JP2010267787A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2010267787A
JP2010267787A JP2009117682A JP2009117682A JP2010267787A JP 2010267787 A JP2010267787 A JP 2010267787A JP 2009117682 A JP2009117682 A JP 2009117682A JP 2009117682 A JP2009117682 A JP 2009117682A JP 2010267787 A JP2010267787 A JP 2010267787A
Authority
JP
Japan
Prior art keywords
conductivity type
type dopant
diffusing agent
semiconductor substrate
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009117682A
Other languages
English (en)
Inventor
Sanetsugu Kodaira
真継 小平
Koji Funakoshi
康志 舩越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009117682A priority Critical patent/JP2010267787A/ja
Publication of JP2010267787A publication Critical patent/JP2010267787A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】半導体装置の特性の低下を安定して抑制することができる半導体装置の製造方法を提供する。
【解決手段】半導体基板の表面上にぬれ性改善膜を形成する工程と、ぬれ性改善膜の表面上に第1導電型または第2導電型のドーパントを含有するドーパント拡散剤を塗布する工程と、ドーパント拡散剤から半導体基板にドーパントを拡散させることによってドーパント拡散層を形成する工程とを含む半導体装置の製造方法である。
【選択図】図1

Description

本発明は、半導体装置の製造方法に関し、特に、半導体装置の特性の低下を安定して抑制することができる半導体装置の製造方法に関する。
近年、エネルギ資源の枯渇の問題や大気中のCO2の増加のような地球環境問題などからクリーンなエネルギの開発が望まれており、半導体装置の中でも特に太陽電池を用いた太陽光発電が新しいエネルギ源として開発、実用化され、発展の道を歩んでいる。
太陽電池は、従来から、たとえば単結晶または多結晶のシリコン基板の受光面にシリコン基板の導電型と反対の導電型となる不純物を拡散することによってpn接合を形成し、シリコン基板の受光面と受光面の反対側の裏面にそれぞれ電極を形成して製造された両面電極型太陽電池が主流となっている。また、両面電極型太陽電池においては、シリコン基板の裏面にシリコン基板と同じ導電型の不純物を高濃度で拡散することによって、裏面電界効果による高出力化を図ることも一般的となっている。
また、シリコン基板の受光面に電極を形成せず、裏面のみに電極を形成した裏面電極型太陽電池についても研究開発が進められている(たとえば、特許文献1参照)。
以下、図10(a)〜図10(e)の模式的断面図を参照して、特許文献1に記載の裏面電極型太陽電池の製造方法について説明する。
まず、図10(a)に示すように、シリコン基板100の一方の表面にテクスチャ構造108を形成する。
次に、図10(b)に示すように、シリコン基板100の表面のテクスチャ構造108上に酸化物層109を形成する。
次に、図10(c)に示すように、p型またはn型の導電型を有するシリコン基板100のテクスチャ構造108が形成された側と反対側の表面となる裏面に、p型ドーパントを含有するp型ドーピングペースト103と、n型ドーパントを含有するn型ドーピングペースト104とを所定の間隔をあけて塗布する。
次に、図10(d)に示すように、シリコン基板100の裏面のp型ドーピングペースト103とn型ドーピングペースト104とを覆うようにして酸化物層102を形成する。
その後、シリコン基板100を熱処理することによって、シリコン基板100の裏面にp型ドーピングペースト103からp型ドーパントを拡散させるとともに、n型ドーピングペースト104からn型ドーパントを拡散させることによって、図10(e)に示すように、シリコン基板100の裏面にp型ドーパント拡散層105およびn型ドーパント拡散層106をそれぞれ形成する。
そして、シリコン基板100の裏面のp型ドーパント拡散層105上に金属化部分110を形成するとともに、n型ドーパント拡散層106上に金属化部分111を形成することによって、特許文献1に記載の裏面電極型太陽電池が作製される。
特開2008−78665号公報
特許文献1に記載の裏面電極型太陽電池の特性を向上させるためには、シリコン基板100の裏面のp型ドーパント拡散層105およびn型ドーパント拡散層106はそれぞれ微細な線幅で形成することが好ましい。したがって、たとえば図11(a)の模式的平面図に示すように、p型ドーピングペースト103およびn型ドーピングペースト104はそれぞれ微細な線幅wで塗布されることが好ましい。
しかしながら、シリコン基板100は疎水性であることから、シリコン基板100の表面に親水性のp型ドーピングペースト103および親水性のn型ドーピングペースト104をそれぞれ塗布した場合には、シリコン基板100の表面においてp型ドーピングペースト103およびn型ドーピングペースト104が弾かれてしまう。そのため、特許文献1に記載の裏面電極型太陽電池の製造方法においては、たとえば図11(b)の模式的平面図に示すように、シリコン基板100の表面に塗布されたp型ドーピングペースト103およびn型ドーピングペースト104が分断されてしまうことがあった。
このように分断されたp型ドーピングペースト103およびn型ドーピングペースト104からそれぞれp型ドーパント拡散層105およびn型ドーパント拡散層106を形成した場合には、p型ドーピングペースト103の分断された部分およびn型ドーピングペースト104の分断された部分にはp型ドーパント拡散層105およびn型ドーパント拡散層106が形成されないため、裏面電極型太陽電池の特性が大きく低下してしまうという問題があった。
この問題は、裏面電極型太陽電池に限る問題ではなく、他の半導体装置にも共通する問題である。
上記の事情に鑑みて、本発明の目的は、半導体装置の特性の低下を安定して抑制することができる半導体装置の製造方法を提供することにある。
本発明は、半導体基板の表面上にぬれ性改善膜を形成する工程と、ぬれ性改善膜の表面上に第1導電型または第2導電型のドーパントを含有するドーパント拡散剤を塗布する工程と、ドーパント拡散剤から半導体基板にドーパントを拡散させることによってドーパント拡散層を形成する工程とを含む半導体装置の製造方法である。
ここで、本発明の半導体装置の製造方法においては、塗布後のドーパント拡散剤の接触角が5°以上30°以下であることが好ましい。
また、本発明の半導体装置の製造方法においては、ぬれ性改善膜を形成する工程において、ぬれ性改善膜は50nm以下の厚さに形成されることが好ましい。
また、本発明の半導体装置の製造方法においては、ぬれ性改善膜が親水性であることが好ましい。
さらに、本発明の半導体装置の製造方法においては、ドーパント拡散剤を塗布する工程において、ドーパント拡散剤は最小の線幅が300μm以下となるように塗布されることが好ましい。
本発明によれば、半導体装置の特性の低下を安定して抑制することができる半導体装置の製造方法を提供することができる。
(a)〜(l)は、本発明の実施の形態1の太陽電池の製造方法を図解する模式的な断面図である。 図1(c)に示す半導体基板の表面の第1のぬれ性改善膜の表面上に塗布された第1導電型ドーパント拡散剤の一例の模式的な拡大断面図である。 図1(g)に示す半導体基板の表面の第2のぬれ性改善膜の表面上に塗布された第2導電型ドーパント拡散剤の一例の模式的な拡大断面図である。 本発明の太陽電池の製造方法によって作製された裏面電極型太陽電池の裏面の一例の模式的な平面図である。 本発明の太陽電池の製造方法によって作製された裏面電極型太陽電池の裏面の他の一例の模式的な平面図である。 本発明の太陽電池の製造方法によって作製された裏面電極型太陽電池の裏面のさらに他の一例の模式的な平面図である。 (a)〜(h)は、本発明の実施の形態2の太陽電池の製造方法を図解する模式的な断面図である。 (a)〜(l)は、本発明の実施の形態3の太陽電池の製造方法を図解する模式的な断面図である。 (a)〜(f)は、本発明の実施の形態4の太陽電池の製造方法を図解する模式的な断面図である。 (a)〜(e)は、従来の裏面電極型太陽電池の製造方法を図解する模式的な断面図である。 (a)はp型ドーピングペーストおよびn型ドーピングペーストの理想的な塗布状態の模式的な平面図であり、(b)はp型ドーピングペーストおよびn型ドーピングペーストの実際の塗布状態の模式的な平面図である。
以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。
<実施の形態1>
以下に、図1(a)〜図1(l)の模式的断面図を参照して、本発明の半導体装置の一例である太陽電池の製造方法の一例について説明する。
まず、図1(a)に示すように、たとえばピラミッド状の凹凸などからなるテクスチャ構造8が形成された半導体基板1を用意する。ここで、半導体基板1としては、半導体からなる基板であれば特に限定されず用いることができるが、たとえばシリコンインゴットからスライスして得られるシリコン基板などを用いることができる。また、半導体基板1は、n型の導電型を有していてもよく、p型の導電型を有していてもよい。
また、半導体基板1としてシリコン基板を用いる場合には、たとえば、シリコンインゴットのスライスにより生じたスライスダメージを除去したシリコン基板を用いてもよい。なお、上記のスライスダメージの除去は、たとえば、スライス後のシリコン基板の表面をフッ化水素水溶液と硝酸との混酸または水酸化ナトリウムなどのアルカリ水溶液などでエッチングすることなどによって行なうことができる。
また、半導体基板1の大きさおよび形状は特に限定されず、たとえば厚さを100μm以上300μm以下とし、1辺の長さを100mm以上200mm以下とした四角形状の表面を有するものとすることができる。
また、テクスチャ構造8は、たとえば、半導体基板1の表面をエッチングすることにより形成することができる。なお、半導体基板1の表面のエッチングは、半導体基板1がシリコン基板からなる場合には、たとえば水酸化ナトリウムまたは水酸化カリウムなどのアルカリ水溶液にイソプロピルアルコールを添加した液をたとえば70℃以上80℃以下に加熱したエッチング液を用いて半導体基板1の表面をエッチングすることにより行なうことができる。
なお、テクスチャ構造8は形成されていなくてもよいが、半導体基板1への太陽光の入射量を多くするためにはテクスチャ構造8は形成されていることが好ましい。
次に、図1(b)に示すように、半導体基板1のテクスチャ構造8が形成されている側の表面と反対側の表面である裏面に第1のぬれ性改善膜2を形成する。
ここで、第1のぬれ性改善膜2としては、半導体基板1の表面上に塗布された後述のドーパント拡散剤が弾かれるのを安定して抑制することができるものであれば特に限定なく用いることができる。
特に、半導体基板1がシリコン基板などの疎水性のものである場合には、第1のぬれ性改善膜2としては親水性の膜を用いることが好ましい。この場合には、疎水性の半導体基板1の裏面上に直接、親水性のドーパント拡散剤を塗布した場合に、半導体基板1の裏面上でドーパント拡散剤が弾かれてしまうのを安定して抑制することができるためである。
ここで、親水性の第1のぬれ性改善膜2としては、たとえば、酸化シリコン膜、窒化シリコン膜または表面にOH基(水酸基)がある膜などを単層でまたはこれらの膜の複数を組み合わせて積層したものなどを用いることができる。
また、第1のぬれ性改善膜2の厚さは、50nm以下であることが好ましい。第1のぬれ性改善膜2の厚さが50nm以下である場合には、ドーパント拡散剤から第1のぬれ性改善膜2を通してドーパントが半導体基板1に拡散しやすくなる傾向にある。
また、第1のぬれ性改善膜2の厚さは、1nm以上であることが好ましい。第1のぬれ性改善膜2の厚さが1nm以上である場合には、第1のぬれ性改善膜2を形成したことによるぬれ性改善効果が得られやすくなる傾向にある。
なお、第1のぬれ性改善膜2は、たとえば、CVD(Chemical Vapor Deposition)法または熱酸化法などによって形成することができる。
次に、図1(c)に示すように、半導体基板1の裏面の第1のぬれ性改善膜2の表面上に第1導電型ドーパントを含有する第1導電型ドーパント拡散剤3を塗布する。第1導電型ドーパント拡散剤3は、たとえば、図1(c)の表面側から裏面側に伸長する帯状に塗布することができる。
ここで、第1導電型ドーパント拡散剤3の塗布方法としては、たとえば、スプレー塗布、ディスペンサを用いた塗布、インクジェット塗布、スクリーン印刷、凸版印刷、凹版印刷または平版印刷などを用いることができる。
また、第1導電型ドーパント拡散剤3としては、第1導電型ドーパント源を含むものを用いることができ、第1導電型ドーパント源としては、第1導電型がn型である場合には、たとえば、リン酸塩、酸化リン、五酸化二リン、リン酸または有機リン化合物のようなリン原子を含む化合物を単独でまたは2種以上併用して用いることができ、第1導電型がp型である場合には、たとえば、酸化ホウ素、ホウ酸、有機ホウ素化合物、ホウ素−アルミニウム化合物、有機アルミニウム化合物またはアルミニウム塩のようなホウ素原子および/またはアルミニウム原子を含む化合物を単独でまたは2種以上併用して用いることができる。
また、第1導電型ドーパント拡散剤3の第1導電型ドーパント源以外の成分としては、たとえば、溶媒と、シラン化合物と、増粘剤とを含むものなどを用いることができる。また、第1導電型ドーパント拡散剤3としては、増粘剤を含まないものも用いることができる。
ここで、溶媒としては、たとえば、水、メタノール、エタノール、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、1,2−プロパンジオール、1,4−ブタンジオール、1,3−ブタンジオール、ジオキサン、トリオキサン、テトラヒドロフラン、テトラヒドロピランメチラール、ジエチルアセタール、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、アセトニルアセトン、ジアセトンアルコール、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、無水酢酸、N−メチルピロリドンなどが挙げられる。溶媒は1種を単独でまたは2種以上を併用して用いることができる。
また、シラン化合物としては、たとえば、以下の一般式(1)で表わされるものを用いることができる。
1 nSi(OR24-n …(1)
上記の一般式(1)において、R1は、メチル基、エチル基またはフェニル基を示す。また、上記の一般式(1)において、R2は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などの炭素数1〜4の直鎖状または分岐鎖状のアルキル基を示す。また、上記の一般式(1)において、nは0〜4の整数を示す。
上記の一般式(1)で表わされるシラン化合物としては、たとえば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、それらの塩(テトラエチルオルトケイ酸塩など)が挙げられる。シラン化合物は1種を単独でまたは2種以上を併用して用いることができる。
また、増粘剤としては、たとえば、ヒマシ油、ベントナイト、ニトロセルロース、エチルセルロース、ポリビニルピロリドン、デンプン、ゼラチン、アルギン酸、非晶質ケイ酸、ポリビニルブチラール、ナトリウムカルボキシメチルセルロース、ポリアミド樹脂、有機ヒマシ油誘導体、ジアミド・ワックス、膨潤ポリアクリル酸塩、ポリエーテル尿素−ポリウレタン、ポリエーテル−ポリオールなどが挙げられる。増粘剤は1種を単独でまたは2種以上を併用して用いることができる。
図2に、図1(c)に示す半導体基板1の裏面の第1のぬれ性改善膜2の表面上に塗布された第1導電型ドーパント拡散剤3の一例の模式的な拡大断面図を示す。ここで、第1導電型ドーパント拡散剤3の第1のぬれ性改善膜2に対する接触角θ1は5°以上30°以下であることが好ましく、10°以上20°以下であることがより好ましい。
第1導電型ドーパント拡散剤3の第1のぬれ性改善膜2に対する接触角θ1が5°未満である場合には第1導電型ドーパント拡散剤3の線幅が広がりすぎて、所望のパターンおよび/または線幅を描くことができないおそれがある。また、上記の接触角θ1が30°よりも大きい場合には第1導電型ドーパント拡散剤3が断線するおそれがあるとともに、第1導電型ドーパント拡散剤3のラインエッジが乱れるおそれがある。
また、第1導電型ドーパント拡散剤3の第1のぬれ性改善膜2に対する接触角θ1が10°以上20°以下である場合、第1導電型ドーパント拡散剤3が弾かれるのを大幅に抑制できるとともに、第1導電型ドーパント拡散剤3の滲みも大幅に抑制することができるため、第1導電型ドーパント拡散剤3の線幅のばらつきの発生を大幅に低減することができ、微細な線幅の第1導電型ドーパント拡散剤3の塗布が可能となる傾向にある。また、第1導電型ドーパント拡散剤3の第1のぬれ性改善膜2に対する接触角θ1が10°以上20°以下である場合には、第1導電型ドーパント拡散剤3が断線したり第1導電型ドーパント拡散剤3の線幅が局所的に細くなったりするのをさらに有効に抑止できる傾向が大きくなるとともに、第1導電型ドーパント拡散剤3の線幅が広がるのもさらに有効に抑止できる傾向が大きくなる。したがって、第1導電型ドーパント拡散剤3を所望のパターンに安定して形成する観点からは、上記の接触角θ1は10°以上20°以下であることが好ましい。
なお、第1導電型ドーパント拡散剤3の第1のぬれ性改善膜2に対する接触角θ1は、たとえば従来から公知の接触角計により測定することが可能である。
また、第1導電型がn型である場合には、半導体基板1の裏面の第1のぬれ性改善膜2の表面上に塗布された第1導電型ドーパント拡散剤3の線幅w1のうち最小の線幅は100μm以下であることが好ましい。第1導電型がn型である場合に、第1導電型ドーパント拡散剤3の線幅w1のうち最小の線幅を100μm以下とした場合には微細な線幅の第1導電型ドーパント拡散剤3の塗布が可能となる傾向にある。
また、第1導電型がp型である場合には、半導体基板1の裏面の第1のぬれ性改善膜2の表面上に塗布された第1導電型ドーパント拡散剤3の線幅w1のうち最小の線幅は300μm以下であることが好ましい。第1導電型がp型である場合に、第1導電型ドーパント拡散剤3の線幅w1のうち最小の線幅を300μm以下とした場合には、微細な線幅の第1導電型ドーパント拡散剤3の塗布が可能となる傾向にある。
次に、図1(d)に示すように、第1導電型ドーパント拡散剤3が塗布された半導体基板1を熱処理することによって、第1導電型ドーパント拡散剤3から第1のぬれ性改善膜2を通して半導体基板1に第1導電型ドーパントを拡散させて第1導電型ドーパント拡散層5を形成する。
ここで、上記の半導体基板1の熱処理の条件は特に限定されないが、第1導電型ドーパント拡散層5を安定して形成する観点からは、半導体基板1を窒素雰囲気において800℃以上1000℃以下の温度で30分以上60分以下加熱することが好ましい。
次に、図1(e)に示すように、半導体基板1の裏面上の第1のぬれ性改善膜2および第1導電型ドーパント拡散剤3を除去する。これにより、半導体基板1の裏面に、第1導電型ドーパント拡散層5の表面が露出することになる。
ここで、第1のぬれ性改善膜2および第1導電型ドーパント拡散剤3の除去方法は、半導体基板1の裏面から第1のぬれ性改善膜2および第1導電型ドーパント拡散剤3を除去することができる方法であれば特に限定されない。
次に、図1(f)に示すように、第1導電型ドーパント拡散層5が露出している半導体基板1の裏面上に第2のぬれ性改善膜21を形成する。
ここで、第2のぬれ性改善膜21としては、半導体基板1の裏面上に塗布された後述のドーパント拡散剤が弾かれるのを安定して抑制することができるものであれば特に限定なく用いることができる。
特に、半導体基板1がシリコン基板などの疎水性のものである場合には、第2のぬれ性改善膜21としては親水性の膜を用いることが好ましい。この場合には、疎水性の半導体基板1の裏面上に直接、親水性のドーパント拡散剤を塗布した場合に、半導体基板1の裏面上でドーパント拡散剤が弾かれてしまうのを安定して抑制することができるためである。
ここで、親水性の第2のぬれ性改善膜21としては、たとえば、酸化シリコン膜、窒化シリコン膜または表面にOH基(水酸基)がある膜などを単層でまたはこれらの膜の複数を組み合わせて積層したものなどを用いることができる。
また、第2のぬれ性改善膜21の厚さは、50nm以下であることが好ましい。第2のぬれ性改善膜21の厚さが50nm以下である場合には、後述するドーパント拡散剤から第2のぬれ性改善膜21を通してドーパントが半導体基板1に拡散しやすくなる傾向にある。
また、第2のぬれ性改善膜21の厚さは、1nm以上であることが好ましい。第2のぬれ性改善膜21の厚さが1nm以上である場合には、第2のぬれ性改善膜21を形成したことによるぬれ性改善効果が得られやすくなる傾向にある。
なお、第2のぬれ性改善膜21は、たとえば、CVD法または熱酸化法などによって形成することができる。
次に、図1(g)に示すように、半導体基板1の裏面の第2のぬれ性改善膜21の表面上に第2導電型ドーパントを含有する第2導電型ドーパント拡散剤4を塗布する。第2導電型ドーパント拡散剤4は、たとえば、図1(g)の表面側から裏面側に伸長する帯状に塗布することができる。
ここで、第2導電型ドーパント拡散剤4の塗布方法としては、たとえば、スプレー塗布、ディスペンサを用いた塗布、インクジェット塗布、スクリーン印刷、凸版印刷、凹版印刷または平版印刷などを用いることができる。
また、第2導電型ドーパント拡散剤4としては、第2導電型ドーパント源を含むものを用いることができ、第2導電型ドーパント源としては、第2導電型がn型である場合には、たとえば、リン酸塩、酸化リン、五酸化二リン、リン酸または有機リン化合物のようなリン原子を含む化合物を単独でまたは2種以上併用して用いることができ、第2導電型がp型である場合には、たとえば、酸化ホウ素、ホウ酸、有機ホウ素化合物、ホウ素−アルミニウム化合物、有機アルミニウム化合物またはアルミニウム塩のようなホウ素原子および/またはアルミニウム原子を含む化合物を単独でまたは2種以上併用して用いることができる。
ここで、第2導電型ドーパント拡散剤4の塗布方法としては、たとえば、スプレー塗布、ディスペンサを用いた塗布、インクジェット塗布、スクリーン印刷、凸版印刷、凹版印刷または平版印刷などを用いることができる。
また、第2導電型ドーパント拡散剤4としては、第2導電型ドーパント源を含むものを用いることができ、第2導電型ドーパント源としては、第2導電型がn型である場合には、たとえば、リン酸塩、酸化リン、五酸化二リン、リン酸または有機リン化合物のようなリン原子を含む化合物を単独でまたは2種以上併用して用いることができ、第2導電型がp型である場合には、たとえば、酸化ホウ素、ホウ酸、有機ホウ素化合物、ホウ素−アルミニウム化合物、有機アルミニウム化合物またはアルミニウム塩のようなホウ素原子および/またはアルミニウム原子を含む化合物を単独でまたは2種以上併用して用いることができる。
また、第2導電型ドーパント拡散剤4の第2導電型ドーパント源以外の成分としては、たとえば、溶媒と、シラン化合物と、増粘剤とを含むものなどを用いることができる。また、第2導電型ドーパント拡散剤4としては、増粘剤を含まないものも用いることができる。なお、第2導電型ドーパント拡散剤4の第2導電型ドーパント源以外の成分の説明は上記と同様であるため、ここでは省略する。
図3に、図1(g)に示す半導体基板1の裏面の第2のぬれ性改善膜21の表面上に塗布された第2導電型ドーパント拡散剤4の一例の模式的な拡大断面図を示す。ここで、第2導電型ドーパント拡散剤4の第2のぬれ性改善膜21に対する接触角θ2は5°以上30°以下であることが好ましく、10°以上20°以下であることがより好ましい。
第2導電型ドーパント拡散剤4の第2のぬれ性改善膜21に対する接触角θ2が5°未満である場合には第2導電型ドーパント拡散剤4の線幅が広がりすぎて、所望のパターンおよび/または線幅を描くことができないおそれがある。また、上記の接触角θ2が30°よりも大きい場合には第2導電型ドーパント拡散剤4が断線するおそれがあるとともに、第2導電型ドーパント拡散剤4のラインエッジが乱れるおそれがある。
第2導電型ドーパント拡散剤4の第2のぬれ性改善膜21に対する接触角θ2が10°以上20°以下である場合には、第2導電型ドーパント拡散剤4が弾かれるのが大幅に抑制できるとともに、第2導電型ドーパント拡散剤4の滲みも大幅に抑制することができるため、第2導電型ドーパント拡散剤4の線幅のばらつきの発生を大幅に低減することができ、微細な線幅の第2導電型ドーパント拡散剤4の塗布が可能となる傾向にある。また、第2導電型ドーパント拡散剤4の第2のぬれ性改善膜21に対する接触角θ2が10°以上20°以下である場合には、第2導電型ドーパント拡散剤4が断線したり第2導電型ドーパント拡散剤4の線幅が局所的に細くなったりするのをさらに有効に抑止できる傾向が大きくなるとともに、第2導電型ドーパント拡散剤4の線幅が広がるのもさらに有効に抑止できる傾向が大きくなる。したがって、第2導電型ドーパント拡散剤4を所望のパターンに安定して形成する観点からは、上記の接触角θ2は10°以上20°以下であることが好ましい。
なお、第2導電型ドーパント拡散剤4の第2のぬれ性改善膜21に対する接触角θ2は、たとえば従来から公知の接触角計により測定することが可能である。
また、第2導電型がn型である場合には、半導体基板1の裏面の第2のぬれ性改善膜21の表面上に塗布された第2導電型ドーパント拡散剤4の線幅w2のうち最小の線幅は100μm以下であることが好ましい。第2導電型がn型である場合に、第2導電型ドーパント拡散剤4の線幅w2のうち最小の線幅を100μm以下とした場合には、微細な線幅の第2導電型ドーパント拡散剤4の塗布が可能となる傾向にある。
また、第2導電型がp型である場合には、半導体基板1の裏面の第2のぬれ性改善膜21の表面上に塗布された第2導電型ドーパント拡散剤4の線幅w2のうち最小の線幅は300μm以下であることが好ましい。第1導電型がp型である場合に、第2導電型ドーパント拡散剤4の線幅w2のうち最小の線幅を300μm以下とした場合には、微細な線幅の第2導電型ドーパント拡散剤4の塗布が可能となる傾向にある。
次に、図1(h)に示すように、第2導電型ドーパント拡散剤4が塗布された半導体基板1を熱処理することによって、第2導電型ドーパント拡散剤4から第2のぬれ性改善膜21を通して半導体基板1に第2導電型ドーパントを拡散させて第2導電型ドーパント拡散層6を形成する。
ここで、上記の半導体基板1の熱処理の条件は特に限定されないが、第2導電型ドーパント拡散層6を安定して形成する観点からは、半導体基板1を窒素雰囲気において800℃以上1000℃以下の温度で30分以上60分以下加熱することが好ましい。
次に、図1(i)に示すように、半導体基板1の裏面上の第2のぬれ性改善膜21および第2導電型ドーパント拡散剤4を除去する。これにより、半導体基板1の裏面に、第1導電型ドーパント拡散層5の表面と第2導電型ドーパント拡散層6の表面とが所定の間隔を空けて露出することになる。
ここで、第2のぬれ性改善膜21および第2導電型ドーパント拡散剤4の除去方法は、半導体基板1の裏面から第2のぬれ性改善膜21および第2導電型ドーパント拡散剤4を除去することができる方法であれば特に限定されない。
次に、図1(j)に示すように、半導体基板1の第1導電型ドーパント拡散層5および第2導電型ドーパント拡散層6がそれぞれ露出している裏面上にパッシベーション膜7を形成するとともに、半導体基板1のテクスチャ構造8が形成されている表面上に反射防止膜9を形成する。
ここで、パッシベーション膜7としては、たとえば、酸化シリコン膜、窒化シリコン膜または酸化シリコン膜と窒化シリコン膜との積層体などを用いることができる。また、パッシベーション膜7は、たとえば、プラズマCVD法などにより形成することができる。
また、反射防止膜9としては、たとえば、酸化シリコン膜、窒化シリコン膜または酸化シリコン膜と窒化シリコン膜との積層体などを用いることができる。また、反射防止膜9は、たとえば、プラズマCVD法などにより形成することができる。
次に、図1(k)に示すように、半導体基板1のパッシベーション膜7の一部を除去することによってコンタクトホール12およびコンタクトホール13を形成して、コンタクトホール12から第1導電型ドーパント拡散層5の表面を露出させるとともに、コンタクトホール13から第2導電型ドーパント拡散層6の表面を露出させる。
ここで、コンタクトホール12およびコンタクトホール13は、たとえば、フォトリソグラフィ技術を用いてコンタクトホール12およびコンタクトホール13のそれぞれの形成箇所に対応する部分に開口を有するレジストパターンをパッシベーション膜7上に形成した後にレジストパターンの開口からパッシベーション膜7をエッチングなどにより除去する方法、またはコンタクトホール12およびコンタクトホール13のそれぞれの形成箇所に対応するパッシベーション膜7の部分にエッチングペーストを塗布した後に加熱することによってパッシベーション膜7をエッチングして除去する方法などにより形成することができる。
なお、エッチングペーストとしては、たとえば、エッチング成分としてリン酸を含み、エッチング成分以外の成分として水、有機溶媒および増粘剤を含むものなどを用いることができる。有機溶媒としては、たとえば、エチレングリコール、エチレングリコールモノブチルエーテル、プロピレンカーボネートまたはN−メチル−2−ピロリドンなどの少なくとも1種を用いることができる。また、増粘剤としては、たとえばセルロース、エチルセルロース、セルロース誘導体、ナイロン6、またはポリビニルピロリドンなどの少なくとも1種を用いることができる。
次に、図1(l)に示すように、コンタクトホール12を通して第1導電型ドーパント拡散層5に電気的に接続される第1導電型用電極10を形成するとともに、コンタクトホール13を通して第2導電型ドーパント拡散層6に電気的に接続される第2導電型用電極11を形成する。
ここで、第1導電型用電極10および第2導電型用電極11としては、たとえば、銀などの金属からなる電極を用いることができる。
以上により、本実施の形態における太陽電池の製造方法によって、裏面電極型太陽電池を作製することができる。
図4に、本発明の太陽電池の製造方法によって作製された裏面電極型太陽電池の裏面の一例の模式的な平面図を示す。
ここで、図4に示すように、裏面電極型太陽電池の裏面においては、複数の帯状の第1導電型用電極10と複数の帯状の第2導電型用電極11がそれぞれ1本ずつ交互に間隔をあけて配列されており、すべての第1導電型用電極10が1本の帯状の第1導電型用集電電極10aに電気的に接続されており、すべての第2導電型用電極11が1本の帯状の第2導電型用集電電極11aに電気的に接続されている。
また、裏面電極型太陽電池の裏面において、複数の帯状の第1導電型用電極10のそれぞれの下方には高濃度第1導電型ドーパント拡散層5が配置され、複数の帯状の第2導電型用電極11のそれぞれの下方には第2導電型ドーパント拡散層6が配置されていることになるが、第1導電型ドーパント拡散層5および第2導電型ドーパント拡散層6の形状および大きさは特に限定されない。たとえば、第1導電型ドーパント拡散層5および第2導電型ドーパント拡散層6は、第1導電型用電極10および第2導電型用電極11のそれぞれに沿って帯状に形成されていてもよく、第1導電型用電極10および第2導電型用電極11のそれぞれの一部に接するドット状に形成されていてもよい。
図5に、本発明の太陽電池の製造方法によって作製された裏面電極型太陽電池の裏面の他の一例の模式的な平面図を示す。ここで、図5に示すように、第1導電型用電極10および第2導電型用電極11はそれぞれ同一方向に伸長(図5の上下方向に伸長)する帯状に形成されており、半導体基板1の裏面において上記の伸長方向と直交する方向にそれぞれ1本ずつ交互に配置されている。
図6に、本発明の太陽電池の製造方法によって作製された裏面電極型太陽電池の裏面のさらに他の一例の模式的な平面図を示す。ここで、図6に示すように、第1導電型用電極10および第2導電型用電極11はそれぞれ点状に形成されており、点状の第1導電型用電極10の列(図6の上下方向または左右方向に伸長)および点状の第2導電型用電極11の列(図6の上下方向または左右方向に伸長)がそれぞれ半導体基板1の裏面において1列ずつ交互に配置されている。
なお、図1(a)〜図1(l)においては、説明の便宜上、半導体基板1に1つの第1導電型ドーパント拡散層5と、1つの第2導電型ドーパント拡散層6のみが形成されるように示されているが、実際には、複数の第1導電型ドーパント拡散層5と、複数の第2導電型ドーパント拡散層6とが形成されてもよいことは言うまでもない。
また、上記において、第1導電型はn型またはp型のいずれの導電型であってもよく、第2導電型は第1導電型と反対の導電型であればよい。すなわち、第1導電型がn型のときは第2導電型がp型となり、第1導電型がp型のときは第2導電型がn型となる。
また、第1導電型がp型である場合には、第1導電型ドーパントとしては、たとえばボロンまたはアルミニウムなどのp型ドーパントを用いることができ、第1導電型がn型である場合には、第1導電型ドーパントとしては、たとえばリンなどのn型ドーパントを用いることができる。
また、第2導電型がn型である場合には、第2導電型ドーパントとしては、たとえばリンなどのn型ドーパントを用いることができ、第2導電型がp型である場合には、第2導電型ドーパントとしては、たとえばボロンまたはアルミニウムなどのp型ドーパントを用いることができる。
上記において例示したように、本発明においては、半導体基板の表面上にぬれ性改善膜を形成した後にドーパント拡散剤を塗布することになるため、半導体基板の表面に直接塗布した場合に半導体基板の表面において弾かれる性質のドーパント拡散剤を用いた場合でも、ドーパント拡散剤が弾かれるのを安定して抑制することができる。
したがって、本発明においては、ドーパント拡散剤を塗布してドーパント拡散層を形成する場合でも、たとえば図11(b)に示されるように、半導体基板の表面上におけるドーパント拡散剤の分断の発生を回避することができる傾向が大きくなるため、ドーパント拡散層を所望の位置に安定して形成することができることから、太陽電池の特性の低下を安定して抑制することができる。
<実施の形態2>
本実施の形態においては、半導体基板1の裏面上に形成された第1のぬれ性改善膜2上に第1導電型ドーパント拡散剤3および第2導電型ドーパント拡散剤4の双方を塗布した後に半導体基板1を熱処理することによって第1導電型ドーパント拡散層5および第2導電型ドーパント拡散層6を同時に形成する点を特徴としている。
以下、図7(a)〜図7(h)の模式的断面図を参照して、本実施の形態における太陽電池の製造方法について説明する。なお、図7(a)〜図7(h)においても、説明の便宜上、半導体基板1に1つの第1導電型ドーパント拡散層5と、1つの第2導電型ドーパント拡散層6のみが形成されるように示されているが、実際には複数の第1導電型ドーパント拡散層5と、複数の第2導電型ドーパント拡散層6とが形成されてもよいことは言うまでもない。
まず、図7(a)に示すように、たとえばピラミッド状の凹凸などからなるテクスチャ構造8が形成された半導体基板1を用意し、続いて、図7(b)に示すように、半導体基板1のテクスチャ構造8が形成されている側の表面と反対側の表面である裏面に第1のぬれ性改善膜2を形成する。
次に、図7(c)に示すように、半導体基板1の裏面に形成された第1のぬれ性改善膜2上に第1導電型ドーパントを含有する第1導電型ドーパント拡散剤3および第2導電型ドーパントを含有する第2導電型ドーパント拡散剤4をそれぞれ塗布する。
なお、本実施の形態における第1導電型ドーパント拡散剤3および第2導電型ドーパント拡散剤4の塗布は、たとえば、実施の形態1における第1導電型ドーパント拡散剤3および第2導電型ドーパント拡散剤4と同様の方法で塗布することができる。
次に、図7(d)に示すように、半導体基板1を熱処理することによって、第1導電型ドーパント拡散剤3および第2導電型ドーパント拡散剤4からそれぞれ半導体基板1に第1導電型ドーパントおよび第2導電型ドーパントを拡散させて、第1導電型ドーパント拡散層5および第2導電型ドーパント拡散層6を形成する。
ここで、上記の半導体基板1の熱処理により、第1導電型ドーパント拡散剤3から第1のぬれ性改善膜2を通して半導体基板1に第1導電型ドーパントが拡散することによって第1導電型ドーパント拡散層5が形成され、第2導電型ドーパント拡散剤4から第1のぬれ性改善膜2を通して半導体基板1に第2導電型ドーパントが拡散することによって第2導電型ドーパント拡散層6が形成される。
ここで、上記の半導体基板1の熱処理の条件は特に限定されないが、第1導電型ドーパント拡散層5および第2導電型ドーパント拡散層6をそれぞれ安定して形成する観点からは、半導体基板1を窒素雰囲気において800℃以上1000℃以下の温度で30分以上60分以下加熱することが好ましい。
次に、図7(e)に示すように、半導体基板1の裏面上の第1のぬれ性改善膜2、第1導電型ドーパント拡散剤3および第2導電型ドーパント拡散剤4を除去することによって、半導体基板1の裏面に、第1導電型ドーパント拡散層5および第2導電型ドーパント拡散層6の表面をそれぞれ露出させる。
次に、図7(f)に示すように、半導体基板1の第1導電型ドーパント拡散層5および第2導電型ドーパント拡散層6がそれぞれ露出している裏面上にパッシベーション膜7を形成するとともに、半導体基板1のテクスチャ構造8が形成されている表面上に反射防止膜9を形成する。
次に、図7(g)に示すように、半導体基板1のパッシベーション膜7の一部を除去することによってコンタクトホール12およびコンタクトホール13を形成して、コンタクトホール12から第1導電型ドーパント拡散層5の表面を露出させるとともに、コンタクトホール13から第2導電型ドーパント拡散層6の表面を露出させる。
次に、図7(h)に示すように、コンタクトホール12を通して第1導電型ドーパント拡散層5に電気的に接続される第1導電型用電極10を形成するとともに、コンタクトホール13を通して第2導電型ドーパント拡散層6に電気的に接続される第2導電型用電極11を形成する。
以上により、本実施の形態における太陽電池の製造方法によって、裏面電極型太陽電池を作製することができる。
本実施の形態における太陽電池の製造方法のように、半導体基板1の表面上に形成された第1のぬれ性改善膜2上に第1導電型ドーパント拡散剤3および第2導電型ドーパント拡散剤4の双方を塗布した後に半導体基板1を熱処理することによって第1導電型ドーパント拡散層5および第2導電型ドーパント拡散層6を同時に形成した場合には、第1導電型ドーパント拡散層5および第2導電型ドーパント拡散層6の形成のための熱処理を1回だけ行なえばよいため、製造工程を簡略化することができるとともに、熱処理による半導体基板1などの熱ダメージを有効に抑制することができる。
なお、本実施の形態における上記以外の説明は実施の形態1と同様であるため、その説明は省略する。
<実施の形態3>
本実施の形態においては、半導体基板1の裏面上に形成された第3のぬれ性改善膜31上に第1導電型ドーパント拡散剤3を塗布した後に半導体基板1を熱処理することによって、第1導電型ドーパント拡散剤3からの第1導電型ドーパントの固相拡散による高濃度第1導電型ドーパント拡散層15の形成を行なうとともに、第1導電型ドーパント拡散剤3からの第1導電型ドーパントのアウトディフュージョンによる拡散により低濃度第1導電型ドーパント拡散層16の形成を行なう点を特徴としている。
以下、図8(a)〜図8(l)の模式的断面図を参照して、本実施の形態における太陽電池の製造方法について説明する。なお、図8(a)〜図8(l)においても、説明の便宜上、半導体基板1に1つの高濃度第1導電型ドーパント拡散層15と、1つの第2導電型ドーパント拡散層6のみが形成されるように示されているが、実際には複数の高濃度第1導電型ドーパント拡散層15と、複数の第2導電型ドーパント拡散層6とが形成されてもよいことは言うまでもない。
まず、図8(a)に示すように、たとえばピラミッド状の凹凸などからなるテクスチャ構造8が形成された半導体基板1を用意し、続いて、図8(b)に示すように、半導体基板1のテクスチャ構造8が形成されている側の表面と反対側の表面である裏面に第3のぬれ性改善膜31を形成する。
ここで、第3のぬれ性改善膜31としては、半導体基板1の表面上に塗布された第1導電型ドーパント拡散剤3が弾かれるのを安定して抑制することができるとともに、第1導電型ドーパント拡散剤3からの第1導電型ドーパントの固相拡散による高濃度第1導電型ドーパント拡散層15の形成とともに、第1導電型ドーパント拡散剤3からの第1導電型ドーパントのアウトディフュージョンによる拡散により低濃度第1導電型ドーパント拡散層16の形成を行なうことができるものであれば特には限定されない。
なお、第1導電型ドーパント拡散剤3からの第1導電型ドーパントの固相拡散は、第1導電型ドーパント拡散剤3から第1導電型ドーパントが直接第3のぬれ性改善膜31を通って半導体基板1に拡散することにより行なわれる。
また、第1導電型ドーパント拡散剤3からの第1導電型ドーパントのアウトディフュージョンによる拡散は、第1導電型ドーパント拡散剤3から第1導電型ドーパントが一旦半導体基板1を取り巻く気相に拡散した後に、気相中に拡散した第1導電型ドーパントが第3のぬれ性改善膜31を通って半導体基板1に拡散することにより行なわれる。
また、半導体基板1がシリコン基板などの疎水性のものである場合には、第3のぬれ性改善膜31としては親水性の膜を用いることが好ましい。この場合には、疎水性の半導体基板1の表面上に直接、親水性のドーパント拡散剤を塗布した場合に、半導体基板1の表面上でドーパント拡散剤が弾かれてしまうのを安定して抑制することができるためである。
ここで、親水性の第3のぬれ性改善膜31としては、たとえば、酸化シリコン膜、窒化シリコン膜または表面にOH基(水酸基)がある膜などを単層でまたはこれらの膜の複数を組み合わせて積層したものなどを用いることができる。
なお、第3のぬれ性改善膜31は、たとえば、CVD法または熱酸化法などによって形成することができる。
次に、図8(c)に示すように、半導体基板1の表面の第3のぬれ性改善膜31上に第1導電型ドーパントを含有する第1導電型ドーパント拡散剤3を塗布する。
次に、図8(d)に示すように、半導体基板1を熱処理することによって、第1導電型ドーパント拡散剤3から第1導電型ドーパントを固相拡散により第3のぬれ性改善膜31を通して半導体基板1に拡散させて高濃度第1導電型ドーパント拡散層15を形成するとともに、第1導電型ドーパント拡散剤3から第1導電型ドーパントをアウトディフュージョンによる拡散により第3のぬれ性改善膜31を通して半導体基板1に拡散させて低濃度第1導電型ドーパント拡散層16を形成する。
ここで、上記の半導体基板1の熱処理の条件は特に限定されないが、高濃度第1導電型ドーパント拡散層15および低濃度第1導電型ドーパント拡散層16を安定して形成する観点からは、半導体基板1を窒素雰囲気において800℃以上1000℃以下の温度で30分以上60分以下加熱することが好ましい。
次に、図8(e)に示すように、半導体基板1の表面上の第3のぬれ性改善膜31および第1導電型ドーパント拡散剤3を除去することによって、半導体基板1の裏面に、高濃度第1導電型ドーパント拡散層15および低濃度第1導電型ドーパント拡散層16の表面をそれぞれ露出させる。
次に、図8(f)に示すように、半導体基板1の高濃度第1導電型ドーパント拡散層15および低濃度第1導電型ドーパント拡散層16が露出している裏面に第2のぬれ性改善膜21を形成する。
次に、図8(g)に示すように、半導体基板1の裏面の第2のぬれ性改善膜21の表面上に第2導電型ドーパントを含有する第2導電型ドーパント拡散剤4を塗布した後に、半導体基板1を熱処理する。これにより、図8(h)に示すように、第2導電型ドーパント拡散剤4から第2のぬれ性改善膜21を通して半導体基板1に第2導電型ドーパントを固相拡散させて第2導電型ドーパント拡散層6を形成する。
次に、図8(i)に示すように、半導体基板1の裏面上の第2のぬれ性改善膜21および第2導電型ドーパント拡散剤4を除去する。これにより、半導体基板1の裏面に、高濃度第1導電型ドーパント拡散層15、低濃度第1導電型ドーパント拡散層16および第2導電型ドーパント拡散層6の表面がそれぞれ露出することになる。
次に、図8(j)に示すように、半導体基板1の高濃度第1導電型ドーパント拡散層15、低濃度第1導電型ドーパント拡散層16および第2導電型ドーパント拡散層6の表面がそれぞれ露出している裏面上にパッシベーション膜7を形成するとともに、半導体基板1のテクスチャ構造8が形成されている表面上に反射防止膜9を形成する。
次に、図8(k)に示すように、半導体基板1のパッシベーション膜7の一部を除去することによってコンタクトホール12およびコンタクトホール13を形成して、コンタクトホール12から高濃度第1導電型ドーパント拡散層15の表面を露出させるとともに、コンタクトホール13から第2導電型ドーパント拡散層6の表面を露出させる。
次に、図8(l)に示すように、コンタクトホール12を通して高濃度第1導電型ドーパント拡散層15に電気的に接続される第1導電型用電極10を形成するとともに、コンタクトホール13を通して第2導電型ドーパント拡散層6に電気的に接続される第2導電型用電極11を形成する。
以上により、本実施の形態における太陽電池の製造方法によって、裏面電極型太陽電池を作製することができる。
本実施の形態の太陽電池の製造方法のように、半導体基板1に形成される第1導電型ドーパント拡散層を高濃度第1導電型ドーパント拡散層15と低濃度第1導電型ドーパント拡散層16とに分けて形成した場合には裏面電極型太陽電池の特性をさらに向上することができる傾向にある。
なお、高濃度第1導電型ドーパント拡散層15は、低濃度第1導電型ドーパント拡散層16よりも第1導電型ドーパント濃度が高い層である。ここで、高濃度第1導電型ドーパント拡散層15における第1導電型ドーパント濃度は、たとえば1×1019/cm3以上とすることができる。また、低濃度第1導電型ドーパント拡散層16における第1導電型ドーパント濃度は、たとえば1×1017/cm3以上1×1019/cm3未満とすることができる。
本実施の形態における上記以外の説明は実施の形態1と同様であるため、その説明は省略する。
<実施の形態4>
本実施の形態においては、裏面電極型太陽電池ではなく、半導体基板の受光面と裏面にそれぞれ電極を備えた両面電極型太陽電池を作製することを特徴としている。
以下、図9(a)〜図9(f)の模式的断面図を参照して、本実施の形態における太陽電池の製造方法について説明する。
まず、図9(a)に示すように、p型シリコン基板からなる半導体基板1を用意し、続いて、図9(b)に示すように、半導体基板1の一方の面に酸化シリコン膜からなる第3のぬれ性改善膜31を形成する。
次に、図9(c)に示すように、p型シリコン基板からなる半導体基板1の表面の酸化シリコン膜からなる第3のぬれ性改善膜31上にn型ドーパントであるリンを含有するn型ドーパント拡散剤を第1導電型ドーパント拡散剤3として塗布する。
次に、図9(d)に示すように、p型シリコン基板からなる半導体基板1を熱処理することによって、リンを含有する第1導電型ドーパント拡散剤3から第3のぬれ性改善膜31を通して半導体基板1の表面にリンを固相拡散させて高濃度第1導電型ドーパント拡散層15としての高濃度n型ドーパント拡散層を形成するとともに、第1導電型ドーパント拡散剤3から第3のぬれ性改善膜31を通して半導体基板1の表面にリンをアウトディフュージョンによる拡散により拡散させて低濃度第1導電型ドーパント拡散層16としての低濃度n型ドーパント拡散層を形成する。
なお、上記の半導体基板1の熱処理の好ましい条件等については、実施の形態1および実施の形態2と同様であるためその説明は省略する。
次に、図9(e)に示すように、半導体基板1の表面から第1導電型ドーパント拡散剤3および第3のぬれ性改善膜31を除去することによって、半導体基板1の表面に、高濃度第1導電型ドーパント拡散層15としての高濃度n型ドーパント拡散層および低濃度第1導電型ドーパント拡散層16としての低濃度n型ドーパント拡散層の表面をそれぞれ露出させ、高濃度第1導電型ドーパント拡散層15としての高濃度n型ドーパント拡散層の表面上に第1導電型用電極10としての銀電極を形成する。
次に、図9(f)に示すように、半導体基板1の受光面となる表面の反対側の裏面に上に第2導電型用電極11としての銀電極を形成する。
以上により、本実施の形態における太陽電池の製造方法によって、半導体基板の受光面と裏面にそれぞれ電極を備えた構造の両面電極型太陽電池を作製することができる。
本実施の形態における上記以外の説明は実施の形態1〜3と同様であるため、その説明は省略する。
なお、本発明の太陽電池の概念には、半導体基板の一方の表面(裏面)のみに第1導電型用電極および第2導電型用電極の双方が形成された構成の裏面電極型太陽電池だけでなく、MWT(Metal Wrap Through)セル(半導体基板に設けられた貫通孔に電極の一部を配置した構成の太陽電池)などのいわゆるバックコンタクト型太陽電池(太陽電池の受光面と反対側の裏面から電流を取り出す構造の太陽電池)および半導体基板の受光面と裏面にそれぞれ電極を形成して製造された両面電極型太陽電池などのあらゆる構成の太陽電池が含まれる。
まず、1辺が100mmの正方形の表面を有し、厚さが200μm程度のn型シリコンウエハのスライスダメージ層を水酸化ナトリウム溶液で除去することによって疎水性のn型シリコン基板を用意した。
次に、n型シリコン基板の一方の表面にぬれ性改善膜として厚さ25nmの親水性の酸化シリコン膜を熱CVD法により形成した。
その後、酸化ホウ素(B23)と所定のシラン化合物とプロピレングリコールモノメチルエーテルと水と無水酢酸とを混合してなるp型ドーパント拡散剤の粘度を様々に変化させて粘度が異なる複数の親水性のp型ドーパント拡散剤を作製した。
また、五酸化二リン(P25)と所定のシラン化合物とエチレングリコールと無水酢酸とを混合してなるn型ドーパント拡散剤の粘度を様々に変化させて粘度が異なる複数の親水性のn型ドーパント拡散剤を作製した。
そして、上記のようにして作製したp型ドーパント拡散剤およびn型ドーパント拡散剤をそれぞれインクジェット塗布法によりぬれ性改善膜の表面上に直線状に塗布した。ここで、p型ドーパント拡散剤については最小の線幅が300μm以下となるように直線状に塗布するとともに、n型ドーパント拡散剤については最小の線幅が100μm以下となるように直線状に塗布した。
そして、上記のp型ドーパント拡散剤の塗布時およびn型ドーパント拡散剤の塗布時にそれぞれp型ドーパント拡散剤およびn型ドーパント拡散剤が弾かれることによる分断が発生するか否かを目視するとともに、ぬれ性改善膜への塗布後のp型ドーパント拡散剤およびn型ドーパント拡散剤についてそれぞれ従来から公知の接触角計により接触角を測定した。
また、比較として、上記のようにして作製したp型ドーパント拡散剤およびn型ドーパント拡散剤をそれぞれインクジェット塗布法により、n型シリコン基板の表面上に直接、直線状に塗布し、p型ドーパント拡散剤およびn型ドーパント拡散剤が弾かれることによる分断が発生するか否かを目視した。ここでも、p型ドーパント拡散剤については最小の線幅が300μm以下となるように直線状に塗布し、n型ドーパント拡散剤については最小の線幅が100μm以下となるように直線状に塗布した。
その結果、n型シリコン基板の表面上にぬれ性改善膜を形成した後にp型ドーパント拡散剤およびn型ドーパント拡散剤を塗布した場合には、n型シリコン基板の表面上にぬれ性改善膜を形成せずにp型ドーパント拡散剤およびn型ドーパント拡散剤を塗布した場合と比べてp型ドーパント拡散剤およびn型ドーパント拡散剤のそれぞれの分断の発生回数が大幅に減少した。
また、室温(25℃)における粘性率が所定の範囲(5Pa・s〜25Pa・s)にあるp型ドーパント拡散剤のぬれ性改善膜に対する接触角が10°以上20°以下である場合には、p型ドーパント拡散剤の分断の発生回数がさらに大幅に減少することが確認された。
また、室温(25℃)における粘性率が所定の範囲(5Pa・s〜25Pa・s)にあるn型ドーパント拡散剤のぬれ性改善膜に対する接触角が10°以上20°以下である場合には、n型ドーパント拡散剤の分断の発生回数がさらに大幅に減少することが確認された。
そして、上記のようにn型シリコン基板の表面上にぬれ性改善膜を形成した後にp型ドーパント拡散剤およびn型ドーパント拡散剤を塗布し、その後n型シリコン基板を熱処理することによって裏面にp型ドーパント拡散層およびn型ドーパント拡散層を形成したn型シリコン基板を用いて裏面電極型太陽電池を作製し、その特性を評価したところ、優れた特性を示すことが確認された。
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明によれば、半導体装置の特性の低下を安定して抑制することができる半導体装置の製造方法を提供することができる。
特に、本発明の半導体装置の製造方法は、太陽電池の製造方法として好適に用いることができる。
1 半導体基板、2 第1のぬれ性改善膜、3 第1導電型ドーパント拡散剤、4 第2導電型ドーパント拡散剤、5 第1導電型ドーパント拡散層、6 第2導電型ドーパント拡散層、7 パッシベーション膜、8,108 テクスチャ構造、9 反射防止膜、10 第1導電型用電極、10a 第1導電型用集電電極、11 第2導電型用電極、11a 第2導電型用集電電極、12,13 コンタクトホール、15 高濃度第1導電型ドーパント拡散層、16 低濃度第1導電型ドーパント拡散層、21 第2のぬれ性改善膜、31 第3のぬれ性改善膜、100 シリコン基板、102 酸化物層、103 p型ドーピングペースト、104 n型ドーピングペースト、105 p型ドーパント拡散層、106 n型ドーパント拡散層、110,111 金属化部分。

Claims (5)

  1. 半導体基板の表面上にぬれ性改善膜を形成する工程と、
    前記ぬれ性改善膜の表面上に第1導電型または第2導電型のドーパントを含有するドーパント拡散剤を塗布する工程と、
    前記ドーパント拡散剤から前記半導体基板に前記ドーパントを拡散させることによってドーパント拡散層を形成する工程とを含む、半導体装置の製造方法。
  2. 前記塗布後の前記ドーパント拡散剤の接触角が5°以上30°以下であることを特徴とする、請求項1に記載の半導体装置の製造方法。
  3. 前記ぬれ性改善膜を形成する工程において、前記ぬれ性改善膜は50nm以下の厚さに形成されることを特徴とする、請求項1または2に記載の半導体装置の製造方法。
  4. 前記ぬれ性改善膜が親水性であることを特徴とする、請求項1から3のいずれかに記載の半導体装置の製造方法。
  5. 前記ドーパント拡散剤を塗布する工程において、前記ドーパント拡散剤は最小の線幅が300μm以下となるように塗布されることを特徴とする、請求項1から4のいずれかに記載の半導体装置の製造方法。
JP2009117682A 2009-05-14 2009-05-14 半導体装置の製造方法 Pending JP2010267787A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117682A JP2010267787A (ja) 2009-05-14 2009-05-14 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117682A JP2010267787A (ja) 2009-05-14 2009-05-14 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2010267787A true JP2010267787A (ja) 2010-11-25

Family

ID=43364516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117682A Pending JP2010267787A (ja) 2009-05-14 2009-05-14 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2010267787A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652434A (ja) * 1992-07-28 1994-02-25 Murata Mfg Co Ltd カップベンダー吐出ノズル
JP2011233657A (ja) * 2010-04-27 2011-11-17 Sharp Corp 裏面電極型太陽電池、および裏面電極型太陽電池の製造方法
JP2012160695A (ja) * 2011-01-13 2012-08-23 Hitachi Chem Co Ltd p型拡散層形成組成物、p型拡散層の製造方法及び太陽電池素子の製造方法、並びに太陽電池
WO2013039101A1 (ja) * 2011-09-15 2013-03-21 シャープ株式会社 太陽電池の製造方法および太陽電池
WO2015079779A1 (ja) * 2013-11-29 2015-06-04 パナソニックIpマネジメント株式会社 太陽電池の製造方法
JP2015109361A (ja) * 2013-12-05 2015-06-11 信越化学工業株式会社 太陽電池の製造方法
JP2016506631A (ja) * 2012-12-28 2016-03-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung シリコンウェハの局所ドーピングのための液体ドーピング媒体
JP2016506630A (ja) * 2012-12-28 2016-03-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung シリコンウェハの局所ドーピングのためのドーピング媒体
KR101862268B1 (ko) * 2014-06-19 2018-05-29 창쩌우 트리나 솔라 에너지 컴퍼니 리미티드 태양전지의 부분 도핑 방법
CN112599410A (zh) * 2020-12-16 2021-04-02 上海玻纳电子科技有限公司 提高n型单晶硅片硼扩散的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328034A (ja) * 1986-07-22 1988-02-05 Aisin Seiki Co Ltd 拡散剤塗布方法
JP2002025926A (ja) * 2000-07-12 2002-01-25 Sanken Electric Co Ltd 半導体装置の製造方法
JP2004158564A (ja) * 2002-11-05 2004-06-03 Semiconductor Energy Lab Co Ltd レーザードーピング処理方法及び薄膜トランジスタの作製方法
JP2009147272A (ja) * 2007-12-18 2009-07-02 Mitsubishi Electric Corp 太陽電池の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328034A (ja) * 1986-07-22 1988-02-05 Aisin Seiki Co Ltd 拡散剤塗布方法
JP2002025926A (ja) * 2000-07-12 2002-01-25 Sanken Electric Co Ltd 半導体装置の製造方法
JP2004158564A (ja) * 2002-11-05 2004-06-03 Semiconductor Energy Lab Co Ltd レーザードーピング処理方法及び薄膜トランジスタの作製方法
JP2009147272A (ja) * 2007-12-18 2009-07-02 Mitsubishi Electric Corp 太陽電池の製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652434A (ja) * 1992-07-28 1994-02-25 Murata Mfg Co Ltd カップベンダー吐出ノズル
JP2011233657A (ja) * 2010-04-27 2011-11-17 Sharp Corp 裏面電極型太陽電池、および裏面電極型太陽電池の製造方法
US20130037102A1 (en) * 2010-04-27 2013-02-14 Sharp Kabushiki Kaisha Back electrode type solar cell and method for producing back electrode type solar cell
JP2012160695A (ja) * 2011-01-13 2012-08-23 Hitachi Chem Co Ltd p型拡散層形成組成物、p型拡散層の製造方法及び太陽電池素子の製造方法、並びに太陽電池
WO2013039101A1 (ja) * 2011-09-15 2013-03-21 シャープ株式会社 太陽電池の製造方法および太陽電池
JP2016506630A (ja) * 2012-12-28 2016-03-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung シリコンウェハの局所ドーピングのためのドーピング媒体
JP2016506631A (ja) * 2012-12-28 2016-03-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung シリコンウェハの局所ドーピングのための液体ドーピング媒体
US10134942B2 (en) 2012-12-28 2018-11-20 Merck Patent Gmbh Doping media for the local doping of silicon wafers
WO2015079779A1 (ja) * 2013-11-29 2015-06-04 パナソニックIpマネジメント株式会社 太陽電池の製造方法
JPWO2015079779A1 (ja) * 2013-11-29 2017-03-16 パナソニックIpマネジメント株式会社 太陽電池の製造方法
US9705027B2 (en) 2013-11-29 2017-07-11 Panasonic Intellectual Property Management Co., Ltd. Solar cell manufacturing method using etching paste
JP2015109361A (ja) * 2013-12-05 2015-06-11 信越化学工業株式会社 太陽電池の製造方法
TWI640103B (zh) * 2013-12-05 2018-11-01 日商信越化學工業股份有限公司 Solar cell manufacturing method
KR101862268B1 (ko) * 2014-06-19 2018-05-29 창쩌우 트리나 솔라 에너지 컴퍼니 리미티드 태양전지의 부분 도핑 방법
CN112599410A (zh) * 2020-12-16 2021-04-02 上海玻纳电子科技有限公司 提高n型单晶硅片硼扩散的方法
CN112599410B (zh) * 2020-12-16 2022-12-13 上海玻纳电子科技有限公司 提高n型单晶硅片硼扩散的方法

Similar Documents

Publication Publication Date Title
US8377809B2 (en) Method of fabricating semiconductor device
JP2010267787A (ja) 半導体装置の製造方法
JP5271189B2 (ja) 裏面電極型太陽電池セルの製造方法
WO2010090090A1 (ja) 半導体装置の製造方法および半導体装置
US20110104850A1 (en) Solar cell contact formation process using a patterned etchant material
US20100190286A1 (en) Method for manufacturing solar cell
KR20150097612A (ko) 규소 나노 입자들을 사용한 태양 전지 이미터 영역 제조
JP2008010746A (ja) 太陽電池、および太陽電池の製造方法
JP2007049079A (ja) マスキングペースト、その製造方法およびマスキングペーストを用いた太陽電池の製造方法
JP4684056B2 (ja) 太陽電池の製造方法
JP2008311291A (ja) 太陽電池の製造方法
US8361836B2 (en) Method for manufacturing photoelectric conversion element and photoelectric conversion element
JP2010205965A (ja) 半導体装置の製造方法
JP2015118979A (ja) 太陽電池および太陽電池の製造方法
JP2010157654A (ja) 半導体装置の製造方法
KR101165915B1 (ko) 태양전지의 제조방법
WO2011132744A1 (ja) 半導体装置の製造方法
JP4831709B2 (ja) 半導体装置および半導体装置の製造方法
JP5221738B2 (ja) 半導体装置および半導体装置の製造方法
JP2010161309A (ja) 半導体装置、半導体装置の製造方法および太陽電池の製造方法
JP5170701B2 (ja) 半導体装置の製造方法
CN116722053B (zh) 太阳能电池及其制备方法、光伏组件
CN104167460A (zh) 太阳能电池制造方法
CN117691000A (zh) 一种太阳电池的制备方法、太阳电池及光伏组件
JP2013206887A (ja) 裏面電極型太陽電池および裏面電極型太陽電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107