JP2010264371A - Exhaust gas purifying device - Google Patents

Exhaust gas purifying device Download PDF

Info

Publication number
JP2010264371A
JP2010264371A JP2009117180A JP2009117180A JP2010264371A JP 2010264371 A JP2010264371 A JP 2010264371A JP 2009117180 A JP2009117180 A JP 2009117180A JP 2009117180 A JP2009117180 A JP 2009117180A JP 2010264371 A JP2010264371 A JP 2010264371A
Authority
JP
Japan
Prior art keywords
catalyst
containing layer
exhaust gas
layer
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009117180A
Other languages
Japanese (ja)
Other versions
JP5326790B2 (en
Inventor
Hisaya Kawabata
久也 川端
Yasuhiro Ochi
康博 越智
Seiji Miyoshi
誠治 三好
Hiroshi Kuramasu
拓 倉増
Ikuko Fujii
郁子 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2009117180A priority Critical patent/JP5326790B2/en
Publication of JP2010264371A publication Critical patent/JP2010264371A/en
Application granted granted Critical
Publication of JP5326790B2 publication Critical patent/JP5326790B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To purify the exhaust gas of an engine 1 using an alcohol-containing fuel. <P>SOLUTION: A first catalyst 3 and a second catalyst 4 are arranged in the exhaust gas passage 2 of the engine 1 so that the latter is positioned on the downstream side of an exhaust gas flow of the former. The first catalyst 3 on the upstream side is provided to the cell walls of a honeycomb carrier so that a Pt-containing layer, which contains CeMg composite oxide particles, and a Rh-containing layer are formed on the upper side of a Pd-containing layer and the Pt-containing layer is provided to the range from the edge surface on the upstream side of the honeycomb carrier to the intermediate region of the honeycomb carrier. The second catalyst 4 on the downstream side is constituted so that a catalyst layer, which contains Pt-carrying alumina and an Rh-doped CeZr composite oxide or a Rh-carrying CeZr composite oxide, is formed on the cell walls of the honeycomb carrier. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排気ガス浄化装置に関する。   The present invention relates to an exhaust gas purification device.

温暖化ガス排出の削減を目的として、エタノール、とりわけバイオエタノールをエンジンの燃料として利用することが広く検討されている。すなわち、バイオエタノールの場合、燃料として燃焼させたときにはCOが発生するが、その原料となる穀物の生育時に大気中のCOが取り込まれるから、トータルでみると、COの増加が抑制されると見込まれている。 For the purpose of reducing greenhouse gas emissions, the use of ethanol, especially bioethanol, as an engine fuel has been widely studied. That is, in the case of bioethanol, CO 2 is generated when it is burned as fuel. However, since CO 2 in the atmosphere is taken in when the grain as the raw material grows, an increase in CO 2 is suppressed when viewed in total. It is expected.

ところで、排気ガス浄化用触媒では、エンジン冷間始動時に、排気ガス中に比較的多く含まれるHC(炭化水素)成分の浄化率が低いことが問題の一つになっている。アルコールの場合は、気化する際に周囲から熱を奪うため、エンジン冷間時には筒内温度がそれほど高くならず、排気ガス中の飽和炭化水素が多くなり、また、排気ガス温度も低くなりがちである。さらに、アルコールが酸化されるときの副生成物であるアルデヒドも排気ガス中に含まれ、その排出も抑制する必要がある。   By the way, in the exhaust gas purification catalyst, at the time of engine cold start, one of the problems is that the purification rate of the HC (hydrocarbon) component contained in the exhaust gas is relatively low. In the case of alcohol, since the heat is taken away from the surroundings when it is vaporized, the in-cylinder temperature is not so high when the engine is cold, the saturated hydrocarbons in the exhaust gas increase, and the exhaust gas temperature tends to be low. is there. Furthermore, aldehyde, which is a by-product when the alcohol is oxidized, is also contained in the exhaust gas, and it is necessary to suppress its emission.

これに対して、アルコールを燃料とするエンジンの排気ガス浄化用触媒に関しては、Pt、Pd及びRhのうちの少なくとも1種とAgとを安定化セリウム酸化物に担持させたものが知られている(特許文献1)。その安定化セリウム酸化物は、Mg、Ca、Sr、Ba及びYのうちの少なくとも1種を含有するものであり、そのことによって耐熱性が高められている。   On the other hand, regarding an exhaust gas purification catalyst for an engine using alcohol as a fuel, a catalyst in which at least one of Pt, Pd, and Rh and Ag are supported on a stabilized cerium oxide is known. (Patent Document 1). The stabilized cerium oxide contains at least one of Mg, Ca, Sr, Ba, and Y, thereby improving heat resistance.

また、自動車一般の排気ガス浄化用触媒として、HC、CO及びNOx(窒素酸化物)を同時に浄化する三元触媒は広く知られている。この三元触媒に関し、特許文献2は、ハニカム担体に三層構造の触媒層を形成し、下層には、アルミナ粒子に担持させたRhを配置し、上層には酸化セリウムに担持させたPdを配置し、中間層にはアルミナ粒子に担持させたPtを配置することを開示する。   A three-way catalyst that simultaneously purifies HC, CO, and NOx (nitrogen oxide) is widely known as an exhaust gas purifying catalyst for general automobiles. Regarding this three-way catalyst, Patent Document 2 forms a catalyst layer having a three-layer structure on a honeycomb carrier, arranges Rh supported on alumina particles in the lower layer, and Pd supported on cerium oxide in the upper layer. And disposing Pt supported on alumina particles in the intermediate layer.

また、特許文献3は、ストイキからリーン・バーン状態まで効率よく窒素酸化物(NOx)を浄化することができる排気ガス浄化用触媒に関し、ハニカム担体に、PtとPdのうち1種以上を含む活性アルミナを主成分とする無機物から成る第1層と、Rhを含む活性アルミナを主成分とする無機物からなる第2層と、さらに金属酸化物上に担持したPtを主成分とする無機物からなる第3層を備えるものを開示する。   Patent Document 3 relates to an exhaust gas purifying catalyst that can efficiently purify nitrogen oxides (NOx) from stoichiometric to lean burn state, and the honeycomb carrier includes an activity containing at least one of Pt and Pd. A first layer composed of an inorganic material mainly composed of alumina, a second layer composed of an inorganic material mainly composed of activated alumina containing Rh, and a second layer composed of an inorganic material mainly composed of Pt supported on a metal oxide. What has three layers is disclosed.

また、自動車では、エンジンの排気マニホールドに直結した前置き触媒と、該マニホールド触媒よりも排気ガス流れの下流側に位置する床下触媒とによって排気ガスを浄化する構成が採用される場合が多い。前置き触媒は、主としてエンジン冷間時の排気ガス浄化を担い、床下触媒は、主としてエンジン温間時の排気ガス浄化を担う。   In many cases, an automobile employs a configuration in which exhaust gas is purified by a front catalyst directly connected to an exhaust manifold of an engine and an underfloor catalyst located downstream of the manifold catalyst in the exhaust gas flow. The front catalyst is mainly responsible for exhaust gas purification when the engine is cold, and the underfloor catalyst is primarily responsible for exhaust gas purification when the engine is warm.

例えば特許文献4には、前置き触媒は、ハニカム担体のセル壁に上下二層の触媒層を形成した構成として、下層にPdを設け、上層にRhを設けること、そして、床下触媒は、ハニカム担体のセル壁に触媒層を形成した構成として、その触媒層にRhを表面に担持したRhドープCeZrNd複酸化物粒子と、Ptを表面に担持した活性アルミナ粒子とを混在させることが記載されている。   For example, in Patent Document 4, the pre-catalyst has a structure in which two upper and lower catalyst layers are formed on the cell wall of the honeycomb carrier, Pd is provided in the lower layer, Rh is provided in the upper layer, and the catalyst under the floor is the honeycomb carrier. As a configuration in which a catalyst layer is formed on the cell wall, Rh-doped CeZrNd double oxide particles carrying Rh on the surface and activated alumina particles carrying Pt on the surface are mixed. .

特開平3−72950号公報Japanese Patent Laid-Open No. 3-72950 特開平5−277370号公報JP-A-5-277370 特開平6−142512号公報JP-A-6-142512 特開2008−62156号公報JP 2008-62156 A

ところで、アルコールを燃料にするにしても、エンジンの高負荷高回転運転時に排気ガス温度が900℃以上に上昇する。特許文献1の触媒の場合、Agは、融点が低く、Pt、Pd又はRhと合金を形成し易いことから、その早期劣化が懸念される。また、特許文献2〜4には、アルコールを含む燃料によるエンジンの排気ガス浄化に触媒を用いることは記載されていないが、仮にそれら文献に記載された触媒をそのような排気ガス浄化に用いたとしても、アルコールを含む燃料の排気ガスは、ガソリンのみを燃料とする場合の排気ガスとは組成が異なることから、必ずしも効果的な浄化を期待することができない。   By the way, even if alcohol is used as fuel, the exhaust gas temperature rises to 900 ° C. or higher during high-load high-speed operation of the engine. In the case of the catalyst of Patent Document 1, since Ag has a low melting point and easily forms an alloy with Pt, Pd or Rh, there is a concern about its early deterioration. In addition, Patent Documents 2 to 4 do not describe the use of a catalyst for purifying the exhaust gas of an engine with a fuel containing alcohol, but the catalyst described in those documents is temporarily used for such exhaust gas purification. Even so, since the exhaust gas of the fuel containing alcohol has a different composition from the exhaust gas when only gasoline is used as fuel, effective purification cannot be expected.

すなわち、アルコールを含む燃料の排気ガスは、ガソリンのみを燃料とする場合とは違って、安定生成物である飽和炭化水素が多く、また、アルデヒド等の酸素含有炭化水素も多い。飽和炭化水素と酸素含有炭化水素との合計量が排気ガス中の総HC量に占める割合は、ガソリンのみを燃料とする場合は20質量%程度であるが、エタノール85質量%とガソリン15質量%との混合燃料の場合、その割合は50質量%程度になる。従って、アルコールを含む燃料の排気ガスの浄化のためには、生成量が多い飽和炭化水素の酸化浄化、部分酸化状態にあるアルデヒド類の酸化浄化、並びにCO及びNOxの浄化を、効率良く行なうことができる触媒が求められる。   That is, unlike the case where only gasoline is used as fuel, the exhaust gas containing alcohol contains many saturated hydrocarbons, which are stable products, and many oxygen-containing hydrocarbons such as aldehydes. The ratio of the total amount of saturated hydrocarbons and oxygen-containing hydrocarbons to the total amount of HC in the exhaust gas is about 20% by mass when only gasoline is used as fuel, but 85% by mass of ethanol and 15% by mass of gasoline. In the case of the mixed fuel, the ratio is about 50% by mass. Therefore, in order to purify the exhaust gas of fuel containing alcohol, oxidation purification of saturated hydrocarbons with a large amount of production, oxidation purification of aldehydes in a partially oxidized state, and purification of CO and NOx must be performed efficiently. There is a need for a catalyst that can

本発明は、上記課題を解決するために、排気ガス通路に、第1触媒と第2触媒とを、後者が前者の排気ガス流れ下流側に位置するように配置し、この両触媒によってアルコールを含む燃料の排気ガスを効率良く浄化できるようにした。   In order to solve the above problems, the present invention arranges the first catalyst and the second catalyst in the exhaust gas passage so that the latter is located on the downstream side of the former exhaust gas flow, and the both catalysts are used for alcohol. The exhaust gas contained in the fuel can be purified efficiently.

すなわち、上記課題を解決する手段は、アルコールを含む燃料が使用されるエンジンの排気ガス通路に、第1触媒と、該第1触媒よりも排気ガス流れの下流側に配置された第2触媒とを備える排気ガス浄化装置において、
上記第1触媒は、ハニカム担体のセル壁に、Ptを必須成分として含有するPt含有層と、Pdを必須成分として含有するPd含有層と、Rhを必須成分として含有するRh含有層とが形成されてなり、
上記Pt含有層及びRh含有層は上記Pd含有層の上側に配置され、且つ上記Pd含有層及びRh含有層は上記ハニカム担体全長に亘って設けられている一方、上記Pt含有層は上記ハニカム担体の排気ガス流れ方向の上流側の端面から中間部位に亘る範囲に設けられ、
上記Pt含有層は、さらにCeとMgとを含むCeMg複合酸化物粒子を含有し、
上記第2触媒は、ハニカム担体のセル壁に、アルミナ粒子にPtが担持されてなるPt担持アルミナと、CeZr系複合酸化物粒子にRhがドープされてなるRhドープCeZr系複合酸化物、又はCeZr系複合酸化物粒子にRhが担持されてなるRh担持CeZr系複合酸化物とを含有する触媒層が形成されてなることを特徴とする。
That is, the means for solving the above-described problems includes a first catalyst in an exhaust gas passage of an engine in which alcohol-containing fuel is used, and a second catalyst disposed on the downstream side of the exhaust gas flow from the first catalyst. In an exhaust gas purification device comprising:
In the first catalyst, a Pt-containing layer containing Pt as an essential component, a Pd-containing layer containing Pd as an essential component, and an Rh-containing layer containing Rh as an essential component are formed on the cell walls of the honeycomb carrier. Being
The Pt-containing layer and the Rh-containing layer are disposed on the upper side of the Pd-containing layer, and the Pd-containing layer and the Rh-containing layer are provided over the entire length of the honeycomb carrier, while the Pt-containing layer is provided on the honeycomb carrier. Is provided in a range extending from the upstream end face in the exhaust gas flow direction to the intermediate portion,
The Pt-containing layer further contains CeMg composite oxide particles containing Ce and Mg,
The second catalyst includes Pt-supported alumina in which Pt is supported on alumina particles on a cell wall of a honeycomb carrier, Rh-doped CeZr-based composite oxide in which Rh is doped in CeZr-based composite oxide particles, or CeZr. The present invention is characterized in that a catalyst layer containing an Rh-supported CeZr-based composite oxide in which Rh is supported on a system composite oxide particle is formed.

ここに、上記RhドープCeZr系複合酸化物は、Ceイオン、Zrイオン及びRhイオンを含有する複合酸化物であり、Rhイオンは、当該複合酸化物粒子の結晶格子点又は格子点間に存在する。   Here, the Rh-doped CeZr-based composite oxide is a composite oxide containing Ce ions, Zr ions, and Rh ions, and the Rh ions exist between crystal lattice points or lattice points of the composite oxide particles. .

当該解決手段によれば、第1触媒では、Pt含有層、Pd含有層及びRh含有層の3層を組み合わせたことにより、ストイキ付近の空燃比において、排気ガス中のHC、CO及びNOxを効率良く浄化することができる。   According to the solution, the first catalyst efficiently combines HC, CO, and NOx in the exhaust gas at an air-fuel ratio in the vicinity of the stoichiometry by combining the Pt-containing layer, the Pd-containing layer, and the Rh-containing layer. It can be purified well.

特に、第1触媒がPtを含有することにより、アルコールを含む燃料の排気ガス中に多い飽和炭化水素のクラッキングが図れ、その酸化浄化に有利になるとともに、アルデヒド類の酸化浄化にも有利になる。   In particular, when the first catalyst contains Pt, cracking of saturated hydrocarbons in the exhaust gas of the fuel containing alcohol can be achieved, which is advantageous for oxidation purification and also for oxidation purification of aldehydes. .

さらに、Pt含有層が有するCeMg複合酸化物粒子のMgOは、塩基性酸化物であってMgに還元され易い性質を有する一方、アルコールが部分酸化されてなるアルデヒドは還元性が強い(酸化され易い)という性質を有する。このため、Pt含有層では、アルデヒドとMgOとの反応によるアルデヒドの酸化分解が促進される。しかも、CeMg複合酸化物粒子を含むPt含有層を、ハニカム担体全長に亘って設けるのではなく、その上流側に偏在させる配置としたから、ハニカム担体に対するPt含有層の担持量を多くせずとも、ハニカム担体上流側で集中的に飽和炭化水素のクラッキング、アルデヒドの酸化を図ることができる。そして、ハニカム担体上流側でのPt含有層による反応生成物をハニカム担体下流側においてPd含有層及びRh含有層によってさらに浄化することができ、未浄化排気ガスのスリップ量低減に有利になる。   Further, the MgO of the CeMg composite oxide particles of the Pt-containing layer is a basic oxide and has a property of being easily reduced to Mg, while an aldehyde formed by partially oxidizing alcohol is highly reducible (easily oxidized). ). For this reason, in the Pt-containing layer, oxidative decomposition of the aldehyde due to the reaction between the aldehyde and MgO is promoted. Moreover, the Pt-containing layer containing CeMg composite oxide particles is not provided over the entire length of the honeycomb carrier, but is arranged to be unevenly distributed on the upstream side thereof, so that the amount of the Pt-containing layer supported on the honeycomb carrier is not increased. In addition, saturated hydrocarbon cracking and aldehyde oxidation can be intensively performed on the upstream side of the honeycomb carrier. The reaction product of the Pt-containing layer on the upstream side of the honeycomb carrier can be further purified by the Pd-containing layer and the Rh-containing layer on the downstream side of the honeycomb carrier, which is advantageous for reducing the slip amount of unpurified exhaust gas.

また、第1触媒が、酸化触媒能が高いPdを含有することにより、エンジン冷間始動時など排気ガス温度が低いときのHC及びCOの酸化浄化に有利になる。加えて、上側の層が下層のPdを排気ガス熱や、排気ガス中の硫黄、燐から保護するため、該Pdの熱劣化、硫黄被毒、燐被毒が抑制され、さらに、RhとPdとの合金化も各々が上層と下層に離れていることから防止される。   In addition, since the first catalyst contains Pd having a high oxidation catalytic ability, it is advantageous for HC and CO oxidation purification when the exhaust gas temperature is low, such as when the engine is cold started. In addition, since the upper layer protects the lower Pd from the exhaust gas heat and sulfur and phosphorus in the exhaust gas, thermal degradation, sulfur poisoning, and phosphorus poisoning of the Pd are suppressed, and further, Rh and Pd Is also prevented from being separated from the upper layer and the lower layer.

また、第2触媒のPt担持アルミナ触媒成分も、上記飽和炭化水素のクラッキング及び酸化浄化、並びにアルデヒド類の酸化浄化に働き、さらにCO及びNOxの浄化に働く。さらに、この第2触媒は、酸素吸蔵放出能が高いRhドープCeZr系複合酸化物を含有するから、エンジンから排出される排気ガスの空燃比がストイキ付近から外れるように変動することがあっても、この空燃比の変動が上記酸素吸蔵放出能によって吸収される。よって、上記飽和酸化水素、その他のHC、アルデヒド類、CO及びNOxの浄化率が空燃比の変動によって低下することが抑制される。   In addition, the Pt-supported alumina catalyst component of the second catalyst also acts on the cracking and oxidation purification of the saturated hydrocarbon, the oxidation purification of aldehydes, and further on the purification of CO and NOx. Further, since the second catalyst contains the Rh-doped CeZr-based composite oxide having a high oxygen storage / release capability, the air-fuel ratio of the exhaust gas discharged from the engine may fluctuate outside the stoichiometric vicinity. The air-fuel ratio fluctuation is absorbed by the oxygen storage / release capability. Therefore, it is suppressed that the purification rate of the saturated hydrogen oxide, other HC, aldehydes, CO, and NOx is lowered due to the fluctuation of the air-fuel ratio.

上記解決手段の好ましい態様では、第1触媒のPt含有層は、ハニカム担体の上流側に偏在させるために、ハニカム担体全長の1/5以上1/2以下の範囲に設けられる。   In a preferred embodiment of the above solution, the Pt-containing layer of the first catalyst is provided in the range of 1/5 or more and 1/2 or less of the total length of the honeycomb support so as to be unevenly distributed on the upstream side of the honeycomb support.

上記解決手段の好ましい態様は、第1触媒のPt含有層は、アルミナ粒子にPtが担持されてなるPt担持アルミナを含有していることである。これにより、Pt担持アルミナによる飽和炭化水素、アルデヒド類の捕捉が図れ、飽和炭化水素のクラッキング、アルデヒドの酸化分解の促進に有利になる。   A preferable aspect of the above solution is that the Pt-containing layer of the first catalyst contains Pt-supported alumina in which Pt is supported on alumina particles. This makes it possible to capture saturated hydrocarbons and aldehydes with Pt-supported alumina, which is advantageous for cracking saturated hydrocarbons and promoting oxidative decomposition of aldehydes.

好ましいのは、第1触媒のPt含有層が、アルミナ粒子にPtが担持されてなるPt担持アルミナと、上記CeMg複合酸化物粒子とを混合状態で含有していることである。これにより、Pt担持アルミナとCeMg複合酸化物粒子との相互作用による、飽和炭化水素のクラッキング、アルデヒドの酸化分解の促進に有利になる。   Preferably, the Pt-containing layer of the first catalyst contains Pt-supported alumina in which Pt is supported on alumina particles and the CeMg composite oxide particles in a mixed state. This is advantageous for the cracking of saturated hydrocarbons and the promotion of oxidative decomposition of aldehydes due to the interaction between Pt-supported alumina and CeMg composite oxide particles.

上記CeMg複合酸化物粒子は、CeOとMgOとの合計量に占めるMgOの割合が5質量%以上40質量%以下であることが好ましい。これにより、MgOによるアルデヒドの酸化分解の促進に有利になる。 The CeMg composite oxide particles, it is preferable that the ratio of the MgO in the total amount of CeO 2 and MgO is 40 mass% or more and 5 mass% or less. This is advantageous for promoting oxidative decomposition of aldehyde by MgO.

上記第2触媒に関する好ましい態様は、その触媒層が、上記セル壁上に積み重なった上下2つの層を有し、その下層が上記Pt担持アルミナを含有し、その上層が上記RhドープCeZr系複合酸化物を含有することである。これにより、RhドープCeZr系複合酸化物による空燃比変動の吸収が効率良く行なわれ、Pt担持アルミナによる排気ガスの浄化に有利になる。   In a preferred embodiment of the second catalyst, the catalyst layer has two upper and lower layers stacked on the cell wall, the lower layer contains the Pt-supported alumina, and the upper layer is the Rh-doped CeZr-based composite oxide. Is to contain things. As a result, air-fuel ratio fluctuations are efficiently absorbed by the Rh-doped CeZr-based composite oxide, which is advantageous for purification of exhaust gas by Pt-supported alumina.

上記第1触媒及び第2触媒の配置に関する好ましい態様は、上記第1触媒は、自動車のエンジンの排気マニホールドに直結した触媒容器に収容され、上記第2触媒は、上記自動車の床下に配置された触媒容器に収容されていることである。これにより、エンジン冷間始動時のような排気ガス温度が低いときでも、第1触媒の早期活性化が図れ、また、エンジン温間運転時の温度が高くなった排気ガス浄化を第2触媒に担わせることができ、特に温間時にはエンジンの運転状態が様々に変化し空燃比が変動し易いが、RhドープCeZr系複合酸化物によって空燃比の変動を吸収して排気ガスを効率良く浄化することができる。   In a preferred aspect regarding the arrangement of the first catalyst and the second catalyst, the first catalyst is accommodated in a catalyst container directly connected to an exhaust manifold of an automobile engine, and the second catalyst is arranged under the floor of the automobile. It is accommodated in the catalyst container. As a result, even when the exhaust gas temperature is low, such as when the engine is cold started, the first catalyst can be activated early, and exhaust gas purification with a high temperature during engine warm operation can be applied to the second catalyst. Especially when warm, the operating state of the engine changes variously and the air-fuel ratio is likely to fluctuate, but the Rh-doped CeZr-based complex oxide absorbs the fluctuation of the air-fuel ratio and efficiently purifies the exhaust gas. be able to.

本発明によれば、上流側の第1触媒は、ハニカム担体のセル壁に、CeMg複合酸化物粒子を含有するPt含有層及びRh含有層がPd含有層の上側になるように設けられ、且つPt含有層はハニカム担体の上流側端面から中間部位に亘る範囲に設けられ、下流側の第2触媒は、ハニカム担体のセル壁に、Pt担持アルミナとRhドープCeZr系複合酸化物、又はRh担持CeZr系複合酸化物とを含有する触媒層が形成されてなるから、飽和炭化水素のクラッキング・酸化浄化、アルデヒド類の酸化浄化、並びにCO及びNOxの浄化が図れ、さらに、排気ガスの空燃比の変動があっても、排気ガス浄化率の低下が抑制され、アルコールを含む燃料の排気ガスの浄化に有利になる。   According to the present invention, the upstream first catalyst is provided on the cell wall of the honeycomb carrier so that the Pt-containing layer and the Rh-containing layer containing CeMg composite oxide particles are on the upper side of the Pd-containing layer, and The Pt-containing layer is provided in a range extending from the upstream end face of the honeycomb carrier to the intermediate portion, and the downstream second catalyst is formed on the cell wall of the honeycomb carrier with Pt-supported alumina and Rh-doped CeZr composite oxide or Rh-support. Since a catalyst layer containing CeZr-based composite oxide is formed, it is possible to purify saturated hydrocarbons by cracking / oxidation purification, aldehydes oxidation purification, and CO and NOx purification. Even if there is a fluctuation, the reduction of the exhaust gas purification rate is suppressed, which is advantageous for purification of exhaust gas of alcohol-containing fuel.

本発明の実施形態に係る排気ガス浄化装置の構成図である。1 is a configuration diagram of an exhaust gas purification device according to an embodiment of the present invention. 第1触媒の実施例を示す断面図である。It is sectional drawing which shows the Example of a 1st catalyst. 第2触媒の実施例を示す断面図である。It is sectional drawing which shows the Example of a 2nd catalyst.

以下、本発明を実施するための形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

図1において、1はアルコールを含む燃料が使用される自動車のエンジン、2はエンジン1の排気ガス通路、3は排気ガス通路2に配置された第1触媒、4は第1触媒3よりも排気ガス流れ下流側の排気ガス通路2に配置された第2触媒である。第1触媒3は、エンジン1の排気マニホールドに直結された触媒容器5に収容され、第2触媒4は自動車の床下に配置された触媒容器6に収容されている。   In FIG. 1, reference numeral 1 is an automobile engine in which a fuel containing alcohol is used, 2 is an exhaust gas passage of the engine 1, 3 is a first catalyst disposed in the exhaust gas passage 2, and 4 is exhausted from the first catalyst 3 It is the 2nd catalyst arrange | positioned at the exhaust gas channel | path 2 of a gas flow downstream. The first catalyst 3 is accommodated in a catalyst container 5 directly connected to the exhaust manifold of the engine 1, and the second catalyst 4 is accommodated in a catalyst container 6 disposed under the floor of the automobile.

図2には第1触媒3の一例が示されている。その第1触媒3は、ハニカム担体のセル壁7に、Ptを必須成分として含有するPt含有層8と、Pdを必須成分として含有するPd含有層9と、Rhを必須成分として含有するRh含有層10とが形成されてなる。Pd含有層9を下層として、その上にPt含有層8及びRh含有層10が積層されている。また、Pd含有層9及びRh含有層10はハニカム担体全長に亘って設けられている一方、Pt含有層8はハニカム担体の排気ガス流れ方向の上流側の端面から中間部位に亘る範囲に設けられている。   FIG. 2 shows an example of the first catalyst 3. The first catalyst 3 includes a Pt-containing layer 8 containing Pt as an essential component, a Pd-containing layer 9 containing Pd as an essential component, and an Rh-containing content containing Rh as an essential component on the cell wall 7 of the honeycomb carrier. Layer 10 is formed. With the Pd-containing layer 9 as a lower layer, the Pt-containing layer 8 and the Rh-containing layer 10 are laminated thereon. The Pd-containing layer 9 and the Rh-containing layer 10 are provided over the entire length of the honeycomb carrier, while the Pt-containing layer 8 is provided in a range from the upstream end surface of the honeycomb carrier in the exhaust gas flow direction to the intermediate portion. ing.

図2の例では、Pt含有層8は、ハニカム担体の上流側において、Pd含有層9とRh含有層10との間に中間層として設けられ、ハニカム担体の下流側では、Pd含有層9の上にRh含有層10が積層されている。これとは違って、Rh含有層10をPd含有層9の上にハニカム担体全長に亘って積層し、Pt含有層8をハニカム担体の上流側においてRh含有層10の上に積層してもよい。つまり、ハニカム担体上流側では、Rh含有層10が中間層となり、Pt含有層8が上層となる構成を採用してもよい。   In the example of FIG. 2, the Pt-containing layer 8 is provided as an intermediate layer between the Pd-containing layer 9 and the Rh-containing layer 10 on the upstream side of the honeycomb carrier, and the Pd-containing layer 9 on the downstream side of the honeycomb carrier. An Rh-containing layer 10 is laminated thereon. Unlike this, the Rh-containing layer 10 may be laminated on the Pd-containing layer 9 over the entire length of the honeycomb carrier, and the Pt-containing layer 8 may be laminated on the Rh-containing layer 10 on the upstream side of the honeycomb carrier. . That is, on the upstream side of the honeycomb carrier, a configuration in which the Rh-containing layer 10 is an intermediate layer and the Pt-containing layer 8 is an upper layer may be employed.

Pt含有層8は、その必須成分とするPtを、活性アルミナ粒子に担持させて、Pt/アルミナ(Pt担持アルミナ)として含有し、さらにCeとMgとを含むCeMg複合酸化物粒子を含有する。すなわち、Pt含有層8は、Pt/アルミナとCeMg複合酸化物粒子とを混合して含有する。Pd含有層9は、その必須成分とするPdを、活性アルミナ粒子に担持させて、Pd/アルミナ(Pd担持アルミナ)として含有する。Rh含有層10は、その必須成分とするRhを、OSC(酸素吸蔵放出能;Oxygen Storage Capacity)材に担持させて、Rh/OSC(Rh担持OSC材)として含有する。   The Pt-containing layer 8 contains Pt, which is an essential component, supported on activated alumina particles as Pt / alumina (Pt-supported alumina), and further contains CeMg composite oxide particles containing Ce and Mg. That is, the Pt-containing layer 8 contains a mixture of Pt / alumina and CeMg composite oxide particles. The Pd-containing layer 9 contains Pd, which is an essential component, on activated alumina particles and contains it as Pd / alumina (Pd-supported alumina). The Rh-containing layer 10 contains Rh as an essential component on an OSC (Oxygen Storage Capacity) material and contains it as Rh / OSC (Rh-supported OSC material).

図3には第2触媒4の一例が示されている。その第2触媒4は、ハニカム担体のセル壁7に、活性アルミナ粒子にPtが担持されてなるPt/アルミナ(Pt担持アルミナ)と、酸素吸蔵放出能を有するCeZr系複合酸化物粒子にRhがドープされてなるRhドープOSC(RhドープCeZr系複合酸化物)とを含有する触媒層11が形成されてなる。RhドープOSCに代えて、或いはRhドープOSCと共に、CeZr系複合酸化物粒子にRhが担持されてなるRh/OSC(Rh担持CeZr系複合酸化物)を触媒層11に設けるようにしてもよい。また、触媒層11を上下二層構造とし、下層がPt/アルミナを含有し、上層がRhドープOSC又はRh/OSCを含有する構成としてもよい。   FIG. 3 shows an example of the second catalyst 4. The second catalyst 4 includes Pt / alumina (Pt-supported alumina) in which Pt is supported on activated alumina particles on the cell wall 7 of the honeycomb carrier, and Rh in CeZr-based composite oxide particles having oxygen storage / release capability. A catalyst layer 11 containing a doped Rh-doped OSC (Rh-doped CeZr composite oxide) is formed. Instead of Rh-doped OSC, or together with Rh-doped OSC, Rh / OSC (Rh-supported CeZr-based composite oxide) in which Rh is supported on CeZr-based composite oxide particles may be provided in catalyst layer 11. Alternatively, the catalyst layer 11 may have a two-layer structure with the lower layer containing Pt / alumina and the upper layer containing Rh-doped OSC or Rh / OSC.

RhドープOSCは、Ce、Zr及びRhの各硝酸溶液を混合し、さらに必要に応じてNdなど他の金属の硝酸溶液を添加混合し、この混合溶液にアンモニア水等の塩基性溶液を添加混合してそれら金属成分を共沈させ、得られた沈殿物を脱水処理して焼成するという、共沈法によって得ることができる。Rh/OSCは、CeZr系複合酸化物の粉末にRhの硝酸溶液を含浸させ、乾燥及び焼成をするという、含浸法によって得ることができる。   Rh-doped OSC mixes nitric acid solutions of Ce, Zr, and Rh, and if necessary, adds and mixes nitric acid solutions of other metals such as Nd, and then adds and mixes a basic solution such as ammonia water to the mixed solution. Then, these metal components can be coprecipitated, and the resulting precipitate can be obtained by a coprecipitation method in which dehydration is performed and firing. Rh / OSC can be obtained by an impregnation method in which a CeZr-based composite oxide powder is impregnated with a nitric acid solution of Rh, and dried and fired.

以下、実施例及び比較例について説明する。   Hereinafter, examples and comparative examples will be described.

−実施例1−
第1触媒については、図2に示す例のように、Pd含有層を下層とし、Pt含有層を中間層とし、Rh含有層を上層とした。Pd含有層は、上記Pd/アルミナの他に、OSC材としての酸化セリウム粒子及びCeZr系複合酸化物粒子を混合して含有する構成とした。
Example 1
For the first catalyst, as in the example shown in FIG. 2, the Pd-containing layer was the lower layer, the Pt-containing layer was the intermediate layer, and the Rh-containing layer was the upper layer. The Pd-containing layer was configured to contain a mixture of cerium oxide particles and CeZr-based composite oxide particles as OSC materials in addition to the Pd / alumina.

Pt含有層のPt/アルミナ及びPd含有層のPd/アルミナ各々を構成する活性アルミナ粒子としては、Laを5質量%含有するAlを採用した。Pd含有層のCeZr系複合酸化物粒子及びRh含有層のRhドープOSCを構成するCeZr系複合酸化物粒子の組成は、CeO:ZrO:Nd=67:23:10(質量比)とした。各層ではバインダとして硝酸ジルコニルを採用した。 The active alumina particles constituting the Pd / alumina each Pt / alumina and Pd-containing layers of Pt-containing layer, was adopted Al 2 O 3 containing La 2 O 3 5 wt%. The composition of the CeZr-based composite oxide particles of the Pd-containing layer and the CeZr-based composite oxide particles constituting the Rh-doped OSC of the Rh-containing layer is CeO 2 : ZrO 2 : Nd 2 O 3 = 67: 23: 10 (mass ratio) ). In each layer, zirconyl nitrate was used as a binder.

Pt含有層のハニカム担体上流端から長さは、ハニカム担体全長の20%とした。Pt含有層のCeMg複合酸化物のMgO比(MgO/(MgO+CeO))は5質量%とした。 The length of the Pt-containing layer from the upstream end of the honeycomb carrier was 20% of the total length of the honeycomb carrier. The MgO ratio (MgO / (MgO + CeO 2 )) of the CeMg composite oxide in the Pt-containing layer was 5% by mass.

各層の組成(各成分の担体1L当たりの担持量)は表1のとおりである。ハニカム担体としては、セル壁厚さ3.5mil(8.89×10−2mm)、1平方インチ(645.16mm)当たりのセル数600のコージェライト製(長さ91mm,直径118.4mm,容量1L)を採用した。 Table 1 shows the composition of each layer (the amount of each component supported per 1 L of carrier). The honeycomb carrier is made of cordierite having a cell wall thickness of 3.5 mil (8.89 × 10 −2 mm) and 600 cells per square inch (645.16 mm 2 ) (length: 91 mm, diameter: 118.4 mm). , Capacity 1L).

Figure 2010264371
Figure 2010264371

第2触媒については、図3に示す例のように、ハニカム担体のセル壁に、Pt/アルミナとRhドープOSCとを混合して含有する触媒層を形成した構成した。Pt/アルミナを構成する活性アルミナ粒子としては、Laを4質量%含有するAlを採用した。RhドープOSCとしては、CeO:ZrO:Nd=22:68:10(質量比)のCeZrNd複合酸化物粒子にRhが0.089質量%ドープされているものを採用した。バインダとして硝酸ジルコニルを採用した。当該触媒層の組成は表2のタイプA欄に示すとおりである。ハニカム担体としては、セル壁厚さ4.5mil(11.43×10−2mm)、1平方インチ(645.16mm)当たりのセル数400のコージェライト製(長さ103mm,直径129mm,容量1.35L)を採用した。 As for the second catalyst, a catalyst layer containing a mixture of Pt / alumina and Rh-doped OSC was formed on the cell wall of the honeycomb carrier as in the example shown in FIG. The active alumina particles constituting the Pt / alumina was employed Al 2 O 3 containing La 2 O 3 4% by weight. As the Rh-doped OSC, CeO 2 : ZrO 2 : Nd 2 O 3 = 22: 68: 10 (mass ratio) CeZrNd composite oxide particles in which Rh was doped by 0.089% by mass was used. Zirconyl nitrate was used as the binder. The composition of the catalyst layer is as shown in the type A column of Table 2. The honeycomb carrier is made of cordierite with a cell wall thickness of 4.5 mil (11.43 × 10 −2 mm) and 400 cells per square inch (645.16 mm 2 ) (length: 103 mm, diameter: 129 mm, capacity) 1.35 L) was employed.

Figure 2010264371
Figure 2010264371

−実施例2−
第1触媒のCeMg複合酸化物のMgO比を40質量%とする他は実施例1と同じ構成とした。
-Example 2-
The same configuration as in Example 1 was adopted except that the MgO ratio of the CeMg composite oxide of the first catalyst was 40% by mass.

−実施例3−
第1触媒のPt含有層の長さをハニカム担体全長の30%とし、CeMg複合酸化物のMgO比を20質量%とする他は実施例1と同じ構成とした。
-Example 3-
The structure was the same as that of Example 1 except that the length of the Pt-containing layer of the first catalyst was 30% of the total length of the honeycomb carrier and the MgO ratio of the CeMg composite oxide was 20% by mass.

−実施例4−
第1触媒のPt含有層の長さをハニカム担体全長の40%とし、CeMg複合酸化物のMgO比を30質量%とする他は実施例1と同じ構成とした。
Example 4
The structure was the same as that of Example 1, except that the length of the Pt-containing layer of the first catalyst was 40% of the total length of the honeycomb carrier, and the MgO ratio of the CeMg composite oxide was 30% by mass.

−実施例5−
第1触媒のPt含有層の長さをハニカム担体全長の50%とする他は実施例1と同じ構成とした。
-Example 5
The structure was the same as that of Example 1 except that the length of the Pt-containing layer of the first catalyst was 50% of the total length of the honeycomb carrier.

−実施例6−
第1触媒のPt含有層の長さをハニカム担体全長の50%とし、CeMg複合酸化物のMgO比を40質量%とする他は実施例1と同じ構成とした。
-Example 6
The structure was the same as that of Example 1, except that the length of the Pt-containing layer of the first catalyst was 50% of the total length of the honeycomb carrier and the MgO ratio of the CeMg composite oxide was 40% by mass.

−実施例7−
第1触媒のPt含有層の長さをハニカム担体全長の60%とする他は実施例1と同じ構成とした。
-Example 7-
The structure was the same as that of Example 1 except that the length of the Pt-containing layer of the first catalyst was 60% of the total length of the honeycomb carrier.

−実施例8−
第1触媒のPt含有層の長さをハニカム担体全長の60%とし、CeMg複合酸化物のMgO比を40質量%とする他は実施例1と同じ構成とした。
-Example 8-
The length of the Pt-containing layer of the first catalyst was set to 60% of the total length of the honeycomb carrier, and the MgM ratio of the CeMg composite oxide was set to 40% by mass.

−実施例9−
ハニカム担体上流側において、Rh含有層が中間層となり、Pt含有層が上層となる構成を採用する他は実施例1と同じ構成とした。
-Example 9-
The configuration was the same as that of Example 1 except that the Rh-containing layer was an intermediate layer and the Pt-containing layer was an upper layer on the upstream side of the honeycomb carrier.

−実施例10−
ハニカム担体上流側において、Rh含有層が中間層となり、Pt含有層が上層となる構成を採用する他は実施例2と同じ構成とした。
-Example 10-
The configuration was the same as that of Example 2 except that the Rh-containing layer was an intermediate layer and the Pt-containing layer was an upper layer on the upstream side of the honeycomb carrier.

−実施例11−
ハニカム担体上流側において、Rh含有層が中間層となり、Pt含有層が上層となる構成を採用する他は実施例3と同じ構成とした。
-Example 11-
The configuration was the same as that of Example 3 except that the Rh-containing layer was an intermediate layer and the Pt-containing layer was an upper layer on the upstream side of the honeycomb carrier.

−実施例12−
ハニカム担体上流側において、Rh含有層が中間層となり、Pt含有層が上層となる構成を採用する他は実施例4と同じ構成とした。
-Example 12-
The configuration was the same as that of Example 4 except that a configuration in which the Rh-containing layer was an intermediate layer and the Pt-containing layer was an upper layer on the upstream side of the honeycomb carrier was adopted.

−実施例13−
ハニカム担体上流側において、Rh含有層が中間層となり、Pt含有層が上層となる構成を採用する他は実施例5と同じ構成とした。
-Example 13-
The configuration was the same as that of Example 5 except that a configuration in which the Rh-containing layer was an intermediate layer and the Pt-containing layer was an upper layer on the upstream side of the honeycomb carrier was adopted.

−実施例14−
ハニカム担体上流側において、Rh含有層が中間層となり、Pt含有層が上層となる構成を採用する他は実施例6と同じ構成とした。
-Example 14-
The configuration was the same as that of Example 6 except that a configuration in which the Rh-containing layer was an intermediate layer and the Pt-containing layer was an upper layer on the upstream side of the honeycomb carrier was adopted.

−実施例15−
第2触媒に、実施例1のRhドープOSCに代えてRh/OSCを採用する他は実施例1と同じ構成とした。Rh/OSCは、CeO:ZrO:Nd=22:68:10(質量比)のCeZrNd複合酸化物粒子にRhを含浸法によって0.089質量%担持させたものである。第2触媒の触媒層の組成は表2のタイプB欄に示すとおりである。
-Example 15-
The same configuration as in Example 1 was adopted except that Rh / OSC was adopted as the second catalyst instead of the Rh-doped OSC of Example 1. Rh / OSC is obtained by supporting 0.089% by mass of Rh on a CeZrNd composite oxide particle of CeO 2 : ZrO 2 : Nd 2 O 3 = 22: 68: 10 (mass ratio) by an impregnation method. The composition of the catalyst layer of the second catalyst is as shown in the type B column of Table 2.

−実施例16−
第1触媒のCeMg複合酸化物のMgO比を40質量%とする他は実施例15と同じ構成とした。この実施例14は、第2触媒に表2のタイプBを採用した他は実施例2と同じ構成になっている。
-Example 16-
The structure was the same as that of Example 15 except that the MgO ratio of the CeMg composite oxide of the first catalyst was 40% by mass. This Example 14 has the same configuration as that of Example 2 except that the type B shown in Table 2 was adopted as the second catalyst.

−実施例17−
第1触媒のPt含有層の長さをハニカム担体全長の50%とする他は実施例15と同じ構成とした。この実施例17は、第2触媒に表2のタイプBを採用した他は実施例5と同じ構成になっている。
-Example 17-
The structure was the same as that of Example 15 except that the length of the Pt-containing layer of the first catalyst was 50% of the total length of the honeycomb carrier. This Example 17 has the same configuration as that of Example 5 except that the type B shown in Table 2 was adopted as the second catalyst.

−実施例18−
第1触媒のPt含有層の長さをハニカム担体全長の50%とし、CeMg複合酸化物のMgO比を40質量%とする他は実施例15と同じ構成とした。この実施例18は、第2触媒に表2のタイプBを採用した他は実施例6と同じ構成になっている。
-Example 18-
The structure was the same as in Example 15 except that the length of the Pt-containing layer of the first catalyst was 50% of the total length of the honeycomb carrier and the MgO ratio of the CeMg composite oxide was 40% by mass. Example 18 has the same configuration as Example 6 except that the type B shown in Table 2 was adopted as the second catalyst.

−実施例19−
ハニカム担体上流側において、Rh含有層が中間層となり、Pt含有層が上層となる構成を採用する他は実施例15と同じ構成とした。この実施例19は、第2触媒に表2のタイプBを採用した他は実施例9と同じ構成になっている。
-Example 19-
The configuration was the same as that of Example 15 except that the Rh-containing layer was an intermediate layer and the Pt-containing layer was an upper layer on the upstream side of the honeycomb carrier. This Example 19 has the same configuration as that of Example 9 except that the type B shown in Table 2 was adopted as the second catalyst.

−実施例20−
ハニカム担体上流側において、Rh含有層が中間層となり、Pt含有層が上層となる構成を採用する他は実施例16と同じ構成とした。この実施例20は、第2触媒に表2のタイプBを採用した他は実施例10と同じ構成になっている。
-Example 20-
The configuration was the same as that of Example 16 except that a configuration in which the Rh-containing layer was an intermediate layer and the Pt-containing layer was an upper layer on the upstream side of the honeycomb carrier was adopted. This Example 20 has the same configuration as that of Example 10 except that the type B shown in Table 2 is adopted as the second catalyst.

−実施例21−
ハニカム担体上流側において、Rh含有層が中間層となり、Pt含有層が上層となる構成を採用する他は実施例17と同じ構成とした。この実施例21は、第2触媒に表2のタイプBを採用した他は実施例13と同じ構成になっている。
-Example 21-
The configuration was the same as that of Example 17 except that a configuration in which the Rh-containing layer was an intermediate layer and the Pt-containing layer was an upper layer on the upstream side of the honeycomb carrier was adopted. Example 21 has the same configuration as Example 13 except that the type B shown in Table 2 was used as the second catalyst.

−実施例22−
ハニカム担体上流側において、Rh含有層が中間層となり、Pt含有層が上層となる構成を採用する他は実施例18と同じ構成とした。この実施例22は、第2触媒に表2のタイプBを採用した他は実施例14と同じ構成になっている。
-Example 22-
The configuration was the same as that of Example 18 except that a configuration in which the Rh-containing layer was an intermediate layer and the Pt-containing layer was an upper layer on the upstream side of the honeycomb carrier was adopted. This Example 22 has the same configuration as that of Example 14 except that the type B shown in Table 2 was adopted as the second catalyst.

−実施例23−
第2触媒の触媒層を上層及び下層の二層構造とする他は実施例1と同じ構成とした。第2触媒の上層は、Pt/アルミナとRhドープOSCとを混合して含有し、下層はPt/アルミナを含有する。第2触媒の触媒層の組成は表2のタイプC欄に示すとおりである。
-Example 23-
The structure was the same as in Example 1 except that the catalyst layer of the second catalyst had a two-layer structure of an upper layer and a lower layer. The upper layer of the second catalyst contains a mixture of Pt / alumina and Rh-doped OSC, and the lower layer contains Pt / alumina. The composition of the catalyst layer of the second catalyst is as shown in the type C column of Table 2.

−実施例24−
第1触媒のCeMg複合酸化物のMgO比を40質量%とする他は実施例23と同じ構成とした。この実施例24は、第2触媒に表2のタイプCを採用した他は実施例2と同じ構成になっている。
-Example 24-
The structure was the same as that of Example 23 except that the MgO ratio of the CeMg composite oxide of the first catalyst was 40% by mass. This Example 24 has the same configuration as that of Example 2 except that the type C shown in Table 2 was adopted as the second catalyst.

−実施例25−
第1触媒のPt含有層の長さをハニカム担体全長の50%とする他は実施例23と同じ構成とした。この実施例25は、第2触媒に表2のタイプCを採用した他は実施例5と同じ構成になっている。
-Example 25-
The structure was the same as that of Example 23 except that the length of the Pt-containing layer of the first catalyst was 50% of the total length of the honeycomb carrier. This Example 25 has the same configuration as that of Example 5 except that the type C shown in Table 2 is adopted as the second catalyst.

−実施例26−
第1触媒のPt含有層の長さをハニカム担体全長の50%とし、CeMg複合酸化物のMgO比を40質量%とする他は実施例23と同じ構成とした。この実施例26は、第2触媒に表2のタイプCを採用した他は実施例6と同じ構成になっている。
-Example 26-
The structure was the same as in Example 23 except that the length of the Pt-containing layer of the first catalyst was 50% of the total length of the honeycomb carrier and the MgO ratio of the CeMg composite oxide was 40% by mass. This Example 26 has the same configuration as that of Example 6 except that the type C shown in Table 2 is adopted as the second catalyst.

−比較例1−
第1触媒にPt含有層を設けない他は実施例1と同じ構成とした。
-Comparative Example 1-
The configuration was the same as in Example 1 except that the Pt-containing layer was not provided on the first catalyst.

−比較例2−
第1触媒のPt含有層をPt/アルミナ(15g/L)及びバインダ(2g/L)よりなる構成とし(CeMg複合酸化物なし)、且つPt含有層の長さをハニカム担体全長の100%とする他は実施例1と同じ構成にした。つまり、ハニカム担体全長に亘って、Rh含有層、Pt含有層(CeMg複合酸化物なし)及びPd含有層が、それぞれ上層、中間層及び下層構成する三層構造とした。
-Comparative Example 2-
The Pt-containing layer of the first catalyst is composed of Pt / alumina (15 g / L) and a binder (2 g / L) (without CeMg composite oxide), and the length of the Pt-containing layer is 100% of the total length of the honeycomb carrier. Otherwise, the configuration was the same as in Example 1. That is, the Rh-containing layer, the Pt-containing layer (without the CeMg composite oxide), and the Pd-containing layer have a three-layer structure including an upper layer, an intermediate layer, and a lower layer, respectively, over the entire length of the honeycomb carrier.

−比較例3−
第1触媒のPt含有層をPt/アルミナ(15g/L)及びバインダ(2g/L)よりなる構成とし(CeMg複合酸化物なし)、且つPt含有層の長さをハニカム担体全長の100%とする他は実施例9と同じ構成にした。つまり、ハニカム担体全長に亘って、Pt含有層(CeMg複合酸化物なし)、Rh含有層及びPd含有層が、それぞれ上層、中間層及び下層構成する三層構造とした。
-Comparative Example 3-
The Pt-containing layer of the first catalyst is composed of Pt / alumina (15 g / L) and a binder (2 g / L) (without CeMg composite oxide), and the length of the Pt-containing layer is 100% of the total length of the honeycomb carrier. Otherwise, the configuration was the same as in Example 9. That is, a three-layer structure in which the Pt-containing layer (without CeMg composite oxide), the Rh-containing layer, and the Pd-containing layer is constituted as an upper layer, an intermediate layer, and a lower layer, respectively, over the entire length of the honeycomb carrier.

−比較例4−
第1触媒のCeMg複合酸化物のMgO比を0質量%とする(つまり、Mgイオンを含まないCeOとする)他は実施例7と同じ構成とした。
-Comparative Example 4-
The same configuration as in Example 7 was used except that the MgO ratio of the CeMg composite oxide of the first catalyst was 0 mass% (that is, CeO 2 containing no Mg ions).

−比較例5−
第1触媒のPt含有層を下層に、Pd含有層を中間層に、Rh含有層を上層にする他は実施例2と同じ構成とした。
-Comparative Example 5-
The same configuration as in Example 2 was adopted except that the Pt-containing layer of the first catalyst was the lower layer, the Pd-containing layer was the intermediate layer, and the Rh-containing layer was the upper layer.

−比較例6−
第1触媒のPt含有層を下層に、Pd含有層を中間層に、Rh含有層を上層にする他は実施例6と同じ構成とした。
-Comparative Example 6
The configuration was the same as that of Example 6 except that the Pt-containing layer of the first catalyst was the lower layer, the Pd-containing layer was the intermediate layer, and the Rh-containing layer was the upper layer.

−比較例7−
第1触媒のPt含有層の長さをハニカム担体全長の100%とする他は比較例6と同じ構成とした。
-Comparative Example 7-
The structure was the same as Comparative Example 6 except that the length of the Pt-containing layer of the first catalyst was 100% of the total length of the honeycomb carrier.

−比較例8−
第2触媒の触媒層を、CeZr系複合酸化物粒子にPtを担持させてなるPt/OSCと、活性アルミナ粒子にRhを担持させてなるRh/アルミナとを混合して含有する単層構造とする他は実施例2と同じ構成にした。CeZr系複合酸化物粒子の組成は、CeO:ZrO:Nd=22:68:10(質量比)であり、活性アルミナ粒子にはLaを4質量%含有するAlを採用した。第2触媒の触媒層の組成は表2のタイプD欄に示すとおりである。比較例8は、第2触媒に表2のタイプDを採用した他は実施例2と同じ構成になっている。
-Comparative Example 8-
A single layer structure containing a mixture of Pt / OSC in which Pt is supported on CeZr-based composite oxide particles and Rh / alumina in which Rh is supported on activated alumina particles; Otherwise, the configuration was the same as in Example 2. The composition of the CeZr-based composite oxide particles is CeO 2 : ZrO 2 : Nd 2 O 3 = 22: 68: 10 (mass ratio), and the activated alumina particles contain Al 2 containing 4% by mass of La 2 O 3. O 3 was adopted. The composition of the catalyst layer of the second catalyst is as shown in the type D column of Table 2. Comparative Example 8 has the same configuration as that of Example 2 except that Type D shown in Table 2 was adopted as the second catalyst.

−比較例9−
第2触媒に表2のタイプDを採用する他は実施例3と同じ構成にした。
-Comparative Example 9-
The configuration was the same as in Example 3 except that the type D shown in Table 2 was adopted as the second catalyst.

−比較例10−
第2触媒に表2のタイプDを採用する他は実施例10と同じ構成にした。
-Comparative Example 10-
The configuration was the same as that of Example 10 except that the type D shown in Table 2 was adopted as the second catalyst.

−比較例11−
第2触媒に表2のタイプDを採用する他は実施例11と同じ構成にした。
-Comparative Example 11-
The structure was the same as that of Example 11 except that the type D shown in Table 2 was adopted as the second catalyst.

<触媒性能の評価>
実施例1〜26及び比較例1〜11の各排気ガス浄化装置について、EUモード試験にて、エンジン始動後100秒間のHC、CO及びNOxの浄化率を測定した。いずれも、第1触媒は排気マニホールドに直結した触媒容器5に収容し、第2触媒4は自動車の床下に配置した触媒容器6に収容した。エンジンは排気量2Lの直列4気筒であり、燃料はエタノール85質量%とガソリン15質量%との混合燃料とした。また、事前にベンチエージング(触媒入口温度が900℃となる運転を100時間)行なった。結果を表3に示す。表3において、「Pd層」はPd含有層のことを、「Pt層」はPt含有層のことを、「Rh層」はRh含有層のことを、「中層」は中間層のことを、「−」はCeMg複合酸化物を含有しないことを、それぞれ意味する。
<Evaluation of catalyst performance>
About each exhaust-gas purification apparatus of Examples 1-26 and Comparative Examples 1-11, the purification rate of HC, CO, and NOx for 100 seconds after engine starting was measured by the EU mode test. In either case, the first catalyst was accommodated in the catalyst container 5 directly connected to the exhaust manifold, and the second catalyst 4 was accommodated in the catalyst container 6 disposed under the floor of the automobile. The engine was an inline 4-cylinder engine with a displacement of 2 L, and the fuel was a mixed fuel of 85% by mass of ethanol and 15% by mass of gasoline. In addition, bench aging was performed in advance (operation in which the catalyst inlet temperature was 900 ° C. for 100 hours). The results are shown in Table 3. In Table 3, “Pd layer” refers to the Pd-containing layer, “Pt layer” refers to the Pt-containing layer, “Rh layer” refers to the Rh-containing layer, “intermediate layer” refers to the intermediate layer, “-” Means that no CeMg composite oxide is contained.

Figure 2010264371
Figure 2010264371

実施例1〜26は、HC、CO及びNOxいずれも浄化率も概ね高いという結果になっている。   In Examples 1 to 26, all of HC, CO, and NOx have a high purification rate.

まず、第1触媒の構成の異同に着目して実施例及び比較例の触媒性能の評価結果を検討する。実施例1と比較例1との比較により、Pt含有層の存在が排気ガス浄化率を大きく向上させることがわかる。実施例1〜6と実施例9〜14との比較により、Pt含有層を中間層とすることが排気ガス浄化率の向上に有利であることがわかる。実施例1,5,7相互の比較、並びに実施例2,6,8相互の比較により、Pt含有層のハニカム担体上流端からの長さが50%(ハニカム担体全長の1/2長さ)を越えると、排気ガス浄化率の低下が大きくなること、従って、その長さは1/2以下が好ましいことがわかる。   First, the evaluation results of the catalyst performance of the examples and the comparative examples are examined by paying attention to the difference in the configuration of the first catalyst. A comparison between Example 1 and Comparative Example 1 shows that the presence of the Pt-containing layer greatly improves the exhaust gas purification rate. Comparison between Examples 1 to 6 and Examples 9 to 14 reveals that it is advantageous for improving the exhaust gas purification rate to use the Pt-containing layer as an intermediate layer. According to the comparison between Examples 1, 5, and 7 and the comparison between Examples 2, 6, and 8, the length of the Pt-containing layer from the upstream end of the honeycomb carrier was 50% (1/2 of the total length of the honeycomb carrier). If it exceeds, the reduction of the exhaust gas purification rate becomes large, and therefore the length is preferably ½ or less.

実施例7,8及び比較例4相互の比較により、Pt含有層にCeMg複合酸化物を含ませると、MgO比が5%程度と少ない場合でも、CeOを含ませる場合(比較例4)に比べて、排気ガス浄化率が大きく向上することがわかる。実施例1,2相互の比較、実施例5,6相互の比較、実施例9,10相互の比較等により、MgO比が5%から40%になると、排気ガス浄化率が低下する傾向が見られるが、大きな低下ではない。この結果から、MgO比が5%以上40%以下の範囲であるときは、排気ガス浄化率が向上することを確認することができる。 According to the comparison between Examples 7 and 8 and Comparative Example 4, when CeMg composite oxide was included in the Pt-containing layer, even when the MgO ratio was as low as about 5%, CeO 2 was included (Comparative Example 4). In comparison, it can be seen that the exhaust gas purification rate is greatly improved. According to the comparison between Examples 1 and 2, comparison between Examples 5 and 6, comparison between Examples 9 and 10, etc., when the MgO ratio is changed from 5% to 40%, the exhaust gas purification rate tends to decrease. Is not a big drop. From this result, it can be confirmed that the exhaust gas purification rate improves when the MgO ratio is in the range of 5% to 40%.

また、CeO及びCeMg複合酸化物のいずれも含まないPt含有層をハニカム担体全長に亘って形成した比較例2,3よりも、CeOを含むPt含有層の長さを60%にした比較例4の方が排気ガス浄化率は悪い。従って、Pt含有層をハニカム担体の上流側に偏在させることによる排気ガス浄化率の向上効果は、Pt含有層にCeMg複合酸化物を含ませるケース(実施例)で得られることがわかる。 Further, compared to Comparative Examples 2 and 3 in which the Pt-containing layer containing neither CeO 2 nor CeMg composite oxide was formed over the entire length of the honeycomb carrier, the length of the Pt-containing layer containing CeO 2 was set to 60%. In Example 4, the exhaust gas purification rate is worse. Therefore, it can be seen that the effect of improving the exhaust gas purification rate due to the uneven distribution of the Pt-containing layer on the upstream side of the honeycomb carrier can be obtained in the case (Example) in which the Pt-containing layer contains CeMg composite oxide.

次に、第2触媒の構成の異同に着目して実施例及び比較例の触媒性能の評価結果を検討する。   Next, focusing on the difference in the configuration of the second catalyst, the evaluation results of the catalyst performance of the examples and the comparative examples will be examined.

実施例2と比較例8との比較、並びに実施例10と比較例10との比較により、タイプAのようにRhドープOSCとPt/アルミナとを組み合わせた場合は、タイプDのようにRhをアルミナに担持させ、PtをOSC材に担持させるケースよりも、高い排気ガス浄化率が得られることがわかる。実施例16と比較例8との比較、並びに実施例20と比較例10との比較により、タイプBのようにRh/OSCとPt/アルミナとを組み合わせた場合は、タイプDのケースよりも、高い排気ガス浄化率が得られることがわかる。実施例24と比較例8との比較により、タイプCのように第2触媒を二層構造として、上層をRhドープOSCとPt/アルミナとの組み合わせとし、下層をPt/アルミナとした場合でも、タイプDのケースよりも、高い排気ガス浄化率が得られることがわかる。   When Rh-doped OSC and Pt / alumina were combined as in type A by comparison between Example 2 and Comparative Example 8 and comparison between Example 10 and Comparative Example 10, Rh was reduced as in Type D. It can be seen that a higher exhaust gas purification rate can be obtained than the case of supporting on alumina and supporting Pt on OSC material. In the case of combining Rh / OSC and Pt / alumina as in type B by comparison between Example 16 and Comparative Example 8, and in comparison with Example 20 and Comparative Example 10, than the case of Type D, It can be seen that a high exhaust gas purification rate can be obtained. Comparison between Example 24 and Comparative Example 8 shows that even when the second catalyst has a two-layer structure as in Type C, the upper layer is a combination of Rh-doped OSC and Pt / alumina, and the lower layer is Pt / alumina, It can be seen that a higher exhaust gas purification rate can be obtained than in the type D case.

タイプAの実施例1,2,5,6と、タイプBの実施例15〜18との比較により、第2触媒には、Rh/OSCを採用する場合よりも、RhドープOSCを採用した方が排気ガス浄化率の向上に有利であることがわかる。   A comparison between Type A Examples 1, 2, 5, and 6 and Type B Examples 15 to 18 shows that Rh-doped OSC is used for the second catalyst rather than Rh / OSC. It is understood that this is advantageous for improving the exhaust gas purification rate.

1 エンジン
2 排気ガス通路
3 第1触媒
4 第2触媒
5 触媒容器
6 触媒容器
7 セル壁
8 第1触媒のPt含有層
9 第1触媒のPd含有層
10 第1触媒のRh含有層
11 第2触媒の触媒層
DESCRIPTION OF SYMBOLS 1 Engine 2 Exhaust gas passage 3 1st catalyst 4 2nd catalyst 5 Catalyst container 6 Catalyst container 7 Cell wall 8 Pt containing layer of 1st catalyst 9 Pd containing layer of 1st catalyst 10 Rh containing layer of 1st catalyst 11 2nd Catalyst layer of catalyst

Claims (6)

アルコールを含む燃料が使用されるエンジンの排気ガス通路に、第1触媒と、該第1触媒よりも排気ガス流れの下流側に配置された第2触媒とを備える排気ガス浄化装置において、
上記第1触媒は、ハニカム担体のセル壁に、Ptを必須成分として含有するPt含有層と、Pdを必須成分として含有するPd含有層と、Rhを必須成分として含有するRh含有層とが形成されてなり、
上記Pt含有層及びRh含有層は上記Pd含有層の上側に配置され、且つ上記Pd含有層及びRh含有層は上記ハニカム担体全長に亘って設けられている一方、上記Pt含有層は上記ハニカム担体の排気ガス流れ方向の上流側の端面から中間部位に亘る範囲に設けられ、
上記Pt含有層は、さらにCeとMgとを含むCeMg複合酸化物粒子を含有し、
上記第2触媒は、ハニカム担体のセル壁に、アルミナ粒子にPtが担持されてなるPt担持アルミナと、CeZr系複合酸化物粒子にRhがドープされてなるRhドープCeZr系複合酸化物、又はCeZr系複合酸化物粒子にRhが担持されてなるRh担持CeZr系複合酸化物とを含有する触媒層が形成されてなることを特徴とする排気ガス浄化装置。
In an exhaust gas purifying apparatus comprising a first catalyst and a second catalyst disposed downstream of the first catalyst in an exhaust gas passage of an engine in which a fuel containing alcohol is used,
In the first catalyst, a Pt-containing layer containing Pt as an essential component, a Pd-containing layer containing Pd as an essential component, and an Rh-containing layer containing Rh as an essential component are formed on the cell walls of the honeycomb carrier. Being
The Pt-containing layer and the Rh-containing layer are disposed on the upper side of the Pd-containing layer, and the Pd-containing layer and the Rh-containing layer are provided over the entire length of the honeycomb carrier, while the Pt-containing layer is provided on the honeycomb carrier. Is provided in a range extending from the upstream end face in the exhaust gas flow direction to the intermediate portion,
The Pt-containing layer further contains CeMg composite oxide particles containing Ce and Mg,
The second catalyst includes Pt-supported alumina in which Pt is supported on alumina particles on a cell wall of a honeycomb carrier, Rh-doped CeZr-based composite oxide in which Rh is doped in CeZr-based composite oxide particles, or CeZr. An exhaust gas purifying apparatus comprising a catalyst layer containing an Rh-supported CeZr-based composite oxide in which Rh is supported on a system composite oxide particle.
請求項1において、
上記第1触媒の上記Pt含有層は、上記ハニカム担体全長の1/5以上1/2以下の範囲に設けられていることを特徴とする排気ガス浄化装置。
In claim 1,
The exhaust gas purifier according to claim 1, wherein the Pt-containing layer of the first catalyst is provided in a range of 1/5 to 1/2 of the total length of the honeycomb carrier.
請求項1又は請求項2において、
上記第1触媒の上記Pt含有層は、アルミナ粒子にPtが担持されてなるPt担持アルミナを含有していることを特徴とする排気ガス浄化装置。
In claim 1 or claim 2,
The exhaust gas purification apparatus, wherein the Pt-containing layer of the first catalyst contains Pt-supported alumina in which Pt is supported on alumina particles.
請求項1乃至請求項3のいずれか一において、
上記第1触媒の上記Pt含有層は、アルミナ粒子にPtが担持されてなるPt担持アルミナと、上記CeMg複合酸化物粒子とを混合状態で含有していることを特徴とする排気ガス浄化装置。
In any one of Claim 1 thru | or 3,
The exhaust gas purification apparatus, wherein the Pt-containing layer of the first catalyst contains Pt-supported alumina in which Pt is supported on alumina particles and the CeMg composite oxide particles in a mixed state.
請求項1乃至請求項4のいずれか一において、
上記CeMg複合酸化物粒子は、CeOとMgOとの合計量に占めるMgOの割合が5質量%以上40質量%以下であることを特徴とする排気ガス浄化装置。
In any one of Claims 1 thru | or 4,
The exhaust gas purifying apparatus according to claim 1, wherein the CeMg composite oxide particles have a proportion of MgO in a total amount of CeO 2 and MgO of 5% by mass or more and 40% by mass or less.
請求項1乃至請求項5のいずれか一において、
上記第1触媒は、自動車のエンジンの排気マニホールドに直結した触媒容器に収容され、上記第2触媒は、上記自動車の床下に配置された触媒容器に収容されていることを特徴とする排気ガス浄化装置。
In any one of Claims 1 thru | or 5,
The first catalyst is accommodated in a catalyst container directly connected to an exhaust manifold of an automobile engine, and the second catalyst is accommodated in a catalyst container disposed under the floor of the automobile. apparatus.
JP2009117180A 2009-05-14 2009-05-14 Exhaust gas purification device Expired - Fee Related JP5326790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117180A JP5326790B2 (en) 2009-05-14 2009-05-14 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117180A JP5326790B2 (en) 2009-05-14 2009-05-14 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2010264371A true JP2010264371A (en) 2010-11-25
JP5326790B2 JP5326790B2 (en) 2013-10-30

Family

ID=43361851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117180A Expired - Fee Related JP5326790B2 (en) 2009-05-14 2009-05-14 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP5326790B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066516A (en) * 2013-09-30 2015-04-13 マツダ株式会社 Exhaust gas purification catalyst
JP2017044201A (en) * 2015-08-28 2017-03-02 三菱自動車工業株式会社 Exhaust emission control system for internal combustion engine and exhaust emission control catalyst
WO2018199248A1 (en) * 2017-04-28 2018-11-01 ユミコア日本触媒株式会社 Exhaust gas purification catalyst and exhaust gas purification method using same
JP2020515397A (en) * 2017-03-29 2020-05-28 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company NOx adsorption catalyst
CN116251592A (en) * 2023-01-31 2023-06-13 昆明贵研催化剂有限责任公司 Post-treatment catalyst for hybrid electric vehicle, preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102630312B1 (en) 2017-08-28 2024-01-29 바스프 코포레이션 Phosphorus-resistant three-way catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372950A (en) * 1989-03-29 1991-03-28 Nippon Shokubai Kagaku Kogyo Co Ltd Exhaust gas purifying catalyst for purifying exhaust gas from internal combustion engine using alcohol as fuel
JPH05277370A (en) * 1992-03-31 1993-10-26 Mazda Motor Corp Catalyst for purification of exhaust gas from engine
JP2002028488A (en) * 2000-07-18 2002-01-29 Daihatsu Motor Co Ltd Catalyst for purifying exhaust gas
JP2003112049A (en) * 2001-10-03 2003-04-15 Tokyo Roki Co Ltd Three-layer ternary catalyst
JP2006281033A (en) * 2005-03-31 2006-10-19 Mazda Motor Corp Purifying catalyst for exhaust gas
JP2008062156A (en) * 2006-09-06 2008-03-21 Mazda Motor Corp Catalyst device for cleaning exhaust gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372950A (en) * 1989-03-29 1991-03-28 Nippon Shokubai Kagaku Kogyo Co Ltd Exhaust gas purifying catalyst for purifying exhaust gas from internal combustion engine using alcohol as fuel
JPH05277370A (en) * 1992-03-31 1993-10-26 Mazda Motor Corp Catalyst for purification of exhaust gas from engine
JP2002028488A (en) * 2000-07-18 2002-01-29 Daihatsu Motor Co Ltd Catalyst for purifying exhaust gas
JP2003112049A (en) * 2001-10-03 2003-04-15 Tokyo Roki Co Ltd Three-layer ternary catalyst
JP2006281033A (en) * 2005-03-31 2006-10-19 Mazda Motor Corp Purifying catalyst for exhaust gas
JP2008062156A (en) * 2006-09-06 2008-03-21 Mazda Motor Corp Catalyst device for cleaning exhaust gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066516A (en) * 2013-09-30 2015-04-13 マツダ株式会社 Exhaust gas purification catalyst
JP2017044201A (en) * 2015-08-28 2017-03-02 三菱自動車工業株式会社 Exhaust emission control system for internal combustion engine and exhaust emission control catalyst
JP2020515397A (en) * 2017-03-29 2020-05-28 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company NOx adsorption catalyst
WO2018199248A1 (en) * 2017-04-28 2018-11-01 ユミコア日本触媒株式会社 Exhaust gas purification catalyst and exhaust gas purification method using same
JPWO2018199248A1 (en) * 2017-04-28 2020-03-12 ユミコア日本触媒株式会社 Exhaust gas purification catalyst and exhaust gas purification method using the same
US11143072B2 (en) 2017-04-28 2021-10-12 Umicore Shokubai Japan Co., Ltd. Exhaust gas purification catalyst and exhaust gas purification method using the same
CN116251592A (en) * 2023-01-31 2023-06-13 昆明贵研催化剂有限责任公司 Post-treatment catalyst for hybrid electric vehicle, preparation method and application thereof
CN116251592B (en) * 2023-01-31 2023-12-12 昆明贵研催化剂有限责任公司 Post-treatment catalyst for hybrid electric vehicle, preparation method and application thereof

Also Published As

Publication number Publication date
JP5326790B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
US9550176B2 (en) Exhaust gas purification catalyst and production method thereof
JP6010205B2 (en) Exhaust gas purification catalyst
JP5173282B2 (en) Exhaust gas purification catalyst
JP5386121B2 (en) Exhaust gas purification catalyst device and exhaust gas purification method
US10010873B2 (en) Catalytic converter
CN105611992B (en) Catalytic converter
US20200290019A1 (en) Exhaust gas purification catalyst
JP5326790B2 (en) Exhaust gas purification device
JP5458973B2 (en) Exhaust gas purification catalyst
JP2010265795A (en) Exhaust emission control device
JP2008110303A (en) Catalyst for purifying exhaust gas
JP2012055842A (en) Exhaust gas purifying catalyst
JP5065180B2 (en) Exhaust gas purification catalyst
WO2008047742A1 (en) Exhaust gas purification catalyst
EP2992955B1 (en) Exhaust-gas purification catalyst
US20220105494A1 (en) Catalyst for purifying exhaust gas
JP2011183319A (en) Catalyst and method for cleaning exhaust gas
JP5232258B2 (en) Exhaust gas purification device for internal combustion engine
JP5328133B2 (en) Exhaust gas purification catalyst
JP5772167B2 (en) Exhaust gas purification catalyst
JP5525493B2 (en) Exhaust gas purification device for internal combustion engine
JP2013027876A (en) Exhaust gas purifying catalyst
JP6997838B1 (en) Exhaust gas purification catalyst
JP7228451B2 (en) Exhaust gas purification catalyst for automobiles
WO2023176325A1 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120313

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5326790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees