JP2010268659A - Structure for cooling rotor of permanent-magnet motor - Google Patents

Structure for cooling rotor of permanent-magnet motor Download PDF

Info

Publication number
JP2010268659A
JP2010268659A JP2009119975A JP2009119975A JP2010268659A JP 2010268659 A JP2010268659 A JP 2010268659A JP 2009119975 A JP2009119975 A JP 2009119975A JP 2009119975 A JP2009119975 A JP 2009119975A JP 2010268659 A JP2010268659 A JP 2010268659A
Authority
JP
Japan
Prior art keywords
rotor
refrigerant
slit
permanent magnet
refrigerant passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009119975A
Other languages
Japanese (ja)
Inventor
Masaki Saijo
正起 西條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2009119975A priority Critical patent/JP2010268659A/en
Publication of JP2010268659A publication Critical patent/JP2010268659A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To cool a rotor by feeding a refrigerant in the stacking direction of a steel plate inside the rotor 1 composed of the stacked steel plates, and to prevent the refrigerant from flowing to the outside via a gap of the stacked steel plates. <P>SOLUTION: A refrigerant path 4 is provided inside of the rotor 1 to pass through the steel plate in the stacking direction. Further, a slit 5 is formed in the inside of the rotor 1 to pass through the steel plate in the stacking direction, and is disposed at the outside of the refrigerant path 4 in the radial direction of the rotor. The slit 5 forms an inflectional structure (a dogleg shape) to surround the outside of the refrigerant path 4 in the radial direction of the rotor when seeing the rotor 1 in the axial direction, and resin is filled in all over the slit 5. The steel plates are connected by a caulking dowel 6 in the stacked state, and the caulking dowel 6 is positioned at the outside of the slit 5 in the radial direction of the rotor. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、永久磁石式電動機における回転子の冷却構造に関する。   The present invention relates to a rotor cooling structure in a permanent magnet electric motor.

永久磁石式電動機としては、特許文献1に示されるようなものがある。   As a permanent magnet type electric motor, there is one as shown in Patent Document 1.

これは、固定子(ステータ)と、固定子内にて回転する永久磁石付きの回転子(ロータ)とを含んで構成され、前記回転子は、複数の鋼板を積層してなり、中心部に回転軸取付孔が形成され、外周側に複数の永久磁石取付孔が形成される。   This is configured to include a stator (stator) and a rotor (rotor) with a permanent magnet that rotates in the stator, and the rotor is formed by laminating a plurality of steel plates. A rotation shaft attachment hole is formed, and a plurality of permanent magnet attachment holes are formed on the outer peripheral side.

また、回転子の内部には、永久磁石近傍を軸方向に貫通する冷媒通路が形成され、オイルポンプにより回転軸の中空部に供給した冷媒(潤滑油)を、回転子の両端に配置される一対のエンドプレートのうち、一方のエンドプレートに形成した入口側冷媒通路を介して、回転子内の冷媒通路に流通させ、他方のエンドプレートに形成した出口側冷媒通路を介して排出させるようにして、回転子(永久磁石)を冷却している。   In addition, a refrigerant passage that penetrates the vicinity of the permanent magnet in the axial direction is formed inside the rotor, and refrigerant (lubricating oil) supplied to the hollow portion of the rotating shaft by the oil pump is disposed at both ends of the rotor. Of the pair of end plates, the refrigerant is passed through the refrigerant passage in the rotor through the inlet side refrigerant passage formed in one end plate and discharged through the outlet side refrigerant passage formed in the other end plate. The rotor (permanent magnet) is cooled.

特開2007−228669号公報JP 2007-228669 A

しかしながら、回転子内の冷媒通路は、回転子を構成する積層鋼板にプレスによって打抜きした孔によって形成されるため、その孔にそのまま冷媒を流すと、遠心力により積層鋼板間の微小な隙間から冷媒が外径側に漏洩し、固定子・回転子間のギャップ(空気層)に浸入することで、そのせん断粘性により攪拌損失を悪化させる現象を生じる。   However, since the refrigerant passage in the rotor is formed by a hole punched out in the laminated steel plate constituting the rotor by a press, if the refrigerant flows as it is through the hole, the refrigerant is caused from a minute gap between the laminated steel plates by centrifugal force. Leaks to the outer diameter side and enters the gap (air layer) between the stator and the rotor, resulting in a phenomenon that the agitation loss is worsened by the shear viscosity.

本発明は、回転子内に冷媒を流して冷却する一方、その冷媒が固定子・回転子間に浸入するのを防ぐことができる永久磁石式電動機回転子の冷却構造を提供することを課題とする。   It is an object of the present invention to provide a cooling structure for a permanent magnet electric motor rotor capable of cooling by flowing a refrigerant into the rotor while preventing the refrigerant from entering between the stator and the rotor. To do.

このため、本発明では、回転子の内部に積層鋼板を積層方向に貫通して設けられ、冷媒が流通する冷媒通路と、回転子の内部に積層鋼板を積層方向に貫通して設けられ、前記冷媒通路に対し回転子半径方向外側に配置されるスリットと、を備える構成とする。   For this reason, in the present invention, the laminated steel plate is provided inside the rotor in the lamination direction, the refrigerant passage through which the refrigerant flows, and the laminated steel plate is provided inside the rotor in the lamination direction, And a slit disposed on the outer side in the rotor radial direction with respect to the refrigerant passage.

そして、前記スリットは、前記回転子を軸方向に視たときに、前記冷媒通路の回転子半径方向外側を囲む屈曲形状をなすようにし、前記スリット内の全域に樹脂を充填する構成とする。   And when the said rotor is seen to the axial direction, the said slit makes the bending shape surrounding the rotor radial direction outer side of the said refrigerant | coolant channel | path, and is set as the structure filled with resin in the whole area in the said slit.

本発明によれば、回転子内の冷媒通路を流れる冷媒により回転子を冷却できる一方、冷媒通路内の冷媒が遠心力によって積層鋼板間の隙間へ浸入しても、冷媒通路の回転子半径方向外側にスリットに充填された樹脂による囲み壁が実質的に形成されるため、それより外周側へは流出せず、固定子・回転子間への浸入を防ぐことができる。   According to the present invention, the rotor can be cooled by the refrigerant flowing through the refrigerant passage in the rotor, and even if the refrigerant in the refrigerant passage enters the gap between the laminated steel plates by centrifugal force, the radial direction of the rotor of the refrigerant passage Since the surrounding wall made of the resin filled in the slit is substantially formed on the outer side, it does not flow out to the outer peripheral side, and it is possible to prevent intrusion between the stator and the rotor.

本発明の一実施形態を示す回転子の正面図The front view of the rotor which shows one Embodiment of this invention 参考例(1)を示す回転子の正面図Front view of rotor showing reference example (1) 参考例(2)を示す回転子の正面図Front view of rotor showing reference example (2) 参考例(3)を示す回転子の正面図Front view of rotor showing reference example (3)

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の一実施形態を示す回転子の正面図である。   FIG. 1 is a front view of a rotor showing an embodiment of the present invention.

回転子1は、中心部に回転軸取付孔(取付部)2を有し、外周側に複数の永久磁石取付孔(取付部)3を有する鋼板を、複数(多数)、積層してなる。   The rotor 1 is formed by laminating a plurality (many) of steel plates each having a rotation shaft attachment hole (attachment portion) 2 at the center and a plurality of permanent magnet attachment holes (attachment portions) 3 on the outer peripheral side.

言い換えれば、回転子1は、複数の鋼板を積層してなり、予め各鋼板にプレス抜きした孔によって、中心部に回転軸取付孔2が形成され、外周部に複数の永久磁石取付孔3が形成される。   In other words, the rotor 1 is formed by laminating a plurality of steel plates, the rotation shaft mounting hole 2 is formed in the center portion by the holes previously punched in each steel plate, and the plurality of permanent magnet mounting holes 3 are formed in the outer peripheral portion. It is formed.

回転軸取付孔2には、中空の回転軸(図示せず)が焼嵌め等により挿入固定される。また、回転軸取付孔2内周のキー2aと回転軸外周のキー溝(図示せず)とで回転方向の位置決めがなされる。   A hollow rotary shaft (not shown) is inserted into and fixed to the rotary shaft mounting hole 2 by shrink fitting or the like. Further, positioning in the rotational direction is performed by a key 2a on the inner periphery of the rotation shaft mounting hole 2 and a key groove (not shown) on the outer periphery of the rotation shaft.

永久磁石取付孔3は、V字状をなす2つの孔3a、3bから構成され、周方向に所定の間隔(この例では45°間隔)で複数(8極分)設けられており、これらには、軸方向に延びる永久磁石(図示せず)が挿入され、樹脂モールドで固定される。   The permanent magnet mounting hole 3 is composed of two V-shaped holes 3a and 3b, and a plurality of (8 poles) are provided in the circumferential direction at a predetermined interval (45 ° interval in this example). The permanent magnet (not shown) extending in the axial direction is inserted and fixed with a resin mold.

従って、永久磁石は、回転子1の外周面近傍に周方向に所定の間隔(45°間隔)で複数(8極分)埋設され、各永久磁石は2分割されて、V字状に配置される。   Accordingly, a plurality of permanent magnets (8 poles) are embedded in the circumferential direction in the vicinity of the outer peripheral surface of the rotor 1 at predetermined intervals (45 ° intervals), and each permanent magnet is divided into two and arranged in a V shape. The

また、回転子1には、積層鋼板を積層方向(軸方向)に貫通する軽量化孔を兼ねる冷媒通路4が、複数、周方向に所定の間隔(この例では45°間隔)で、設けられる。冷媒通路4は、回転軸取付孔2及び永久磁石取付孔3と同様、各積層鋼板にプレス抜きによって予め形成されるもので、この例では特に、各冷媒通路4は、半径方向には、回転軸取付孔2と永久磁石取付孔3との間に位置させ、周方向には、隣り合う永久磁石取付孔3(3a、3b)と永久磁石取付孔3(3a、3b)との間に位置させている。   The rotor 1 is provided with a plurality of refrigerant passages 4 that also serve as lightening holes that penetrate the laminated steel plates in the lamination direction (axial direction) at predetermined intervals in the circumferential direction (in this example, 45 ° intervals). . The refrigerant passage 4 is formed in advance in each laminated steel plate by press punching in the same manner as the rotary shaft attachment hole 2 and the permanent magnet attachment hole 3, and in this example, each refrigerant passage 4 rotates in the radial direction. Positioned between the shaft mounting hole 2 and the permanent magnet mounting hole 3, and in the circumferential direction, positioned between the adjacent permanent magnet mounting holes 3 (3a, 3b) and the permanent magnet mounting holes 3 (3a, 3b). I am letting.

ここで、冷媒通路4は、その一端を冷媒入口、他端を冷媒出口とし、冷媒通路4の冷媒入口は、回転子1の積層方向の一端側に配置されるエンドプレート(図示せず)に形成された入口側冷媒通路を経て、オイルポンプ(図示せず)から冷媒(潤滑油)が導かれる回転軸の中空部に接続されるようになる。また、冷媒通路4の冷媒出口は、回転子1の積層方向の他端側に配置されるエンドプレート(図示せず)に形成された出口側冷媒通路を経て、排出側に接続されるようになる。   Here, the refrigerant passage 4 has one end as a refrigerant inlet and the other end as a refrigerant outlet, and the refrigerant inlet of the refrigerant passage 4 is connected to an end plate (not shown) arranged on one end side in the stacking direction of the rotor 1. It is connected to the hollow portion of the rotating shaft through which the refrigerant (lubricating oil) is guided from an oil pump (not shown) through the formed inlet-side refrigerant passage. The refrigerant outlet of the refrigerant passage 4 is connected to the discharge side through an outlet-side refrigerant passage formed in an end plate (not shown) disposed on the other end side in the stacking direction of the rotor 1. Become.

また、回転子1には、積層鋼板を積層方向(軸方向)に貫通するスリット5が、前記各冷媒通路4に対応させて、前記各冷媒通路4の回転子半径方向外側に、設けられる。従って、スリット5は、前記冷媒通路4と同数、周方向に同間隔(45°間隔)で、設けられる。もちろん、スリット5も、前記冷媒通路4と同様、各積層鋼板にプレス抜きによって予め形成される。   The rotor 1 is provided with slits 5 penetrating the laminated steel plates in the lamination direction (axial direction) on the outer side in the rotor radial direction of the refrigerant passages 4 so as to correspond to the refrigerant passages 4. Therefore, the slits 5 are provided in the same number as the refrigerant passages 4 and at the same interval (45 ° interval) in the circumferential direction. Of course, the slits 5 are also formed in advance in each laminated steel sheet by press punching in the same manner as the refrigerant passage 4.

ここで、前記スリット5は、回転子1を軸方向に視たときに、前記冷媒通路4の回転子半径方向外側を囲む屈曲形状をなすようにする。具体的には、「く」の字状、又は見方によるが「L」字状に屈曲させ、凹部側(「く」の字の右側、「L」の字の右上側)を冷媒通路4側に向ける。この他、括弧記号の「(」形状の屈曲(湾曲)形状としてもよく、冷媒通路4の回転子半径方向外側を囲む屈曲形状とは、角部を有さない屈曲形状(湾曲形状)であってもよい。   Here, when the rotor 1 is viewed in the axial direction, the slit 5 has a bent shape surrounding the outer side of the refrigerant passage 4 in the radial direction of the rotor. Specifically, depending on the shape of the letter “K” or depending on how it is viewed, it is bent into an “L” shape, and the concave side (the right side of the letter “K” and the upper right side of the letter “L”) is on the refrigerant passage 4 side. Turn to. In addition, a “(” -shaped bent (curved) shape in parentheses may be used, and the bent shape surrounding the outer side of the refrigerant passage 4 in the rotor radial direction is a bent shape (curved shape) having no corners. May be.

そして、前記スリット5内には、その全域に樹脂(ハッチングで示す)を樹脂モードルによって充填する。従って、前記スリット5内に充填した樹脂により、冷媒通路4の回転子半径方向外側に、積層方向に連続する囲み壁が実質的に形成される。   The slit 5 is filled with resin (indicated by hatching) with resin modal. Accordingly, the resin filled in the slit 5 substantially forms an enclosing wall continuous in the stacking direction outside the refrigerant passage 4 in the rotor radial direction.

また、回転子1の積層鋼板はカシメダボ6により積層方向に連結固定するが、前記回転子1を軸方向に視たときに、前記スリット5の回転子半径方向外側にカシメダボ6を位置させる。   Further, the laminated steel plates of the rotor 1 are connected and fixed in the laminating direction by the caulking dowel 6, but when the rotor 1 is viewed in the axial direction, the caulking dowel 6 is positioned on the outer side in the rotor radial direction of the slit 5.

以下に本実施形態の作用・効果を説明するが、これに先立って、永久磁石式電動機における回転子冷却の背景、従来の冷却構造、及び各種参考例などについて、説明する。   The operation and effect of this embodiment will be described below. Prior to this, the background of rotor cooling in a permanent magnet motor, conventional cooling structures, and various reference examples will be described.

近年、自動車駆動用電動機に対する小型化・高出力化への要求が高まっており、永久磁石式電動機の各種構造が提案されている。   In recent years, demands for miniaturization and higher output for motors for driving automobiles have increased, and various structures of permanent magnet motors have been proposed.

永久磁石式電動機の出力は、固定子・回転子の熱性能、詳しくは、固定子側の絶縁耐熱性、回転子側の磁石耐熱性(磁石消磁が発生する温度)により制限される。   The output of the permanent magnet motor is limited by the thermal performance of the stator / rotor, specifically, the insulation heat resistance of the stator side and the magnet heat resistance of the rotor side (temperature at which magnet demagnetization occurs).

回転子の熱性能向上には、磁石の保磁力向上が最も単純な対策として考えられるが、コスト増が大きな背反となる。従って、性能、コストの両立のためには、回転子の冷却性能を向上させなければならず、また回転子の冷却には、空冷式よりも流体による冷却の方が効果的である。   To improve the thermal performance of the rotor, the coercive force of the magnet can be considered as the simplest measure, but the increase in cost is a major tradeoff. Therefore, in order to achieve both performance and cost, the cooling performance of the rotor must be improved, and cooling with a fluid is more effective for cooling the rotor than air cooling.

電動機の固定子・回転子は、損失低減のため、順送プレスにて打抜き成形された薄板鋼板を積層して製造されるが、自動車駆動用の永久磁石式電動機回転子には、通常、軽量化のためのプレス抜き貫通孔(軽量化孔)が配設される。従って、この軽量化孔を冷媒通路として用い、冷媒を流して、回転子磁石冷却を行う。   Electric motor stators and rotors are manufactured by laminating thin steel plates punched and formed by progressive presses to reduce losses. However, permanent magnet motor rotors for driving automobiles are usually lightweight. A press punching through hole (lightening hole) is provided for the purpose. Therefore, this weight reduction hole is used as a refrigerant passage, and the rotor magnet is cooled by flowing the refrigerant.

しかしながら、回転子は、薄板鋼板を積層して製造されており、積層鋼板間には微小な隙間が存在する。また、回転子とその内部を流通する冷媒には遠心力が加わる。従って、プレス抜きによる軽量化孔にそのまま冷媒を流すと、遠心力により積層鋼板間の微小な隙間から冷媒が外径側に漏洩し、固定子・回転子間のギャップ(空気層)に浸入することで、そのせん断粘性により攪拌損失が増大し、電動機の出力低下につながる。従って、固定子・回転子間のギャップへの冷媒流出を防ぐ必要がある。   However, the rotor is manufactured by laminating thin steel plates, and there are minute gaps between the laminated steel plates. Further, centrifugal force is applied to the rotor and the refrigerant flowing through the rotor. Therefore, if the coolant is allowed to flow through the weight reduction hole by punching, the coolant leaks from the minute gap between the laminated steel plates to the outer diameter side due to centrifugal force, and enters the gap (air layer) between the stator and rotor. As a result, the shear loss increases due to the shear viscosity, leading to a decrease in the output of the motor. Therefore, it is necessary to prevent refrigerant from flowing into the gap between the stator and the rotor.

このため、図2の参考例(1)に示すように、軽量化孔(冷媒通路)11の内周に樹脂(ハッチングで示す)をモールド成形して被覆し、外周側への冷媒の浸入を防止することが考えられるが、電動機軸長が長いものに対しては、モールド後の型抜きが困難となる。   Therefore, as shown in Reference Example (1) in FIG. 2, resin (shown by hatching) is molded and coated on the inner periphery of the lightening hole (refrigerant passage) 11 to prevent the refrigerant from entering the outer periphery. Although it is conceivable to prevent this, it is difficult to perform die removal after molding for a motor having a long motor shaft length.

また、図3の参考例(2)に示すように、軽量化孔11の内部に非磁性材料で成形された冷媒通路形成用のパイプ12材を配設し、軽量化孔11とパイプ材12との間に樹脂(ハッチングで示す)を充填してモールド固定し、パイプ材12の内部に冷媒を流すことが考えられるが、軽量化孔11のほぼ全体に樹脂を充填することになり、軽量化効果が大きく低減される。   Further, as shown in the reference example (2) in FIG. 3, the refrigerant passage forming pipe 12 material formed of a nonmagnetic material is disposed inside the lightening hole 11, and the lightening hole 11 and the pipe material 12 are arranged. It is conceivable that resin (shown by hatching) is filled in between and fixed with a mold, and the coolant is allowed to flow inside the pipe material 12, but the entire weight reduction hole 11 is filled with resin. The effect is greatly reduced.

また、図4の参考例(3)に示すように、軽量化孔13とは別に孔14を設けて、この別の孔14に冷媒通路形成用のパイプ材14を挿入して樹脂(ハッチングで示す)で固定することも考えられる。   Further, as shown in Reference Example (3) in FIG. 4, a hole 14 is provided in addition to the lightening hole 13, and a pipe material 14 for forming a refrigerant passage is inserted into the other hole 14, and resin (hatching is performed). It is also possible to fix with (shown).

しかし、いずれにしても、別部品(パイプ材12、14)を配設することによる、生産性・コストメリットの低下、またモールド時にパイプ材12、14の内部に樹脂が流入しないよう成形型内で封止する必要など、製造面での課題も大きい。   However, in any case, by arranging separate parts (pipe materials 12 and 14), the productivity and cost merit are reduced, and the resin does not flow into the pipe materials 12 and 14 during molding. There are also significant problems in terms of manufacturing, such as the need to seal with.

そこで、図1の本実施形態では、回転子1における軽量化孔を兼ねる冷媒通路4の回転子半径方向外側に所定形状のスリット5を設け、このスリット5内の全域に樹脂を充填する。   Therefore, in the present embodiment of FIG. 1, a slit 5 having a predetermined shape is provided on the outer side in the rotor radial direction of the refrigerant passage 4 that also serves as a weight-reducing hole in the rotor 1, and the entire area in the slit 5 is filled with resin.

これによれば、回転子1内の冷媒通路4を流れる冷媒により回転子1(磁石)を冷却できる一方、冷媒通路4内の冷媒が遠心力によって積層鋼板間の隙間へ浸入しても、冷媒通路4の回転子半径方向外側にスリット5に充填された樹脂による積層方向に連続した囲み壁があるため、それより外周側へは流出せず、固定子・回転子間のギャップへの冷媒の浸入を防ぐことができる。従って、攪拌損失すなわち機械損失の悪化を抑えることが可能となる。   According to this, the rotor 1 (magnet) can be cooled by the refrigerant flowing through the refrigerant passage 4 in the rotor 1, while the refrigerant in the refrigerant passage 4 can be cooled even if the refrigerant enters the gap between the laminated steel plates by centrifugal force. Since there is a continuous enclosing wall in the laminating direction by the resin filled in the slit 5 on the outer side in the rotor radial direction of the passage 4, the refrigerant does not flow out to the outer peripheral side, and the refrigerant flows into the gap between the stator and the rotor. Infiltration can be prevented. Therefore, it is possible to suppress deterioration of stirring loss, that is, mechanical loss.

また、製造面でもパイプ材等の別部品が不要で、軸長の大きい電動機でも型抜き不要のため、生産性合理化が可能となる。   In addition, separate parts such as pipe materials are unnecessary in terms of manufacturing, and even a motor with a long shaft length does not require die cutting, so that productivity can be rationalized.

また、本実施形態では、回転子1を軸方向に視たときに、スリット5の回転子半径方向外側にカシメダボ6を位置させているが、これは次のような理由による。   In this embodiment, when the rotor 1 is viewed in the axial direction, the crimping dowel 6 is positioned outside the slit 5 in the rotor radial direction. This is due to the following reason.

回転子1の加減速時には慣性による影響で、スリット5内に充填された樹脂による囲み壁の周方向端部から冷媒が外周側へ流出することが考えられる。   During acceleration / deceleration of the rotor 1, it is conceivable that the refrigerant flows out to the outer peripheral side from the circumferential end of the surrounding wall made of the resin filled in the slit 5 due to the influence of inertia.

通常、積層鋼板間の隙間から流出する冷媒流出経路は、積層方向では回転子製造時の精度向上のために行っている転積部、回転子周方向では積層固定を行っているカシメダボ部である。これはカシメダボ部では積層方向の固定と共にバネにより積層方向の反発力が発生しているためであり、転積部では微小な金型精度の相違により、積層方向の反発力が増大しているためである。   Usually, the refrigerant outflow path that flows out from the gaps between the laminated steel plates is a roll-over section that is performed to improve accuracy during rotor manufacture in the stacking direction, and a caulking dowel section that is stacked and fixed in the rotor circumferential direction. . This is because the rebound force in the stacking direction is generated by the spring in the crimping dowel part and the repulsive force in the stacking direction is increased due to a small difference in mold accuracy in the rolling part. It is.

そこで、スリット5の回転子半径方向外側に積層鋼板固定用のカシメダボ6を配設し、積層反発力大なる部位(カシメダボ6部)をスリット5内のモールド樹脂で封止する一方、積層反発力小なる部位に周方向のモールド樹脂間の間隙を対応させて配設することにより、スリット5内に充填された樹脂による囲み壁の周方向端部から外周側へ流出しにくくして、囲み壁端部からの漏洩冷媒による攪拌損失悪化を低減する。   Therefore, a caulking dowel 6 for fixing the laminated steel plate is disposed outside the slit 5 in the radial direction of the rotor, and a portion where the laminating repulsion force is large (the caulking dowel 6 portion) is sealed with the mold resin in the slit 5, while the laminating repulsion force By arranging the gaps between the mold resins in the circumferential direction corresponding to the small portions, it is difficult for the resin filled in the slits 5 to flow out from the circumferential end of the wall in the circumferential direction. Reduces deterioration of stirring loss due to refrigerant leaking from the end.

以上述べたように、本実施形態によれば、冷媒通路からの漏洩冷媒が固定子・回転子間のギャップに浸入して、攪拌抵抗による電動機出力の低下を生じるのを確実に防止できる一方、コストアップ等を招くことなく、比較的容易に製造できるようになる。   As described above, according to the present embodiment, it is possible to reliably prevent leakage refrigerant from the refrigerant passage from entering the gap between the stator and the rotor and causing a decrease in the motor output due to the stirring resistance. It becomes possible to manufacture relatively easily without incurring an increase in cost.

1 回転子
2 回転軸取付孔
3 永久磁石取付孔
4 軽量化孔を兼ねる冷媒通路
5 スリット(樹脂充填)
6 カシメダボ
DESCRIPTION OF SYMBOLS 1 Rotor 2 Rotating shaft mounting hole 3 Permanent magnet mounting hole 4 Refrigerant passage which also serves as a weight reduction hole 5 Slit (resin filling)
6 Kashmedabo

Claims (2)

中心部に回転軸取付部を有し、外周側に複数の永久磁石取付部を有する鋼板を積層してなる永久磁石式電動機回転子の冷却構造であって、
前記回転子の内部に前記鋼板を積層方向に貫通して設けられ、冷媒が流通する冷媒通路と、
前記回転子の内部に前記鋼板を積層方向に貫通して設けられ、前記冷媒通路に対し回転子半径方向外側に配置されるスリットと、を備え、
前記スリットは、前記回転子を軸方向に視たときに、前記冷媒通路の回転子半径方向外側を囲む屈曲形状をなし、
前記スリット内の全域に樹脂を充填したことを特徴とする永久磁石式電動機回転子の冷却構造。
A cooling structure for a permanent magnet type electric motor rotor having a rotating shaft mounting portion at the center and a laminated steel plate having a plurality of permanent magnet mounting portions on the outer peripheral side,
A refrigerant passage that is provided through the steel plate in the laminating direction inside the rotor and through which a refrigerant flows;
The steel plate is provided through the rotor in the laminating direction, and is disposed on the outer side in the rotor radial direction with respect to the refrigerant passage,
The slit has a bent shape that surrounds the outer side of the refrigerant passage in the radial direction of the rotor when the rotor is viewed in the axial direction,
A cooling structure for a permanent magnet electric motor rotor, wherein the entire area in the slit is filled with resin.
前記鋼板は、積層状態でカシメダボにより連結され、前記回転子を軸方向に視たときに、前記スリットの回転子半径方向外側に前記カシメダボを位置させることを特徴とする請求項1記載の永久磁石式電動機回転子の冷却構造。   2. The permanent magnet according to claim 1, wherein the steel plates are connected by caulking dowels in a stacked state, and the caulking dowels are positioned on the outer side in the rotor radial direction of the slit when the rotor is viewed in the axial direction. Cooling structure of the electric motor rotor.
JP2009119975A 2009-05-18 2009-05-18 Structure for cooling rotor of permanent-magnet motor Pending JP2010268659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009119975A JP2010268659A (en) 2009-05-18 2009-05-18 Structure for cooling rotor of permanent-magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009119975A JP2010268659A (en) 2009-05-18 2009-05-18 Structure for cooling rotor of permanent-magnet motor

Publications (1)

Publication Number Publication Date
JP2010268659A true JP2010268659A (en) 2010-11-25

Family

ID=43365127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009119975A Pending JP2010268659A (en) 2009-05-18 2009-05-18 Structure for cooling rotor of permanent-magnet motor

Country Status (1)

Country Link
JP (1) JP2010268659A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296808A (en) * 2012-02-29 2013-09-11 丰田自动车株式会社 Cooling structure of rotor for rotary electric machine, and rotary electric machine
JP2014204495A (en) * 2013-04-02 2014-10-27 株式会社ジェイテクト Rotary electric machine and manufacturing method thereof
JP2015019548A (en) * 2013-07-12 2015-01-29 株式会社東芝 Motor for vehicle and railway vehicle
JP2016073109A (en) * 2014-09-30 2016-05-09 株式会社三井ハイテック Laminated core and manufacturing method thereof
CN113039703A (en) * 2018-11-28 2021-06-25 罗伯特·博世有限公司 Rotor of electric machine
CN113364184A (en) * 2021-05-07 2021-09-07 中国第一汽车股份有限公司 Direct cooling system applied to high-speed permanent magnet motor rotor and winding
DE102021203452A1 (en) 2021-04-07 2022-10-13 Volkswagen Aktiengesellschaft Cooled rotor with sealing device, electric machine, motor vehicle and method for manufacturing a rotor
CN117175818A (en) * 2023-11-02 2023-12-05 小米汽车科技有限公司 Rotor structure, manufacturing method thereof, mold, motor and vehicle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296808A (en) * 2012-02-29 2013-09-11 丰田自动车株式会社 Cooling structure of rotor for rotary electric machine, and rotary electric machine
JP2013183480A (en) * 2012-02-29 2013-09-12 Toyota Motor Corp Cooling structure of rotor for rotary electric machine and rotary electric machine
JP2014204495A (en) * 2013-04-02 2014-10-27 株式会社ジェイテクト Rotary electric machine and manufacturing method thereof
JP2015019548A (en) * 2013-07-12 2015-01-29 株式会社東芝 Motor for vehicle and railway vehicle
JP2016073109A (en) * 2014-09-30 2016-05-09 株式会社三井ハイテック Laminated core and manufacturing method thereof
CN113039703A (en) * 2018-11-28 2021-06-25 罗伯特·博世有限公司 Rotor of electric machine
US11955846B2 (en) 2018-11-28 2024-04-09 Robert Bosch Gmbh Rotor of an electric machine
CN113039703B (en) * 2018-11-28 2024-05-14 罗伯特·博世有限公司 Rotor of an electric machine
DE102021203452A1 (en) 2021-04-07 2022-10-13 Volkswagen Aktiengesellschaft Cooled rotor with sealing device, electric machine, motor vehicle and method for manufacturing a rotor
CN113364184A (en) * 2021-05-07 2021-09-07 中国第一汽车股份有限公司 Direct cooling system applied to high-speed permanent magnet motor rotor and winding
WO2022233114A1 (en) * 2021-05-07 2022-11-10 中国第一汽车股份有限公司 Direct cooling system applied to rotor and winding of high-speed permanent magnet motor
CN117175818A (en) * 2023-11-02 2023-12-05 小米汽车科技有限公司 Rotor structure, manufacturing method thereof, mold, motor and vehicle

Similar Documents

Publication Publication Date Title
JP2010268659A (en) Structure for cooling rotor of permanent-magnet motor
JP6017067B2 (en) Permanent magnet embedded rotary electric machine
JP5017120B2 (en) Rotating electrical machine rotor and rotating electrical machine
US9124156B2 (en) Rotor for electric rotating machine
JP4715028B2 (en) Rotating electric machine
JP5392101B2 (en) Motor cooling structure
JP2013183480A (en) Cooling structure of rotor for rotary electric machine and rotary electric machine
JP6832935B2 (en) Consequential pole type rotor, electric motor and air conditioner
JPH09327140A (en) Electric rotating machine of permanent magnet rotation type and its manufacture
JP2013017297A (en) Rotor of rotary electric machine
US20190181708A1 (en) Rotary electrical machine
JP2015053831A (en) Rotor of rotating electrical machine
JP2011193571A (en) Rotary electric machine
JP2013183481A (en) Cooling structure of rotor for rotary electric machine and rotary electric machine
JP2013099222A (en) Rotor and rotary electric machine
JP2012235546A (en) Rotor and rotating electric machine
JP2017046545A (en) Rotary electric machine rotor
WO2019049397A1 (en) Rotor cooling structure for dynamo-electric machine
JP5392012B2 (en) Electric motor
JP6525329B2 (en) Rotor and method of manufacturing rotor
JP2007336646A (en) Rotary electric machine
JP2013021811A (en) Rotor of rotary electric machine
JP5531738B2 (en) Electric motor and rotor manufacturing method
JP6795352B2 (en) Electric electric machine
JP6151668B2 (en) Rotor for rotating electrical machines