JP2010261895A - Method and apparatus for measuring concentration of trace constituent in solution - Google Patents

Method and apparatus for measuring concentration of trace constituent in solution Download PDF

Info

Publication number
JP2010261895A
JP2010261895A JP2009114571A JP2009114571A JP2010261895A JP 2010261895 A JP2010261895 A JP 2010261895A JP 2009114571 A JP2009114571 A JP 2009114571A JP 2009114571 A JP2009114571 A JP 2009114571A JP 2010261895 A JP2010261895 A JP 2010261895A
Authority
JP
Japan
Prior art keywords
solution
concentration
extinction
trace component
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009114571A
Other languages
Japanese (ja)
Inventor
Emiko Kaneko
恵美子 金子
Yasushi Haketa
靖 羽毛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2009114571A priority Critical patent/JP2010261895A/en
Publication of JP2010261895A publication Critical patent/JP2010261895A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To highly accurately measure the concentration of trace constituents on the basis of the gradient of an approximate curve of extinction curves at the terminal point without depending on a measuring method by a calibration curve created through the use of the concentration of trace constituents and arrival time. <P>SOLUTION: A concentration measuring method includes a first process for acquiring a plurality of extinction curves indicating temporal changes of fluorescent strength on a blank solution containing no trace constituents and standard solutions each containing a plurality of types of concentrations of trace constituents; a second process for approximating the plurality of extinction curves by a first order differentiable function; a third process for computing a differential coefficient at the beginning point of the first order differentiable function; a fourth process for creating a calibration curve through the use of a plurality of beginning-point differential coefficients and the concentration of trace constituents contained in the blank solution and the standard solutions; and a fifth process for approximating, by a first order differentiable function, an extinction curve obtained on a sample solution containing trace constituents of which the concentration is unknown and determining the concentration of trace constituents in the sample solution on the basis of its beginning-point differential coefficient and the calibration curve. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、超純水等の試料溶液中に含まれるシリカ、リン、ヒ素等の微量成分の濃度を測定する方法、及び、この方法を実施するための測定装置に関するものである。   The present invention relates to a method for measuring the concentration of trace components such as silica, phosphorus and arsenic contained in a sample solution such as ultrapure water, and a measuring apparatus for carrying out this method.

試料溶液中のシリカ、リン、ヒ素等の微量成分(以下、微量成分の代表例としてシリカを例示する)を測定する方法及び測定装置として、特許文献1に記載された従来技術が知られている。
この従来技術は、酸性条件下の試料溶液にローダミンB等の蛍光性対カチオン色素を添加してなる反応溶液から発生する蛍光の強度が、モリブデン酸イオンの添加により時間の経過と共に減衰することに着目したものであり、測定開始から上記蛍光強度が所定値に達するまでの時間(消光時間)がシリカ濃度に依存するという知見に基づいている。
The prior art described in Patent Document 1 is known as a method and a measuring apparatus for measuring trace components such as silica, phosphorus, and arsenic in a sample solution (hereinafter, silica is exemplified as a representative example of the trace components). .
In this prior art, the intensity of fluorescence generated from a reaction solution obtained by adding a fluorescent counter cation dye such as rhodamine B to a sample solution under acidic conditions is attenuated as time passes by addition of molybdate ions. This is based on the knowledge that the time (quenching time) from the start of measurement until the fluorescence intensity reaches a predetermined value depends on the silica concentration.

以下、この従来技術による試料溶液中のシリカ濃度の測定方法について説明する。
図9は、シリカ濃度がゼロの溶液(以下、ブランク溶液という)とシリカ濃度が既知である標準溶液とについて、測定開始からの経過時間と蛍光強度との関係(消光曲線または消光特性という)を示した図である。従来技術では、この消光曲線に基づき検量線を作成し、その検量線を用いて試料溶液中のシリカ濃度を求めている。
Hereinafter, a method for measuring the silica concentration in the sample solution according to this conventional technique will be described.
FIG. 9 shows the relationship between the elapsed time from the start of measurement and the fluorescence intensity (referred to as an extinction curve or extinction characteristic) for a solution with zero silica concentration (hereinafter referred to as a blank solution) and a standard solution with a known silica concentration. FIG. In the prior art, a calibration curve is created based on this extinction curve, and the silica concentration in the sample solution is obtained using the calibration curve.

すなわち、図9に示すブランク溶液の消光曲線を予め取得しておき、この消光曲線から、測定開始後の所定の基準時間(時刻)Tにおける蛍光強度Fを求める。次に、シリカ濃度が既知である標準溶液の消光曲線を取得し、蛍光強度が前記Fに到達する時間Tを求める。この到達時間Tを求める処理を複数種類の標準溶液(例えば、シリカ濃度が0.2〔ppb〕,0.5〔ppb〕,1.0〔ppb〕等)について繰り返すことにより、図10に示す如く、シリカ濃度と到達時間Tとを対応させた複数のプロットが得られるので、これらのプロットに基づいて検量線を作成することができる。図10から明らかなように、所定蛍光強度Fに達するまでの到達時間は、シリカ濃度が高いほど蛍光強度が急激に減衰するため短くなり、シリカ濃度が低いほど長くなる。 That is, in advance acquires the quenching curve of blank solution shown in Figure 9, from the quenching curve to determine the fluorescence intensity F E at a predetermined reference time after the start of measurement (time) T E. Then, to get the extinction curve of standard solution silica concentration is known, determining the time T X which fluorescence intensity reaches the F E. The plurality of types of processing for obtaining the arrival time T X standard solutions (e.g., silica concentration 0.2 [ppb], 0.5 [ppb], 1.0 [ppb], etc.) By repeating the, in FIG. 10 as shown, a plurality of plots showing the correspondence between the silica concentration and the arrival time T X is obtained, it is possible to create a calibration curve based on these plots. As apparent from FIG. 10, the arrival time to reach a predetermined fluorescence intensity F E, higher fluorescence intensity silica concentration is reduced to rapidly decay, silica concentration is the lower the longer.

そして、実際の測定時には、シリカ濃度が未知である試料溶液について蛍光強度がFに到達するまでの時間を測定し、この到達時間と図10の検量線とを用いてシリカ濃度を求めるものである。
なお、図10の検量線は、比較的低いシリカ濃度の測定を目的とすると共に図9の基準時間Tを400〔秒〕として測定したものであり、図11の検量線は、高濃度までの測定を目的とし、基準時間Tを200〔秒〕〜600〔秒〕の範囲で100〔秒〕刻みにして測定したものである。
At the time of actual measurement, the fluorescence intensity of the sample solution silica concentration is unknown measures the time to reach the F E, and requests silica concentration by using a calibration curve of the arrival time and 10 is there.
Incidentally, the calibration curve of FIG. 10 is obtained by measuring the reference time T E of FIG. 9 with aims as 400 [sec] measured relatively low silica concentrations, a calibration curve of FIG. 11, to high density the purpose of measurement, is measured in the increments 100 (seconds) in the range of 200 to the reference time T E (seconds) 600 (seconds).

ここで、図9におけるTは、モリブデン酸イオンの添加による消光開始時点であり、Fはその時の蛍光強度を示しているが、何れも便宜的に表示したものである。すなわち、実際には、反応溶液の攪拌に時間を要したり、ピペッティング誤差、装置的な変動、水質の変動、時間の測定や信号処理に用いるパーソナルコンピュータの操作による測定開始時間の誤差等が変動要因となって、上記時間Tや蛍光強度Fを厳密に規定することはできない。
このため、時間Tの測定に当たっては、モリブデン酸混合直後の一定時間T’を測定開始時間として、このT’から到達時間Tを測定している。ちなみに、T〜 T’間は例えば約30秒に設定される。
Here, T 0 in FIG. 9 is a quenching start point due to the addition of molybdate ions, and F 0 indicates the fluorescence intensity at that time, but these are displayed for convenience. That is, in reality, it takes time to stir the reaction solution, pipetting error, apparatus-like fluctuation, water quality fluctuation, measurement start time error due to operation of personal computer used for time measurement and signal processing, etc. As a variation factor, the time T 0 and the fluorescence intensity F 0 cannot be strictly defined.
For this reason, when measuring the time T X, the arrival time T X is measured from this T 0 ′, with the constant time T 0 ′ immediately after mixing the molybdic acid as the measurement start time. Incidentally, the interval between T 0 and T 0 ′ is set to about 30 seconds, for example.

特許第3697430号公報(段落[0020]〜[0025]、図1,図4等)Japanese Patent No. 3697430 (paragraphs [0020] to [0025], FIG. 1, FIG. 4 etc.)

しかしながら、上記従来技術には以下のような問題がある。
まず、図9における基準時間Tはもっぱら経験的に決められており、この基準時間Tに応じて蛍光強度Fの値や到達時間T、ひいては検量線も変わってくるため、検量線を一律に決定することができない。
また、基準時間Tを所定値に固定したとしても、その基準時間Tにおけるブランク溶液もしくはその他の測定試料の蛍光強度に図9に示すような揺らぎがある場合には、基準時間Tに対応する蛍光強度Fの値が誤差を含んでしまい、結果として検量線の精度が低下してしまう。
However, the above prior art has the following problems.
First, the reference time T E in FIG. 9 is exclusively determined empirically, the values and the arrival time T X fluorescence intensity F E in accordance with the reference time T E, since varies also turn calibration curve, calibration curve Cannot be determined uniformly.
Also, the reference time T E as fixed to a predetermined value, if there is a fluctuation, as shown in FIG. 9 is the fluorescence intensity of the blank solution or other sample at the reference time T E, the reference time T E Shimai contains the value error of the corresponding fluorescence intensity F E, the accuracy of the calibration curve is reduced as a result.

更に、図10のような検量線を作成するには複数の標準溶液の消光曲線が必要であるが、実際に検量線の作成に用いるデータは、蛍光強度Fに対応する到達時間Tだけであるため、消光曲線の取得に要する時間や労力のうち多くの部分が無駄になる。
また、ブランク溶液にも微量のシリカが常時含まれているが、上記従来技術ではブランク溶液中のシリカ濃度の絶対値は測定不能である。しかるに、図10の検量線は、ブランク溶液のシリカ濃度をゼロとおいて、各標準溶液につき蛍光強度Fまでの到達時間を相対的にプロットしたものであるため、この点でも検量線の精度に問題がある。
加えて、図10や図11から判るように、シリカ濃度が高くなるほど到達時間が水平線に近くなって変化量が少なくなるので、高精度な測定が困難である。
Furthermore, although in constructing a calibration curve such as in Figure 10 is required extinction curve for a plurality of standard solutions, data actually used for creating the calibration curve, only the arrival time T X which corresponds to the fluorescence intensity F E Therefore, much of the time and labor required to obtain the extinction curve is wasted.
Moreover, although a trace amount of silica is always contained in the blank solution, the absolute value of the silica concentration in the blank solution cannot be measured by the above-described conventional technology. However, the calibration curve of FIG. 10, at a silica concentration of the blank solution and the zero, since for each standard solution is obtained by relatively plotted time to reach the fluorescence intensity F E, the accuracy of even the calibration curve in this respect There's a problem.
In addition, as can be seen from FIG. 10 and FIG. 11, the higher the silica concentration, the closer the arrival time becomes to the horizon, and the smaller the amount of change, the higher the accuracy of measurement.

更に、図9の時間T及び蛍光強度Fが不確定であることにより、測定開始時間T’における消光曲線の始点(切片)が一様に定まらないため、同じ標準溶液であっても測定のたびごとに到達時間Tが変動する懸念もある。 Furthermore, since the time T 0 and the fluorescence intensity F 0 in FIG. 9 are uncertain, the start point (intercept) of the extinction curve at the measurement start time T 0 ′ cannot be uniformly determined. time T X reaches each time of measurement is also concern that varies.

そこで、本発明の解決課題は、微量成分の濃度と到達時間とを用いて作成した検量線によって測定する方法によらず、消光曲線の近似曲線の始点における傾きに基づいて微量成分の濃度を高精度に測定可能とした溶液中微量成分の測定方法及び測定装置を提供することにある。   Therefore, the problem to be solved by the present invention is to increase the concentration of the trace component based on the slope at the starting point of the approximate curve of the extinction curve, regardless of the method of measuring with the calibration curve created using the concentration and the arrival time of the trace component. An object of the present invention is to provide a measuring method and measuring apparatus for trace components in a solution that can be measured with high accuracy.

上記課題を解決するため、請求項1に係る濃度測定方法は、微量成分を含む試料溶液に試薬を添加して得た反応溶液による蛍光強度が、前記微量成分の濃度に応じて経時的に減衰することを利用して、前記微量成分の濃度を測定する測定方法において、
前記微量成分を含まないブランク溶液と複数種類の濃度の前記微量成分をそれぞれ含む標準溶液とを対象として、蛍光強度の時間変化を示す複数の消光曲線を取得する第1工程と、
第1工程により取得した複数の消光曲線を1階微分可能関数によりそれぞれ近似する第2工程と、
前記1階微分可能関数の始点における傾きを始点微係数としてそれぞれ算出する第3工程と、
第3工程により算出した複数の始点微係数と、前記ブランク溶液及び前記標準溶液に含まれる前記微量成分の濃度と、を用いて検量線を作成する第4工程と、
微量成分の濃度を検出するべき試料溶液について取得した消光曲線を1階微分可能関数により近似し、その始点微係数を算出して前記検量線から試料溶液中の微量成分の濃度を求める第5工程と、を有するものである。
ここで、前記始点微係数とは、消光曲線を取得するための蛍光強度の時間変化の測定開始時点における1階微分可能関数の傾きをいう。
In order to solve the above-mentioned problem, in the concentration measurement method according to claim 1, the fluorescence intensity of the reaction solution obtained by adding a reagent to a sample solution containing a trace component decays with time according to the concentration of the trace component. In a measurement method for measuring the concentration of the trace component by using
A first step of acquiring a plurality of quenching curves indicating temporal changes in fluorescence intensity for a blank solution that does not contain the trace component and a standard solution that contains the trace component at a plurality of concentrations, respectively,
A second step of approximating each of the plurality of extinction curves obtained in the first step by a first-order differentiable function;
A third step of calculating the slope at the starting point of the first-order differentiable function as a starting derivative, respectively;
A fourth step of creating a calibration curve using a plurality of starting point derivatives calculated in the third step and the concentrations of the trace components contained in the blank solution and the standard solution;
Fifth step of approximating the extinction curve obtained for the sample solution for detecting the concentration of the trace component by a first-order differentiable function, calculating the derivative of the starting point, and determining the concentration of the trace component in the sample solution from the calibration curve And.
Here, the starting point derivative means the slope of the first-order differentiable function at the start of measurement of the fluorescence intensity with time for obtaining the extinction curve.

請求項2に記載するように、前記1階微分可能関数には複数次の多項式を用いることが望ましい。
また、請求項3に記載するように、消光曲線の近似に当たっては、最小自乗法を用いて前記多項式の各係数を決定すると良い。
As described in claim 2, it is desirable to use a multiple degree polynomial for the first-order differentiable function.
In addition, as described in claim 3, when approximating the extinction curve, each coefficient of the polynomial may be determined using a least square method.

請求項4に係る濃度測定装置は、微量成分を含む試料溶液に試薬を添加して得た反応溶液による蛍光強度が、前記微量成分の濃度に応じて経時的に減衰することを利用して、前記微量成分の濃度を測定する測定装置において、
微量成分を含まないブランク溶液、複数種類の濃度の前記微量成分をそれぞれ含む標準溶液、及び、前記微量成分の濃度が未知である試料溶液を対象として、前記蛍光強度の時間変化を示す消光曲線をそれぞれ作成する消光曲線作成手段と、
前記消光曲線を近似した1階微分可能関数の始点における傾きを始点微係数としてそれぞれ算出する始点微係数算出手段と、
前記ブランク溶液及び前記標準溶液の消光曲線について算出した始点微係数と、前記ブランク溶液及び前記標準溶液に含まれる前記微量成分の濃度とを用いて、検量線を作成する検量線作成手段と、
前記試料溶液の消光曲線について算出した始点微係数と、前記検量線とに基づいて、前記試料溶液中の微量成分の濃度を求める濃度測定手段と、を備えたものである。
なお、前記同様に、始点微係数とは、消光曲線を取得するための蛍光強度の時間変化の測定開始時点における1階微分可能関数の傾きをいう。
The concentration measuring apparatus according to claim 4 utilizes the fact that the fluorescence intensity of the reaction solution obtained by adding a reagent to a sample solution containing a trace component decays with time according to the concentration of the trace component, In the measuring device for measuring the concentration of the trace component,
Extinction curves showing temporal changes in the fluorescence intensity for blank solutions that do not contain trace components, standard solutions that contain multiple concentrations of the trace components, and sample solutions that have unknown concentrations of the trace components. Extinction curve creation means to create each,
Starting point derivative calculating means for calculating the slope at the starting point of the first order differentiable function approximating the extinction curve as a starting point derivative,
A calibration curve creating means for creating a calibration curve using the starting point derivative calculated for the extinction curves of the blank solution and the standard solution and the concentration of the trace component contained in the blank solution and the standard solution,
Concentration measuring means for obtaining the concentration of a trace component in the sample solution based on the starting point derivative calculated for the extinction curve of the sample solution and the calibration curve.
Note that, as described above, the starting point derivative means the slope of the first-order differentiable function at the time of starting measurement of the change in fluorescence intensity over time for obtaining an extinction curve.

本発明によれば、微量成分の濃度の広範囲にわたって始点微係数が顕著に変化する検量線が得られるため、従来技術に比べて濃度測定範囲を拡大することができる。
また、従来技術における検量線作成時のように、ブランク溶液の消光曲線を対象として基準時間を定め、この基準時間に対応する蛍光強度までの到達時間を各標準溶液の消光曲線から求める処理が不要であるから、消光曲線の揺らぎや始点のずれに影響されない正確な検量線の作成が可能であり、微量成分の濃度を高精度に測定することができる。
更に、本発明では、ブランク溶液及び標準溶液についての消光曲線が取得できれば、その後はこれらの消光曲線を1階微分可能関数により近似演算して始点微係数を求めることにより、検量線の作成に必要なデータが揃うことになる。すなわち、従来技術のごとく所定蛍光強度への到達時間の計測が不要になり、検量線の作成に要する時間が短縮される等の利点がある。
According to the present invention, a calibration curve in which the starting derivative is remarkably changed over a wide range of concentrations of trace components can be obtained, so that the concentration measurement range can be expanded as compared with the prior art.
In addition, there is no need to determine the reference time for the blank solution extinction curve and calculate the arrival time to the fluorescence intensity corresponding to this reference time from the extinction curve of each standard solution, as in the case of creating a calibration curve in the prior art. Therefore, it is possible to create an accurate calibration curve that is not affected by fluctuations in the extinction curve or deviation of the starting point, and the concentration of trace components can be measured with high accuracy.
Furthermore, in the present invention, if the extinction curves for the blank solution and the standard solution can be obtained, then the extinction curves are approximated by a first-order differentiable function to obtain the starting point derivative, which is necessary for creating a calibration curve. You will have a lot of data. That is, there is an advantage that measurement of the arrival time to the predetermined fluorescence intensity is not required as in the prior art, and the time required to create the calibration curve is shortened.

本発明の実施形態に係る濃度測定方法を示すフローチャートである。It is a flowchart which shows the density | concentration measuring method which concerns on embodiment of this invention. 本発明の実施形態において消光曲線を近似する近似多項式を説明するための図である。It is a figure for demonstrating the approximation polynomial which approximates an extinction curve in embodiment of this invention. 本発明の実施形態における検量線を示す図である。It is a figure which shows the calibration curve in embodiment of this invention. 従来技術及び本発明の実施形態による相対標準偏差の説明図である。It is explanatory drawing of the relative standard deviation by the prior art and embodiment of this invention. 本発明の実施形態に係る濃度測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the density | concentration measuring apparatus which concerns on embodiment of this invention. 本発明の実施例における消光曲線を示す図である。It is a figure which shows the extinction curve in the Example of this invention. 本発明の実施例における検量線を示す図である。It is a figure which shows the calibration curve in the Example of this invention. 従来技術における検量線を示す図である。It is a figure which shows the analytical curve in a prior art. ブランク溶液及び標準溶液の消光曲線を示す図である。It is a figure which shows the extinction curve of a blank solution and a standard solution. 従来技術における検量線を示す図である。It is a figure which shows the analytical curve in a prior art. 従来技術における検量線を示す図である。It is a figure which shows the analytical curve in a prior art.

以下、図に沿って本発明の実施形態を説明する。なお、以下の説明では、試料溶液中のシリカ濃度を測定する場合を例示するが、本発明は、シリカ以外にリン、ヒ素等の微量成分の測定にも適用可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, although the case where the silica concentration in a sample solution is measured is illustrated in the following description, this invention is applicable also to the measurement of trace components, such as phosphorus and arsenic other than a silica.

図1は、この実施形態に係る溶液中微量成分の測定方法を示すフローチャートである。
まず、本実施形態では、ブランク溶液及び複数の標準溶液(例えば、シリカ濃度が0.2〔ppb〕,0.5〔ppb〕,1.0〔ppb〕等)の消光曲線を取得する(ステップS1)。消光曲線の取得方法は本発明の要旨ではなく、前述した特許文献1等に開示されているため詳細な説明を割愛するが、一例を挙げれば、試料溶液を反応容器(蛍光検出セル)に導入して硫酸水溶液等を添加することにより酸性条件とし、この試料溶液に十分な量のローダミンB水溶液を添加して混合した後、モリブデン酸アンモニウム水溶液を添加して混合し、この反応溶液を対象として、所定の励起波長及び蛍光波長のもとで蛍光強度の時間的な変化(減衰)を測定する。ここで、測定開始時間は、例えばモリブデン酸アンモニウム水溶液の添加時から30〔秒〕経過後とすれば良い。
FIG. 1 is a flowchart showing a method for measuring a trace component in a solution according to this embodiment.
First, in this embodiment, extinction curves of a blank solution and a plurality of standard solutions (for example, silica concentrations of 0.2 [ppb], 0.5 [ppb], 1.0 [ppb], etc.) are acquired (steps). S1). The method for obtaining the extinction curve is not the gist of the present invention, but is described in the above-mentioned Patent Document 1 and the like, and thus detailed description is omitted. For example, a sample solution is introduced into a reaction vessel (fluorescence detection cell). Then, by adding an aqueous sulfuric acid solution or the like to acid conditions, a sufficient amount of rhodamine B aqueous solution is added to and mixed with this sample solution, and then an aqueous ammonium molybdate solution is added and mixed to target this reaction solution. Then, a temporal change (attenuation) of the fluorescence intensity is measured under a predetermined excitation wavelength and fluorescence wavelength. Here, the measurement start time may be, for example, 30 seconds after the addition of the ammonium molybdate aqueous solution.

次に、ステップS1により得られた複数の消光曲線を1階微分可能関数によりそれぞれ近似する(ステップS2)。なお、1階微分可能関数とは、関数f(t)が定義域のすべての点において微分可能であるときの当該関数f(t)をいう。
いま、図2に示す如く、図9と同様のブランク溶液の消光曲線をg(t)とし、これを1階微分可能関数である数式1の6次多項式f(t)により近似することを考える。以下、このf(t)を近似多項式ともいう。なお、数式1においてa〜aは係数、tは時間であり、係数a〜aは最小自乗法により求めることとする。
[数式1]
f(t)=a+a+a+a+a+at+a
Next, each of the plurality of extinction curves obtained in step S1 is approximated by a first-order differentiable function (step S2). The first-order differentiable function refers to the function f (t) when the function f (t) is differentiable at all points in the domain.
Now, as shown in FIG. 2, the blank solution extinction curve similar to FIG. 9 is assumed to be g (t), and this is approximated by the sixth-order polynomial f (t) of Equation 1 which is a first-order differentiable function. . Hereinafter, this f (t) is also referred to as an approximate polynomial. In Equation 1, a 0 to a 6 are coefficients, t is time, and the coefficients a 0 to a 6 are obtained by the method of least squares.
[Formula 1]
f (t) = a 6 t 6 + a 5 t 5 + a 4 t 4 + a 3 t 3 + a 2 t 2 + a 1 t + a 0

次に、数式1の近似多項式を時間tについて微分することにより、数式2を得る。
[数式2]
f’(t)=6a+5a+4a+3a+2at+a
Next, Equation 2 is obtained by differentiating the approximate polynomial of Equation 1 with respect to time t.
[Formula 2]
f ′ (t) = 6a 6 t 5 + 5a 5 t 4 + 4a 4 t 3 + 3a 3 t 2 + 2a 2 t + a 1

数式2において、t=0とおくと、数式3が得られる。
[数式3]
f’(0)=a
In Equation 2, when t = 0, Equation 3 is obtained.
[Formula 3]
f ′ (0) = a 1

すなわち、数式3は、ブランク溶液の消光曲線g(t)の近似多項式f(t)を時間tについて微分し、その導関数の時刻t=0(蛍光強度の時間変化の測定開始時点という意味での始点)における値(傾きまたは微係数)が、近似多項式f(t)の一つの係数aに等しくなることを示している。ここで、近似多項式f(t)の時刻t=0における微係数を始点微係数ということとする。
このように、数式3に基づき、ブランク溶液及び標準溶液の各消光曲線を対象として、近似多項式f(t)の始点微係数をそれぞれ算出する(ステップS3)。
That is, Equation 3 means that the approximate polynomial f (t) of the extinction curve g (t) of the blank solution is differentiated with respect to time t, and the derivative time t = 0 (measurement start point of time variation of fluorescence intensity). It is shown that the value (slope or derivative) at the start point of ( 1) is equal to one coefficient a1 of the approximate polynomial f (t). Here, the derivative at time t = 0 of the approximate polynomial f (t) is referred to as the starting point derivative.
Thus, based on Equation 3, the starting point derivative of the approximate polynomial f (t) is calculated for each extinction curve of the blank solution and the standard solution (step S3).

次に、既知であるブランク溶液及び標準溶液のシリカ濃度と、ステップS3により算出した各溶液の始点微係数とを用いて、図3に示すような検量線を作成する(ステップS4)。
その後、実際に試料溶液のシリカ濃度を測定するには、前記同様の方法により、試料溶液を対象として取得した消光曲線を近似多項式により近似し、その始点微係数を求めて上記検量線からシリカ濃度を求めれば良い(ステップS5)。
Next, a calibration curve as shown in FIG. 3 is created using the known silica concentrations of the blank solution and the standard solution and the starting point derivative of each solution calculated in step S3 (step S4).
Thereafter, in order to actually measure the silica concentration of the sample solution, the extinction curve obtained for the sample solution is approximated by an approximate polynomial according to the same method as described above, and the starting derivative is obtained to obtain the silica concentration from the calibration curve. May be obtained (step S5).

なお、消光曲線を近似する1階微分可能関数はどのような関数でも良いが、上述した近似多項式のように複数次の多項式を用いれば、簡単な演算処理によって始点微係数を求めることができる。
ここで、消光曲線を近似するための近似多項式の次数について考察する。
図2に示したように消光曲線が多少揺らいでいたとしても、低次の近似多項式であれば揺らぎの影響を受けずに消光曲線を近似できる反面、近似多項式の次数が低いほど近似度(相関係数)が低くなり、特に、シリカ濃度が高濃度になるほどこの傾向は強くなる。
これに対し、近似多項式の次数を高くすると、消光曲線の近似度が向上し、シリカ濃度が高濃度の場合にも良好な近似度を保つことができる。その一方において、消光曲線の揺らぎを忠実に近似する余り、近似多項式の係数を決定するための計算機の演算量が多くなり、オーバーフローやアンダーフローが発生する懸念がある。特に、本実施形態が近似多項式の始点微係数を検量線の作成に用いている以上、消光曲線がその始点近傍で揺らいでいる場合には、近似多項式の次数を余り高くすると始点近傍の揺らぎを再現してしまい、算出される始点微係数に誤差が発生するので、次数の選定には注意が必要である。
結論としては、消光曲線に対する近似度、シリカ濃度の範囲、測定時間等の要求される仕様を勘案しながら、近似多項式の次数を例えば2次〜6次の範囲内において選定することが望ましい。
The first-order differentiable function for approximating the extinction curve may be any function. However, if a multi-degree polynomial is used like the above-described approximate polynomial, the starting derivative can be obtained by simple arithmetic processing.
Here, the order of the approximation polynomial for approximating the extinction curve will be considered.
As shown in FIG. 2, even if the extinction curve fluctuates somewhat, a low-order approximation polynomial can approximate the extinction curve without being affected by fluctuations. On the other hand, the lower the degree of the approximation polynomial, This tendency becomes stronger as the silica concentration becomes higher.
On the other hand, when the degree of the approximate polynomial is increased, the degree of approximation of the extinction curve is improved, and a good degree of approximation can be maintained even when the silica concentration is high. On the other hand, there is a concern that overflow and underflow may occur due to the fact that the fluctuation of the extinction curve is faithfully approximated and the amount of calculation of the computer for determining the coefficients of the approximate polynomial increases. In particular, as long as the extinction curve fluctuates in the vicinity of the start point as long as the extinction curve fluctuates in the vicinity of the start point as long as the present embodiment uses the starting derivative of the approximate polynomial for the creation of the calibration curve, the fluctuation in the vicinity of the start point can be reduced. Since it will be reproduced and an error will occur in the calculated derivative of the starting point, care must be taken in selecting the order.
As a conclusion, it is desirable to select the order of the approximate polynomial within, for example, a second to sixth order, taking into account required specifications such as the degree of approximation to the extinction curve, the silica concentration range, and the measurement time.

なお、本実施形態によれば、消光曲線を取得するための測定時間を200〔秒〕程度まで短くした場合にも近似多項式の始点微係数の相対標準偏差(RSD)が小さく(10〔%〕前後)、このRSDは近似多項式の次数を適当に選べば測定時間に対する依存性が少ない傾向にある。
また、図4は、シリカ濃度が0.5〔ppb〕の標準溶液について、前記従来技術により基準時間Tを200〔秒〕〜600〔秒〕まで100〔秒〕刻みにして3回ずつ測定した場合の到達時間TのRSDと、本実施形態により測定時間を600〔秒〕としたときの始点微係数のRSDとを示した図である。
この図4によれば、従来技術では、基準時間Tを長くするほど消光曲線の始点におけるずれが相対的に小さくなるので、RSDが小さくなっているが、本実施形態における始点微係数のRSDは更に小さい値になっており、再現性に優れていることが判る。
According to the present embodiment, even when the measurement time for obtaining the extinction curve is shortened to about 200 [seconds], the relative standard deviation (RSD) of the starting derivative of the approximate polynomial is small (10 [%]). This RSD tends to be less dependent on the measurement time if the order of the approximate polynomial is appropriately selected.
Further, FIG. 4, for standard solutions of silica concentration of 0.5 [ppb], three times with the reference time T E to 200 (seconds) 600 to (seconds) 100 (seconds) increments by the prior art measurement and RSD of arrival time T X in the case of a diagram showing the RSD of start derivative when the measurement time by this embodiment was 600 [sec].
According to FIG. 4, in the prior art, the deviation at the starting point of the extinction curve becomes relatively smaller as the reference time TE is lengthened, so the RSD is smaller. However, the RSD of the starting point derivative in the present embodiment is smaller. Is a smaller value, indicating that the reproducibility is excellent.

次に、本発明の濃度測定方法を実施するための濃度測定装置について、図を参照しつつ説明する。
図5は、本発明の実施形態に係る測定装置の構成を示すブロック図である。図5において、11はブランク溶液、標準溶液、試料溶液を供給する溶液供給部、12はローダミンB水溶液、モリブデン酸アンモニウム水溶液等の各種試薬を供給する試薬供給部、13は反応容器、14はハロゲンランプ、LED等の励起光源及び励起分光フィルタ、15は蛍光検出セルや光電変換素子、蛍光フィルタを含む蛍光検出器、20はパーソナルコンピュータ等からなる測定演算部である。
Next, a concentration measuring apparatus for carrying out the concentration measuring method of the present invention will be described with reference to the drawings.
FIG. 5 is a block diagram showing the configuration of the measuring apparatus according to the embodiment of the present invention. In FIG. 5, 11 is a solution supply unit that supplies blank solution, standard solution, and sample solution, 12 is a reagent supply unit that supplies various reagents such as rhodamine B aqueous solution and ammonium molybdate aqueous solution, 13 is a reaction vessel, and 14 is halogen. An excitation light source such as a lamp and an LED and an excitation spectral filter, 15 is a fluorescence detection cell, a photoelectric conversion element, a fluorescence detector including a fluorescence filter, and 20 is a measurement calculation unit including a personal computer.

上記測定演算部20は、制御手段21、消光曲線作成手段22、始点微係数算出手段23、検量線作成手段24及び濃度測定手段25を備えており、これらの各手段はCPU,MPU等の演算制御装置とプログラムとによって実現されるものである。また、記憶手段26はプログラム及びデータを記憶するハードディスク装置、メモリカード、フラッシュメモリ等により構成される。   The measurement calculation unit 20 includes a control unit 21, an extinction curve generation unit 22, a starting point derivative calculation unit 23, a calibration curve generation unit 24, and a concentration measurement unit 25. These units are calculated by CPU, MPU, and the like. This is realized by a control device and a program. The storage means 26 is composed of a hard disk device, a memory card, a flash memory, etc. for storing programs and data.

制御手段21は、記憶手段26内のプログラムに従って測定装置全体の動作を制御するものである。
消光曲線作成手段22は、ブランク溶液、標準溶液、及び、濃度を測定するべき試料溶液について、前記蛍光検出器15により検出した蛍光強度と測定時間とを用いて消光曲線を作成し、記憶手段26に記憶する。ここで、測定時間の計測機能は消光曲線作成手段22が備えていても良く、前記制御手段21が備えていても良い。
The control means 21 controls the operation of the whole measuring apparatus according to the program in the storage means 26.
The extinction curve creation means 22 creates an extinction curve for the blank solution, the standard solution, and the sample solution whose concentration is to be measured using the fluorescence intensity detected by the fluorescence detector 15 and the measurement time, and the storage means 26. To remember. Here, the measurement function of the measurement time may be provided in the extinction curve creating means 22 or the control means 21.

始点微係数算出手段23は、ブランク溶液、標準溶液及び試料溶液の各消光曲線を、最小自乗法により複数次の多項式等の1階微分可能関数にて近似する演算を行い、これらの近似多項式の始点微係数をそれぞれ算出して記憶手段26に記憶する。
検量線作成手段24は、ブランク溶液及び標準溶液の消光曲線についての始点微係数及びシリカ濃度を用いて検量線を作成し、この検量線をテーブル等の型式で記憶手段26に記憶する。
濃度測定手段25は、試料溶液の消光曲線について算出した始点微係数を基に前記検量線を参照し、始点微係数に対応するシリカ濃度を求めて出力する。この濃度測定値の出力型式としては、表示、印字、伝送等、いかなる方法であっても良い。
また、反応容器の温度は、恒温槽により一定温度に保たれていることが望ましい。
なお、一連の測定動作に必要な種々のデータ入力、操作指示等を与える入力手段や、入出力インターフェイス等については、便宜上、図示を省略する。
The starting point derivative calculating means 23 performs an operation of approximating the extinction curves of the blank solution, the standard solution, and the sample solution with a first-order differentiable function such as a multiple degree polynomial by the least square method, Each starting point derivative is calculated and stored in the storage means 26.
The calibration curve creation means 24 creates a calibration curve using the starting derivative and the silica concentration for the extinction curves of the blank solution and the standard solution, and stores this calibration curve in the storage means 26 in the form of a table or the like.
The concentration measuring means 25 refers to the calibration curve based on the starting point derivative calculated for the extinction curve of the sample solution, and obtains and outputs the silica concentration corresponding to the starting point derivative. The output type of the concentration measurement value may be any method such as display, printing, transmission, or the like.
Moreover, it is desirable that the temperature of the reaction vessel is maintained at a constant temperature by a thermostatic bath.
Note that illustration of input means for giving various data input necessary for a series of measurement operations, operation instructions, and an input / output interface is omitted for convenience.

次いで、本発明の測定方法に係る実施例を説明する。この実施例は、シリカ濃度が比較的低い範囲の試料溶液を測定する場合のものである。
まず、シリカ濃度が0〔ppb〕(ブランク溶液),0.5〔ppb〕,1.0〔ppb〕,2.0〔ppb〕の標準溶液について、消光曲線を作成する。すなわち、2.0M硫酸100〔μL〕を4つの蛍光検出セルに入れ、シリカ濃度が0〔ppb〕(ブランク溶液),0.5〔ppb〕,1.0〔ppb〕,2.0〔ppb〕の標準溶液をそれぞれ加えて攪拌し、次に、5.0×10−5MローダミンB水溶液を300〔μL〕添加して良く混合する。
Next, examples according to the measurement method of the present invention will be described. In this example, a sample solution having a relatively low silica concentration is measured.
First, extinction curves are prepared for standard solutions having silica concentrations of 0 [ppb] (blank solution), 0.5 [ppb], 1.0 [ppb], and 2.0 [ppb]. That is, 2.0 M sulfuric acid 100 [μL] is put into four fluorescence detection cells, and the silica concentration is 0 [ppb] (blank solution), 0.5 [ppb], 1.0 [ppb], 2.0 [ppb]. Each of the standard solutions is added and stirred, and then 300 [μL] of 5.0 × 10 −5 M Rhodamine B aqueous solution is added and mixed well.

その後、各々の蛍光検出セルを25〔℃〕の恒温槽を備えた測定装置(蛍光分光光度計)に入れ、5分間静置して混合液の温度を25〔℃〕に保ち、2.3×10−2Mモリブデン酸水溶液を180〔μL〕添加して素早く混合する。その時点から30秒後を測定開始時点、つまり始点(t=0)として励起波長556〔nm〕、蛍光波長570〔nm〕で測定を開始し、10分間(600〔秒〕)の蛍光強度の変化をそれぞれ測定することにより、図6に示す4つの消光曲線を得た。 Thereafter, each fluorescence detection cell is placed in a measuring apparatus (fluorescence spectrophotometer) equipped with a thermostatic bath of 25 [° C.] and left for 5 minutes to keep the temperature of the mixed solution at 25 [° C.] 2.3. Add 180 [μL] of × 10 −2 M molybdic acid aqueous solution and mix quickly. 30 seconds after that point, the measurement was started at the measurement start point, that is, the start point (t = 0), with an excitation wavelength of 556 [nm] and a fluorescence wavelength of 570 [nm], and the fluorescence intensity was 10 minutes (600 [seconds]). By measuring each change, four extinction curves shown in FIG. 6 were obtained.

なお、図6では、各消光曲線の始点における蛍光強度は、シリカ濃度が高くなるほど小さくなっているが、始点T’近傍では消光曲線がほぼ直線状に変化していると見なすことができる。よって、始点T’近傍では消光曲線の傾きが一定であるため、パーソナルコンピュータの操作による測定開始時間の誤差に影響されることなく、始点微係数を一意に決定することが可能である。 In FIG. 6, the fluorescence intensity at the start point of each extinction curve decreases as the silica concentration increases, but it can be considered that the extinction curve changes almost linearly in the vicinity of the start point T 0 ′. Therefore, since the slope of the extinction curve is constant in the vicinity of the start point T 0 ′, it is possible to uniquely determine the start point derivative without being affected by the measurement start time error caused by the operation of the personal computer.

次に、図6に示した4つの消光曲線を6次多項式によりそれぞれ近似し、これらの多項式の始点微係数と各消光曲線のシリカ濃度とを用いて、図7の検量線を得た。この図7において、検量線Aは0〔ppb〕,0.5〔ppb〕,1.0〔ppb〕,2.0〔ppb〕の4つのプロットを指数関数により近似したもの、検量線Bは0〔ppb〕,0.5〔ppb〕,1.0〔ppb〕の3つのプロットを1次関数により近似したものである。
なお、比較のために、前述した従来技術を用いて、ブランク溶液の消光曲線の400〔秒〕(基準時間T=400〔秒〕)における蛍光強度Fに到達するまでの時間(到達時間T)を縦軸にとり、シリカ濃度を横軸にとって作成した検量線を図8に示す。この図8において、検量線Cは4つのプロットを3次多項式により近似したもの、検量線Dは指数関数により近似したものである。
Next, the four extinction curves shown in FIG. 6 were approximated by a sixth-order polynomial, respectively, and the calibration curve of FIG. 7 was obtained using the starting derivative of these polynomials and the silica concentration of each extinction curve. In FIG. 7, a calibration curve A is obtained by approximating four plots of 0 [ppb], 0.5 [ppb], 1.0 [ppb], and 2.0 [ppb] by an exponential function, and a calibration curve B is Three plots of 0 [ppb], 0.5 [ppb], and 1.0 [ppb] are approximated by a linear function.
For comparison, using the conventional technique described above, 400 [sec] (reference time T E = 400 (seconds)) of the extinction curve for blank solution time to reach the fluorescence intensity F E at (arrival time FIG. 8 shows a calibration curve created with T X ) on the vertical axis and the silica concentration on the horizontal axis. In FIG. 8, a calibration curve C is obtained by approximating four plots by a cubic polynomial, and a calibration curve D is approximated by an exponential function.

図7,図8を比較して判るように、従来技術の検量線Cでは、シリカ濃度が1〔ppb〕前後の範囲においてシリカ濃度に対する到達時間の変化量が極めて少ないため、測定濃度範囲が狭いのに対し、本実施例の検量線AまたはBでは、2〔ppb〕以下または1〔ppb〕以下の範囲でも始点微係数の変化量として必要十分な値が得られており、従来技術よりも測定濃度範囲が広くなっていることが確認された。   As can be seen by comparing FIG. 7 and FIG. 8, in the calibration curve C of the prior art, the amount of change in the arrival time with respect to the silica concentration is very small in the range where the silica concentration is around 1 [ppb]. On the other hand, in the calibration curve A or B of this example, a necessary and sufficient value is obtained as the amount of change in the starting point derivative even in the range of 2 [ppb] or less or 1 [ppb] or less, which is higher than that of the prior art. It was confirmed that the measured concentration range was wide.

本発明は、例えば半導体製造工程や液晶製造工程、医薬品製造工程等に使用される超純水を始めとして、各種の試料溶液中に含まれるシリカ、リン、ヒ素等の微量成分の濃度測定に利用可能である。   The present invention is used for measuring the concentration of trace components such as silica, phosphorus, and arsenic contained in various sample solutions including, for example, ultrapure water used in semiconductor manufacturing processes, liquid crystal manufacturing processes, pharmaceutical manufacturing processes, etc. Is possible.

11:溶液供給部
12:試薬供給部
13:反応容器
14:励起光源及び分光フィルタ
15:蛍光検出器
20:測定演算部
21:制御手段
22:消光曲線作成手段
23:始点微係数算出手段
24:検量線作成手段
25:濃度測定手段
26:記憶手段
DESCRIPTION OF SYMBOLS 11: Solution supply part 12: Reagent supply part 13: Reaction container 14: Excitation light source and spectral filter 15: Fluorescence detector 20: Measurement calculating part 21: Control means 22: Quenching curve preparation means 23: Start point derivative calculation means 24: Calibration curve creation means 25: concentration measurement means 26: storage means

Claims (4)

微量成分を含む試料溶液に試薬を添加して得た反応溶液による蛍光強度が、前記微量成分の濃度に応じて経時的に減衰することを利用して、前記微量成分の濃度を測定する測定方法において、
前記微量成分を含まないブランク溶液と複数種類の濃度の前記微量成分をそれぞれ含む標準溶液とを対象として、蛍光強度の時間変化を示す複数の消光曲線を取得する第1工程と、
第1工程により取得した複数の消光曲線を1階微分可能関数によりそれぞれ近似する第2工程と、
前記1階微分可能関数の始点における傾きを始点微係数としてそれぞれ算出する第3工程と、
第3工程により算出した複数の始点微係数と、前記ブランク溶液及び前記標準溶液に含まれる前記微量成分の濃度と、を用いて検量線を作成する第4工程と、
微量成分の濃度を検出するべき試料溶液について取得した消光曲線を1階微分可能関数により近似し、その始点微係数を算出して前記検量線から試料溶液中の微量成分の濃度を求める第5工程と、
を有することを特徴とする溶液中微量成分の濃度測定方法。
A measuring method for measuring the concentration of the trace component by utilizing the fact that the fluorescence intensity of the reaction solution obtained by adding the reagent to the sample solution containing the trace component decays with time according to the concentration of the trace component In
A first step of acquiring a plurality of quenching curves indicating temporal changes in fluorescence intensity for a blank solution that does not contain the trace component and a standard solution that contains the trace component at a plurality of concentrations, respectively,
A second step of approximating each of the plurality of extinction curves obtained in the first step by a first-order differentiable function;
A third step of calculating the slope at the starting point of the first-order differentiable function as a starting derivative, respectively;
A fourth step of creating a calibration curve using a plurality of starting point derivatives calculated in the third step and the concentrations of the trace components contained in the blank solution and the standard solution;
Fifth step of approximating the extinction curve obtained for the sample solution for detecting the concentration of the trace component by a first-order differentiable function, calculating the derivative of the starting point, and determining the concentration of the trace component in the sample solution from the calibration curve When,
A method for measuring the concentration of a trace component in a solution, comprising:
請求項1に記載した溶液中微量成分の測定方法において、
前記1階微分可能関数が複数次の多項式であることを特徴とする溶液中微量成分の濃度測定方法。
In the measuring method of the trace component in the solution according to claim 1,
The method for measuring the concentration of a trace component in a solution, wherein the first-order differentiable function is a multiple degree polynomial.
請求項2に記載した溶液中微量成分の測定方法において、
最小自乗法を用いて前記多項式により前記消光曲線を近似することを特徴とする溶液中微量成分の濃度測定方法。
In the measuring method of the trace component in the solution according to claim 2,
A method for measuring the concentration of a trace component in a solution, wherein the extinction curve is approximated by the polynomial using a least square method.
微量成分を含む試料溶液に試薬を添加して得た反応溶液による蛍光強度が、前記微量成分の濃度に応じて経時的に減衰することを利用して、前記微量成分の濃度を測定する測定装置において、
微量成分を含まないブランク溶液、複数種類の濃度の前記微量成分をそれぞれ含む標準溶液、及び、前記微量成分の濃度が未知である試料溶液を対象として、前記蛍光強度の時間変化を示す消光曲線をそれぞれ作成する消光曲線作成手段と、
前記消光曲線を近似した1階微分可能関数の始点における傾きを始点微係数としてそれぞれ算出する始点微係数算出手段と、
前記ブランク溶液及び前記標準溶液の消光曲線について算出した始点微係数と、前記ブランク溶液及び前記標準溶液に含まれる前記微量成分の濃度とを用いて、検量線を作成する検量線作成手段と、
前記試料溶液の消光曲線について算出した始点微係数と、前記検量線とに基づいて、前記試料溶液中の微量成分の濃度を求める濃度測定手段と、
を備えたことを特徴とする溶液中微量成分の濃度測定装置。
A measuring device that measures the concentration of the trace component by using the fact that the fluorescence intensity of the reaction solution obtained by adding a reagent to the sample solution containing the trace component decays with time according to the concentration of the trace component In
Extinction curves showing temporal changes in the fluorescence intensity for blank solutions that do not contain trace components, standard solutions that contain multiple concentrations of the trace components, and sample solutions that have unknown concentrations of the trace components. Extinction curve creation means to create each,
Starting point derivative calculating means for calculating the slope at the starting point of the first order differentiable function approximating the extinction curve as a starting point derivative,
A calibration curve creating means for creating a calibration curve using the starting point derivative calculated for the extinction curves of the blank solution and the standard solution and the concentration of the trace component contained in the blank solution and the standard solution,
Based on the starting derivative calculated for the extinction curve of the sample solution and the calibration curve, concentration measuring means for determining the concentration of a trace component in the sample solution;
An apparatus for measuring the concentration of trace components in a solution, comprising:
JP2009114571A 2009-05-11 2009-05-11 Method and apparatus for measuring concentration of trace constituent in solution Pending JP2010261895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009114571A JP2010261895A (en) 2009-05-11 2009-05-11 Method and apparatus for measuring concentration of trace constituent in solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009114571A JP2010261895A (en) 2009-05-11 2009-05-11 Method and apparatus for measuring concentration of trace constituent in solution

Publications (1)

Publication Number Publication Date
JP2010261895A true JP2010261895A (en) 2010-11-18

Family

ID=43360080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009114571A Pending JP2010261895A (en) 2009-05-11 2009-05-11 Method and apparatus for measuring concentration of trace constituent in solution

Country Status (1)

Country Link
JP (1) JP2010261895A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499559A (en) * 2013-10-15 2014-01-08 福建省邵武市永飞化工有限公司 Method for measuring content of arsenic in fluorite powder
CN103728285A (en) * 2013-12-20 2014-04-16 吴江市震宇缝制设备有限公司 Calibration curve making and calibration method for fluorescence analyzer
CN104359865A (en) * 2014-11-05 2015-02-18 广西师范大学 Resonance Rayleigh scattering spectra method measuring ammonia
WO2015184234A1 (en) * 2014-05-30 2015-12-03 X-Ray Optical Systems, Inc. Active, variable sample concentration method and apparatus for sub-ppb measurements and exemplary x-ray analysis applications thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177445A (en) * 1986-01-31 1987-08-04 Nec Corp Blood sugar meter
WO1996008714A1 (en) * 1994-09-13 1996-03-21 Toto Ltd. Material concentration measuring method and material concentration measuring apparatus
JP2003090819A (en) * 2001-09-17 2003-03-28 Denso Corp Method for detecting gas concentration
JP2008083002A (en) * 2006-09-29 2008-04-10 Doshisha Device and method for detecting alcohol
WO2009015319A1 (en) * 2007-07-26 2009-01-29 Home Diagnostics, Inc. System and methods for determination of analyte concentration using time resolved amperometry

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177445A (en) * 1986-01-31 1987-08-04 Nec Corp Blood sugar meter
WO1996008714A1 (en) * 1994-09-13 1996-03-21 Toto Ltd. Material concentration measuring method and material concentration measuring apparatus
JP2003090819A (en) * 2001-09-17 2003-03-28 Denso Corp Method for detecting gas concentration
JP2008083002A (en) * 2006-09-29 2008-04-10 Doshisha Device and method for detecting alcohol
WO2009015319A1 (en) * 2007-07-26 2009-01-29 Home Diagnostics, Inc. System and methods for determination of analyte concentration using time resolved amperometry
JP2010534839A (en) * 2007-07-26 2010-11-11 ホーム ダイアグナスティックス,インコーポレーテッド Analyte concentration measurement system and method using time-resolved amperometry

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013016979; 金子恵美子: '超純水中シリカの計測 ローダミンBを用いる時間消光分析法の開発と微量シリカへの適用' クリーンテクノロジー Vol.17 No.4, 200704, pp.57-60 *
JPN7013001352; 磯江準一 他: 'ローダミンBの消光時間を用いる超純水中シリカの定量' ぶんせき Vol.386, 2007, pp.96-100 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499559A (en) * 2013-10-15 2014-01-08 福建省邵武市永飞化工有限公司 Method for measuring content of arsenic in fluorite powder
CN103728285A (en) * 2013-12-20 2014-04-16 吴江市震宇缝制设备有限公司 Calibration curve making and calibration method for fluorescence analyzer
WO2015184234A1 (en) * 2014-05-30 2015-12-03 X-Ray Optical Systems, Inc. Active, variable sample concentration method and apparatus for sub-ppb measurements and exemplary x-ray analysis applications thereof
US10317350B2 (en) 2014-05-30 2019-06-11 X-Ray Optical Systems, Inc. Active, variable sample concentration method and apparatus for sub-ppb measurements and exemplary X-ray analysis applications thereof
CN104359865A (en) * 2014-11-05 2015-02-18 广西师范大学 Resonance Rayleigh scattering spectra method measuring ammonia
CN104359865B (en) * 2014-11-05 2017-03-22 广西师范大学 Resonance Rayleigh scattering spectra method measuring ammonia

Similar Documents

Publication Publication Date Title
Barron et al. The effect of temperature on conductivity measurement
DeGrandpre et al. Considerations for the measurement of spectrophotometric pH for ocean acidification and other studies
Coverly et al. A re-examination of matrix effects in the segmented-flow analysis of nutrients in sea and estuarine water
Kauffmann et al. Inorganic salts diluted in water probed by Raman spectrometry: Data processing and performance evaluation
JP5956587B2 (en) Method and experimental equipment for quantitative optical measurements
JP2010261895A (en) Method and apparatus for measuring concentration of trace constituent in solution
CN107132263A (en) The method of testing of aluminium composition in aluminium etching solution
CN113533648A (en) Method for preparing a liquid mixture
CN114235726B (en) Data processing method, system, equipment and medium for microfluidic total nitrogen concentration detection
JP6531483B2 (en) Apparatus and method for measuring concentration of dissolved component
CN111537487B (en) Temperature compensation method and device of optical oxygen sensor
JP4434026B2 (en) Isotope ratio analysis method using plasma ion source mass spectrometer
CN111912974A (en) Immune reagent calibration method
US8119415B2 (en) X-ray fluorescence method for a composition analysis of a sample containing at least two elements
Koleva et al. Application of secondary pH measurement method for homogeneity and stability assessment of reference materials
Koort et al. Estimation of uncertainty in p K a values determined by potentiometric titration
JP6767442B2 (en) Measuring instrument, etching system, silicon concentration measurement method, and silicon concentration measurement program
JP2007183104A (en) Liquid amount inspection method of dispenser or the like
Lang et al. Development of NIST standard reference material 2082, a pathlength standard for measurements in the ultraviolet spectrum
JP2007187594A (en) Correction method of calibration curve
Dobilienė et al. Uncertainty sources affecting reliability of chemical measurements
JP7457998B2 (en) Spectroscopic measurement device and spectroscopic measurement method
JPH04109166A (en) Quantification method for silica
Shaevich Assurance of the Accuracy of the Results of Measurements of Low and Ultra-Low Contents of Components in Natural and Synthetic Substances and Media. Part 2. Methods for the Solution of the Problem
Tepuš et al. Uncertainty of the result of TOC determination in water samples

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131024