation in advance. Since the applied voltage of the motor corresponding to the target rotational speed is determined almost uniquely, the rotational speed of the pump 3 with respect to the supplied power at that time is detected in the same manner as described above, and the target rotational speed is the set rotational speed. When it is determined that the number is less than the number, the power supplied to the motor is increased.

一方、図5に点線で示したように、モータの供給電力を増加させたときに、ねらいとする回転数より高い回転数となった場合には、電圧の上昇を一旦停止させるかまたは多少低下させる。この状態を保つと、回転数は次第に減少し、供給電力に対応したねらいとする回転数になる。その後、モータの供給電力を再度増加させ、空運転を抑えながら定常運転へと移行させる。   On the other hand, as shown by the dotted line in FIG. 5, when the power supplied to the motor is increased, if the rotational speed becomes higher than the target rotational speed, the increase in voltage is temporarily stopped or slightly decreased. Let If this state is maintained, the number of revolutions gradually decreases to a target number of revolutions corresponding to the supplied power. Thereafter, the electric power supplied to the motor is increased again to shift to a steady operation while suppressing idling.

このように、モータの供給電力に対するポンプ3の回転数が、あらかじめ定めた設定回転数以下となっている場合に、モータの供給電力を増加させてポンプ3の回転数を上昇させることによって、ポンプ3を高速運転に切り換える際にも空運転は抑制され、定常運転への移行をより一層スムーズに行うことができる。   Thus, when the rotational speed of the pump 3 with respect to the power supplied to the motor is equal to or lower than a preset rotational speed, the pump power is increased by increasing the power supplied to the motor to increase the rotational speed of the pump 3. Even when 3 is switched to high speed operation, idle operation is suppressed, and the transition to steady operation can be performed more smoothly.

なお、上記のとおりの気体溶解装置1の起動運転制御方法は、たとえば、ポンプ3の回転数を検知する回転数検知手段を設け、この回転数検知手段の検知信号を図2に示した制御部21において判定し、その判定に基づいてポンプ3へコマンド信号を送信するなどによって実行することができる。この場合、制御部21には、ポンプ3の作動および停止とは別に、ソフトウェアまたはハードウェアを組み込むことができる。   Note that the start-up operation control method for the gas dissolving apparatus 1 as described above includes, for example, a rotation speed detection means for detecting the rotation speed of the pump 3, and the detection signal of the rotation speed detection means is shown in FIG. The determination can be made at 21, and a command signal can be transmitted to the pump 3 based on the determination. In this case, software or hardware can be incorporated in the control unit 21 separately from the operation and stop of the pump 3.

また、本発明が対象とする気体溶解装置およびこれを組み込む微細気泡発生浴槽は、図1および図2に示したものに限定されない。細部などの構成および構造については様々な態様が可能であり、それらに対して本発明の気体溶解装置の起動運転制御方法は適用することが可能である。   Moreover, the gas dissolving apparatus which this invention makes object and the fine bubble generation | occurrence | production bathtub incorporating this are not limited to what was shown in FIG. 1 and FIG. Various configurations and structures such as details are possible, and the start-up operation control method of the gas dissolving apparatus of the present invention can be applied to them.

1 気体溶解装置
2 溶解タンク
3 ポンプ
1 Gas dissolving device 2 Dissolving tank 3 Pump

Claims (2)

内部に流入した流体を気体と混合し、気体が溶解した液体を生成する溶解タンクと、溶解タンクに流体を供給するポンプとを備えた気体溶解装置の起動運転制御方法であって、気体溶解装置の起動初期は、あらかじめ定めた設定時間の間、空運転しない回転数でポンプを運転し、その後、ポンプの回転数を上昇させ、定常運転に移行することを特徴とする気体溶解装置の起動運転制御方法。   A gas dissolution apparatus comprising: a dissolution tank that mixes a fluid flowing into the interior with a gas to generate a liquid in which the gas is dissolved; and a pump that supplies the fluid to the dissolution tank. The starting operation of the gas dissolving apparatus is characterized in that the pump is operated at a rotational speed that does not idle during a predetermined set time, and then the rotational speed of the pump is increased to shift to a steady operation. Control method. 前記設定時間の経過後、ポンプに備えたモータの供給電力に対するポンプの回転数が、あらかじめ定めた設定回転数以下となっている場合に、モータの供給電力を増加させてポンプの回転数を上昇させることを特徴とする請求項1に記載の気体溶解装置の起動運転制御方法。   After the set time elapses, if the pump speed relative to the power supplied to the motor provided in the pump is equal to or lower than the preset set speed, the motor power is increased to increase the pump speed. The start-up operation control method for a gas dissolving apparatus according to claim 1, wherein:
JP2009125832A 2009-05-25 2009-05-25 Control method for starting operation of gas dissolving apparatus Active JP4982524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009125832A JP4982524B2 (en) 2009-05-25 2009-05-25 Control method for starting operation of gas dissolving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009125832A JP4982524B2 (en) 2009-05-25 2009-05-25 Control method for starting operation of gas dissolving apparatus

Publications (2)

Publication Number Publication Date
JP2010269292A true JP2010269292A (en) 2010-12-02
JP4982524B2 JP4982524B2 (en) 2012-07-25

Family

ID=43417766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009125832A Active JP4982524B2 (en) 2009-05-25 2009-05-25 Control method for starting operation of gas dissolving apparatus

Country Status (1)

Country Link
JP (1) JP4982524B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013066818A (en) * 2011-09-20 2013-04-18 Panasonic Corp Air-mixed water-discharging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510273A (en) * 1991-07-04 1993-01-19 Ebara Corp Device for preventing light-load and over-load operation of pump device
EP1029497A2 (en) * 1999-02-19 2000-08-23 BSH Bosch und Siemens Hausgeräte GmbH Household apparatus with water circulation , in particular household dishwasher
JP2003056854A (en) * 2001-08-08 2003-02-26 Noritz Corp Hot water heating device
JP2006149437A (en) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd Minute bubble generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510273A (en) * 1991-07-04 1993-01-19 Ebara Corp Device for preventing light-load and over-load operation of pump device
EP1029497A2 (en) * 1999-02-19 2000-08-23 BSH Bosch und Siemens Hausgeräte GmbH Household apparatus with water circulation , in particular household dishwasher
JP2003056854A (en) * 2001-08-08 2003-02-26 Noritz Corp Hot water heating device
JP2006149437A (en) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd Minute bubble generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013066818A (en) * 2011-09-20 2013-04-18 Panasonic Corp Air-mixed water-discharging device

Also Published As

Publication number Publication date
JP4982524B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4815032B2 (en) Microbubble generator and gas-liquid mixing tank
JP2008272631A (en) Fine bubble generating apparatus
JP2008284109A (en) Fine bubble generating apparatus and fine bubble generating method
JP4470936B2 (en) Chemical-mixed water discharge device and flush toilet device
JP4982524B2 (en) Control method for starting operation of gas dissolving apparatus
JP5796176B2 (en) Bathtub with microbubble generator
JP2005095336A (en) Air bubble generating bathtub
KR101031030B1 (en) device for generating micro bubble
JP2008272632A (en) Fine bubble generating apparatus and pressure-dissolving method
JP5508235B2 (en) Microbubble generator
JP7213135B2 (en) bath system
JP2005177225A (en) Bubble bathtub apparatus
JP5114446B2 (en) Microbubble generation bathtub
JP6571811B2 (en) Self-priming pump operating device, liquid supply device, and self-priming pump operating method
JP2019086004A (en) Driving device of self-priming pump, liquid supply device, and driving method of self-priming pump
JP2010017692A (en) Portable bubble generator
JP2009072560A (en) Mixing device for tub
JP2006149437A (en) Minute bubble generator
JP3652914B2 (en) Pump operating method and jet bath system
JP2009198094A (en) Pump unit
KR20220170728A (en) Fine bubble generating device
JP2023105545A (en) Fine bubble generation device
KR20230011838A (en) Fine bubble generating device
JPH09173404A (en) Bubble generator
JPH11336145A (en) Faucet appliance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4982524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150