JP2010264734A - Concrete curing management device - Google Patents

Concrete curing management device Download PDF

Info

Publication number
JP2010264734A
JP2010264734A JP2009133511A JP2009133511A JP2010264734A JP 2010264734 A JP2010264734 A JP 2010264734A JP 2009133511 A JP2009133511 A JP 2009133511A JP 2009133511 A JP2009133511 A JP 2009133511A JP 2010264734 A JP2010264734 A JP 2010264734A
Authority
JP
Japan
Prior art keywords
temperature
concrete
curing
specimen
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009133511A
Other languages
Japanese (ja)
Inventor
Tadahiko Murakami
忠彦 村上
Kosuke Hatano
幸輔 端野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009133511A priority Critical patent/JP2010264734A/en
Publication of JP2010264734A publication Critical patent/JP2010264734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a concrete curing management device always attaining the coincidence of temperature histories of a product and specimen concrete even if conditions change and selecting a proper amount of accelerating steam curing. <P>SOLUTION: A curing method comprises placing concrete in a form, and covering the form with a curing sheet to attain accelerating curing with steam inside the form covered with the curing sheet. A specimen same temperature curing management device is provided for attaining the coincidence of the temperature histories of the product and specimen by using a surface installed temperature measuring device including two sensors for measuring both an atmospheric temperature inside the sheet and a concrete internal temperature, and conforming the internal temperature of concrete to the atmospheric temperature in a separately installed specimen curing box respectively measured by the measuring device. The appropriate degree of accelerating curing is confirmed from the record of temperature such as the concrete temperature recorded in the device and from the result of a strength test, and an accelerating steam curing program from the next time is corrected to attain more suitable curing. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、打設したコンクリートの養生の管理に関するものである。The present invention relates to management of curing of placed concrete.

従来のコンクリートの強度管理は、製品と同じロットの生コンで製作した強度試験用供試体を製品と同じ環境に置き養生すれば十分とされてきた。    Conventional strength control of concrete has been sufficient if it is cured by placing a test specimen for strength testing in the same environment as that of the product, using the same lot as the product.

しかしコンクリートの強度発現はセメントと水の化学反応によるものであり、その反応速度は温度上昇とともに加速度的に早くなる特性があるため、温度履歴を一致させなければ強度は等しくならない。  However, the strength development of concrete is due to the chemical reaction between cement and water, and the reaction rate has a characteristic that it accelerates rapidly as the temperature rises, so the strength will not be equal unless the temperature histories are matched.

通常供試体は直径10cm高さ20cmの円筒形のものが使われているが、その寸法は製品より著しく小さいため、促進養生で外部から加熱される場合も、化学反応で自己発熱する場合も、同じ環境に置かれた両コンクリートの温度履歴が等しくなることはない。  Usually, the cylindrical specimen with a diameter of 10 cm and a height of 20 cm is used, but the size is significantly smaller than that of the product, so whether it is heated from the outside by accelerated curing or self-heating by a chemical reaction, The temperature histories of both concretes in the same environment are not equal.

その原因は、熱の移動量は温度差と表面積に支配され、温度上昇は熱容量つまり体積に支配される熱力学的特性と、その結果として定まる温度により硬化反応速度が変わるため単位時間の発熱量に差がでるためである。  The cause of this is that the amount of heat transferred is governed by the temperature difference and the surface area, and the temperature rise is a thermodynamic characteristic governed by the heat capacity, that is, the volume. This is because there is a difference.

また従来の養生管理において製品コンクリートの温度を計測せずに、養生シート内の雰囲気温度を計測して制御の対象としており、実際のコンクリート温度は管理の対象ではなかった。  Also, in the conventional curing management, the temperature of the product concrete is not measured, but the ambient temperature in the curing sheet is measured and controlled, and the actual concrete temperature is not the management target.

これはコンクリート内部に温度センサーを埋め込めば、硬化後に破損することなく回収できないことも一因である。しかし、伝熱現象と硬化発熱現象のために雰囲気温度と製品コンクリート温度には差が生じている。また形状寸法の異なる供試体と製品のコンクリート温度にも差が生じる。コンクリートの強度発現は化学反応である硬化反応よるため、温度履歴が異なれば強度も違ってくる。  This is partly because if a temperature sensor is embedded inside the concrete, it cannot be recovered without being damaged after curing. However, there is a difference between the ambient temperature and the product concrete temperature due to the heat transfer phenomenon and the hardening heat generation phenomenon. There is also a difference in the concrete temperature between the specimen and the product with different shape dimensions. Since the strength development of concrete is due to the curing reaction, which is a chemical reaction, the strength varies with different temperature histories.

コンクリートの内部温度を計測するために温度センサーを埋め込めば、硬化後に破壊することなく取り出すことはできないし、製品であるコンクリートを損傷することになる。当該発明は製品に埋め込むことなく、打設完了後にそのコンクリート表面又は鋼製型枠の表面に密着させて設置するだけで、コンクリートの内部温度が計測できる表面設置型の温度計測装置である。養生完了後は、損傷することなく回収できるため、繰り返し使用できる。If a temperature sensor is embedded to measure the internal temperature of concrete, it cannot be taken out without being destroyed after curing, and the concrete that is the product will be damaged. The present invention is a surface-mounted type temperature measuring device that can measure the internal temperature of concrete simply by being placed in close contact with the concrete surface or the surface of a steel formwork after being placed without being embedded in a product. After curing is complete, it can be recovered without damage, so it can be used repeatedly.

この表面設置型の温度計測装置は、20cm〜30cm程度の寸法で3cm〜5cm程度の厚みの断熱材表面をわずかに掘り込み、通常の温度センサーを表面に突出しないように取り付けたものである。センサーには測温抵抗体やT型熱伝対が用いられる。背面が断熱されているため周囲の雰囲気温度に影響されることなくコンクリートの内部温度を計測できる。同時に断熱材の背面に同様な温度センサーを取り付けることで雰囲気温度も計測できる。This surface-mounted temperature measuring device is a device in which a surface of a heat insulating material having a size of about 20 cm to 30 cm and a thickness of about 3 cm to 5 cm is dug slightly and a normal temperature sensor is attached so as not to protrude from the surface. A resistance temperature detector or a T-type thermocouple is used for the sensor. Since the back is insulated, the internal temperature of the concrete can be measured without being affected by the ambient temperature. At the same time, the ambient temperature can be measured by attaching a similar temperature sensor to the back of the insulation.

コンクリート表面でその内部温度が計測できるのは、製品の内部と表面近傍での温度差が実用上無視できるほど小さく、さらに背面を断熱されているために温度差がなくなるためである。この現象はコンクリートや鉄の熱伝導による熱抵抗に比べて、固体と空気の界面の動かない空気層の熱抵抗が大きく大半の温度差がこの界面を挟んで生じるためである。The reason why the internal temperature can be measured on the concrete surface is that the temperature difference between the inside of the product and the vicinity of the surface is so small that it can be ignored in practice, and since the back surface is insulated, there is no temperature difference. This phenomenon is because the thermal resistance of the air layer where the solid / air interface does not move is large compared to the thermal resistance due to the heat conduction of concrete or iron, and most of the temperature difference occurs across this interface.

単位時間の熱の移動量は熱伝達係数と温度差と伝熱面積の積で表されるが、コンクリートが加熱促進養生される場合のコンクリートの温度上昇量はコンクリートが受け取った熱量をコンクリートの熱容量で除した値となる。つまり、熱の移動量は面積に比例し、温度上昇量は体積に比例することになる。従って、同じ環境におかれた供試体と製品の温度上昇は同じにならず、小さい供試体の温度は雰囲気温度にあまり遅れることなく追従しても、大きい形状寸法の製品ほど温度上昇が遅れることになる。逆にコンクリートの温度が雰囲気温度より高い場合の放熱に関しても同様な現象がおきる。The amount of heat transferred per unit time is expressed by the product of the heat transfer coefficient, temperature difference, and heat transfer area. The value divided by. That is, the amount of heat transfer is proportional to the area, and the temperature rise is proportional to the volume. Therefore, the temperature rise of the specimen and product placed in the same environment is not the same, and even if the temperature of a small specimen follows the ambient temperature without much delay, the temperature rise will be delayed for a product with a larger shape and dimension. become. Conversely, the same phenomenon occurs with regard to heat dissipation when the concrete temperature is higher than the ambient temperature.

上記の熱力学的な解析にもとづき、表面設置型の温度計測装置で計測した製品コンクリート温度に、別途設置した供試体養生箱の内部雰囲気温度を追従させる供試体同一温度養生管理装置を設け、供試体のコンクリート温度を製品の温度に追従させる。Based on the above-mentioned thermodynamic analysis, a test specimen identical temperature curing management device is provided to allow the internal temperature of the specimen curing box installed separately to follow the product concrete temperature measured by a surface-mounted temperature measurement device. Make the concrete temperature of the specimen follow the product temperature.

この供試体同一温度養生装置は、表面設置型のコンクリート温度計測装置で計測された製品コンクリート温度と、供試体養生箱内の雰囲気温度をT型熱伝対を使用して示差熱回路に組み、養生箱内の水槽に設置した投げ込みヒーターで加熱し制御する。小さい供試体の温度は若干の遅れで追従する。This specimen same-temperature curing device combines the product concrete temperature measured by the surface-mounted concrete temperature measuring device and the ambient temperature in the specimen curing box into a differential heat circuit using a T-type thermocouple, It is heated and controlled by a throwing heater installed in the water tank inside the curing box. The temperature of the small specimen follows with a slight delay.

この供試体同一温度養生管理装置は、温度記録装置も備えており、製品コンクリート温度、雰囲気温度、供試体コンクリート温度、外気温などを記録でき、この温度記録により、供試体コンクリートの強度が製品と同一であることが保証できる。またこの温度記録と強度試験の結果とを合わせて、必要な促進養生の程度をきめる資料とすることができる。This specimen same-temperature curing management device is also equipped with a temperature recording device, which can record the product concrete temperature, ambient temperature, specimen concrete temperature, outside temperature, etc., and this temperature record indicates the strength of the specimen concrete with the product. It can be guaranteed that they are identical. Moreover, the temperature record and the result of the strength test can be combined to provide a material for determining the necessary degree of accelerated curing.

さらに、本発明の養生制御装置は、従来の制御装置が製品コンクリートの温度上昇には関係なく、養生シート内の雰囲気温度を計測し制御するだけなので、結果的に製品の過剰な温度上昇やエネルギーの浪費を防げなかったのに対し、製品コンクリート温度の計測結果を養生制御プログラムにフィードバックすることができ過剰な加熱を防ぐものである。In addition, the curing control device of the present invention only measures and controls the ambient temperature in the curing sheet, regardless of the temperature rise of the product concrete, so that the excessive temperature rise and energy of the product are consequently obtained. However, it is possible to feed back the measurement result of the product concrete temperature to the curing control program and prevent excessive heating.

本発明のコンクリート養生管理装置を使用すれば、製品コンクリートの温度を簡単に常時測定でき、強度測定用の供試体コンクリートの温度を製品コンクリートの温度に追従させることができるため、正確な強度管理が行える。コンクリートの強度が安定すると同時に省エネルギー管理をすることができる。If the concrete curing management device of the present invention is used, the temperature of the product concrete can be easily and constantly measured, and the temperature of the test specimen concrete for strength measurement can be made to follow the temperature of the product concrete, so that accurate strength management is possible. Yes. Energy saving management can be performed at the same time as the strength of concrete is stabilized.

高強度のプレテンション・プレストレストコンクリート製品を製造する工場に適用した例を示す。コンクリートの設計強度は50N/mm^2以上で、プレストレスを導入する翌朝には35N/mm^3以上の強度が必要となる。製品の形状は長さ10mを超える長尺のものが多く、断面形状は様々だが、1mあたり重量は500kgから1000kgと比較的大型の製品が多い。高強度であるためセメント量も420kg/m^3と多く、早期強度が必要なため早強セメントを使用し、促進蒸気養生もなされている。An example of application to a factory that manufactures high-strength pretensioned and prestressed concrete products is shown. The design strength of concrete is 50 N / mm ^ 2 or more, and the next morning when prestress is introduced, a strength of 35 N / mm ^ 3 or more is required. Many of the products have a long shape exceeding 10 m in length and have various cross-sectional shapes, but the weight per meter is 500 kg to 1000 kg, and there are many relatively large products. Because of its high strength, the amount of cement is as high as 420 kg / m ^ 3, and since early strength is required, early strength cement is used and accelerated steam curing is also performed.

各製作ヤードには、通常の促進養生設備のほかに表面設置型の温度計測装置を設置し、生コンの試験ヤードに供試体の養生箱を設置した。この養生箱に近接して供試体を製品温度に追従させるための制御装置と、温度記録装置を配置し、製作ヤードに置いた温度計測装置と接続させて、制御と記録を行った。In each production yard, in addition to the usual accelerated curing equipment, a surface-mounted temperature measuring device was installed, and a specimen curing box was installed in the test yard of the ready-mixed container. A control device for causing the specimen to follow the product temperature in close proximity to the curing box and a temperature recording device were arranged and connected to a temperature measuring device placed in the production yard for control and recording.

この装置を使用し始めた結果、生コン温度が30度を超える季節は硬化反応だけで温度上昇するため、まったく促進養生は必要がないことが分かった。その他の季節も個別の条件により差はあるものの生コン温度が20度以上あれば殆ど硬化による発熱で温度上昇が起こり、促進蒸気養生の必要性は少なくなった。養生初期に蒸気養生で加熱するばあいも、コンクリートの硬化反応が加速する30度に達した時点で促進養生は終了することができることが分かった。1年間を通したボイラ燃料の使用量は75%減少し、以前の1/4程度となった。As a result of starting to use this apparatus, it was found that the accelerated curing is not necessary at all because the temperature rises only due to the curing reaction in the season when the temperature of the raw kon exceeds 30 degrees. In other seasons, although there was a difference depending on individual conditions, if the temperature of the raw kon was 20 ° C or higher, the temperature rose almost due to heat generated by curing, and the need for accelerated steam curing was reduced. It was found that the accelerated curing can be completed when the concrete curing temperature reaches 30 degrees when the curing reaction is accelerated, even in the case of heating by steam curing at the initial stage of curing. The amount of boiler fuel used throughout the year has decreased by 75%, about 1/4 of the previous level.

供試体と製品の温度履歴を一致させることができ、またその結果が温度記録で確認できるため、製品コンクリートの実際の強度が安定した。そのため、プレストレストコンクリート製品の特性である上ぞりの数値が安定しばらつきがなくなった。過度の温度上昇もなくなり、ひび割れの発生も減少した。Since the temperature history of the specimen and the product can be matched, and the result can be confirmed by the temperature record, the actual strength of the product concrete has been stabilized. As a result, the numerical value of the upslip, which is a characteristic of prestressed concrete products, is stable and no longer varies. There was no excessive temperature rise and cracking was reduced.

製品や配合の種類ごとに異なってくる促進蒸気養生の程度が、過去のデータで個別に決められるため適切な養生が選択でき、精度の高い養生管理ができるようになった。The degree of accelerated steam curing that varies depending on the type of product and formulation can be determined individually based on past data, so that appropriate curing can be selected and highly accurate curing management can be performed.

さらに、その日の生コン温度や、外気温により変化する必要な促進蒸気養生の程度を、結果として表れる製品コンクリート温度上昇値で制御することによりさらに養生の精度を上げることができるようになった。Furthermore, the accuracy of curing can be further improved by controlling the degree of accelerated steam curing necessary to change depending on the temperature of the day and the outside air temperature with the resulting product concrete temperature rise value.

Claims (1)

打設後のコンクリートの養生管理において、コンクリートの強度は製品と同一なロットからサンプリングされた生コンで供試体を製作し、その供試体を製品と同じ環境に置く方法で強度管理がなされてきた。しかし、伝熱の法則による熱の移動量やセメントと水の硬化発熱反応において反応速度は温度の上昇に伴い急激に早くなる特性などから、同じ環境にあっても形状寸法の異なる両コンクリートの温度履歴が一致することはなく、両者の強度は一致しない。
両者の温度履歴を一致させ正確な強度管理を行うために、コンクリートに埋め込むことなく打設後にコンクリート又は型枠表面に密着させて設置するだけで製品コンクリートの温度が把握できる温度計測装置を備え、供試体コンクリートの温度を製品の温度に追従させる供試体同一温度管理機能と、測定された製品コンクリート温度を従来の促進蒸気養生のプログラムにフィードバックして養生管理する機能と、それらの温度を記録する機能を備えるコンクリートの養生管理装置。
In the curing management of concrete after placing, the strength of the concrete has been controlled by a method in which a specimen is made of raw concrete sampled from the same lot as the product and the specimen is placed in the same environment as the product. However, the heat transfer rate according to the law of heat transfer and the reaction rate of the cement and water hardening exothermic reaction rapidly increase as the temperature rises. The histories do not match and the intensities of the two do not match.
In order to match the temperature history of both and perform accurate strength management, it is equipped with a temperature measurement device that can grasp the temperature of product concrete just by placing it in close contact with concrete or formwork surface after placing without embedding in concrete, Specimen temperature control function that keeps the temperature of specimen concrete to follow the temperature of the product, function to feed back the measured product concrete temperature to the conventional accelerated steam curing program and manage the curing, and record these temperatures Concrete curing management device with functions.
JP2009133511A 2009-05-12 2009-05-12 Concrete curing management device Pending JP2010264734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009133511A JP2010264734A (en) 2009-05-12 2009-05-12 Concrete curing management device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133511A JP2010264734A (en) 2009-05-12 2009-05-12 Concrete curing management device

Publications (1)

Publication Number Publication Date
JP2010264734A true JP2010264734A (en) 2010-11-25

Family

ID=43362157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133511A Pending JP2010264734A (en) 2009-05-12 2009-05-12 Concrete curing management device

Country Status (1)

Country Link
JP (1) JP2010264734A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153071A (en) * 2013-02-05 2014-08-25 Toda Constr Co Ltd Concrete strength control method for concrete structure and control device thereof
CN104526860A (en) * 2014-12-05 2015-04-22 中铁二十二局集团有限公司 Over-ground kiln type steam curing workshop with precast sleeper
JP2016098534A (en) * 2014-11-20 2016-05-30 日本車輌製造株式会社 Concrete curing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153071A (en) * 2013-02-05 2014-08-25 Toda Constr Co Ltd Concrete strength control method for concrete structure and control device thereof
JP2016098534A (en) * 2014-11-20 2016-05-30 日本車輌製造株式会社 Concrete curing method
CN104526860A (en) * 2014-12-05 2015-04-22 中铁二十二局集团有限公司 Over-ground kiln type steam curing workshop with precast sleeper

Similar Documents

Publication Publication Date Title
CN204302211U (en) The experimental rig of a kind of simulated air flowing to material surface Heat Transfer Influence
Stewart et al. Strain distributions in centrifuge model energy foundations
JP2016533487A (en) Method for predicting fire resistance of wallboard
JP2010264734A (en) Concrete curing management device
CN103713011A (en) Double-probe heat-pulse thermal-property measure apparatus capable of realizing spacing in-field self correcting and method
Campanale et al. Autoclaved aerated concrete: experimental evaluation of its thermal properties at high temperatures.
Assael et al. An improved application of the transient hot-wire technique for the absolute accurate measurement of the thermal conductivity of Pyroceram 9606 up to 420 K
JP2017090286A (en) Coal temperature rising prediction management system
CN108369141A (en) Multipoint sensor and its production method for the existing temperature distribution history for determining medium
JP2000292387A (en) Simplified test method and device of insulation temperature rise characteristic of concrete
JP2002181750A (en) Device for inspecting adiabatic holding performance of adiabatic temperature rise testing device
Mohammed et al. Quantification of the thermal environment surrounding radiant panel arrays used in fire experiments
CN105004756B (en) Burner flame strength detection method and device
CN106225943B (en) A kind of device and method based on Transient Heat Transfer theory measurement high quartz melting furnace temperature
CN108776152A (en) A kind of measuring system and method for building material surface heat exchange coefficient
Kušnerová et al. Measurement of physical properties of polyurethane plaster
CN102560681B (en) Temperature measuring equipment and diffusion furnace
CN207051225U (en) A kind of ceramic beaverboard heat conductivity measuring device
CN105865658B (en) A kind of ground scaling method of miniature armoured thermocouple
CN204228639U (en) A kind of high temperature protection hot plate conductometer
JP5470170B2 (en) High temperature corrosion test equipment
CN104316222A (en) Method for quickly measuring transformer thermometer environment temperature influence quantity
Meulemans et al. Validation of external wall retrofit measures based on rapid and accurate in situ measurements
Abadi Design of a Simple Muffle Furnace For Temperature Optimization In Ash Content Analysis
RU2551663C2 (en) Method of determining thermal conductivity of solid body of cylindrical shape under steady temperature condition