JP2010258415A - Composite body, method of manufacturing the same, and semiconductor device - Google Patents

Composite body, method of manufacturing the same, and semiconductor device Download PDF

Info

Publication number
JP2010258415A
JP2010258415A JP2010028952A JP2010028952A JP2010258415A JP 2010258415 A JP2010258415 A JP 2010258415A JP 2010028952 A JP2010028952 A JP 2010028952A JP 2010028952 A JP2010028952 A JP 2010028952A JP 2010258415 A JP2010258415 A JP 2010258415A
Authority
JP
Japan
Prior art keywords
resin layer
resin
composite
layer
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010028952A
Other languages
Japanese (ja)
Inventor
Yuka Ito
有香 伊藤
Kenichi Kaneda
研一 金田
Yasuaki Mitsui
保明 三井
Takeshi Onozuka
偉師 小野塚
Noriyuki Daito
範行 大東
Hidetaka Hara
英貴 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2010028952A priority Critical patent/JP2010258415A/en
Publication of JP2010258415A publication Critical patent/JP2010258415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a composite body including fine wiring lines and vias which are formed in a resin layer of the composite body and have high adhesion, high reliability and suitability for high frequencies; a method for manufacturing the same; and a semiconductor device. <P>SOLUTION: The first composite body 100 including a resin layer 1 and conductor layers 2 includes grooves 3 each having a maximum width of 1-10 μm on a surface of the resin layer 1 and the conductor layers 2 provided in the grooves 3, wherein arithmetic average roughness (Ra) of the surface of the resin layer 1 in contact with the conductor layer 2 is 0.05-0.45 μm; and/or the resin layer 1 includes via holes each having a diameter of 1-25 μm, and conductor layers 2 are provided in the via holes. Arithmetic average roughness (Ra) of the surface of the resin layer 1 in the via hole is 0.05-0.45 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、配線に用いられる複合体、複合体の製造方法及び半導体装置に関するものである。   The present invention relates to a composite used for wiring, a method for manufacturing the composite, and a semiconductor device.

近年、電子機器の高機能化、軽量化、小型化、薄型化の要求に伴い、電子部品の高密度集積化、高密度実装化が進んでいる。これらの電子機器に使用されるプリント配線板の回路配線は高密度化する傾向にあり、ビルドアップした多層配線構造が採用されている。   In recent years, with the demand for higher functionality, lighter weight, smaller size, and thinner electronic devices, high-density integration and high-density mounting of electronic components are progressing. Circuit wiring of printed wiring boards used in these electronic devices tends to have a higher density, and a built-up multilayer wiring structure is employed.

回路配線パターンを形成する方法として、一般的には銅箔をエッチングする手法(サブトラクティブ法)がある。サブトラクティブ法で形成される回路厚みは、使用する銅箔の厚みで規定されるという特徴があり、回路幅の精度は、エッチング液の反応特性及び使用するエッチング装置の能力に依存する。そのため、サブトラクティブ法は、極薄金属箔を用いる一部の用途を除くと、一般的には高密度化に不向きとされている。   As a method for forming a circuit wiring pattern, there is generally a technique (subtractive method) for etching a copper foil. The circuit thickness formed by the subtractive method is characterized by the thickness of the copper foil to be used, and the accuracy of the circuit width depends on the reaction characteristics of the etching solution and the ability of the etching apparatus to be used. For this reason, the subtractive method is generally not suitable for increasing the density, except for some applications using ultrathin metal foils.

一方、ビルドアップ基板や多層配線板の製造に一般的に適用されている工法にセミアディティブ法がある。この工法では、樹脂表面をデスミア処理して表面を粗化し、パラジウム触媒を利用した無電解銅めっき層を表面に形成し、さらに該銅めっき層上に感光性レジストを形成して、露光・現像などのプロセスを経由してパターニングを行った後、電解銅めっきで回路パターンを形成し、最後にレジストを剥離し無電解銅めっき層をフラッシュエッチングで除去して微細配線を形成する方法である。(例えば、特許文献1参照)。この方法で微細配線を形成する場合、レジストの露光・現像精度や配線間のパラジウム触媒残渣によるめっき異常析出などの問題があり、回路幅/回路間幅(L/S)が10μm/10μm以下で微細配線を形成することは困難である。   On the other hand, there is a semi-additive method as a method generally applied to the manufacture of build-up substrates and multilayer wiring boards. In this method, the resin surface is desmeared to roughen the surface, an electroless copper plating layer using a palladium catalyst is formed on the surface, a photosensitive resist is formed on the copper plating layer, and exposure / development is performed. After patterning through a process such as the above, a circuit pattern is formed by electrolytic copper plating, finally the resist is peeled off, and the electroless copper plating layer is removed by flash etching to form fine wiring. (For example, refer to Patent Document 1). When fine wiring is formed by this method, there are problems such as exposure / development accuracy of resist and abnormal plating deposition due to palladium catalyst residue between wiring, and the circuit width / inter-circuit width (L / S) is 10 μm / 10 μm or less. It is difficult to form fine wiring.

また、サブトラクティブ法、及び、セミアディティブ法では樹脂層表面に凸型の配線が形成される。ビルドアップ基板や多層配線板においては、この後の工程に樹脂層を積層する工程が含まれるが、樹脂組成によっては樹脂の埋め込み性の問題が生じる。特に回路幅/回路間幅(L/S)が10μm/10μm以下の微細配線領域では、樹脂の埋め込み性が悪くなると絶縁信頼性を確保するのが困難となる。   In the subtractive method and the semi-additive method, convex wiring is formed on the surface of the resin layer. In a build-up board or a multilayer wiring board, a process of laminating a resin layer is included in the subsequent process, but depending on the resin composition, a problem of resin embedding occurs. In particular, in a fine wiring region having a circuit width / inter-circuit width (L / S) of 10 μm / 10 μm or less, it becomes difficult to ensure insulation reliability when the resin embedding property deteriorates.

また、スクライブ、プラズマ、又はレーザーなどによって樹脂層に溝を形成し、樹脂表面をデスミア処理して表面を粗化し、パラジウム触媒を利用した無電解銅めっき層を表面に形成後、電解銅めっきで導体を形成し、最後に溝部分以外の導体めっきをエッチングで除去して回路を形成する方法がある(例えば、特許文献2、3参照)。   Also, grooves are formed in the resin layer by scribing, plasma, laser, etc., the surface of the resin is desmeared to roughen the surface, and an electroless copper plating layer using a palladium catalyst is formed on the surface. There is a method in which a conductor is formed and finally a conductor plating other than the groove portion is removed by etching to form a circuit (for example, see Patent Documents 2 and 3).

また、樹脂層を介して回路配線層間を接続する方法としては、例えば樹脂層に層間接続用のビアを形成する方法がある(例えば、特許文献4参照)。ビアを形成するには、炭酸ガスレーザー、YAGレーザー、エキシマレーザー等のレーザーを樹脂層に照射し開口後、導電性樹脂の充填やめっきによって回路配線層間を接続する。   As a method for connecting circuit wiring layers through a resin layer, for example, there is a method of forming an interlayer connection via in the resin layer (see, for example, Patent Document 4). In order to form a via, a laser such as a carbon dioxide laser, a YAG laser, or an excimer laser is irradiated on the resin layer, and after opening, the circuit wiring layers are connected by filling with conductive resin or plating.

特開平8−64930号公報JP-A-8-64930 特開平10−4253号公報Japanese Patent Laid-Open No. 10-4253 特開2006−41029号公報JP 2006-41029 A 特開2008−274210号公報JP 2008-274210 A

スクライブ、プラズマ、又はレーザーなどによって樹脂層に溝を形成し、回路を形成する方法の場合、樹脂層の溝側壁面の凹凸が大きくなるため溝を形成する際の精度に問題があり、回路幅/回路間幅(L/S)が10μm/10μm以下の微細配線を形成するのが難しいことがわかった。また、レーザーでビア孔を形成する場合、樹脂層中の無機充填材の影響や樹脂のレーザー波長の吸収性から、ビア内部の樹脂面の凹凸が大きくなるためビアを形成する際の精度に問題があり、20μm以下のビアを形成するのが難しいことがわかった。
本発明は、上記実情に鑑み、複合体の樹脂層表面に形成された高密着、高信頼性、高周波対応の微細配線を有する複合体、複合体の樹脂層に形成されたビア及び、高密度、高信頼性、高周波対応のビアを有する複合体、及びこれらの複合体の製造方法、並びに当該複合体を用いた半導体装置を提供するものである。
In the case of a method of forming a circuit by forming a groove in the resin layer by scribe, plasma, laser, or the like, the unevenness of the groove side wall surface of the resin layer becomes large, so there is a problem in accuracy when forming the groove, and the circuit width / It has been found that it is difficult to form fine wiring with a circuit width (L / S) of 10 μm / 10 μm or less. Also, when forming via holes with a laser, the unevenness of the resin surface inside the via increases due to the influence of the inorganic filler in the resin layer and the absorption of the laser wavelength of the resin, so there is a problem with the accuracy when forming the via. It was found that it is difficult to form vias of 20 μm or less.
In view of the above circumstances, the present invention provides a composite having fine wiring corresponding to high adhesion, high reliability and high frequency formed on the resin layer surface of the composite, vias formed in the resin layer of the composite, and high density The present invention provides composites having high reliability and high-frequency compatible vias, methods for manufacturing these composites, and semiconductor devices using the composites.

このような目的は、下記の本発明[1]〜[20]項により達成される。
[1]樹脂層と導体層とを含む複合体であって、
前記樹脂層表面に最大幅が1μm以上、10μm以下の溝と当該溝内部に導体層を有し、当該導体層と接する前記樹脂層表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下である、
ことを特徴とする複合体。
[2]樹脂層と導体層とを含む複合体であって、
前記樹脂層に直径が1μm以上、25μm以下のビア孔と当該ビア孔内部に導体層を有し、前記ビア孔内部の樹脂層表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下である、
ことを特徴とする複合体。
[3]更に、前記樹脂層表面に最大幅が1μm以上、10μm以下の溝と当該溝内部に導体層を有し、当該導体層と接する前記樹脂層表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下であることを特徴とする[2]項に記載の複合体。
[4]前記樹脂層が無機充填材を含み、当該無機充填材は、2μm超過の粗粒が500ppm以下であることを特徴とする[1]ないし[3]項のいずれかに記載の複合体。
[5]前記樹脂層が無機充填材を含み、当該無機充填材の平均粒径が0.05μm以上、1.0μm以下であることを特徴とする[1]ないし[4]項のいずれかに記載の複合体。
[6]前記溝内部の導体層の断面形状が、略台形状、蒲鉾状又は三角形であることを特徴とする[1]ないし[5]項のいずれかに記載の複合体。
[7]前記ビア孔の断面形状が、略台形状であることを特徴とする[2]ないし[6]項のいずれかに記載の複合体。
[8]前記複合体が、プリント配線板、半導体素子、メタルコア配線板の中から選ばれた少なくともひとつであることを特徴とする、[1]ないし[7]項のいずれかに記載の複合体。
Such an object is achieved by the following items [1] to [20] of the present invention.
[1] A composite including a resin layer and a conductor layer,
A groove having a maximum width of 1 μm or more and 10 μm or less on the surface of the resin layer and a conductor layer inside the groove, and the arithmetic average roughness (Ra) of the surface of the resin layer in contact with the conductor layer is 0.05 μm or more, 0 .45 μm or less,
A composite characterized by that.
[2] A composite comprising a resin layer and a conductor layer,
The resin layer has a via hole having a diameter of 1 μm or more and 25 μm or less and a conductor layer inside the via hole, and the arithmetic average roughness (Ra) of the resin layer surface inside the via hole is 0.05 μm or more, and 45 μm or less,
A composite characterized by that.
[3] Further, a groove having a maximum width of 1 μm or more and 10 μm or less on the surface of the resin layer and a conductor layer inside the groove, and the arithmetic average roughness (Ra) of the resin layer surface in contact with the conductor layer is 0 The composite as described in the item [2], which is not less than 0.05 μm and not more than 0.45 μm.
[4] The composite according to any one of [1] to [3], wherein the resin layer includes an inorganic filler, and the inorganic filler has a coarse particle size exceeding 2 μm of 500 ppm or less. .
[5] Any one of [1] to [4], wherein the resin layer includes an inorganic filler, and the inorganic filler has an average particle size of 0.05 μm or more and 1.0 μm or less. The complex described.
[6] The composite according to any one of [1] to [5], wherein the cross-sectional shape of the conductor layer inside the groove is substantially trapezoidal, bowl-shaped or triangular.
[7] The composite according to any one of [2] to [6], wherein the via hole has a substantially trapezoidal cross-sectional shape.
[8] The composite according to any one of [1] to [7], wherein the composite is at least one selected from a printed wiring board, a semiconductor element, and a metal core wiring board. .

[9]樹脂層と導体層とを含む複合体を製造する方法であって、
(A)レーザー光によって樹脂層表面に、内部表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下である溝を形成する工程と、
(B)無電解めっきによって前記樹脂層表面に導体を形成する工程と、
(C)前記導体の一部を除去することにより、前記樹脂層の前記溝部分のみに導体層を形成する工程と、
を含むことを特徴とする複合体の製造方法。
[10]前記工程(C)の後に、
(D)前記樹脂層と前記導体層の上に別の樹脂層を形成する工程、
を含むことを特徴とする[9]項に記載の複合体の製造方法。
[11]樹脂層と導体層とを含む複合体を製造する方法であって、
(A)レーザー光によって、樹脂層に、内部の表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下であるビア孔を形成する工程と、
(B)無電解めっきによって前記樹脂層表面に導体を形成する工程と、
(C)前記導体の一部を除去することにより、前記樹脂層のビア孔部分のみに導体層を形成する工程と、
を含むことを特徴とする複合体の製造方法。
[12]前記工程(A)が、レーザー光によって、樹脂層に内部の表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下であるビア孔と、樹脂層表面に内部表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下である溝とを形成する工程であり、且つ、
前記工程(C)が、前記導体の一部を除去することにより、前記樹脂層のビア孔及び前記樹脂層表面の溝部分のみに導体層を形成する工程、
であることを特徴とする[11]項に記載の複合体の製造方法。
[13]前記工程(C)の後に、
(D)前記樹脂層と前記導体層の上に別の樹脂層を形成する工程、
を含むことを特徴とする[11]又は[12]項に記載の複合体の製造方法。
[14]前記工程(A)と前記工程(B)の間に、プラズマ又は薬液によってデスミアする工程を含むことを特徴とする[9]ないし[13]項のいずれかに記載の複合体の製造方法。
[15]前記工程(B)と前記工程(C)の間に、電解めっきでさらに導体形成する工程を含むことを特徴とする[9]ないし[14]項のいずれかに記載の複合体の製造方法。
[16]前記レーザー光がエキシマレーザー又はYAGレーザーであることを特徴とする[9]ないし[15]項のいずれかに記載の複合体の製造方法。
[17]前記工程(A)において、前記樹脂層に無機充填材が含まれ、当該無機充填材は、2μm超過の粗粒が500ppm以下であることを特徴とする[9]ないし[16]項のいずれかに記載の複合体の製造方法。
[18]前記工程(A)において、前記樹脂層に無機充填材が含まれ、当該無機充填材の平均粒径が0.05μm以上、1.0μm以下であることを特徴とする[9]ないし[17]項のいずれかに記載の複合体の製造方法。
[19]前記複合体が、プリント配線板、半導体素子、メタルコア配線板の中から選ばれた少なくともひとつであることを特徴とする、[9]ないし[18]項のいずれかに記載の複合体の製造方法。
[20][1]ないし[8]項のいずれかに記載の複合体がプリント配線板又はメタルコア配線板であって、当該複合体に半導体素子を搭載してなることを特徴とする半導体装置。
[9] A method for producing a composite including a resin layer and a conductor layer,
(A) forming a groove having an arithmetic mean roughness (Ra) of the inner surface of 0.05 μm or more and 0.45 μm or less on the resin layer surface by laser light;
(B) forming a conductor on the surface of the resin layer by electroless plating;
(C) forming a conductor layer only in the groove portion of the resin layer by removing a part of the conductor;
The manufacturing method of the composite_body | complex characterized by including.
[10] After the step (C),
(D) forming another resin layer on the resin layer and the conductor layer;
The manufacturing method of the composite_body | complex as described in the item [9] characterized by including.
[11] A method for producing a composite comprising a resin layer and a conductor layer,
(A) A step of forming a via hole having an arithmetic mean roughness (Ra) of the inner surface of 0.05 μm or more and 0.45 μm or less in the resin layer by laser light;
(B) forming a conductor on the surface of the resin layer by electroless plating;
(C) forming a conductor layer only in the via hole portion of the resin layer by removing a part of the conductor;
The manufacturing method of the composite_body | complex characterized by including.
[12] In the step (A), a laser beam is used to form a via hole having an arithmetic average roughness (Ra) of the inner surface of the resin layer of 0.05 μm or more and 0.45 μm or less; Forming a groove having an arithmetic average roughness (Ra) of 0.05 μm or more and 0.45 μm or less, and
The step (C) of forming a conductor layer only in the via hole of the resin layer and the groove portion of the resin layer surface by removing a part of the conductor;
The method for producing a composite as described in the item [11], wherein
[13] After the step (C),
(D) forming another resin layer on the resin layer and the conductor layer;
The method for producing a composite as described in the item [11] or [12], comprising:
[14] The production of the complex according to any one of [9] to [13], which includes a step of desmearing with plasma or a chemical solution between the step (A) and the step (B). Method.
[15] The composite according to any one of [9] to [14], further including a step of forming a conductor by electrolytic plating between the step (B) and the step (C). Production method.
[16] The method for producing a complex according to any one of [9] to [15], wherein the laser beam is an excimer laser or a YAG laser.
[17] The item [9] to [16], wherein in the step (A), the resin layer contains an inorganic filler, and the inorganic filler has a coarse particle size exceeding 2 μm of 500 ppm or less. The manufacturing method of the composite_body | complex in any one of.
[18] In the step (A), the resin layer contains an inorganic filler, and the inorganic filler has an average particle size of 0.05 μm to 1.0 μm [9] to [17] The method for producing the complex according to any one of items.
[19] The composite according to any one of [9] to [18], wherein the composite is at least one selected from a printed wiring board, a semiconductor element, and a metal core wiring board. Manufacturing method.
[20] A semiconductor device, wherein the composite according to any one of [1] to [8] is a printed wiring board or a metal core wiring board, and a semiconductor element is mounted on the composite.

本発明によれば、複合体の樹脂層表面に形成された高密着、高信頼性、高周波対応の微細配線を有する複合体、複合体の樹脂層に形成された高密度、高信頼性、高周波対応のビアを有する複合体、並びに当該複合体を用いた半導体装置を得ることができる。   According to the present invention, a composite having fine wiring corresponding to high adhesion, high reliability and high frequency formed on the resin layer surface of the composite, high density, high reliability and high frequency formed on the resin layer of the composite. A composite having a corresponding via and a semiconductor device using the composite can be obtained.

本発明に係る樹脂層と導体層とを含む複合体の一例について示した模式的断面図である。It is typical sectional drawing shown about an example of the composite_body | complex containing the resin layer and conductor layer which concern on this invention. 本発明に係る樹脂層と導体層とを含む複合体の他の一例について示した模式的断面図である。It is typical sectional drawing shown about other examples of the composite_body | complex containing the resin layer and conductor layer which concern on this invention. 本発明に係る樹脂層と導体層とを含む複合体の他の一例について示した模式的断面図である。It is typical sectional drawing shown about other examples of the composite_body | complex containing the resin layer and conductor layer which concern on this invention. 図4A〜図4Fは、本発明に係る樹脂層と導体層とを含む複合体を製造する方法の一例について示した模式図である。4A to 4F are schematic views illustrating an example of a method for producing a composite including a resin layer and a conductor layer according to the present invention. 図5A〜図5Fは、本発明に係る樹脂層と導体層とを含む複合体を製造する方法の他の一例について示した模式図である。5A to 5F are schematic views showing another example of a method for producing a composite including a resin layer and a conductor layer according to the present invention. 実施例I−1において、レーザーにより絶縁層に溝を形成し、無電解めっき・電解めっきで導体形成した段階での断面形状写真である。In Example I-1, it is a cross-sectional photograph at the stage where a groove was formed in an insulating layer by laser and a conductor was formed by electroless plating / electrolytic plating. 比較例I−1において、レーザーにより絶縁層に溝を形成し、無電解めっき・電解めっきで導体形成した段階での断面形状写真である。In comparative example 1-1, it is a cross-sectional photograph at the stage where a groove was formed in an insulating layer by laser and a conductor was formed by electroless plating / electrolytic plating.

本発明の第一の複合体は、樹脂層と導体層とを含む複合体であって、前記樹脂層表面に最大幅が1μm以上、10μm以下の溝と当該溝内部に導体層を有し、当該導体層と接する前記樹脂層表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下であることを特徴とする。
また、本発明の第二の複合体は、樹脂層と導体層とを含む複合体であって、前記樹脂層に直径が1μm以上、25μm以下のビア孔と当該ビア孔内部に導体層を有し、前記ビア孔内部の樹脂層表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下であることを特徴とする。
また、本発明の複合体の製造方法は、樹脂層と導体層とを含む複合体を製造する方法であって、(A)レーザー光によって樹脂層表面に内部の表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下である溝及び/または樹脂層に内部の表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下であるビア孔を形成する工程と、(B)無電解めっきによって前記樹脂層表面に導体を形成する工程と、(C)前記導体の一部を除去することにより、前記樹脂層表面の溝部分及び/または前記樹脂層のビアのみに導体層を形成する工程と、を含むことを特徴とする。
The first composite of the present invention is a composite including a resin layer and a conductor layer, and has a groove having a maximum width of 1 μm or more and 10 μm or less on the surface of the resin layer, and a conductor layer inside the groove, The arithmetic average roughness (Ra) of the surface of the resin layer in contact with the conductor layer is 0.05 μm or more and 0.45 μm or less.
A second composite of the present invention is a composite including a resin layer and a conductor layer, and the resin layer has a via hole having a diameter of 1 μm or more and 25 μm or less and a conductor layer inside the via hole. The arithmetic average roughness (Ra) of the surface of the resin layer inside the via hole is 0.05 μm or more and 0.45 μm or less.
The composite manufacturing method of the present invention is a method for manufacturing a composite including a resin layer and a conductor layer, and (A) the arithmetic average roughness (Ra ) Of 0.05 μm or more and 0.45 μm or less in the groove and / or the resin layer, the step of forming via holes whose inner surface arithmetic mean roughness (Ra) is 0.05 μm or more and 0.45 μm or less (B) a step of forming a conductor on the surface of the resin layer by electroless plating, and (C) removing only a part of the conductor to form only a groove portion on the surface of the resin layer and / or a via in the resin layer. And a step of forming a conductor layer.

本発明によれば、導体層と接触する部分の樹脂層の表面粗さに着目し、当該樹脂層の表面粗さを特定の値としたことにより、微細配線及び微細ビアにおいて導体層と樹脂層の密着性を確保しながら、導体層の表面凹凸が小さくなり、1GHzを超える高周波数領域において、その表皮効果による伝送損失を低減できる。これらにより、複合体の樹脂層表面に形成された高密着、高信頼性、高周波対応の微細配線、及び/又は、複合体の樹脂層に形成された高密度、高信頼性、高周波対応のビアを有する複合体を得ることができる。以下に本発明の複合体、複合体の製造方法、及び半導体装置について詳細に説明する。   According to the present invention, by paying attention to the surface roughness of the resin layer in the portion in contact with the conductor layer, the surface roughness of the resin layer is set to a specific value, so that the conductor layer and the resin layer are formed in the fine wiring and the fine via. The surface irregularity of the conductor layer is reduced while ensuring the adhesiveness, and the transmission loss due to the skin effect can be reduced in a high frequency region exceeding 1 GHz. These make it possible to form high adhesion, high reliability, high frequency compatible fine wiring formed on the surface of the composite resin layer and / or high density, high reliability, high frequency compatible vias formed on the composite resin layer. Can be obtained. The composite of the present invention, the method for producing the composite, and the semiconductor device will be described in detail below.

まず、本発明の複合体について説明する。本発明の複合体は、樹脂層と導体層とを含み、配線板等として好適に用いられる。複合体としては例えば、基板上に形成された樹脂層と導体層からなるプリント配線板、プリント配線板上に形成された樹脂層(例えばビルドアップ層)と導体層からなるビルドアップ多層プリント配線板、金属基板上に形成された樹脂層と導体層からなるメタルコア配線板、及び、ウェハー表面に形成された樹脂層と導体層からなる半導体素子の再配線等が挙げられる。なお、プリント配線板に用いられる基板、メタルコア配線板に用いられる金属基板、半導体素子の再配線に用いられるウェハーとしては、通常用いられるものを適宜選択して用いることができる。   First, the composite of the present invention will be described. The composite of the present invention includes a resin layer and a conductor layer, and is suitably used as a wiring board or the like. Examples of the composite include a printed wiring board composed of a resin layer and a conductor layer formed on a substrate, and a build-up multilayer printed wiring board composed of a resin layer (for example, a build-up layer) formed on the printed wiring board and a conductor layer. Examples thereof include a metal core wiring board composed of a resin layer and a conductor layer formed on a metal substrate, and rewiring of a semiconductor element composed of a resin layer and a conductor layer formed on a wafer surface. In addition, as a substrate used for a printed wiring board, a metal substrate used for a metal core wiring board, and a wafer used for rewiring a semiconductor element, a commonly used one can be appropriately selected and used.

プリント配線板に用いられる基板としては、特に限定はされないが、例えば基材に絶縁性樹脂を含浸または塗工したものの両面または片面に銅箔などの金属箔を重ね合わせ、加熱、加圧などにより加工し、必要により配線層を形成したものが挙げられる。基材としては例えばガラス織布、ガラス不織布等のガラス繊維基材、ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維等のポリアミド系樹脂繊維、ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維等のポリエステル系樹脂繊維、ポリイミド樹脂繊維、フッ素樹脂繊維等を主成分とする織布または不織布で構成される合成繊維基材、クラフト紙、コットンリンター紙、リンターとクラフトパルプの混抄紙等を主成分とする紙基材等の有機繊維基材などが挙げられ、絶縁性樹脂としては例えばシアネート樹脂、エポキシ樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、ポリフェニレンエーテル樹脂、マレイミド樹脂、液晶ポリマー、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂など、これらを単独、あるいは複数用いたものが挙げられる。フレキシブル基板に用いられる例えばポリイミド樹脂、液晶ポリマー、エポキシ樹脂などを絶縁性樹脂として用いる場合は、基材を含まなくても用いることもできる。
メタルコア配線板に用いられる金属基板としては、特に限定はされないが、例えば銅及び銅系合金、アルミ及びアルミ系合金、銀及び銀系合金、金及び金系合金、亜鉛及び亜鉛系合金、ニッケル及びニッケル系合金、錫及び錫系合金、鉄および鉄系合金等が挙げられる。42アロイなどの線膨張係数の低い金属も用いてもよい。
半導体素子の再配線に用いられるウェハーとしては、特に限定はされないが、例えばシリコン、ゲルマニウム、シリコン−ゲルマニウム、炭化シリコン、リン化ガリウム、リン化アルミニウム、窒化ガリウム、ヒ化ガリウム、ヒ化アルミニウム、ヒ化インジウム、窒化インジウム、リン化インジウム、リン化ガリウムインジウム、リン化インジウムヒ素、硫化亜鉛及び酸化亜鉛などの半導体材料が挙げられる。
The substrate used for the printed wiring board is not particularly limited. For example, a metal foil such as a copper foil is laminated on one or both sides of a base material impregnated or coated with an insulating resin, and heated, pressurized, or the like. It may be processed and a wiring layer may be formed if necessary. Examples of the base material include glass fiber base materials such as glass woven fabric and glass nonwoven fabric, polyamide resin fibers, aromatic polyamide resin fibers, polyamide resin fibers such as wholly aromatic polyamide resin fibers, polyester resin fibers, and aromatic polyester resin fibers. , Synthetic fiber base materials composed of woven or non-woven fabrics mainly composed of polyester resin fibers such as wholly aromatic polyester resin fibers, polyimide resin fibers, fluororesin fibers, kraft paper, cotton linter paper, linter and craft Examples include organic fiber base materials such as paper base materials mainly composed of pulp mixed paper, etc., and examples of insulating resins include cyanate resins, epoxy resins, benzocyclobutene resins, phenol resins, polyphenylene ether resins, maleimide resins. , Liquid crystal polymer, polyimide resin, polyamide resin, poly Such Doimido resins, singly or include those multiple uses. For example, when a polyimide resin, a liquid crystal polymer, an epoxy resin, or the like used for the flexible substrate is used as the insulating resin, it can be used without including a base material.
The metal substrate used for the metal core wiring board is not particularly limited. For example, copper and copper alloys, aluminum and aluminum alloys, silver and silver alloys, gold and gold alloys, zinc and zinc alloys, nickel and Examples thereof include nickel-based alloys, tin and tin-based alloys, iron and iron-based alloys. A metal having a low linear expansion coefficient such as 42 alloy may also be used.
The wafer used for the rewiring of the semiconductor element is not particularly limited. For example, silicon, germanium, silicon-germanium, silicon carbide, gallium phosphide, aluminum phosphide, gallium nitride, gallium arsenide, aluminum arsenide, Semiconductor materials such as indium phosphide, indium nitride, indium phosphide, gallium indium phosphide, indium arsenide phosphide, zinc sulfide, and zinc oxide can be given.

図1は、本発明の第一の複合体の一例を示したものである。本発明の第一の複合体100は、基材10を有していても良く、樹脂層1と導体層2とを含む複合体であって、前記樹脂層1表面に最大幅が1μm以上、10μm以下の溝3と当該溝内部に導体層2を有し、当該導体層2と接する前記樹脂層表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下である。ここで導体層2としては、図1の51及び61に示されるように、2種類以上の導体層からなるものであって良い。なお、溝の幅とは、溝の長手方向に直交する方向の断面における上辺の長さを意味する。   FIG. 1 shows an example of the first composite of the present invention. The first composite 100 of the present invention may have a base material 10 and is a composite including the resin layer 1 and the conductor layer 2, and the maximum width is 1 μm or more on the surface of the resin layer 1. The groove 3 of 10 μm or less and the conductor layer 2 inside the groove have an arithmetic average roughness (Ra) on the surface of the resin layer in contact with the conductor layer 2 of 0.05 μm or more and 0.45 μm or less. Here, the conductor layer 2 may be composed of two or more kinds of conductor layers as shown in 51 and 61 of FIG. The width of the groove means the length of the upper side in the cross section in the direction orthogonal to the longitudinal direction of the groove.

前記樹脂層表面の溝内部に有する導体層の最大幅は、通常、前記溝の最大幅と同じになる。本発明の第一の複合体の態様において、前記樹脂層表面の溝及び導体層の最大幅は、1μm以上、10μm以下である。これにより、複合体の高密度化、高実装化、微細配線化が可能になる。また、特に限定はされないが、前記樹脂層表面の溝及び導体層の最大幅は、8μm以下であることがより好ましく、6μm以下であることがさらに好ましく、4μm以下であることが特に好ましい。これにより高密度化、高実装化の作用を効果的に発現させることができる。
また、前記樹脂層表面の溝の深さは、1μm以上、20μm以下であることが好ましい。
The maximum width of the conductor layer in the groove on the resin layer surface is usually the same as the maximum width of the groove. The aspect of the 1st composite_body | complex of this invention WHEREIN: The maximum width | variety of the groove | channel on the said resin layer surface and a conductor layer is 1 micrometer or more and 10 micrometers or less. This makes it possible to increase the density of the composite, increase the mounting, and make fine wiring. Further, although not particularly limited, the maximum width of the groove on the surface of the resin layer and the conductor layer is more preferably 8 μm or less, further preferably 6 μm or less, and particularly preferably 4 μm or less. As a result, the effects of higher density and higher mounting can be effectively expressed.
Moreover, it is preferable that the depth of the groove | channel on the said resin layer surface is 1 micrometer or more and 20 micrometers or less.

本発明において、前記導体層2と接する溝内部の前記樹脂層表面の算術平均粗さ(Ra)は、0.05μm以上、0.45μm以下である。導体層と接する溝内部の樹脂層表面の算術平均粗さ(Ra)は、溝内部の導体層表面の算術平均粗さ(Ra)に反映される。樹脂層の溝内部の表面凹凸が最適化されたことにより、樹脂層と導体層との密着性を確保しながら、導体層の表面凹凸が小さくなり、1GHzを超える高周波数領域において、その表皮効果による伝送損失を低減でき、高周波対応の微細配線を形成できる。高周波信号になると導体回路の表面の信号伝播となるが、導体層の表面凹凸が大きすぎると、伝送距離が伸びるため、伝達が遅くなったり、伝播中の損失が大きくなってしまう。また、特に限定はされないが、算術平均粗さ(Ra)は、0.05μm以上、0.30μm以下であることがより好ましく、0.1μm以上、0.25μm以下であることが特に好ましい。これにより高周波数領域における伝送損失の低減作用を効果的に発現させることができる。   In the present invention, the arithmetic average roughness (Ra) of the resin layer surface inside the groove in contact with the conductor layer 2 is 0.05 μm or more and 0.45 μm or less. The arithmetic average roughness (Ra) of the surface of the resin layer inside the groove in contact with the conductor layer is reflected in the arithmetic average roughness (Ra) of the surface of the conductor layer inside the groove. By optimizing the surface unevenness inside the groove of the resin layer, the surface unevenness of the conductor layer is reduced while ensuring the adhesion between the resin layer and the conductor layer, and the skin effect in a high frequency region exceeding 1 GHz. Can reduce transmission loss and form fine wiring for high frequency. A high-frequency signal causes signal propagation on the surface of the conductor circuit. However, if the surface irregularity of the conductor layer is too large, the transmission distance is extended, so that transmission becomes slow or loss during propagation increases. Further, although not particularly limited, the arithmetic average roughness (Ra) is more preferably 0.05 μm or more and 0.30 μm or less, and particularly preferably 0.1 μm or more and 0.25 μm or less. As a result, the transmission loss reducing effect in the high frequency region can be effectively exhibited.

算術平均粗さ(Ra)が上記下限値未満であると、半田耐熱試験、冷熱サイクル試験等において、導体層の剥離が生じるおそれがあり、上記上限値を超えると、高速信号伝達に支障をきたし、電気信頼性を害するおそれがある。   If the arithmetic average roughness (Ra) is less than the above lower limit value, the conductor layer may be peeled off in the solder heat resistance test, the thermal cycle test, etc., and if the upper limit value is exceeded, high speed signal transmission is hindered. Otherwise, electrical reliability may be impaired.

なお、本発明において、算術平均粗さ(Ra)は、JIS B0601で定義されているものである。樹脂層に形成された溝表面の算術平均粗さ(Ra)の測定は、JIS B0601に準じて行うことができ、例えばVeeco社製WYKO NT1100を用いて測定することもできる。   In the present invention, arithmetic average roughness (Ra) is defined by JIS B0601. The arithmetic mean roughness (Ra) of the groove surface formed in the resin layer can be measured according to JIS B0601, for example, using WYKO NT1100 manufactured by Veeco.

また、本発明において、前記導体層2と接する溝内部の前記樹脂層表面の10点平均粗さ(Rz)は、6.0μm以下であることが好ましく、更に、4.0μm以下であることが好ましい。導体層と接する溝内部の樹脂層表面の10点平均粗さ(Rz)は、溝内部の導体層表面の10点平均粗さ(Rz)に反映される。10点平均粗さ(Rz)は、測定長間の最大山高さから5点の平均と、最大谷深さから5点の平均の和になるので、溝内部の導体層表面の最大凸部の評価ができる。10点平均粗さ(Rz)が大きすぎると、導体層の最大凸部の影響で、微細配線間の距離が著しく短くなる箇所が発生し、絶縁に不利となり、信頼性が低下する恐れがある。10点平均粗さ(Rz)は、更に、4.0μm以下であることが好ましい。これにより微細配線の信頼性を効果的に発現させることができる。   In the present invention, the 10-point average roughness (Rz) of the surface of the resin layer in the groove in contact with the conductor layer 2 is preferably 6.0 μm or less, and more preferably 4.0 μm or less. preferable. The 10-point average roughness (Rz) of the resin layer surface inside the groove in contact with the conductor layer is reflected in the 10-point average roughness (Rz) of the conductor layer surface inside the groove. The 10-point average roughness (Rz) is the sum of the average of 5 points from the maximum peak height between the measurement lengths and the average of 5 points from the maximum valley depth. Can be evaluated. If the 10-point average roughness (Rz) is too large, a portion where the distance between the fine wirings is remarkably shortened due to the maximum convex portion of the conductor layer is generated, which is disadvantageous for insulation and may reduce reliability. . The 10-point average roughness (Rz) is preferably 4.0 μm or less. Thereby, the reliability of the fine wiring can be effectively expressed.

なお、本発明において、10点平均粗さ(Rz)は、JIS B0601で定義されているものである。樹脂層に形成された溝表面の10点平均粗さ(Rz)の測定は、JIS B0601に準じて行うことができ、例えばVeeco社製WYKO NT1100を用いて測定することもできる。   In the present invention, the 10-point average roughness (Rz) is defined by JIS B0601. The measurement of the 10-point average roughness (Rz) of the groove surface formed in the resin layer can be performed according to JIS B0601, for example, using WYKO NT1100 manufactured by Veeco.

また、本発明の複合体の前記樹脂層表面の溝の断面形状、及び、当該溝内部に有する導体層の断面形状は、略台形状、蒲鉾状又は三角形であることが好ましい。これにより、信号応答性に優れた微細配線形成が可能となる。   Moreover, it is preferable that the cross-sectional shape of the groove | channel on the surface of the said resin layer of the composite_body | complex of this invention and the cross-sectional shape of the conductor layer which has the said groove | channel inside are substantially trapezoid shape, bowl shape, or a triangle. As a result, it is possible to form fine wiring with excellent signal response.

前記溝内部に有する導体層としては、導体であれば特に限定されず、めっきにより形成されることが好ましい。導体層としては、例えば、銅やニッケル等の金属を含むことが好ましい。   The conductor layer in the groove is not particularly limited as long as it is a conductor, and is preferably formed by plating. As a conductor layer, it is preferable that metals, such as copper and nickel, are included, for example.

図2は、本発明の第二の複合体の一例を示したものである。本発明の第二の複合体101は、導体層11付の基材10を有していても良く、樹脂層1と導体層2とを含む複合体であって、前記樹脂層1に直径が1μm以上、25μm以下のビア孔4と当該ビア孔内部に導体層2を有し、前記ビア孔内部の樹脂層表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下である。ここで導体層2としては、図2の52及び62に示されるように、2種類以上の導体層からなるものであって良い。   FIG. 2 shows an example of the second composite of the present invention. The second composite 101 of the present invention may have a base material 10 with a conductor layer 11, and is a composite including a resin layer 1 and a conductor layer 2, and the resin layer 1 has a diameter. The via hole 4 of 1 μm or more and 25 μm or less has the conductor layer 2 inside the via hole, and the arithmetic average roughness (Ra) of the resin layer surface inside the via hole is 0.05 μm or more and 0.45 μm or less. . Here, the conductor layer 2 may be composed of two or more kinds of conductor layers as shown by 52 and 62 in FIG.

本発明の第二の複合体の態様において、ビア孔の直径は1μm以上、25μm以下である。これにより、複合体の高密度化、高実装化、微細配線化が可能となる。また、特に限定はされないが、ビアの直径は、20μm以下が好ましく、さらに、18μm以下であることが好ましく、さらには15μm以下であることが特に好ましい。これにより、高密度化、高実装化、微細配線化の作用を効果的に発現させることができる。   In the second composite aspect of the present invention, the via hole has a diameter of 1 μm or more and 25 μm or less. Thereby, it is possible to increase the density of the composite, increase the mounting, and make the fine wiring. Further, although not particularly limited, the diameter of the via is preferably 20 μm or less, more preferably 18 μm or less, and particularly preferably 15 μm or less. Thereby, the effect | action of high density, high mounting, and fine wiring can be expressed effectively.

ビア孔の直径が上記下限値未満であると、レーザー光で樹脂層にビア孔を形成できない箇所や接続不良が生じたり、めっき液の循環が悪化してめっきによる導体の形成ができなくなる場合があり、回路配線層間を接続できなくなるおそれがある。また、半田耐熱試験、冷熱サイクル試験等において、ビア孔内部の導体層と樹脂との界面で剥離が生じるおそれがある。また、上記上限値を超えると、レーザー光でビア孔を形成した際のビア形状がいびつになったり樹脂にクラックが入るおそれや、樹脂に熱が加わり過ぎることでビア孔間の絶縁信頼性が低下するおそれがある。また、複合体の高密度化、高実装化、微細配線化が困難になる。   If the diameter of the via hole is less than the above lower limit value, a location where a via hole cannot be formed in the resin layer with a laser beam or a poor connection may occur, or the plating solution may deteriorate and the conductor cannot be formed by plating. There is a possibility that the circuit wiring layers cannot be connected. Further, in a solder heat test, a thermal cycle test, etc., there is a possibility that peeling occurs at the interface between the conductor layer inside the via hole and the resin. If the above upper limit is exceeded, the via shape when the via hole is formed with laser light may become distorted or the resin may crack, and the insulation reliability between the via holes may be increased due to excessive heat applied to the resin. May decrease. In addition, it is difficult to increase the density of the composite, increase the mounting, and make fine wiring.

本発明の第二の複合体の態様においては、前記導体層2と接するビア孔内部の樹脂層表面の算術平均粗さ(Ra)が、0.05μm以上、0.45μm以下である。樹脂層のビア孔内部の凹凸が最適化されたことにより、樹脂層と導体層との密着性を確保しながら、ビア孔内部の樹脂層表面の凹凸が小さくなり、1GHzを超える高周波数領域において、その表皮効果による伝送損失を低減でき、またビア孔内部のめっき付き不良や層間接続不良を低減することができる。また、特に限定はされないが、算術平均粗さ(Ra)は、0.05μm以上、0.30μm以下であることがより好ましく、0.1μm以上、0.25μm以下であることが特に好ましい。これにより高周波数領域における伝送損失の低減や、ビア孔内部のめっき付き不良や層間接続不良を低減する作用を効果的に発現させることができる。   In the aspect of the second composite of the present invention, the arithmetic average roughness (Ra) of the resin layer surface inside the via hole in contact with the conductor layer 2 is 0.05 μm or more and 0.45 μm or less. By optimizing the unevenness inside the via hole in the resin layer, the unevenness on the surface of the resin layer inside the via hole is reduced while ensuring the adhesion between the resin layer and the conductor layer, and in a high frequency region exceeding 1 GHz. In addition, transmission loss due to the skin effect can be reduced, and defects in plating inside the via hole and interlayer connection can be reduced. Further, although not particularly limited, the arithmetic average roughness (Ra) is more preferably 0.05 μm or more and 0.30 μm or less, and particularly preferably 0.1 μm or more and 0.25 μm or less. As a result, it is possible to effectively exhibit the effects of reducing transmission loss in the high frequency region and reducing plating defects and interlayer connection defects inside the via holes.

ビア内部の樹脂表面の算術平均粗さ(Ra)が上記下限値未満であると、半田耐熱試験、冷熱サイクル試験等において、ビアの導体と樹脂との界面で剥離が生じるおそれがあり、上記上限値を超えると、高速信号伝達に支障をきたし電気信頼性を害するおそれがあり、またビア孔内部のめっき付き不良や層間接続不良を生じるおそれがある。   If the arithmetic average roughness (Ra) of the resin surface inside the via is less than the above lower limit value, peeling may occur at the interface between the via conductor and the resin in a solder heat resistance test, a thermal cycle test, etc. If the value is exceeded, high-speed signal transmission may be hindered, electrical reliability may be impaired, and plating defects inside the via holes or interlayer connection failures may occur.

また、本発明の複合体のビア孔の断面形状は略台形状であることが好ましい。これにより、信号応答性や接続信頼性、めっき付き性に優れたビアを形成することが可能となる。
また、前記ビア孔内部に有する導体層としては、導体であれば特に限定されず、めっきにより形成されることが好ましい。導体層としては、例えば、銅やニッケル等の金属を含むことが好ましい。
Moreover, it is preferable that the cross-sectional shape of the via hole of the composite of the present invention is substantially trapezoidal. This makes it possible to form vias with excellent signal response, connection reliability, and plating performance.
Further, the conductor layer in the via hole is not particularly limited as long as it is a conductor, and is preferably formed by plating. As a conductor layer, it is preferable that metals, such as copper and nickel, are included, for example.

本発明の第二の複合体においても、前記樹脂層表面に存在する導体層の最大幅は1μm以上、10μm以下であることが好ましい。これにより、複合体の高密度化、高実装化が可能になる。また、特に限定はされないが、導体層の最大幅は、8μm以下であることがより好ましく、6μm以下であることがさらに好ましく、4μm以下であることが特に好ましい。これにより高密度化、高実装化の作用を効果的に発現させることができる。   Also in the 2nd composite of this invention, it is preferable that the maximum width of the conductor layer which exists in the said resin layer surface is 1 micrometer or more and 10 micrometers or less. This makes it possible to increase the density and mount of the composite. Although not particularly limited, the maximum width of the conductor layer is more preferably 8 μm or less, further preferably 6 μm or less, and particularly preferably 4 μm or less. As a result, the effects of higher density and higher mounting can be effectively expressed.

本発明の第二の複合体においても、更に、前記樹脂層表面に最大幅が1μm以上、10μm以下の溝と当該溝内部に導体層を有し、当該導体層と接する前記樹脂層表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下であることが好ましい。このような複合体の例を図3に示す。本発明の第二の複合体102は、導体層11付の基材10を有していても良く、樹脂層1と導体層2とを含む複合体であって、前記樹脂層1に直径が1μm以上、25μm以下のビア孔4と当該ビア孔内部に導体層2を有し、前記ビア孔内部の樹脂層表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下である。また、前記樹脂層1表面に最大幅が1μm以上、10μm以下の溝3と当該溝内部に導体層2を有し、当該導体層2と接する前記樹脂層表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下である。
第二の複合体においてこのような樹脂層表面の溝及び溝内部の導体層を有する場合、第一の複合体において説明した樹脂層表面の溝及び溝内部の導体層と同様のものとすることができる。
Also in the second composite of the present invention, a groove having a maximum width of 1 μm or more and 10 μm or less on the surface of the resin layer, a conductor layer inside the groove, and an arithmetic operation on the surface of the resin layer in contact with the conductor layer The average roughness (Ra) is preferably 0.05 μm or more and 0.45 μm or less. An example of such a complex is shown in FIG. The second composite 102 of the present invention may have a base material 10 with a conductor layer 11, and is a composite including a resin layer 1 and a conductor layer 2, and the resin layer 1 has a diameter. The via hole 4 of 1 μm or more and 25 μm or less has the conductor layer 2 inside the via hole, and the arithmetic average roughness (Ra) of the resin layer surface inside the via hole is 0.05 μm or more and 0.45 μm or less. . Further, the groove 3 having a maximum width of 1 μm or more and 10 μm or less on the surface of the resin layer 1 and the conductor layer 2 inside the groove, the arithmetic average roughness (Ra) of the surface of the resin layer in contact with the conductor layer 2 is It is 0.05 μm or more and 0.45 μm or less.
When the second composite has such a groove on the surface of the resin layer and a conductor layer inside the groove, it should be the same as the groove on the surface of the resin layer described in the first composite and the conductor layer inside the groove. Can do.

前記樹脂層の厚さは、特に限定されないが、1μm以上、60μm以下が好ましく、特に5μm以上、40μm以下が好ましい。樹脂層の厚さは、絶縁信頼性を向上させる上で前記下限値以上が好ましく、多層プリント配線板の薄膜化を達成する上で前記上限値以下が好ましい。これより、プリント配線板を製造する際に、内層回路基板の導体層の凹凸を充填した絶縁層を成形することができるとともに、好適な絶縁層の厚みを確保することができる。   The thickness of the resin layer is not particularly limited, but is preferably 1 μm or more and 60 μm or less, and particularly preferably 5 μm or more and 40 μm or less. The thickness of the resin layer is preferably equal to or greater than the lower limit for improving insulation reliability, and is preferably equal to or less than the upper limit for achieving thinning of the multilayer printed wiring board. Thereby, when manufacturing a printed wiring board, while being able to shape | mold the insulating layer with which the unevenness | corrugation of the conductor layer of the inner layer circuit board was filled, the thickness of a suitable insulating layer can be ensured.

次に、樹脂層に用いられる樹脂組成物について説明する。樹脂層形成用樹脂組成物は、熱硬化性樹脂を含むことが好ましい。すなわち、本発明の複合体において前記溝や前記ビア孔を有する樹脂層は、熱硬化性樹脂を含む樹脂組成物の硬化物で構成されていることが好ましい。熱硬化性樹脂の硬化物を含むことにより、樹脂層の耐熱性を向上させることができる。   Next, the resin composition used for the resin layer will be described. The resin composition for forming a resin layer preferably contains a thermosetting resin. That is, in the composite of the present invention, the resin layer having the groove or the via hole is preferably composed of a cured product of a resin composition containing a thermosetting resin. By including the hardened | cured material of a thermosetting resin, the heat resistance of a resin layer can be improved.

熱硬化性樹脂としては、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂等のノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油等で変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂等のフェノール樹脂、ビスフェノールAエポキシ樹脂、ビスフェノールFエポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールM型エポキシ樹脂等のビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂等のエポキシ樹脂、ユリア(尿素)樹脂、メラミン樹脂等のトリアジン環を有する樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、トリアジン樹脂、ベンゾシクロブテン樹脂、シアネート樹脂等が挙げられる。これらの中でも、エポキシ樹脂、フェノール樹脂、シアネート樹脂およびベンゾシクロブテン樹脂の中から選ばれる1種以上の樹脂を含むことが好ましく、エポキシ樹脂と、フェノール樹脂及び/又はシアネート樹脂とを含むことが好ましく、特にシアネート樹脂を含むことが好ましい。これにより、樹脂層の熱膨張係数を小さくすることができる。さらに、シアネート樹脂を含むと、樹脂層の電気特性(低誘電率、低誘電正接)、機機械強度、レーザー加工性、特にエキシマレーザーやYAGレーザー加工性等にも優れる。   Examples of thermosetting resins include novolak type phenol resins such as phenol novolak resin, cresol novolak resin, bisphenol A novolak resin, unmodified resol phenol resin, oil modified resole phenol resin modified with tung oil, linseed oil, walnut oil, etc. Phenolic resin such as biphenyl aralkyl type phenol resin, bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol Z type epoxy resin, bisphenol P type epoxy resin Novolak type epoxy resin such as bisphenol type epoxy resin such as bisphenol M type epoxy resin, phenol novolak type epoxy resin, cresol novolak epoxy resin, etc. Resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, aryl alkylene type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantane type epoxy resin , Epoxy resin such as fluorene type epoxy resin, resin having triazine ring such as urea (urea) resin, melamine resin, unsaturated polyester resin, bismaleimide resin, polyimide resin, polyamideimide resin, polyurethane resin, diallyl phthalate resin, silicone Examples thereof include resins, resins having a benzoxazine ring, triazine resins, benzocyclobutene resins, and cyanate resins. Among these, it is preferable to include at least one resin selected from an epoxy resin, a phenol resin, a cyanate resin, and a benzocyclobutene resin, and it is preferable to include an epoxy resin and a phenol resin and / or a cyanate resin. In particular, it is preferable to contain a cyanate resin. Thereby, the thermal expansion coefficient of the resin layer can be reduced. Further, when a cyanate resin is included, the resin layer is excellent in electrical characteristics (low dielectric constant, low dielectric loss tangent), mechanical strength, laser workability, particularly excimer laser and YAG laser workability.

シアネート樹脂としては、具体的にはノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂、ナフトールアラルキル型シアネート樹脂、ビフェニルアラルキル型シアネート樹脂、ジシクロペンタジエン型シアネート樹脂等を挙げることができる。これらの中でもノボラック型シアネート樹脂が好ましい。ノボラック型シアネート樹脂は、樹脂層の熱膨張係数を小さくすることができ、樹脂層の機機械強度、電気特性(低誘電率、低誘電正接)にも優れる。また、ナフトールアラルキル型シアネート樹脂、ビフェニルアラルキル型シアネート樹脂も低線膨張、低吸水性、機械強度に優れるため好ましく使うことができる。   Specific examples of the cyanate resin include novolak type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, tetramethylbisphenol F type cyanate resin and the like, bisphenol type cyanate resins, naphthol aralkyl type cyanate resins, and biphenyl aralkyl type cyanate. Resin, dicyclopentadiene-type cyanate resin, and the like. Among these, novolac type cyanate resin is preferable. The novolac-type cyanate resin can reduce the thermal expansion coefficient of the resin layer, and is excellent in mechanical and mechanical strength and electrical characteristics (low dielectric constant, low dielectric loss tangent) of the resin layer. Naphthol aralkyl-type cyanate resins and biphenyl aralkyl-type cyanate resins can also be preferably used because they are excellent in low linear expansion, low water absorption, and mechanical strength.

シアネート樹脂の重量平均分子量は、特に限定されないが、重量平均分子量500〜4,500が好ましく、特に600〜3,000が好ましい。重量平均分子量が前記下限値未満であると樹脂層を構成する硬化物の機械的強度が低下する場合があり、さらに樹脂層を作製した場合にタック性が生じ、樹脂の転写が生じたりする場合がある。また、重量平均分子量が前記上現値を超えると硬化反応が速くなり、基板(特に回路基板)とした場合に、成形不良が生じたり、層間ピール強度が低下したりする場合がある。尚、シアネート樹脂等の重量平均分子量は、例えばGPC(ゲルパーミエーションクロマトグラフィー、標準物質:ポリスチレン換算)で測定することができる。   The weight average molecular weight of the cyanate resin is not particularly limited, but a weight average molecular weight of 500 to 4,500 is preferable, and 600 to 3,000 is particularly preferable. When the weight average molecular weight is less than the lower limit, the mechanical strength of the cured product constituting the resin layer may be reduced. Further, when the resin layer is produced, tackiness may occur and transfer of the resin may occur. There is. In addition, when the weight average molecular weight exceeds the above-described actual value, the curing reaction is accelerated, and when a substrate (particularly, a circuit substrate) is formed, molding defects may occur or the interlayer peel strength may be reduced. In addition, weight average molecular weights, such as cyanate resin, can be measured by GPC (gel permeation chromatography, standard substance: polystyrene conversion), for example.

また、特に限定されないが、シアネート樹脂はその誘導体も含め、1種類を単独で用いることもできるし、異なる重量平均分子量を有する2種類以上を併用したり、1種類または2種類以上と、それらのプレポリマーを併用したりすることもできる。
シアネート樹脂の含有量は、特に限定されないが、樹脂組成物全体の5〜50重量%が好ましく、特に10〜30重量%が好ましい。含有量が前記下限値未満であると熱硬化性樹脂組成物の反応性、および低熱膨張性が低下したり、得られる製品の耐熱性が低下する場合があり、前記上限値を超えると、耐湿性が低下したりする場合がある。
Further, although not particularly limited, cyanate resins including derivatives thereof can be used alone, or two or more having different weight average molecular weights can be used in combination, or one or two or more thereof. A prepolymer can also be used in combination.
Although content of cyanate resin is not specifically limited, 5 to 50 weight% of the whole resin composition is preferable, and 10 to 30 weight% is especially preferable. If the content is less than the lower limit, the reactivity of the thermosetting resin composition and the low thermal expansion may decrease, or the heat resistance of the resulting product may decrease. May decrease.

熱硬化性樹脂としてシアネート樹脂(特にノボラック型シアネート樹脂)を用いる場合は、エポキシ樹脂(実質的にハロゲン原子を含まない)を併用することが好ましい。   When a cyanate resin (especially a novolac-type cyanate resin) is used as the thermosetting resin, it is preferable to use an epoxy resin (substantially free of halogen atoms) in combination.

上記エポキシ樹脂としては、例えばビスフェノールAエポキシ樹脂、ビスフェノールFエポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールM型エポキシ樹脂等のビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂等のアリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂等が挙げられる。エポキシ樹脂として、これらの中の1種類を単独で用いることもできるし、異なる重量平均分子量を有する2種類以上を併用したり、1種類または2種類以上と、それらのプレポリマーを併用したりすることもできる。   Examples of the epoxy resin include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol Z type epoxy resin, bisphenol P type epoxy resin, and bisphenol M type epoxy resin. Epoxy resins, phenol novolac type epoxy resins, cresol novolac epoxy resins and other novolak type epoxy resins, biphenyl type epoxy resins, xylylene type epoxy resins, biphenyl aralkyl type epoxy resins and other aryl alkylene type epoxy resins, naphthalene type epoxy resins, naphthol aralkyl Type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norvol Emission type epoxy resins, adamantane type epoxy resins and fluorene type epoxy resins and the like. As the epoxy resin, one of these can be used alone, or two or more having different weight average molecular weights are used in combination, or one or two or more thereof and a prepolymer thereof are used in combination. You can also

これらエポキシ樹脂の中でも特にアリールアルキレン型エポキシ樹脂が好ましい。これにより、吸湿半田耐熱性および難燃性を向上させることができる。アリールアルキレン型エポキシ樹脂とは、繰り返し単位中に一つ以上のアリールアルキレン基を有するエポキシ樹脂をいう。例えばキシリレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂、ナフタレンジメチレン型エポキシ樹脂、ナフタレン変性クレゾールノボラックエポキシ樹脂等が挙げられる。これらの中でもビフェニルジメチレン型エポキシ樹脂、ナフタレン変性クレゾールノボラックエポキシ樹脂、アントラセン型エポキシ樹脂、ナフタレンジメチレン型エポキシ樹脂が好ましい。また、ナフトールアラルキル型エポキシ樹脂も低線膨張、低吸水性、機械強度に優れるため好ましく使うことができる。   Among these epoxy resins, aryl alkylene type epoxy resins are particularly preferable. Thereby, moisture absorption solder heat resistance and a flame retardance can be improved. The aryl alkylene type epoxy resin refers to an epoxy resin having one or more aryl alkylene groups in a repeating unit. For example, xylylene type epoxy resin, anthracene type epoxy resin, biphenyl dimethylene type epoxy resin, naphthalene dimethylene type epoxy resin, naphthalene modified cresol novolac epoxy resin and the like can be mentioned. Among these, biphenyl dimethylene type epoxy resins, naphthalene-modified cresol novolac epoxy resins, anthracene type epoxy resins, and naphthalene dimethylene type epoxy resins are preferable. A naphthol aralkyl epoxy resin can also be preferably used because of its low linear expansion, low water absorption, and excellent mechanical strength.

エポキシ樹脂の含有量は、特に限定されないが、樹脂組成物全体の1〜55重量%が好ましく、特に5〜40重量%が好ましい。含有量が前記下限値未満であるとシアネート樹脂の反応性が低下したり、得られる製品の耐湿性が低下したりする場合があり、前記上限値を超えると低熱膨張性、耐熱性が低下する場合がある。   Although content of an epoxy resin is not specifically limited, 1 to 55 weight% of the whole resin composition is preferable, and 5 to 40 weight% is especially preferable. If the content is less than the lower limit, the reactivity of the cyanate resin may decrease, or the moisture resistance of the resulting product may decrease. If the content exceeds the upper limit, the low thermal expansion and heat resistance will decrease. There is a case.

エポキシ樹脂の重量平均分子量は、特に限定されないが、重量平均分子量500〜20,000が好ましく、特に800〜15,000が好ましい。重量平均分子量が前記下限値未満であると樹脂層の表面にタック性が生じる場合が有り、前記上限値を超えると半田耐熱性が低下する場合がある。重量平均分子量を上記範囲内とすることにより、これらの特性のバランスに優れたものとすることができる。エポキシ樹脂の重量平均分子量は、例えばGPCで測定することができる。   The weight average molecular weight of the epoxy resin is not particularly limited, but a weight average molecular weight of 500 to 20,000 is preferable, and 800 to 15,000 is particularly preferable. If the weight average molecular weight is less than the lower limit, tackiness may occur on the surface of the resin layer, and if it exceeds the upper limit, solder heat resistance may be reduced. By setting the weight average molecular weight within the above range, it is possible to achieve an excellent balance of these characteristics. The weight average molecular weight of an epoxy resin can be measured by GPC, for example.

上記熱硬化性樹脂は、1種又は2種以上組み合わせて用いることができる。通常は、硬化剤を組み合わせて熱硬化性樹脂として用いられる。
上記熱硬化性樹脂の含有量は、特に限定されないが、樹脂層形成用樹脂組成物中の20〜90重量%、更に30〜80重量%が好ましく、特に40〜70重量%が好ましい。含有量が下限値未満であると樹脂層を形成するのが困難となる場合があり、上限値を超えると樹脂層の強度が低下する場合がある。
The said thermosetting resin can be used 1 type or in combination of 2 or more types. Usually, it is used as a thermosetting resin in combination with a curing agent.
The content of the thermosetting resin is not particularly limited, but is preferably 20 to 90% by weight, more preferably 30 to 80% by weight, and particularly preferably 40 to 70% by weight in the resin composition for forming a resin layer. If the content is less than the lower limit, it may be difficult to form the resin layer, and if the content exceeds the upper limit, the strength of the resin layer may be reduced.

本発明のプリント配線板の樹脂層(乃至、樹脂層形成用樹脂組成物)は、無機充填材を含むものとすることができる。樹脂層に無機充填材を含む場合には低熱膨張、高弾性、低吸水となるため、実装信頼性、反り量が向上する点から好ましい。
上記無機充填材は、2μm超過の粗粒が500ppm以下であることが、配線板の絶縁層に用いた場合に、レーザー加工により、回路幅/回路間幅(L/S)が10μm/10μm以下の微細配線形成のための溝加工性や、微細なビアの加工性に優れ、形成された絶縁層と形成された導体回路との密着性に優れる点から好ましい。上記無機充填材は、更に、2μm超過の粗粒が300ppm以下、特に2μm超過の粗粒が5ppm以下であることが好ましい。
なお、2μm超過の粗粒が500ppm以下の無機充填材を得る方法は特に限定されない。例えば、2μm超過の粗粒を除去する方法として、有機溶剤、および/または水中のスラリー状態で、平均粒径の10倍以上の細孔径フィルターで粗粒を数回除去し、次いで2μmの細孔径フィルターで2μm超過の粗粒除去を繰り返して実施することにより得ることができる。
The resin layer (or resin composition for forming a resin layer) of the printed wiring board of the present invention can contain an inorganic filler. When an inorganic filler is included in the resin layer, low thermal expansion, high elasticity, and low water absorption are preferable, so that the mounting reliability and the amount of warpage are improved.
When the inorganic filler is used for an insulating layer of a wiring board, the coarse particles exceeding 2 μm are 500 ppm or less, and the circuit width / inter-circuit width (L / S) is 10 μm / 10 μm or less by laser processing. It is preferable from the viewpoint of excellent groove workability for forming fine wiring and fine via processing, and excellent adhesion between the formed insulating layer and the formed conductor circuit. The inorganic filler preferably further has a coarse particle exceeding 2 μm in an amount of 300 ppm or less, and particularly a coarse particle exceeding 2 μm in an amount of 5 ppm or less.
In addition, the method of obtaining the inorganic filler whose coarse particle over 2 micrometers is 500 ppm or less is not specifically limited. For example, as a method of removing coarse particles exceeding 2 μm, in a slurry state in an organic solvent and / or water, coarse particles are removed several times with a pore size filter having an average particle size of 10 times or more, and then a pore size of 2 μm. It can be obtained by repeatedly removing coarse particles exceeding 2 μm with a filter.

前記無機充填材の粗粒径、および含有量の測定は、粒子画像解析装置(シスメックス社製FPIA−3000S)により測定することができる。無機充填材を水中または有機溶剤中で超音波により分散させ、得られた画像から、2μm超過の無機充填材の個数を算出して測定することができる。具体的には、無機充填材の円相当径で2μm超過の粒子数と解析総粒子数で含有量は規定される。   The coarse particle size and content of the inorganic filler can be measured with a particle image analyzer (FPIA-3000S manufactured by Sysmex Corporation). The inorganic filler can be dispersed by ultrasonic waves in water or an organic solvent, and the number of inorganic fillers exceeding 2 μm can be calculated and measured from the obtained image. Specifically, the content is defined by the number of particles exceeding 2 μm in the equivalent circle diameter of the inorganic filler and the total number of analyzed particles.

中でも、上記無機充填材の最大粒径としては、2.0μm以下であることが好ましい。これにより、上記特定した樹脂層の表面粗さを実現しやすくなり、絶縁信頼性が高く、信号応答性に優れた微細配線形成が可能となる。また、特に限定はされないが、無機充填材の最大粒径は1.8μm以下がより好ましく、1.5μm以下が特に好ましい。これにより絶縁信頼性、信号応答性、ビアや溝内のめっき付き性や層間接続信頼性を高める作用を効果的に発現させることができる。   Among these, the maximum particle size of the inorganic filler is preferably 2.0 μm or less. Thereby, it becomes easy to realize the surface roughness of the specified resin layer, and it is possible to form fine wiring with high insulation reliability and excellent signal response. Although not particularly limited, the maximum particle size of the inorganic filler is more preferably 1.8 μm or less, and particularly preferably 1.5 μm or less. Thereby, the effect | action which improves insulation reliability, signal responsiveness, the plating property in a via | veer and a groove | channel, and interlayer connection reliability can be expressed effectively.

また、上記無機充填材の平均粒径としては、0.05μm以上、1.0μm以下であることが好ましい。これにより、絶縁信頼性が高く、信号応答性に優れた微細配線形成を実現しやすくなる。また、無機充填材の平均粒径が上記範囲の場合には、レーザー加工により、回路幅/回路間幅(L/S)が10μm/10μm以下の微細配線形成するための溝加工性や、微細なビアの加工性に優れるようになり、上記特定した樹脂層の表面粗さを実現しやすくなる。無機充填材の平均粒径は0.05μm以上、0.60μmが好ましく、0.05μm以上、0.50μmがより好ましく、0.05μm以上、0.40μm以下が特に好ましい。これにより絶縁信頼性、信号応答性、ビアや溝内のめっき付き性や層間接続信頼性を高める作用を効果的に発現させることができる。   The average particle size of the inorganic filler is preferably 0.05 μm or more and 1.0 μm or less. Thereby, it becomes easy to realize fine wiring formation with high insulation reliability and excellent signal response. Further, when the average particle size of the inorganic filler is in the above range, the groove processability for forming fine wiring with a circuit width / inter-circuit width (L / S) of 10 μm / 10 μm or less by laser processing, As a result, it becomes easy to realize the surface roughness of the specified resin layer. The average particle size of the inorganic filler is preferably 0.05 μm or more and 0.60 μm, more preferably 0.05 μm or more and 0.50 μm, and particularly preferably 0.05 μm or more and 0.40 μm or less. Thereby, the effect | action which improves insulation reliability, signal responsiveness, the plating property in a via | veer and a groove | channel, and interlayer connection reliability can be expressed effectively.

無機充填材の平均粒子径の測定は、例えばレーザー回折散乱法により測定することができる。無機充填材を水中で超音波により分散させ、レーザー回折式粒度分布測定装置(HORIBA製、LA−500)により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒子径とすることで測定することができる。具体的には、無機充填材の平均粒子径はD50で規定される。   The average particle diameter of the inorganic filler can be measured, for example, by a laser diffraction scattering method. The inorganic filler is dispersed in water by ultrasonic waves, and the particle size distribution of the inorganic filler is created on a volume basis by a laser diffraction type particle size distribution measuring device (manufactured by HORIBA, LA-500). It can be measured by doing. Specifically, the average particle diameter of the inorganic filler is defined by D50.

上記無機充填材の2μm超過の粗粒量が上記上限値を上回ると、無機充填材がレーザー加工を阻害し、樹脂層に溝を形成できない箇所が生じたり、ビア形状がいびつになったり樹脂にクラックが入るおそれがあり、粗粒フィラーの脱落による絶縁信頼性やめっき付き性が低下するおそれがある。さらにはレーザー光でビアや溝を形成する時間が長くなるため、作業性が低下する可能性が生じる。また、レーザー加工後に溝側壁面に残留した無機充填材により、めっき後の導体層の表面凹凸が大きくなる。これにより、配線やビア形状の精度が悪くなり、高密度プリント配線板においては絶縁信頼性を害する場合がある。さらには1GHzを超える高周波数領域においては表皮効果により信号応答性を害する場合がある。無機充填材の平均粒径が上記上限値を上回っても同様の恐れがある。   If the amount of coarse particles exceeding 2 μm of the inorganic filler exceeds the upper limit, the inorganic filler inhibits laser processing, resulting in locations where grooves cannot be formed in the resin layer, the via shape becomes distorted, and the resin There is a possibility that cracks may occur, and there is a risk that insulation reliability and plating performance due to dropping of coarse fillers may be reduced. Furthermore, since the time for forming vias and grooves with laser light becomes longer, workability may be reduced. Moreover, the surface unevenness | corrugation of the conductor layer after plating becomes large with the inorganic filler which remained on the groove | channel side wall surface after laser processing. As a result, the accuracy of the wiring and via shape deteriorates, and the insulation reliability may be impaired in a high-density printed wiring board. Furthermore, in a high frequency region exceeding 1 GHz, signal responsiveness may be impaired due to the skin effect. Even if the average particle size of the inorganic filler exceeds the upper limit, there is a similar possibility.

また、上記無機充填材の平均粒径が上記下限値未満となると、樹脂層の熱膨張係数・弾性率の物理的性質を低下させ、半導体素子搭載時の実装信頼性を害するおそれがあり、また樹脂層形成用樹脂組成物中の無機充填材の分散性の低下や、凝集の発生が生じたり、樹脂組成物のBステージ状態における柔軟性の低下による樹脂フィルム化が困難になるおそれがある。   If the average particle size of the inorganic filler is less than the lower limit, the physical properties of the thermal expansion coefficient and elastic modulus of the resin layer may be reduced, and the mounting reliability when mounting the semiconductor element may be impaired. There exists a possibility that the dispersibility of the inorganic filler in the resin composition for forming a resin layer may be reduced, the occurrence of aggregation may be caused, and it may be difficult to form a resin film due to a decrease in flexibility in the B-stage state of the resin composition.

上記無機充填材としては、特に限定されるものではないが、例えばタルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩、酸化チタン、アルミナ、シリカ、溶融シリカ等の酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩、水酸化アルミニウム、水酸化マグネシウム、ベーマイト、水酸化カルシウム等の水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素等の窒化物、チタン酸ストロンチウム、チタン酸バリウム等のチタン酸塩等を挙げることができる。無機充填材として、これらの中の1種類を単独で用いることもできるし、2種類以上を併用したりすることもできる。これらの中でも特に、低熱膨張性、難燃性、及び弾性率に優れる点から、シリカが好ましく、溶融シリカがより好ましい。これらの中でもその形状は球状シリカが好ましい。   The inorganic filler is not particularly limited. For example, talc, fired clay, unfired clay, mica, glass and other silicates, titanium oxide, alumina, silica, fused silica and other oxides, carbonic acid Carbonates such as calcium, magnesium carbonate and hydrotalcite, hydroxides such as aluminum hydroxide, magnesium hydroxide, boehmite and calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate and calcium sulfite, boric acid Borate salts such as zinc, barium metaborate, aluminum borate, calcium borate and sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride and carbon nitride, titanic acid such as strontium titanate and barium titanate A salt etc. can be mentioned. As the inorganic filler, one of these can be used alone, or two or more can be used in combination. Among these, silica is preferable and fused silica is more preferable in terms of excellent low thermal expansion, flame retardancy, and elastic modulus. Among these, the shape is preferably spherical silica.

樹脂層乃至樹脂層形成用樹脂組成物中に無機充填材を含む場合、無機充填材の含有量は、樹脂層乃至樹脂層形成用樹脂組成物中に10〜80重量%、更に20〜70重量%、特に30〜60重量%であることが、絶縁信頼性が高く、信号応答性に優れた微細配線形成が可能となる点から好ましい。   When an inorganic filler is contained in the resin layer or resin composition for forming a resin layer, the content of the inorganic filler is 10 to 80% by weight, more preferably 20 to 70% by weight in the resin composition for forming a resin layer or resin layer. %, Particularly 30 to 60% by weight, is preferable from the viewpoint that it is possible to form a fine wiring with high insulation reliability and excellent signal response.

また、樹脂層乃至樹脂層形成用樹脂組成物には、必要に応じて、熱可塑性樹脂等の製膜性樹脂、硬化促進剤、カップリング剤、顔料、染料、消泡剤、レベリング剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、イオン捕捉剤等の上記成分以外の添加物を添加しても良い。 In addition, the resin layer or the resin composition for forming the resin layer includes, as necessary, a film-forming resin such as a thermoplastic resin, a curing accelerator, a coupling agent, a pigment, a dye, an antifoaming agent, a leveling agent, and an ultraviolet ray. You may add additives other than the said components, such as an absorber, a foaming agent, antioxidant, a flame retardant, and an ion-trapping agent.

次に本発明の複合体の製造方法について説明する。
まず、本発明の複合体の製造方法においては、樹脂層を準備する。本発明の複合体の製造方法において樹脂層を形成する方法について説明する。特に限定はされないが一例としてプリント配線板に樹脂層を形成させる方法について説明する。プリント配線板に樹脂層を形成させる方法としては特に限定されないが、例えば、樹脂層形成用樹脂組成物を溶剤などに溶解、分散させて樹脂ワニスを調製して、各種コーター装置を用いて樹脂ワニスをキャリアフィルム等に塗工した後、これを乾燥する方法、スプレー装置を用いて、樹脂ワニスをキャリアフィルムに噴霧塗工した後、これを乾燥する方法等でキャリアフィルム付き樹脂シートを得る方法が挙げられる。これらの中でも、コンマコーター、ダイコーターなどの各種コーター装置を用いて、樹脂ワニスをキャリアフィルム等に塗工した後、これを乾燥する方法が好ましい。これにより、ボイドがなく、均一な樹脂層の厚みを有するキャリア付き樹脂シートを効率よく製造することができる。
Next, the manufacturing method of the composite_body | complex of this invention is demonstrated.
First, in the method for producing a composite according to the present invention, a resin layer is prepared. A method for forming a resin layer in the method for producing a composite of the present invention will be described. Although not particularly limited, a method of forming a resin layer on a printed wiring board will be described as an example. The method for forming the resin layer on the printed wiring board is not particularly limited. For example, the resin varnish is prepared by dissolving and dispersing the resin composition for forming the resin layer in a solvent or the like, and using various coater devices. A method of drying a resin film with a carrier film, etc., a method of drying this, a method of obtaining a resin sheet with a carrier film by a method such as spraying a resin varnish on a carrier film using a spray device and then drying the resin varnish. Can be mentioned. Among these, it is preferable to apply a resin varnish to a carrier film or the like using various coaters such as a comma coater or a die coater and then dry the resin varnish. Thereby, the resin sheet with a carrier which does not have a void and has the thickness of the uniform resin layer can be manufactured efficiently.

得られたキャリアフィルム付き樹脂シートを例えばラミネーター、真空プレス機などを用いて基板に熱圧着することで、樹脂層を形成することができる。また、基板に直接樹脂ワニスをコーティングすることでも樹脂層を形成することができる。プリント配線板以外にも、例えば、ウェハー上に樹脂層を形成する際についても、上記のようにキャリアフィルム付き樹脂シートを作製して熱圧着する方法や、樹脂ワニスをコーティングする方法により樹脂層を形成することができる。   A resin layer can be formed by thermocompression-bonding the obtained resin sheet with a carrier film to a substrate using, for example, a laminator or a vacuum press machine. The resin layer can also be formed by coating the substrate with a resin varnish directly. In addition to printed wiring boards, for example, when forming a resin layer on a wafer, the resin layer is formed by a method of producing a resin sheet with a carrier film and thermocompression bonding as described above, or a method of coating a resin varnish. Can be formed.

樹脂ワニスに用いられる溶媒は、樹脂組成物中の樹脂成分に対して良好な溶解性を示すことが望ましいが、悪影響を及ぼさない範囲で貧溶媒を使用しても構わない。良好な溶解性を示す溶媒としては、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カルビトール系等が挙げられる。上記樹脂ワニス中の固形分含有量としては特に限定されないが、30〜80重量%が好ましく、特に40〜70重量%が好ましい。   The solvent used in the resin varnish desirably exhibits good solubility in the resin component in the resin composition, but a poor solvent may be used within a range that does not adversely affect the resin varnish. Examples of the solvent exhibiting good solubility include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene glycol, cellosolve and carbitol. Although it does not specifically limit as solid content in the said resin varnish, 30 to 80 weight% is preferable and especially 40 to 70 weight% is preferable.

また、複合体の樹脂層は、導体層が形成される前及び/又は形成された後に、必要に応じて加熱を行い、熱硬化性樹脂を硬化させて形成される。   Further, the resin layer of the composite is formed by heating as necessary to cure the thermosetting resin before and / or after the conductor layer is formed.

次に本発明の複合体の製造方法について、図を用いて説明する。
図4A〜図4Fは、本発明に係る樹脂層と導体層とを含む複合体の第一の態様を製造する方法の一例について示した模式図である。本発明の複合体の製造方法は、樹脂層1と導体層2とを含む複合体の製造方法であって、(A)レーザー光5によって樹脂層1の表面に、内部表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下である溝3を形成する工程(図4A、図4B)、(B)無電解めっきによって樹脂層1の表面に導体(無電解めっき層50)を形成する工程(図4C)、(C)導体70の一部を除去することにより、樹脂層1の溝3の部分のみに導体層2を形成する工程とを含むものとすることができる。
Next, the manufacturing method of the composite_body | complex of this invention is demonstrated using figures.
4A to 4F are schematic views showing an example of a method for producing a first embodiment of a composite including a resin layer and a conductor layer according to the present invention. The method for producing a composite of the present invention is a method for producing a composite comprising a resin layer 1 and a conductor layer 2, and (A) the arithmetic average roughness of the inner surface of the resin layer 1 by the laser beam 5. Steps for forming grooves 3 having (Ra) of 0.05 μm or more and 0.45 μm or less (FIGS. 4A and 4B), (B) Conductor on the surface of the resin layer 1 by electroless plating (electroless plating layer 50) (C) and (C) forming the conductor layer 2 only in the groove 3 portion of the resin layer 1 by removing a part of the conductor 70.

また、図5A〜図5Fは、本発明に係る樹脂層と導体層とを含む複合体の第二の態様を製造する方法の一例について示した模式図である。本発明の複合体の製造方法は、樹脂層1と導体層2とを含む複合体の製造方法であって、(A)レーザー光5によって樹脂層1に、内部の表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下であるビア孔4を形成する工程(図5A、図5B)、(B)無電解めっきによって樹脂層1の表面に無電解めっき層50を形成する工程(図5C)、(C)導体70の一部を除去することにより、樹脂層1のビア孔4の部分のみに導体層2を形成する工程とを含むものとすることができる。   Moreover, FIG. 5A-FIG. 5F is the schematic diagram shown about an example of the method of manufacturing the 2nd aspect of the composite_body | complex containing the resin layer and conductor layer which concern on this invention. The method for producing a composite of the present invention is a method for producing a composite comprising a resin layer 1 and a conductor layer 2, and (A) an arithmetic average roughness ( Steps for forming via holes 4 with Ra) not less than 0.05 μm and not more than 0.45 μm (FIGS. 5A and 5B), (B) Electroless plating layer 50 is formed on the surface of resin layer 1 by electroless plating. Steps (FIG. 5C) and (C) The step of forming the conductor layer 2 only in the via hole 4 portion of the resin layer 1 by removing a part of the conductor 70 can be included.

工程(A)では、レーザー光5がエキシマレーザー又はYAGレーザーであることが好ましい。これらのレーザーを使用することにより、精度・形状よく溝3やビア孔4形成が可能となり、微細配線形成や高密度化が可能となる。特に限定はされないが、エキシマレーザーのレーザー波長は、193nm、248nm、308nmであることがより好ましく、193nm、248nmであることが特に好ましい。これにより、精度・形状よく溝やビア孔を形成できる作用を効果的に発現させることができる。YAGレーザーの波長は355nmであることが好ましい。他の波長では樹脂層1を構成する樹脂組成物がレーザー光5を吸収せず溝やビア孔が形成できない可能性がある。レーザー光5はマスク6を介して樹脂層1に照射される。
レーザー照射条件としては、樹脂層の表面に、内部表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下である溝やビア孔内部表面できるように選択する。中でも、樹脂層の溝3やビア孔4の内部表面の算術平均粗さ(Ra)は、0.05μm以上、0.30μm以下となる条件であることがより好ましく、0.1μm以上、0.25μm以下となる条件であることが特に好ましい。これにより、絶縁信頼性や信号応答性を高め、伝送損失を低減し、さらに溝3やビア孔4内のめっき付き不良や層間接続不良を低減することができる作用を効果的に発現させることができる。
In the step (A), the laser beam 5 is preferably an excimer laser or a YAG laser. By using these lasers, the grooves 3 and the via holes 4 can be formed with high accuracy and shape, and fine wiring and high density can be formed. Although not particularly limited, the laser wavelength of the excimer laser is more preferably 193 nm, 248 nm, and 308 nm, and particularly preferably 193 nm and 248 nm. Thereby, the effect | action which can form a groove | channel and a via hole with sufficient precision and a shape can be expressed effectively. The wavelength of the YAG laser is preferably 355 nm. At other wavelengths, there is a possibility that the resin composition constituting the resin layer 1 does not absorb the laser beam 5 and a groove or a via hole cannot be formed. The laser beam 5 is applied to the resin layer 1 through the mask 6.
The laser irradiation conditions are selected so that the inner surface of the groove or via hole has an arithmetic average roughness (Ra) of 0.05 μm or more and 0.45 μm or less on the surface of the resin layer. Among them, the arithmetic average roughness (Ra) of the inner surface of the groove 3 or the via hole 4 of the resin layer is more preferably 0.05 μm or more and 0.30 μm or less, more preferably 0.1 μm or more and 0. It is particularly preferable that the conditions are 25 μm or less. As a result, it is possible to increase the insulation reliability and signal responsiveness, to reduce transmission loss, and to effectively develop an action capable of reducing defective plating and interlayer connection in the grooves 3 and via holes 4. it can.

本発明の複合体の製造方法では、工程(A)と工程(B)の間に、プラズマ又は薬液によってデスミアする工程を含むことが好ましい。これにより、レーザー光5による溝3やビア孔4の形成時に、溝3やビア孔4の側壁面に残留した炭化物を除き、電気信頼性の高い微細配線やビア形成が可能となる。   In the manufacturing method of the composite_body | complex of this invention, it is preferable to include the process of desmearing with a plasma or a chemical | medical solution between a process (A) and a process (B). As a result, when the grooves 3 and the via holes 4 are formed by the laser light 5, it is possible to form fine wiring and vias with high electrical reliability except for carbides remaining on the side walls of the grooves 3 and via holes 4.

特に限定されないが、プラズマは窒素プラズマ、酸素プラズマ、アルゴンプラズマ、四フッ化メタンプラズマ、もしくはこれらの混合ガスのプラズマを使用することができる。また、プラズマの処理条件としては、プラズマ工程後の樹脂層表面乃至溝やビア孔内部表面の算術平均粗さ(Ra)が、0.05μm以上、0.45μm以下となる条件であり、同時に、溝3やビア孔4の内部表面の残留した炭化物を十分に除ききる条件であることが好ましい。これにより、絶縁信頼性が高く、信号応答性に優れたビア形成が可能となる。1GHzを超える高周波数領域において、その表皮効果による伝送損失を低減でき、さらにビア内のめっき付き不良や層間接続不良を低減することができる。また、特に限定はされないが、プラズマ条件をプラズマ工程後の樹脂層の溝3やビア孔4の内部表面の算術平均粗さ(Ra)は、0.05μm以上、0.30μm以下となる条件であることがより好ましく、0.1μm以上、0.25μm以下となる条件であることが特に好ましい。これにより、絶縁信頼性や信号応答性を高め、伝送損失を低減し、さらに溝3やビア孔4内のめっき付き不良や層間接続不良を低減することができる作用を効果的に発現させることができる。   Although not particularly limited, the plasma may be nitrogen plasma, oxygen plasma, argon plasma, tetrafluoromethane plasma, or a mixed gas plasma thereof. Further, the plasma treatment conditions are such that the arithmetic average roughness (Ra) of the resin layer surface or groove or via hole inner surface after the plasma step is 0.05 μm or more and 0.45 μm or less, It is preferable that the conditions are such that carbides remaining on the inner surfaces of the grooves 3 and via holes 4 can be sufficiently removed. This makes it possible to form vias with high insulation reliability and excellent signal response. In a high frequency region exceeding 1 GHz, transmission loss due to the skin effect can be reduced, and further, plating defects and interlayer connection defects in vias can be reduced. Although not particularly limited, the plasma conditions are such that the arithmetic average roughness (Ra) of the inner surface of the groove 3 and via hole 4 of the resin layer after the plasma process is 0.05 μm or more and 0.30 μm or less. It is more preferable that the condition is 0.1 μm or more and 0.25 μm or less. As a result, it is possible to increase the insulation reliability and signal responsiveness, to reduce transmission loss, and to effectively develop an action capable of reducing defective plating and interlayer connection in the grooves 3 and via holes 4. it can.

特に限定されないが、薬液によるデスミアは過マンガン酸塩、重クロム酸等を使用することができる。また、デスミアの処理条件としては、デスミア工程後の樹脂層表面乃至溝やビア孔内部表面の算術平均粗さ(Ra)が、0.05μm以上、0.45μm以下となる条件であり、同時に、溝3やビア孔4の内部表面の残留した炭化物を十分に除ききる条件であることが好ましい。これにより、絶縁信頼性が高く、信号応答性、さらにビア内のめっき付き不良や層間接続不良を低減に優れたビア形成が可能となる。1GHzを超える高周波数領域において、その表皮効果による伝送損失を低減できる。また、特に限定はされないが、デスミア条件をデスミア工程後の樹脂層の溝3やビア孔4の内部表面の算術平均粗さ(Ra)は、0.05μm以上、0.30μm以下となる条件であることがより好ましく、0.1μm以上、0.25μm以下となる条件であることが特に好ましい。これにより、絶縁信頼性や信号応答性を高め、伝送損失を低減し、さら溝3やビア孔4内のめっき付き不良や層間接続不良を低減する作用を効果的に発現させることができる。   Although it does not specifically limit, permanganate, dichromic acid, etc. can be used for the desmear by a chemical | medical solution. In addition, the desmear treatment condition is a condition that the arithmetic average roughness (Ra) of the resin layer surface or groove or via hole inner surface after the desmear process is 0.05 μm or more and 0.45 μm or less, It is preferable that the conditions are such that carbides remaining on the inner surfaces of the grooves 3 and via holes 4 can be sufficiently removed. This makes it possible to form vias with high insulation reliability, signal responsiveness, and excellent reduction in plating defects and interlayer connection defects in the vias. In a high frequency region exceeding 1 GHz, transmission loss due to the skin effect can be reduced. Further, although not particularly limited, the desmear condition is such that the arithmetic average roughness (Ra) of the inner surface of the groove 3 and via hole 4 of the resin layer after the desmear process is 0.05 μm or more and 0.30 μm or less. It is more preferable that the condition is 0.1 μm or more and 0.25 μm or less. Thereby, insulation reliability and signal responsiveness can be improved, transmission loss can be reduced, and the effect of reducing plating defects and interlayer connection defects in the grooves 3 and via holes 4 can be effectively exhibited.

プラズマ又は薬液によるデスミア工程が不十分で炭化物が溝3やビア孔4の内部表面に残留した場合、複合体の絶縁信頼性が低下する恐れがある。プラズマ又は薬液によるデスミア工程が過度となると、導体層2と接する樹脂層1の溝3やビア孔4内部表面の算術平均粗さ(Ra)が粗くなり、導体層2の表面凹凸により、表皮効果による配線の信号応答性が悪くなったり、また溝3やビア孔4内のめっき付き不良や層間接続不良が発生するおそれがある。   If the desmear process with plasma or chemicals is insufficient and carbides remain on the inner surfaces of the grooves 3 and the via holes 4, the insulation reliability of the composite may be reduced. If the desmear process with plasma or chemical solution becomes excessive, the arithmetic average roughness (Ra) of the inner surface of the groove 3 and the via hole 4 of the resin layer 1 in contact with the conductor layer 2 becomes rough. There is a risk that the signal response of the wiring will be deteriorated, or that the plating in the groove 3 or the via hole 4 will be defective or the interlayer connection will be defective.

本発明の工程(B)では、樹脂層をプラズマ又は薬液によってデスミアする工程後、樹脂層1の表面に無電解めっき層50を形成する。   In the step (B) of the present invention, the electroless plating layer 50 is formed on the surface of the resin layer 1 after the step of desmearing the resin layer with plasma or a chemical solution.

無電解めっき層50の金属の種類は、特に限定されないが、銅やニッケル等が好ましい。これらの金属では樹脂層1と無電解めっき層50の密着が良好である。無電解めっき層の厚さも特に限定されないが、0.1μm以上、5μm以下程度とすることが好ましい。さらに無電解めっき後に、熱風乾燥装置にて150℃〜200℃で10分〜120分の熱処理を行うことにより、樹脂層と無電解めっき層との密着をより良好にすることができる。   The type of metal of the electroless plating layer 50 is not particularly limited, but copper, nickel and the like are preferable. With these metals, the adhesion between the resin layer 1 and the electroless plating layer 50 is good. The thickness of the electroless plating layer is not particularly limited, but is preferably about 0.1 μm or more and 5 μm or less. Furthermore, the adhesion between the resin layer and the electroless plating layer can be further improved by performing a heat treatment at 150 ° C. to 200 ° C. for 10 minutes to 120 minutes after the electroless plating.

本発明の複合体の製造方法では、工程(B)と工程(C)の間に、電解めっきでさらに電解めっき層60を形成する工程を含むことが好ましい。この工程ではレーザー光5により形成された溝3やビア孔4の内部を電解めっき層60で埋めることができる。   In the manufacturing method of the composite_body | complex of this invention, it is preferable to include the process of forming the electroplating layer 60 further by electroplating between a process (B) and a process (C). In this step, the inside of the groove 3 or the via hole 4 formed by the laser beam 5 can be filled with the electrolytic plating layer 60.

電解めっきには硫酸銅電解めっきが使用できる。また、特に限定されないが、めっき液中にはレベラー剤、ポリマー、ブライトナー剤等の添加剤が含まれることが好ましい。これにより、樹脂層1に形成された溝3やビア孔4の内部に対して優先的にめっきが析出し電解めっき層60で埋められ、電解めっき後の樹脂表層上と溝3やビア孔4上のめっき析出レベルが同等となる。電解めっき層の厚みは、特に限定されないが、樹脂層1の表面から5μm以上、25μm以下程度とするのが好ましい。   For the electrolytic plating, copper sulfate electrolytic plating can be used. Moreover, although not specifically limited, it is preferable that additives, such as a leveler agent, a polymer, and a brightener agent, are contained in a plating solution. As a result, the plating is preferentially deposited on the inside of the groove 3 or via hole 4 formed in the resin layer 1 and is filled with the electrolytic plating layer 60, and on the resin surface layer after the electrolytic plating and the groove 3 or via hole 4. The upper plating deposition level is equivalent. The thickness of the electrolytic plating layer is not particularly limited, but is preferably about 5 μm or more and 25 μm or less from the surface of the resin layer 1.

本発明の工程(C)では、無電解めっき、電解めっきにより形成された導体70の一部を除去することにより、樹脂層1の溝3やビア孔4の部分のみに導体層2を形成する。特に限定はされないが、電解めっきにより形成された導体70の一部を除去する方法は、化学エッチング処理、研磨処理、バフ研磨処理等が好ましい。これにより、樹脂表層上の導体70のみを効果的に除去し、溝3やビア孔4の部分のみの導体層2を残すことが可能である。
こうして、電気信頼性、信号応答性、溝やビア孔内部のめっき付き性や層間接続性に優れた複合体を作製することが可能である。
In the step (C) of the present invention, the conductor layer 2 is formed only in the groove 3 and the via hole 4 of the resin layer 1 by removing a part of the conductor 70 formed by electroless plating and electrolytic plating. . Although not particularly limited, a method of removing a part of the conductor 70 formed by electrolytic plating is preferably a chemical etching process, a polishing process, a buffing process, or the like. Thereby, it is possible to effectively remove only the conductor 70 on the resin surface layer and leave the conductor layer 2 only in the groove 3 and via hole 4 portions.
In this way, it is possible to produce a composite having excellent electrical reliability, signal responsiveness, plating property inside grooves and via holes, and interlayer connectivity.

本発明の製造方法は工程(C)の後に、(D)樹脂層1及び導体層2の上に別の樹脂層40を形成する工程を含むことができる。   The manufacturing method of this invention can include the process of forming another resin layer 40 on the resin layer 1 and the conductor layer 2 after the process (C).

本発明の工程(D)では、樹脂層1及び導体層2の上に別の樹脂層40を形成することで、多層プリント配線板の配線となる各導体層が樹脂層で覆われ配線間乃至ビア間の絶縁性が確保される。特に限定はされないが、樹脂層1及び導体層2の上に別の樹脂層40を形成する手法としては、上記樹脂層1を準備する時と同様に、キャリアフィルム付き樹脂シートを例えば真空加圧式ラミネーター装置、平板プレス装置等を用いる方法が挙げられる。   In the step (D) of the present invention, by forming another resin layer 40 on the resin layer 1 and the conductor layer 2, each conductor layer serving as the wiring of the multilayer printed wiring board is covered with the resin layer, and between the wirings Insulation between vias is ensured. Although not particularly limited, as a method of forming another resin layer 40 on the resin layer 1 and the conductor layer 2, as in the case of preparing the resin layer 1, a resin sheet with a carrier film is, for example, a vacuum pressure type Examples thereof include a method using a laminator device, a flat plate press device and the like.

こうして、上記工程(A)、(B)、(C)、(D)を繰り返すことで電気信頼性、信号応答性、溝やビア孔内部のめっき付き性や層間接続性に優れた多層の複合体を作製することが可能である。   Thus, by repeating the above steps (A), (B), (C), (D), a multilayer composite having excellent electrical reliability, signal responsiveness, plating property inside grooves and via holes, and interlayer connectivity It is possible to make a body.

次に、半導体装置について説明する。
本発明の半導体装置は、前記本発明に係る複合体がプリント配線板又はメタルコア配線板であって、当該複合体に半導体素子を搭載してなることを特徴とする。
前記本発明に係るプリント配線板等の複合体に半田バンプを有する半導体素子を実装し、半田バンプを介して、前記プリント配線板等の複合体と半導体素子とを接続する。そして、プリント配線板等の複合体と半導体素子との間には液状封止樹脂を充填し、半導体装置を製造する。
Next, a semiconductor device will be described.
The semiconductor device of the present invention is characterized in that the composite according to the present invention is a printed wiring board or a metal core wiring board, and a semiconductor element is mounted on the composite.
A semiconductor element having a solder bump is mounted on a composite body such as a printed wiring board according to the present invention, and the composite body such as the printed wiring board and the semiconductor element are connected via the solder bump. Then, a liquid sealing resin is filled between the composite body such as a printed wiring board and the semiconductor element to manufacture a semiconductor device.

半田バンプは、錫、鉛、銀、銅、ビスマスなどからなる合金で構成されることが好ましい。半導体素子とプリント配線板等の複合体との接続方法は、フリップチップボンダーなどを用いてプリント配線板等の複合体上の接続用電極部と半導体素子の半田バンプとの位置合わせを行ったあと、IRリフロー装置、熱板、その他加熱装置を用いて半田バンプを融点以上に加熱し、プリント配線板等の複合体と半田バンプとを溶融接合することにより接続する。尚、接続信頼性を良くするため、予めプリント配線板等の複合体上の接続用電極部に半田ペースト等の比較的融点の低い金属の層を形成しておいても良い。この接合工程に先んじて、半田バンプ、及び/またはプリント配線板等の複合体上の接続用電極部の表層にフラックスを塗布することで接続信頼性を向上させることもできる。   The solder bump is preferably made of an alloy made of tin, lead, silver, copper, bismuth or the like. The method of connecting a semiconductor element and a composite body such as a printed wiring board is to use a flip chip bonder or the like after aligning the connection electrode portion on the composite body such as a printed wiring board and the solder bump of the semiconductor element. Then, the solder bump is heated to the melting point or higher by using an IR reflow device, a hot plate, or other heating device, and the composite body such as a printed wiring board and the solder bump are melt-bonded and connected. In order to improve connection reliability, a metal layer having a relatively low melting point such as a solder paste may be formed in advance on the connection electrode portion on the composite body such as a printed wiring board. Prior to this bonding step, the connection reliability can be improved by applying a flux to the surface layer of the connection electrode portion on the composite such as a solder bump and / or a printed wiring board.

以下、本発明を実施例及び比較例により説明するが、本発明はこれに限定されるものではない。   Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to this.

実施例シリーズI:第一の態様の複合体及び半導体装置の製造
<実施例I−1>
ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセットPT−30、重量平均分子量約700)20重量部、メトキシナフタレンジメチレン型エポキシ樹脂(大日本インキ化学工業株式会社製、EXA−7320)35重量部、フェノキシ樹脂(ジャパンエポキシレジン社製、jER4275)5重量部、イミダゾール化合物(四国化成工業株式社製、キュアゾール1B2PZ(1−ベンジル−2−フェニルイミダゾール))0.2重量部をメチルエチルケトンに溶解、分散させた。無機充填材/球状溶融シリカ(電気化学工業株式会社製、SFP−20M)を積層型カートリッジフィルター(住友スリーエム株式会社製)を用いて最大粒子径2.0μmを上回る粒子を濾過分離して除去し、平均粒子径が0.4μmとなった無機充填材/球状溶融シリカ40重量部を添加した。カップリング剤/エポキシシランカップリング剤(GE東芝シリコーン株式会社製、A−187)0.2重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
Example Series I: Production of Composite and Semiconductor Device of First Aspect <Example I-1>
20 parts by weight of novolak-type cyanate resin (Lonza Japan Co., Ltd., Primaset PT-30, weight average molecular weight of about 700), 35 weights of methoxynaphthalenedi-methylene-type epoxy resin (Dainippon Ink Chemical Co., Ltd., EXA-7320) Parts, 5 parts by weight of a phenoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., jER4275), 0.2 parts by weight of an imidazole compound (manufactured by Shikoku Chemicals Co., Ltd., Curazole 1B2PZ (1-benzyl-2-phenylimidazole)) are dissolved in methyl ethyl ketone, Dispersed. Inorganic filler / spherical fused silica (SFP-20M, manufactured by Denki Kagaku Kogyo Co., Ltd.) is filtered and removed using a multilayer cartridge filter (Sumitomo 3M Co., Ltd.) to remove particles that exceed the maximum particle size of 2.0 μm. Then, 40 parts by weight of an inorganic filler / spherical fused silica having an average particle size of 0.4 μm was added. A resin having a solid content of 50% by weight by adding 0.2 parts by weight of a coupling agent / epoxysilane coupling agent (GE-Toshiba Silicone Co., Ltd., A-187) and stirring for 10 minutes using a high-speed stirring device. A varnish was prepared.

上記で得られた樹脂ワニスを、厚さ25μmのPET(ポリエチレンテレフタレート)フィルムの片面に、コンマコーター装置を用いて乾燥後の樹脂フィルムの厚さが40μmとなるように塗工し、これを160℃の乾燥装置で10分間乾燥して、キャリア層付き樹脂層を作製した。   The resin varnish obtained above was applied to one side of a PET (polyethylene terephthalate) film having a thickness of 25 μm using a comma coater device so that the thickness of the resin film after drying was 40 μm. It dried for 10 minutes with the drying apparatus of ° C, and produced the resin layer with a carrier layer.

このキャリア層付き樹脂層を導体層付きコア基板の表裏に重ね合わせ、これを、真空加圧式ラミネーター装置を用いて、温度100℃、圧力1MPaにて真空加熱加圧成形させ、その後、熱風乾燥装置にて180℃で45分間加熱硬化行い樹脂層付き基板を得た。
なお、両面導体層付きコア基板としては、下記のものを使用した。
・樹脂層:ハロゲンフリー、コア基板、厚さ0.4mm
・導体層:銅箔厚み18μm、回路幅/回路間幅(L/S)=120/180μm、クリアランスホール1mmφ、3mmφ、スリット2mm
This resin layer with a carrier layer is superposed on the front and back of a core substrate with a conductor layer, and this is subjected to vacuum heating and pressure molding at a temperature of 100 ° C. and a pressure of 1 MPa using a vacuum pressurizing laminator device, and then a hot air drying device. And cured by heating at 180 ° C. for 45 minutes to obtain a substrate with a resin layer.
In addition, the following were used as a core substrate with a double-sided conductor layer.
・ Resin layer: Halogen-free, core substrate, thickness 0.4mm
Conductor layer: copper foil thickness 18 μm, circuit width / inter-circuit width (L / S) = 120/180 μm, clearance holes 1 mmφ, 3 mmφ, slit 2 mm

193nmの波長を有するエキシマレーザーにより樹脂層付き基板の両面の樹脂層に狙い幅10μm、狙い深さ15μmの溝を形成した。
加工条件は以下の通りに設定した。
マスク:50μm幅のスリットマスク
周波数:100Hz
エネルギー:500mJ/cm2
スキャン速度:65μm/sec
Grooves having a target width of 10 μm and a target depth of 15 μm were formed in the resin layers on both sides of the substrate with the resin layer by an excimer laser having a wavelength of 193 nm.
The processing conditions were set as follows.
Mask: 50 μm wide slit mask Frequency: 100 Hz
Energy: 500mJ / cm 2
Scan speed: 65 μm / sec

溝を形成した樹脂層付き基板をキャリア層付きのままで、60℃の膨潤液(アトテックジャパン株式会社製、スウェリングディップ セキュリガント P500)に10分間浸漬し、さらに80℃の過マンガン酸カリウム水溶液(アトテックジャパン株式会社製、コンセントレート コンパクト CP)に20分浸漬後、中和してデスミア処理を行った。   The substrate with the resin layer having the groove formed is immersed in a swelling solution at 60 ° C. (Swelling Dip Securigant P500, manufactured by Atotech Japan Co., Ltd.) for 10 minutes with the carrier layer, and further an aqueous potassium permanganate solution at 80 ° C. After being immersed in (Concentrate Compact CP, manufactured by Atotech Japan Co., Ltd.) for 20 minutes, it was neutralized and desmeared.

次にキャリアフィルムを剥離後、脱脂、触媒付与、活性化の工程を経た後、無電解銅めっき層約0.2μmを形成させた。   Next, the carrier film was peeled off, followed by degreasing, catalyst application, and activation steps, and then an electroless copper plating layer of about 0.2 μm was formed.

次に、無電解銅めっき層を電極として電解銅めっき(奥野製薬工業株式会社製、トップルチナα)を3A/dm2、30分行って、樹脂表層の厚さ約5μmの導体層を形成した。   Next, electroless copper plating (Okuno Pharmaceutical Co., Ltd., Top Lucina α) was performed at 3 A / dm 2 for 30 minutes using the electroless copper plating layer as an electrode to form a conductor layer having a resin surface thickness of about 5 μm.

樹脂表層に存在する導体層をクイックエッチング処理(荏原電産社製 SACプロセス)を行うことにより除去し、配線間の絶縁を確保した。次に絶縁樹脂層を温度200℃、60分間で完全硬化させた。   The conductor layer existing on the resin surface layer was removed by performing a quick etching process (SAC process manufactured by Ebara Densan Co., Ltd.) to ensure insulation between the wirings. Next, the insulating resin layer was completely cured at a temperature of 200 ° C. for 60 minutes.

最後に回路表面にソルダーレジスト(太陽インキ製造株式会社製、PSR4000/AUS308)を形成し、4層プリント配線板を作製した。   Finally, a solder resist (manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 / AUS308) was formed on the circuit surface to prepare a four-layer printed wiring board.

<実施例I−2>
248nmの波長を有するエキシマレーザーにより樹脂層付き基板の樹脂層に幅10μm、深さ15μmの溝を形成した以外は実施例I−1と同様にして4層プリント配線板を作製した。
<Example I-2>
A four-layer printed wiring board was produced in the same manner as in Example I-1, except that a groove having a width of 10 μm and a depth of 15 μm was formed in the resin layer of the substrate with a resin layer using an excimer laser having a wavelength of 248 nm.

<実施例I−3>
355nmの波長を有するYAGレーザーにより樹脂層付き基板の樹脂層に幅10μm、深さ15μmの溝を形成した以外は実施例I−1と同様にして4層プリント配線板を作製した。
<Example I-3>
A four-layer printed wiring board was produced in the same manner as in Example I-1, except that a groove having a width of 10 μm and a depth of 15 μm was formed in the resin layer of the substrate with a resin layer by a YAG laser having a wavelength of 355 nm.

<比較例I−1>
汎用のエポキシ樹脂系のビルトアップ材(GX‐13、味の素株式会社製、無機充填材の最大粒径2.5μm、無機充填材の2μm超過の粗粒が8000ppm、無機充填材の平均粒径0.5μm)を樹脂層として使用した以外は実施例I−1と同様にして4層プリント配線板を作製した。
<Comparative Example I-1>
General-purpose epoxy resin built-up material (GX-13, manufactured by Ajinomoto Co., Inc., inorganic filler maximum particle size 2.5 μm, inorganic filler coarse particle exceeding 2 μm is 8000 ppm, inorganic filler average particle size 0 0.5 μm) was used as a resin layer to prepare a four-layer printed wiring board in the same manner as in Example I-1.

<比較例I−2>
汎用のエポキシ樹脂系のビルトアップ材(GX‐13、味の素株式会社製、無機充填材の最大粒径2.5μm、無機充填材の2μm超過の粗粒が8000ppm、無機充填材の平均粒径0.5μm)を樹脂層として使用し、355nmの波長を有するYAGレーザーにより樹脂層付き基板の樹脂層に幅10μm、深さ15μmの溝を形成した以外は実施例I−1と同様にして4層プリント配線板を作製した。
<Comparative Example I-2>
General-purpose epoxy resin built-up material (GX-13, manufactured by Ajinomoto Co., Inc., inorganic filler maximum particle size 2.5 μm, inorganic filler coarse particle exceeding 2 μm is 8000 ppm, inorganic filler average particle size 0 .5 μm) as a resin layer, and four layers were formed in the same manner as in Example I-1, except that a groove having a width of 10 μm and a depth of 15 μm was formed in the resin layer of the substrate with a resin layer by a YAG laser having a wavelength of 355 nm. A printed wiring board was produced.

<評価内容>
各実施例及び比較例で得られた多層配線板を縦に切断し、切断面を顕微鏡により観察し、導体層の最大幅及び導体層の断面形状を求めた。また、樹脂層に形成された溝表面の算術平均粗さ(Ra)は、導体層をエッチング除去後、JIS B0601に準じて、Veeco社製WYKO NT1100を用いて測定を行った。得られた結果を表1に示す。また、実施例I−1及び比較例I−1については、レーザーにより樹脂層に溝を形成し、無電解めっき・電解めっきで導体形成した段階での断面形状写真を、それぞれ図6、図7に示した。
<Evaluation details>
The multilayer wiring boards obtained in each Example and Comparative Example were cut vertically, and the cut surface was observed with a microscope to obtain the maximum width of the conductor layer and the cross-sectional shape of the conductor layer. Further, the arithmetic average roughness (Ra) of the groove surface formed in the resin layer was measured using WYKO NT1100 manufactured by Veeco in accordance with JIS B0601 after the conductor layer was removed by etching. The obtained results are shown in Table 1. Moreover, about Example I-1 and Comparative Example I-1, the cross-sectional shape photograph in the stage which formed the groove | channel in the resin layer with the laser, and formed the conductor by electroless plating and electrolytic plating is respectively FIG. 6, FIG. It was shown to.

表1から明らかなように、実施例I−1〜I−3は、樹脂層平均粗さ(Ra)が0.05μm以上、0.45μm以下が達成され、導体層の最大幅が10μmで、配線ピッチ10μmのパターン形成が可能であり、且つ、絶縁信頼性及び高周波領域でも信号応答性に優れる良好な微細配線が形成できた。一方、比較例I−1〜I−2では、樹脂層平均粗さ(Ra)が0.5μm以上となったため、高周波領域では伝播中の損失が大きくなってしまう。また、比較例I−1〜I−2では、導体層の最大幅も大きくなってしまい、配線ピッチ10μmのパターン形成ができなかった。   As is clear from Table 1, Examples I-1 to I-3 achieved a resin layer average roughness (Ra) of 0.05 μm or more and 0.45 μm or less, and the maximum width of the conductor layer was 10 μm. It was possible to form a pattern with a wiring pitch of 10 μm, and to form a fine wiring with excellent insulation reliability and excellent signal response even in a high frequency region. On the other hand, in Comparative Examples I-1 to I-2, since the resin layer average roughness (Ra) is 0.5 μm or more, the loss during propagation increases in the high frequency region. Further, in Comparative Examples I-1 and I-2, the maximum width of the conductor layer was increased, and a pattern with a wiring pitch of 10 μm could not be formed.

<半導体装置の製造>
上記実施例及び比較例で得られた各多層プリント配線板を用いて、半導体装置を製造した。
半導体素子(TEGチップ、サイズ15mm×15mm、厚み0.725mm)としては、半田バンプは直径100μm、150μmピッチ、Sn/Pb組成の共晶で形成され、回路保護膜はポジ型感光性樹脂(住友ベークライト社製CRC−8300)で形成されたものを使用した。半導体装置の組み立ては、まず、半田バンプにフラックス材を転写法により均一に塗布し、次にフリップチップボンダー装置を用い、上記実施例及び比較例で得られた各多層プリント配線板上に半導体素子を加熱圧着により搭載した。次に、IRリフロー炉で半田バンプを溶融接合した後、各多層プリント配線板と半導体素子との間に液状封止樹脂(住友ベークライト社製、CRP−4152S)を充填し、液状封止樹脂を硬化させることで半導体装置を得た。尚、液状封止樹脂は、温度150℃、120分の条件で硬化させた。
<Manufacture of semiconductor devices>
A semiconductor device was manufactured using each multilayer printed wiring board obtained in the above examples and comparative examples.
As a semiconductor element (TEG chip, size 15 mm × 15 mm, thickness 0.725 mm), solder bumps are formed of eutectic having a diameter of 100 μm, a pitch of 150 μm, and Sn / Pb composition, and a circuit protective film is a positive photosensitive resin (Sumitomo). What was formed by Bakelite CRC-8300) was used. In assembling the semiconductor device, first, a flux material is uniformly applied to the solder bumps by a transfer method, and then a flip chip bonder device is used to form a semiconductor element on each multilayer printed wiring board obtained in the above-described examples and comparative examples. Was mounted by thermocompression bonding. Next, after melt-bonding the solder bumps in an IR reflow furnace, a liquid sealing resin (CRP-4152S, manufactured by Sumitomo Bakelite Co., Ltd.) is filled between each multilayer printed wiring board and the semiconductor element, and the liquid sealing resin is filled. A semiconductor device was obtained by curing. The liquid sealing resin was cured at a temperature of 150 ° C. for 120 minutes.

<半導体装置の評価>
前記で得られた半導体装置を、IPC/JEDECのJ−STD−20に準拠して、温度30℃、湿度60%、時間192時間の前処理を行い、その後、260℃に達するリフロー炉に3回通し、後処理として−50℃30分、125℃30分の温度サイクルを500サイクル実施した。評価は、前処理後、と温度サイクルを500サイクル後処理後の半導体素子の導通抵抗評価、および断面観察を実施した。評価結果は、表1に合わせて示す。
各符号は以下の通りである。
◎:500サイクル後処理後の導通抵抗異常なし、および断面観察での導体回路、ビアの異常なし
○:500サイクル後処理後の導通抵抗が1〜10%未満の範囲で処理前より上がっているが、断面観察での導体回路、ビアの異常なし。
×:500サイクル後処理後の導通抵抗が、10%以上処理前より上がっている。または、導体回路と樹脂間、ビアと樹脂間のいずれかに、マイクロボイド、剥離クラック発生。
<Evaluation of semiconductor devices>
In accordance with IPC / JEDEC J-STD-20, the semiconductor device obtained above was pretreated at a temperature of 30 ° C., a humidity of 60%, and a time of 192 hours, and then placed in a reflow furnace that reached 260 ° C. As a post-treatment, 500 cycles of a temperature cycle of −50 ° C. for 30 minutes and 125 ° C. for 30 minutes were performed. The evaluation was carried out by conducting resistance evaluation and cross-sectional observation of the semiconductor element after the pretreatment and after the temperature cycle of 500 cycles. The evaluation results are shown in Table 1.
Each code is as follows.
A: No conduction resistance abnormality after 500 cycles of treatment, and no abnormality of conductor circuit and via in cross-sectional observation. ○: Conductivity resistance after 500 cycles of treatment is higher than before treatment in a range of less than 1 to 10%. However, there is no abnormality in the conductor circuit and via in cross-sectional observation.
X: The conduction resistance after 500 cycles after treatment is higher than that before treatment by 10% or more. Or micro voids or peeling cracks occur between the conductor circuit and the resin, or between the via and the resin.

表1から明らかなように、実施例I−1〜I−3では、高密着であり、高信頼性の半導体装置が得られた。一方、比較例I−1〜I−2では、導通抵抗が上がり、密着性も悪く、剥離クラックも発生してしまった。   As is clear from Table 1, in Examples I-1 to I-3, a highly reliable semiconductor device with high adhesion was obtained. On the other hand, in Comparative Examples I-1 and I-2, the conduction resistance was increased, the adhesion was poor, and peeling cracks were also generated.

実施例シリーズII:第二の態様の複合体及び半導体装置の製造
<実施例II−1>
ノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセットPT−30、重量平均分子量約700)20重量部、メトキシナフタレンジメチレン型エポキシ樹脂(大日本インキ化学工業株式会社製、EXA−7320)35重量部、フェノキシ樹脂(ジャパンエポキシレジン社製、jER4275)5重量部、イミダゾール化合物(四国化成工業株式社製、キュアゾール1B2PZ(1−ベンジル−2−フェニルイミダゾール))0.2重量部をメチルエチルケトンに溶解、分散させた。無機充填材/球状溶融シリカ(電気化学工業株式会社製、SFP−20M)を積層型カートリッジフィルター(住友スリーエム株式会社製)を用いて最大粒子径2.0μmを上回る粒子を濾過分離して除去し、平均粒子径が0.4μmとなった無機充填材/球状溶融シリカ40重量部を添加した。カップリング剤/エポキシシランカップリング剤(GE東芝シリコーン株式会社製、A−187)0.2重量部を添加して、高速攪拌装置を用いて10分間攪拌して、固形分50重量%の樹脂ワニスを調製した。
Example Series II: Production of Composite and Semiconductor Device of Second Aspect <Example II-1>
20 parts by weight of novolak-type cyanate resin (Lonza Japan Co., Ltd., Primaset PT-30, weight average molecular weight of about 700), 35 weights of methoxynaphthalenedi-methylene-type epoxy resin (Dainippon Ink Chemical Co., Ltd., EXA-7320) Parts, 5 parts by weight of a phenoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., jER4275), 0.2 parts by weight of an imidazole compound (manufactured by Shikoku Chemicals Co., Ltd., Curazole 1B2PZ (1-benzyl-2-phenylimidazole)) are dissolved in methyl ethyl ketone, Dispersed. Inorganic filler / spherical fused silica (SFP-20M, manufactured by Denki Kagaku Kogyo Co., Ltd.) is filtered and removed using a multilayer cartridge filter (Sumitomo 3M Co., Ltd.) to remove particles that exceed the maximum particle size of 2.0 μm. Then, 40 parts by weight of an inorganic filler / spherical fused silica having an average particle size of 0.4 μm was added. A resin having a solid content of 50% by weight by adding 0.2 parts by weight of a coupling agent / epoxysilane coupling agent (GE-Toshiba Silicone Co., Ltd., A-187) and stirring for 10 minutes using a high-speed stirring device. A varnish was prepared.

上記で得られた樹脂ワニスを、厚さ25μmのPET(ポリエチレンテレフタレート)フィルムの片面に、コンマコーター装置を用いて乾燥後の樹脂フィルムの厚さが20μmとなるように塗工し、これを160℃の乾燥装置で10分間乾燥して、キャリアフィルム付き樹脂シートを作製した。   The resin varnish obtained above was applied on one side of a PET (polyethylene terephthalate) film having a thickness of 25 μm using a comma coater so that the thickness of the resin film after drying was 20 μm. The resin sheet with a carrier film was produced by drying for 10 minutes with a drying apparatus at ° C.

このキャリアフィルム付き樹脂シートを両面導体層付きコア基板の表裏に重ね合わせ、これを、真空加圧式ラミネーター装置を用いて、温度100℃、圧力1MPaにて真空加熱加圧成形させ、その後、熱風乾燥装置にて180℃で45分間加熱硬化行い樹脂層付き基板を得た。
なお、両面導体層付きコア基板としては、下記のものを使用した。
・樹脂層:ハロゲンフリー、コア基板厚さ0.4mm
・導体層:銅箔厚み18μm、回路幅/回路間幅(L/S)=120/180μm、クリアランスホール1mmφ、3mmφ、スリット2mm
This resin sheet with a carrier film is superimposed on the front and back of a core substrate with a double-sided conductor layer, and this is vacuum-heated and pressure-molded at a temperature of 100 ° C. and a pressure of 1 MPa using a vacuum-pressure laminator, and then dried with hot air The substrate was heat-cured at 180 ° C. for 45 minutes with an apparatus to obtain a substrate with a resin layer.
In addition, the following were used as a core substrate with a double-sided conductor layer.
・ Resin layer: Halogen free, core substrate thickness 0.4mm
Conductor layer: copper foil thickness 18 μm, circuit width / inter-circuit width (L / S) = 120/180 μm, clearance holes 1 mmφ, 3 mmφ, slit 2 mm

193nm(ArF)の波長を有するエキシマレーザー(ビーム株式会社製、ATLEX−300SI)を用いて樹脂層付き基板の両面の樹脂層に直径25μmのビア孔を0.1mm間隔で形成した。
加工条件は以下の通りに設定した。
マスク径:200μm
周波数:100Hz
エネルギー:100mJ/cm2
ショット数:90
Via holes having a diameter of 25 μm were formed at intervals of 0.1 mm in the resin layers on both sides of the substrate with the resin layer using an excimer laser (ATLEX-300SI, manufactured by Beam Co., Ltd.) having a wavelength of 193 nm (ArF).
The processing conditions were set as follows.
Mask diameter: 200 μm
Frequency: 100Hz
Energy: 100mJ / cm 2
Number of shots: 90

また、193nm(ArF)の波長を有するエキシマレーザーにより樹脂層付き基板の両面の樹脂層に狙い幅10μm、狙い深さ15μmの溝を形成した。
加工条件は以下の通りに設定した。
マスク:50μm幅のスリットマスク
周波数:100Hz
エネルギー:500mJ/cm2
スキャン速度:65μm/sec
Further, an excimer laser having a wavelength of 193 nm (ArF) was used to form a groove having a target width of 10 μm and a target depth of 15 μm in the resin layer on both sides of the substrate with the resin layer.
The processing conditions were set as follows.
Mask: 50 μm wide slit mask Frequency: 100 Hz
Energy: 500mJ / cm 2
Scan speed: 65 μm / sec

ビア孔と溝を形成した樹脂層付き基板をキャリアフィルム付きのままで、60℃の膨潤液(アトテックジャパン株式会社製、スウェリングディップ セキュリガント P500)に10分間浸漬し、さらに80℃の過マンガン酸カリウム水溶液(アトテックジャパン株式会社製、コンセントレート コンパクト CP)に20分浸漬後、中和してデスミア処理を行った。   The substrate with the resin layer in which the via hole and the groove are formed is still immersed in the carrier solution with 60 ° C. swelling liquid (Atotech Japan Co., Ltd., Swinging Dip Seligant P500) for 10 minutes, and further 80 ° C. permanganese. After being immersed in an aqueous potassium acid solution (Atotech Japan Co., Ltd., Concentrate Compact CP) for 20 minutes, it was neutralized and desmeared.

次にキャリアフィルムを剥離後、脱脂、触媒付与、活性化の工程を経た後、無電解銅めっき層約0.2μmを形成させた。   Next, the carrier film was peeled off, followed by degreasing, catalyst application, and activation steps, and then an electroless copper plating layer of about 0.2 μm was formed.

次に、無電解銅めっき層を電極として電解銅めっき(奥野製薬工業株式会社製、トップルチナα)を3A/dm、30分行って、樹脂表層での厚さが約5μmとなるように導体を形成した。 Next, electrolytic copper plating (Okuno Pharmaceutical Co., Ltd., Top Lucina α) is performed at 3 A / dm 2 for 30 minutes using the electroless copper plating layer as an electrode, so that the thickness of the resin surface layer is about 5 μm. Formed.

樹脂表層に存在する導体をクイックエッチング処理(荏原電産社製 SACプロセス)を行うことにより除去し、ビア間の絶縁と配線間の絶縁を確保した。次に絶縁樹脂層を温度200℃、60分間で完全硬化させた。   Conductors existing on the resin surface layer were removed by performing a quick etching process (SAC process manufactured by Sakakibara Densan Co., Ltd.) to ensure insulation between vias and wiring. Next, the insulating resin layer was completely cured at a temperature of 200 ° C. for 60 minutes.

なお、回路幅/回路間幅(L/S)が10μm/10μm以下の微細配線とビアは引き出し導体層で接続された。
最後に回路表面にソルダーレジスト(太陽インキ製造株式会社製、PSR4000/AUS308)を形成し、4層プリント配線板を作製した。
The fine wiring having a circuit width / inter-circuit width (L / S) of 10 μm / 10 μm or less and the via were connected by a lead conductor layer.
Finally, a solder resist (manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 / AUS308) was formed on the circuit surface to prepare a four-layer printed wiring board.

<実施例II−2>
ビア孔を形成する際のマスク径を150μmにした以外は実施例II−1と同様にして4層プリント配線板を作製した。
<Example II-2>
A four-layer printed wiring board was produced in the same manner as in Example II-1, except that the mask diameter when forming the via hole was 150 μm.

<実施例II−3>
ビア孔を形成する際のマスク径を100μmにした以外は実施例II−1と同様にして4層プリント配線板を作製した。
<Example II-3>
A four-layer printed wiring board was produced in the same manner as in Example II-1, except that the mask diameter when forming the via hole was set to 100 μm.

<実施例II−4>
ビア孔を形成する際のマスク径を50μmにした以外は実施例II−1と同様にして4層プリント配線板を作製した。
<Example II-4>
A four-layer printed wiring board was produced in the same manner as in Example II-1, except that the mask diameter when forming the via hole was 50 μm.

<実施例II−5>
ビア孔と溝を形成する際に248nm(KrF)の波長を有するエキシマレーザーを用いた以外は実施例II−1と同様にして4層プリント配線板を作製した。
<Example II-5>
A four-layer printed wiring board was produced in the same manner as in Example II-1, except that an excimer laser having a wavelength of 248 nm (KrF) was used when forming the via hole and the groove.

<実施例II−6>
ビア孔と溝を形成する際に355nmの波長を有するYAGレーザー(日立ビアメカニクス株式会社製、LU−2G121/2C)を用いた以外は実施例II−1と同様にして4層プリント配線板を作製した。
<Example II-6>
A four-layer printed wiring board was prepared in the same manner as in Example II-1, except that a YAG laser (LU-2G121 / 2C, manufactured by Hitachi Via Mechanics Co., Ltd.) having a wavelength of 355 nm was used when forming the via hole and the groove. Produced.

<実施例II−7>
樹脂フィルムの厚さを10μm、ビア孔を形成する際のショット数を50にした以外は実施例II−1と同様にして4層プリント配線板を作製した。
<Example II-7>
A four-layer printed wiring board was produced in the same manner as in Example II-1, except that the thickness of the resin film was 10 μm and the number of shots when forming the via hole was 50.

<実施例II−8>
樹脂フィルムの厚さを15μm、ビア孔を形成する際のショット数を70にした以外は実施例II−1と同様にして4層プリント配線板を作製した。
<Example II-8>
A four-layer printed wiring board was produced in the same manner as in Example II-1, except that the thickness of the resin film was 15 μm and the number of shots when forming via holes was 70.

<比較例II−1>
エポキシ樹脂系のビルドアップ材(味の素株式会社製、GX−13、無機充填材の最大粒径2.5μm、無機充填材の2μm超過の粗粒が8000ppm、無機充填材の平均粒径0.5μm)を樹脂層として用いた以外は実施例II−1と同様にして4層プリント配線板を作製した。
<Comparative Example II-1>
Epoxy resin build-up material (manufactured by Ajinomoto Co., Inc., GX-13, inorganic filler maximum particle size 2.5 μm, inorganic filler coarse particle exceeding 2 μm is 8000 ppm, inorganic filler average particle size 0.5 μm ) Was used as a resin layer to prepare a four-layer printed wiring board in the same manner as in Example II-1.

<比較例II−2>
355nmの波長を有するYAGレーザーを用いた以外は比較例II−1と同様にして4層プリント配線板を作製した。
<Comparative Example II-2>
A four-layer printed wiring board was produced in the same manner as in Comparative Example II-1, except that a YAG laser having a wavelength of 355 nm was used.

評価方法は以下の通りである。結果を表2に示した。 The evaluation method is as follows. The results are shown in Table 2.

1.ビアのトップ径
デスミア処理しキャリアフィルムを剥離後の樹脂層のビア上面を走査型電子顕微鏡(SEM)にて観察し、ビアのトップ径を測定した。
1. Via Top Diameter The top surface of the via of the resin layer after desmear treatment and peeling of the carrier film was observed with a scanning electron microscope (SEM), and the top diameter of the via was measured.

2.ビア孔内部又は溝内部の樹脂表面の算術平均粗さ(Ra)
4層プリント配線板のビア断面を縦に切断し、導体層をエッチング除去後、ビア孔内部の樹脂表面をJIS B0601に準じて、Veeco社製WYKO NT1100を用いて測定を行った。
また、溝表面の算術平均粗さ(Ra)は、導体回路方向の切断断面について、エッチングにより導体層を除去後、JIS B0601に準じて、Veeco社製WYKO NT1100を用いて測定を行った。
2. Arithmetic mean roughness (Ra) of resin surface inside via hole or groove
After cutting the via cross section of the four-layer printed wiring board vertically and removing the conductor layer by etching, the resin surface inside the via hole was measured using WYKO NT1100 manufactured by Veeco in accordance with JIS B0601.
In addition, the arithmetic average roughness (Ra) of the groove surface was measured using a WYKO NT1100 manufactured by Veeco in accordance with JIS B0601, after removing the conductor layer by etching with respect to the cut section in the conductor circuit direction.

3.接続信頼性試験
ビア壁間距離0.1mmの4層プリント配線板を、135℃、85%RH、印加電圧50Vの条件下で200h処理しながら、ビア間の絶縁抵抗値をモニターした。
各符号は以下の通りである。
○:1.0×10Ω以上
×:1.0×10Ω未満
3. Connection reliability test The insulation resistance value between vias was monitored while treating a 4-layer printed wiring board having a distance between via walls of 0.1 mm under conditions of 135 ° C., 85% RH, and applied voltage 50 V for 200 hours.
Each code is as follows.
○: 1.0 × 10 9 Ω or more ×: Less than 1.0 × 10 9 Ω

4.めっき付き性
4層プリント配線板のビア断面を切断し、切断面を走査型電子顕微鏡(SEM)により観察し、ビア孔内のめっき付き性を調べた。各符号は以下の通りである。
○:ビア孔内にめっきが隙間なく充填され実用上問題なし。
×:ビア孔内にめっきに一部マイクロボイドがあり実用上問題あり。
4). Plating property The cross section of the via of the four-layer printed wiring board was cut, and the cut surface was observed with a scanning electron microscope (SEM) to examine the plating property in the via hole. Each code is as follows.
○: Plating is filled in the via hole without any gap, and there is no practical problem.
×: Plating has some micro voids in the via hole, which is a practical problem.

表2から明らかなように、実施例II−1〜II−8は、ビア孔内部及び溝内部の樹脂層平均粗さ(Ra)が0.05μm以上、0.45μm以下となり、ビアの直径が25μm以下で形成が可能であり、且つ、絶縁信頼性及び信号応答性、さらにビア内のめっき付き不良や層間接続不良を低減することができる作用に優れる良好なビアが形成できた。更に、導体層の最大幅が10μmで、配線ピッチ10μmのパターンが形成でき、且つ、絶縁信頼性及び高周波領域でも信号応答性に優れる良好な微細配線が形成できた。一方、比較例II−1〜II−2では、樹脂層平均粗さ(Ra)が0.5μm以上となり、接続信頼性試験やめっき付き性にも実用上問題が生じた。また、比較例II−1〜II−2では、導体層の最大幅も大きくなってしまい、配線ピッチ10μmのパターン形成ができなかった。   As apparent from Table 2, in Examples II-1 to II-8, the average roughness (Ra) of the resin layer inside the via hole and inside the groove was 0.05 μm or more and 0.45 μm or less, and the via diameter was A good via can be formed with a thickness of 25 μm or less, and excellent in insulation reliability and signal responsiveness, and further capable of reducing defects in plating and poor interlayer connection in the via. Furthermore, the maximum width of the conductor layer was 10 μm, a pattern with a wiring pitch of 10 μm could be formed, and good fine wiring excellent in signal reliability even in the insulation reliability and high frequency region could be formed. On the other hand, in Comparative Examples II-1 to II-2, the resin layer average roughness (Ra) was 0.5 μm or more, and there were practical problems in connection reliability tests and plating properties. Further, in Comparative Examples II-1 to II-2, the maximum width of the conductor layer was increased, and a pattern with a wiring pitch of 10 μm could not be formed.

<半導体装置の製造>
上記実施例及び比較例で得られた各多層プリント配線板を用いて、半導体装置を製造した。
半導体素子(TEGチップ、サイズ15mm×15mm、厚み0.725mm)としては、半田バンプは直径120μm、150μmピッチ、Sn/Pb組成の共晶で形成され、回路保護膜はポジ型感光性樹脂(住友ベークライト社製CRC−8300)で形成されたものを使用した。半導体装置の組み立ては、まず、半田バンプにフラックス材を転写法により均一に塗布し、次にフリップチップボンダー装置を用い、上記実施例及び比較例で得られた各多層プリント配線板上に半導体素子を加熱圧着により搭載した。次に、IRリフロー炉で半田バンプを溶融接合した後、各多層プリント配線板と半導体素子との間に液状封止樹脂(住友ベークライト社製、CRP−4152S)を充填し、液状封止樹脂を硬化させることで半導体装置を得た。尚、液状封止樹脂は、温度150℃、120分の条件で硬化させた。
<Manufacture of semiconductor devices>
A semiconductor device was manufactured using each multilayer printed wiring board obtained in the above examples and comparative examples.
As a semiconductor element (TEG chip, size 15 mm × 15 mm, thickness 0.725 mm), solder bumps are formed of eutectic having a diameter of 120 μm, a pitch of 150 μm, and Sn / Pb composition, and a circuit protective film is a positive photosensitive resin (Sumitomo). What was formed by Bakelite CRC-8300) was used. In assembling the semiconductor device, first, a flux material is uniformly applied to the solder bumps by a transfer method, and then a flip chip bonder device is used to form a semiconductor element on each multilayer printed wiring board obtained in the above-described examples and comparative examples. Was mounted by thermocompression bonding. Next, after melt-bonding the solder bumps in an IR reflow furnace, a liquid sealing resin (CRP-4152S, manufactured by Sumitomo Bakelite Co., Ltd.) is filled between each multilayer printed wiring board and the semiconductor element, and the liquid sealing resin is filled. A semiconductor device was obtained by curing. The liquid sealing resin was cured at a temperature of 150 ° C. for 120 minutes.

<半導体装置の評価>
前記で得られた半導体装置を、IPC/JEDECのJ−STD−20に準拠して、温度30℃、湿度60%、時間192時間の前処理を行い、その後、260℃に達するリフロー炉に3回通し、後処理として−50℃30分、125℃30分の温度サイクルを500サイクル実施した。評価は、前処理後、と温度サイクルを500サイクル後処理後の半導体素子の導通抵抗評価、および断面観察を実施した。評価結果は、表2に合わせて示す。
各符号は以下の通りである。
◎:500サイクル後処理後の導通抵抗異常なし、および断面観察での導体回路、ビアの異常なし
○:500サイクル後処理後の導通抵抗が1〜10%未満の範囲で処理前より上がっているが、断面観察での導体回路、ビアの異常なし。
×:500サイクル後処理後の導通抵抗が、10%以上処理前より上がっている。または、導体回路と樹脂間、ビアと樹脂間のいずれかに、マイクロボイド、剥離クラック発生。
<Evaluation of semiconductor devices>
In accordance with IPC / JEDEC J-STD-20, the semiconductor device obtained above was pretreated at a temperature of 30 ° C., a humidity of 60%, and a time of 192 hours, and then placed in a reflow furnace that reached 260 ° C. As a post-treatment, 500 cycles of a temperature cycle of −50 ° C. for 30 minutes and 125 ° C. for 30 minutes were performed. The evaluation was carried out by conducting resistance evaluation and cross-sectional observation of the semiconductor element after the pretreatment and after the temperature cycle of 500 cycles. The evaluation results are shown in Table 2.
Each code is as follows.
A: No conduction resistance abnormality after 500 cycles of treatment, and no abnormality of conductor circuit and via in cross-sectional observation. ○: Conductivity resistance after 500 cycles of treatment is higher than before treatment in a range of less than 1 to 10%. However, there is no abnormality in the conductor circuit and via in cross-sectional observation.
X: The conduction resistance after 500 cycles after treatment is higher than that before treatment by 10% or more. Or micro voids or peeling cracks occur between the conductor circuit and the resin, or between the via and the resin.

表2から明らかなように、実施例II−1〜II−8では、高密着であり、高信頼性の半導体装置が得られた。一方、比較例II−1〜II−2では、導通抵抗が上がり、密着性も悪く、剥離クラックも発生してしまった。   As is clear from Table 2, in Examples II-1 to II-8, a highly reliable semiconductor device with high adhesion was obtained. On the other hand, in Comparative Examples II-1 to II-2, the conduction resistance was increased, the adhesion was poor, and peeling cracks were also generated.

実施例シリーズIII:種々の樹脂組成物を用いた第一の態様の複合体及び半導体装置の製造
<実施例III−1>
(1)ワニス作製
熱硬化性樹脂として、多官能エポキシ樹脂(ナフタレン変性クレゾールノボラックエポキシ樹脂、DIC社製、HP−5000)13.4重量部、2官能エポキシ樹脂(ジャパンエポキシレジン社製、エピコート828EL)13.4量部、フェノール樹脂(明和化成株式会社、MEH7851−4L)22.7重量部、熱可塑性樹脂としてフェノキシ樹脂(ジャパンエポキシレジン社製、YX−8100BH30、固形分30%)8.8重量部(固形分)、無機充填材として2μm以上の粗粒が5ppmの球状シリカ(トクヤマ社製、NSS−3N、平均粒径0.12μm)40.8重量部、イミダゾール化合物(四国化成工業社製、キュアゾール2E4MZ)0.3重量部、シランカップリング剤(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製、A−187)0.6重量部、をメチルエチルケトンに溶解、分散させた。尚、樹脂組成物の無機充填材の比率は、約41重量%であり、無機充填材の粗粒は予めメチルエチルケトン中に分散させた状態で、2μmの細孔径フィルターで積層型カートリッジフィルター(住友スリーエム株式会社製)を用いて最大粒子径2.0μmを上回る粒子を濾過分離し、上記粗粒量及び平均粒径となった球状シリカを用いた。粗粒量は粒子画像解析装置(シスメックス社製FPIA−3000S)を用いて確認した。
Example Series III: Production of Composite and Semiconductor Device of First Aspect Using Various Resin Compositions
<Example III-1>
(1) Preparation of varnish 13.4 parts by weight of a polyfunctional epoxy resin (naphthalene-modified cresol novolac epoxy resin, manufactured by DIC, HP-5000) as a thermosetting resin, bifunctional epoxy resin (produced by Japan Epoxy Resin, Epicoat 828EL) ) 13.4 parts by weight, phenol resin (Maywa Kasei Co., Ltd., MEH7851-4L) 22.7 parts by weight, phenoxy resin as a thermoplastic resin (Japan Epoxy Resin, YX-8100BH30, solid content 30%) 8.8 40.8 parts by weight (solid content), 40.8 parts by weight of spherical silica (NSS-3N, average particle size 0.12 μm, manufactured by Tokuyama Co., Ltd.) with 5 ppm of coarse particles of 2 μm or more as inorganic fillers, imidazole compound (Shikoku Kasei Kogyo Co., Ltd.) Manufactured by Curazole 2E4MZ 0.3 parts by weight, silane coupling agent (momentive puff -Performance Materials Japan Inc., A-187) dissolved 0.6 parts by weight, the methyl ethyl ketone and dispersed. In addition, the ratio of the inorganic filler in the resin composition is about 41% by weight, and the coarse particles of the inorganic filler are dispersed in methyl ethyl ketone in advance, and a multilayer cartridge filter (Sumitomo 3M) with a 2 μm pore size filter. The particles having a maximum particle size of 2.0 μm were separated by filtration using a spherical silica having the above coarse particle amount and average particle size. The amount of coarse particles was confirmed using a particle image analyzer (FPIA-3000S manufactured by Sysmex Corporation).

(2)樹脂シートの作製
上記で得られた樹脂ワニスを、厚さ37μmのPET(ポリエチレンテレフタレート)フィルムの片面に、コンマコーター装置を用いて乾燥後の樹脂層の厚さが40μmとなるように塗工し、これを160℃の乾燥装置で10分間乾燥して、樹脂シートを作製した。
(2) Production of Resin Sheet The resin varnish obtained above is applied to one side of a 37 μm thick PET (polyethylene terephthalate) film so that the thickness of the resin layer after drying using a comma coater device is 40 μm. This was coated and dried for 10 minutes with a drying device at 160 ° C. to prepare a resin sheet.

(3)プリント配線板の作製
上記で得られた樹脂シートをガラスエポキシ基材の両面回路が形成された内層回路基板に重ね合わせ、これを、真空加圧式ラミネーター装置を用いて、温度100℃、圧力1MPaにて真空加熱加圧成形し、PET基材剥離後、熱風乾燥装置にて180℃で45分間加熱硬化行い絶縁層を有する基板を得た(評価基板1)。
なお、内層回路基板としては、下記のものを使用した。
・ガラスエポキシ基材:住友ベークライト社製 ELC−4585GS−B、厚さ0.4mm
・導体層:銅箔厚み18μm、L/S=120/180μm、クリアランスホール1mmφ、3mmφ、スリット2mm
(3) Production of Printed Wiring Board The resin sheet obtained above is superposed on an inner circuit board on which a double-sided circuit of a glass epoxy base is formed, and this is laminated at a temperature of 100 ° C. using a vacuum pressure laminator device. Vacuum heating and pressure molding was performed at a pressure of 1 MPa, and after peeling the PET base material, the substrate was heat cured at 180 ° C. for 45 minutes with a hot air drying apparatus to obtain a substrate having an insulating layer (Evaluation substrate 1).
In addition, the following were used as the inner layer circuit board.
Glass epoxy substrate: Sumitomo Bakelite Co., Ltd. ELC-4585GS-B, thickness 0.4 mm
Conductor layer: copper foil thickness 18 μm, L / S = 120/180 μm, clearance holes 1 mmφ, 3 mmφ, slit 2 mm

次に、193nmの波長を有するエキシマレーザーにより絶縁層に狙い幅10μm、狙い深さ15μmの溝を形成し、得られた積層体を、60℃の膨潤液(アトテックジャパン株式会社製、スウェリングディップ セキュリガント P500)に10分間浸漬し、さらに80℃の過マンガン酸カリウム水溶液(アトテックジャパン株式会社製、コンセントレート コンパクト CP)に20分浸漬後、中和してデスミア処理を行った。   Next, a groove having a target width of 10 μm and a target depth of 15 μm was formed in the insulating layer with an excimer laser having a wavelength of 193 nm, and the resulting laminate was made into a swelling solution at 60 ° C. (Swelling Dip, manufactured by Atotech Japan Co., Ltd.). It was immersed for 10 minutes in securigant P500) and further immersed for 20 minutes in an aqueous potassium permanganate solution (manufactured by Atotech Japan Co., Ltd., Concentrate Compact CP) at 80 ° C., followed by neutralization and desmear treatment.

次に前記積層体の絶縁層表面を脱脂し、触媒付与、活性化の工程を経た後、無電解銅めっき層約0.2μmを形成させ、無電解銅めっき層を電極として電解銅めっき(奥野製薬工業株式会社製、トップルチナα)を3A/dm2、30分行って、絶縁層表面から厚さ約5μmの高さの導体層を形成した(評価基板2)。   Next, the insulating layer surface of the laminate is degreased, subjected to a catalyst application and activation process, and then an electroless copper plating layer of about 0.2 μm is formed. Electrolytic copper plating (Okuno) using the electroless copper plating layer as an electrode Pharmaceutical Industry Co., Ltd., Top Lucina α) was applied at 3 A / dm 2 for 30 minutes to form a conductor layer having a thickness of about 5 μm from the insulating layer surface (evaluation substrate 2).

最後にクイックエッチング処理(荏原電産社製 SACプロセス)を行うことにより導体層高さを、絶縁層表面と揃え、L/S=10/10の微細配線加工を施した。次に絶縁樹脂層を温度200℃、60分間で完全硬化した。最後に、同じ樹脂シートを両面に重ね合わせ、これを、真空加圧式ラミネーター装置を用いて、温度100℃、圧力1MPaにて真空加熱加圧成形させ、その後、熱風乾燥装置にて200℃で60分間加熱硬化行い、プリント配線板を得た。   Finally, by conducting a quick etching process (SAC process manufactured by Ebara Densan Co., Ltd.), the conductor layer height was aligned with the surface of the insulating layer, and fine wiring processing of L / S = 10/10 was performed. Next, the insulating resin layer was completely cured at a temperature of 200 ° C. for 60 minutes. Finally, the same resin sheet is superposed on both sides, and this is subjected to vacuum heating and press molding at a temperature of 100 ° C. and a pressure of 1 MPa using a vacuum pressurizing laminator device, and then heated at 200 ° C. at 60 ° C. A printed wiring board was obtained by heat-curing for a minute.

(4)半導体装置
上記で得られたプリント配線板を用いて、半導体装置を製造した。
半導体素子(TEGチップ、サイズ15mm×15mm、厚み0.725mm)としては、半田バンプは直径120μm、150μmピッチ、Sn/Pb組成の共晶で形成され、回路保護膜はポジ型感光性樹脂(住友ベークライト社製CRC−8300)で形成されたものを使用した。半導体装置の組み立ては、まず、半田バンプにフラックス材を転写法により均一に塗布し、次にフリップチップボンダー装置を用い、上記プリント配線板上に半導体素子を加熱圧着により搭載した。次に、IRリフロー炉で半田バンプを溶融接合した後、プリント配線板と半導体素子との間に液状封止樹脂(住友ベークライト社製、CRP−4152S)を充填し、液状封止樹脂を硬化させることで半導体装置を得た。尚、液状封止樹脂は、温度150℃、120分の条件で硬化させた。
(4) Semiconductor device The semiconductor device was manufactured using the printed wiring board obtained above.
As a semiconductor element (TEG chip, size 15 mm × 15 mm, thickness 0.725 mm), solder bumps are formed of eutectic having a diameter of 120 μm, a pitch of 150 μm, and Sn / Pb composition, and a circuit protective film is a positive photosensitive resin (Sumitomo). What was formed by Bakelite CRC-8300) was used. In assembling the semiconductor device, first, a flux material was uniformly applied to the solder bumps by a transfer method, and then, using a flip chip bonder device, the semiconductor element was mounted on the printed wiring board by thermocompression bonding. Next, after melt-bonding the solder bumps in an IR reflow furnace, a liquid sealing resin (CRP-4152S manufactured by Sumitomo Bakelite Co., Ltd.) is filled between the printed wiring board and the semiconductor element, and the liquid sealing resin is cured. Thus, a semiconductor device was obtained. The liquid sealing resin was cured at a temperature of 150 ° C. for 120 minutes.

<実施例III−2〜4>
実施例III−2〜III−4は、表3の配合表に従い、実施例III−1と同様に樹脂シート、及びプリント配線板、並びに半導体装置を得た。
<Examples III-2 to 4>
In Examples III-2 to III-4, a resin sheet, a printed wiring board, and a semiconductor device were obtained in the same manner as in Example III-1 according to the formulation table in Table 3.

<実施例III−5>
(1)ワニス作製
表3の配合表に従い、実施例III−1と同様に樹脂ワニスを作製した。
(2)樹脂シートの作製
ワニス作製後、PET(ポリエチレンテレフタレート)フィルムに代えて、極薄銅箔(三井金属鉱山社製、マイクロシンMT−Ex、3μm)を使用した以外は、実施例III−1と同様にして、極薄銅箔を有する樹脂シートを作製した。
<Example III-5>
(1) Preparation of varnish A resin varnish was prepared in the same manner as in Example III-1 according to the formulation table in Table 3.
(2) Preparation of resin sheet Example III-, except that after the varnish was prepared, an ultrathin copper foil (Mitsui Metal Mining Co., Ltd., Microcin MT-Ex, 3 μm) was used instead of the PET (polyethylene terephthalate) film. In the same manner as in Example 1, a resin sheet having an ultrathin copper foil was produced.

(3)プリント配線板の作製
前記極薄銅箔を有する樹脂シートをガラスエポキシ基材の両面回路が形成された内層回路基板に重ね合わせ、これを、真空加圧式ラミネーター装置を用いて、温度100℃、圧力1MPaにて真空加熱加圧成形し、熱風乾燥装置にて180℃で45分間加熱硬化行った。
次に銅箔をエッチング除去し、評価基板1を得た。また、実施例III−1と同様に前記評価基板1を用い、評価基板2を得た。更に、実施例III−1と同様に前記評価基板2を用い、プリント配線板を得た。
(3) Production of Printed Wiring Board The resin sheet having the ultrathin copper foil is superposed on an inner layer circuit board on which a double-sided circuit of a glass epoxy base is formed, and this is heated at a temperature of 100 using a vacuum pressure laminator device. Vacuum heating and pressing were performed at 1 ° C. and a pressure of 1 MPa, and heat curing was performed at 180 ° C. for 45 minutes in a hot air drying apparatus.
Next, the copper foil was removed by etching to obtain an evaluation substrate 1. Moreover, the evaluation board | substrate 2 was obtained using the said evaluation board | substrate 1 similarly to Example III-1. Furthermore, the printed circuit board was obtained using the said evaluation board | substrate 2 similarly to Example III-1.

(4) 半導体装置
実施例III−1と同様に前記プリント配線板を用い、半導体装置を得た。
(4) Semiconductor device A semiconductor device was obtained using the printed wiring board in the same manner as in Example III-1.

<実施例III−6>
実施例III−4で得られた樹脂シートを用いた絶縁層を有する基板に、355nmの波長を有するYAGレーザーにより絶縁層に幅10μm、深さ15μmの溝を形成した以外は実施例III−1と同様にして、評価基板1、2、およびプリント配線板、並びに半導体装置を得た。
<Example III-6>
Example III-1 except that a groove having a width of 10 μm and a depth of 15 μm was formed in the insulating layer by a YAG laser having a wavelength of 355 nm on the substrate having the insulating layer using the resin sheet obtained in Example III-4 In the same manner as described above, evaluation substrates 1 and 2, a printed wiring board, and a semiconductor device were obtained.

<実施例III−7〜14>
実施例III−7〜III−14は、表3の配合表に従い、実施例III−1と同様に樹脂シート、及び評価基板1、2、およびプリント配線板、並びに半導体装置を得た。
<Examples III-7 to 14>
In Examples III-7 to III-14, resin sheets, evaluation substrates 1 and 2, a printed wiring board, and a semiconductor device were obtained in the same manner as in Example III-1 according to the formulation table in Table 3.

<比較例III−1>
汎用のエポキシ樹脂系樹脂シート(GX‐13、味の素株式会社製、無機充填材の最大粒径2.5μm、無機充填材の平均粒径0.5μm)を用いた以外は実施例III−1と同様にして、評価基板、並びに半導体装置を得た。尚、評価基板1では、170℃で60分、プリント配線板では、180℃で60分の条件とした。また、無機充填材の粗粒量は、樹脂シートから樹脂を採り、溶剤に溶解した後、粒子画像解析装置(シスメックス社製FPIA−3000S)を用いて確認したところ、2μm超過の粗粒は8000ppmであった。
<Comparative Example III-1>
Example III-1 except that a general-purpose epoxy resin-based resin sheet (GX-13, manufactured by Ajinomoto Co., Inc., maximum particle size of inorganic filler 2.5 μm, inorganic filler average particle size 0.5 μm) was used. Similarly, an evaluation substrate and a semiconductor device were obtained. In the evaluation board 1, the conditions were 170 ° C. for 60 minutes, and for the printed wiring board, the conditions were 180 ° C. for 60 minutes. The amount of coarse particles of the inorganic filler was confirmed by using a particle image analyzer (FPIA-3000S manufactured by Sysmex Corporation) after taking a resin from a resin sheet and dissolving it in a solvent. Met.

<比較例III−2>
比較例III−2は、表3の配合表に従い、実施例III−1と同様に樹脂シート、及び評価基板1、2、およびプリント配線板、並びに半導体装置を得た。
<Comparative Example III-2>
In Comparative Example III-2, a resin sheet, evaluation substrates 1 and 2, a printed wiring board, and a semiconductor device were obtained in the same manner as in Example III-1 in accordance with the recipe of Table 3.

前記実施例、並びに比較例で得られた樹脂シート、評価基板1、評価基板2、およびプリント配線板を用い以下に示す評価を行った。得られた結果を表4に示す。   The evaluation shown below was performed using the resin sheet, the evaluation board | substrate 1, the evaluation board | substrate 2, and the printed wiring board which were obtained by the said Example and the comparative example. Table 4 shows the obtained results.

(1)デスミア後の絶縁層表面の算術平均粗さ(Ra)
算術平均粗さ(Ra)は、JIS B0601に準じて、Veeco社製WYKO NT1100を用いて測定を行った。尚、評価サンプルは評価基板1を用いた。
(1) Arithmetic average roughness (Ra) of insulating layer surface after desmearing
The arithmetic average roughness (Ra) was measured using WYKO NT1100 manufactured by Veeco in accordance with JIS B0601. The evaluation substrate 1 was used as an evaluation sample.

(2)導体層壁面の10点平均粗さ(Rz)
導体配線の断面から、JIS B0601に準じて、10点平均粗さ(Rz)を算出した。尚、評価サンプルは評価基板2を用いた。
(2) 10-point average roughness (Rz) of the conductor layer wall surface
From the cross section of the conductor wiring, 10-point average roughness (Rz) was calculated according to JIS B0601. The evaluation substrate 2 was used as an evaluation sample.

(3)線間絶縁信頼性(HAST)
印加電圧3.3VDC、温度130℃、湿度85%の条件で、線間絶縁信頼性試験を行った。尚、評価サンプルは、プリント配線板を用いた。
絶縁抵抗値が、1x10Ω未満となると不良と判断して試験を終了した。
各符号は、以下の通りである。
◎:良好 500時間以上
○:実質上問題なし 200時間以上500時間未満
×:使用不可 200時間未満
(3) Inter-line insulation reliability (HAST)
A line insulation reliability test was performed under the conditions of an applied voltage of 3.3 VDC, a temperature of 130 ° C., and a humidity of 85%. Note that a printed wiring board was used as an evaluation sample.
When the insulation resistance value was less than 1 × 10 8 Ω, it was judged as defective and the test was terminated.
Each code is as follows.
◎: Good 500 hours or more ○: Virtually no problem 200 hours or more and less than 500 hours ×: Unusable Less than 200 hours

(4)熱膨張率(α1)
厚さ40μm、5mm×20mmのテストピースを切り出し、TMA装置(TAインスツルメント社製)を用いて5℃/分、5gの条件で、面方向(X方向)の線膨張係数を測定した。25℃から120℃までの平均線膨張係数をα1とした。尚、サンプルは得られた樹脂シートの両面に銅箔をラミネートし、200℃、1時間の条件で加熱硬化後、銅箔をエッチング除去したものを用いた。
(4) Thermal expansion coefficient (α1)
A test piece having a thickness of 40 μm and 5 mm × 20 mm was cut out, and the linear expansion coefficient in the plane direction (X direction) was measured using a TMA apparatus (manufactured by TA Instruments) at 5 ° C./min and 5 g. The average linear expansion coefficient from 25 ° C. to 120 ° C. was defined as α1. In addition, the sample used the thing which laminated copper foil on both surfaces of the obtained resin sheet, heat-cured on 200 degreeC and the conditions for 1 hour, and then removed the copper foil by etching.

<半導体装置の評価>
前記で得られた半導体装置を、IPC/JEDECのJ−STD−20に準拠して、温度30℃、湿度60%、時間192時間の前処理を行い、その後、260℃に達するリフロー炉に3回通し、後処理として−50℃30分、125℃30分の温度サイクルを500サイクル実施した。評価は、前処理後、と温度サイクルを500サイクル後処理後の半導体素子の導通抵抗評価、および断面観察を実施した。評価結果は、表4に合わせて示す。
各符号は以下の通りである。
◎:500サイクル後処理後の導通抵抗異常なし、および断面観察での導体回路、ビアの異常なし
○:500サイクル後処理後の導通抵抗が1〜10%未満の範囲で上がっているが、断面観察での導体回路、ビアの異常なし。
×:500サイクル後処理後の導通抵抗が、10%上がっている。または、導体回路と樹脂間、ビアと樹脂間のいずれかに、マイクロボイド、剥離クラック発生。
<Evaluation of semiconductor devices>
In accordance with IPC / JEDEC J-STD-20, the semiconductor device obtained above was pretreated at a temperature of 30 ° C., a humidity of 60%, and a time of 192 hours, and then placed in a reflow furnace that reached 260 ° C. As a post-treatment, 500 cycles of a temperature cycle of −50 ° C. for 30 minutes and 125 ° C. for 30 minutes were performed. The evaluation was carried out by conducting resistance evaluation and cross-sectional observation of the semiconductor element after the pretreatment and after the temperature cycle of 500 cycles. The evaluation results are shown in Table 4.
Each code is as follows.
A: No conduction resistance abnormality after 500 cycles of treatment and no abnormality of conductor circuit and via in cross-sectional observation. ○: Conduction resistance after 500 cycles of treatment rises in the range of less than 1 to 10%, but cross section. No abnormalities in the conductor circuit and via in observation.
X: The conduction resistance after 500 cycles of post-treatment is increased by 10%. Or micro voids or peeling cracks occur between the conductor circuit and the resin, or between the via and the resin.

表4から明らかなように、実施例III−1〜III−14は、絶縁層表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下の良好な低粗化であり、かつ導体層壁面の10点平均粗さ(Rz)が5.0μm以下であった。このように表面粗さが最適化されたため、微細配線の絶縁信頼性に優れる。また。信号応答性に優れる良好な微細配線が形成できた。
それに対して、比較例III−1、およびIII−2は無機充填材の粒径が大きいのに加えて粗粒除去が十分でないため、導体層壁面の10点平均荒さ(Rz)が大きく導体配線間の距離が非常に近くなっているため微細配線の絶縁信頼性に劣る。また、絶縁層表面のRaが大きく微細配線形成には不適格である。
As is apparent from Table 4, Examples III-1 to III-14 are good low roughnesses with an arithmetic average roughness (Ra) of the insulating layer surface of 0.05 μm or more and 0.45 μm or less, and The 10-point average roughness (Rz) of the conductor layer wall surface was 5.0 μm or less. Since the surface roughness is optimized in this way, the insulation reliability of the fine wiring is excellent. Also. Good fine wiring with excellent signal response could be formed.
On the other hand, Comparative Examples III-1 and III-2 have a large 10-point average roughness (Rz) of the conductor layer wall surface because the coarse particle removal is not sufficient in addition to the large particle size of the inorganic filler. Since the distance between them is very close, the insulation reliability of the fine wiring is inferior. In addition, Ra on the surface of the insulating layer is large and is not suitable for forming fine wiring.

本発明に従うと、複合体の樹脂層表面に形成された高密着、高信頼性、高周波対応、溝及びビア内のめっき付き性や層間接続性に優れた溝及びビアを有する複合体を得ることができるため、とりわけ、回路幅/回路間幅(L/S)が10μm/10μm以下の微細配線を有する例えばプリント配線板に好適に用いることができる。   According to the present invention, a composite having a groove and a via formed on the surface of the resin layer of the composite, having high adhesion, high reliability, high frequency response, excellent plating property in the groove and via, and interlayer connectivity is obtained. In particular, it can be suitably used for, for example, a printed wiring board having fine wiring with a circuit width / inter-circuit width (L / S) of 10 μm / 10 μm or less.

1 樹脂層
2 導体層
3 溝
4 ビア孔
5 レーザー光
6 マスク
10 基材
11 両面導体層付きコア基材の導体層
40 別の樹脂層
50 無電解めっき層
51 無電解めっき層
52 無電解めっき層
60 電解めっき層
61 電解めっき層
62 電解めっき層
70 導体
100 第一の複合体
101 第二の複合体
102 第二の複合体
DESCRIPTION OF SYMBOLS 1 Resin layer 2 Conductor layer 3 Groove 4 Via hole 5 Laser beam 6 Mask 10 Base material 11 Conductive layer of core base material with double-sided conductor layer 40 Another resin layer 50 Electroless plating layer 51 Electroless plating layer 52 Electroless plating layer 60 Electroplating layer 61 Electrolytic plating layer 62 Electrolytic plating layer 70 Conductor 100 First composite 101 Second composite 102 Second composite

Claims (20)

樹脂層と導体層とを含む複合体であって、
前記樹脂層表面に最大幅が1μm以上、10μm以下の溝と当該溝内部に導体層を有し、当該導体層と接する前記樹脂層表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下である、
ことを特徴とする複合体。
A composite comprising a resin layer and a conductor layer,
A groove having a maximum width of 1 μm or more and 10 μm or less on the surface of the resin layer and a conductor layer inside the groove, and the arithmetic average roughness (Ra) of the surface of the resin layer in contact with the conductor layer is 0.05 μm or more, 0 .45 μm or less,
A composite characterized by that.
樹脂層と導体層とを含む複合体であって、
前記樹脂層に直径が1μm以上、25μm以下のビア孔と当該ビア孔内部に導体層を有し、前記ビア孔内部の樹脂層表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下である、
ことを特徴とする複合体。
A composite comprising a resin layer and a conductor layer,
The resin layer has a via hole having a diameter of 1 μm or more and 25 μm or less and a conductor layer inside the via hole, and the arithmetic average roughness (Ra) of the resin layer surface inside the via hole is 0.05 μm or more, and 45 μm or less,
A composite characterized by that.
更に、前記樹脂層表面に最大幅が1μm以上、10μm以下の溝と当該溝内部に導体層を有し、当該導体層と接する前記樹脂層表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下であることを特徴とする請求項2に記載の複合体。   Further, a groove having a maximum width of 1 μm or more and 10 μm or less on the surface of the resin layer and a conductor layer inside the groove, and an arithmetic average roughness (Ra) of the resin layer surface in contact with the conductor layer is 0.05 μm or more The composite according to claim 2, which is 0.45 μm or less. 前記樹脂層が無機充填材を含み、当該無機充填材は、2μm超過の粗粒が500ppm以下であることを特徴とする請求項1ないし3のいずれか1項に記載の複合体。   The composite according to any one of claims 1 to 3, wherein the resin layer includes an inorganic filler, and the inorganic filler has a coarse particle exceeding 2 µm in an amount of 500 ppm or less. 前記樹脂層が無機充填材を含み、当該無機充填材の平均粒径が0.05μm以上、1.0μm以下であることを特徴とする請求項1ないし4のいずれか1項に記載の複合体。   5. The composite according to claim 1, wherein the resin layer includes an inorganic filler, and the inorganic filler has an average particle size of 0.05 μm or more and 1.0 μm or less. . 前記溝内部の導体層の断面形状が、略台形状、蒲鉾状又は三角形であることを特徴とする請求項1ないし5のいずれか1項に記載の複合体。   The composite body according to any one of claims 1 to 5, wherein a cross-sectional shape of the conductor layer in the groove is substantially trapezoidal, bowl-shaped, or triangular. 前記ビア孔の断面形状が、略台形状であることを特徴とする請求項2ないし6のいずれか1項に記載の複合体。   The composite body according to any one of claims 2 to 6, wherein a cross-sectional shape of the via hole is substantially trapezoidal. 前記複合体が、プリント配線板、半導体素子、メタルコア配線板の中から選ばれた少なくともひとつであることを特徴とする、請求項1ないし7のいずれか1項に記載の複合体。   The composite according to any one of claims 1 to 7, wherein the composite is at least one selected from a printed wiring board, a semiconductor element, and a metal core wiring board. 樹脂層と導体層とを含む複合体を製造する方法であって、
(A)レーザー光によって樹脂層表面に、内部表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下である溝を形成する工程と、
(B)無電解めっきによって前記樹脂層表面に導体を形成する工程と、
(C)前記導体の一部を除去することにより、前記樹脂層の前記溝部分のみに導体層を形成する工程と、
を含むことを特徴とする複合体の製造方法。
A method for producing a composite comprising a resin layer and a conductor layer,
(A) forming a groove having an arithmetic mean roughness (Ra) of the inner surface of 0.05 μm or more and 0.45 μm or less on the resin layer surface by laser light;
(B) forming a conductor on the surface of the resin layer by electroless plating;
(C) forming a conductor layer only in the groove portion of the resin layer by removing a part of the conductor;
The manufacturing method of the composite_body | complex characterized by including.
前記工程(C)の後に、
(D)前記樹脂層と前記導体層の上に別の樹脂層を形成する工程、
を含むことを特徴とする請求項9に記載の複合体の製造方法。
After the step (C),
(D) forming another resin layer on the resin layer and the conductor layer;
The manufacturing method of the composite_body | complex of Claim 9 characterized by the above-mentioned.
樹脂層と導体層とを含む複合体を製造する方法であって、
(A)レーザー光によって、樹脂層に、内部の表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下であるビア孔を形成する工程と、
(B)無電解めっきによって前記樹脂層表面に導体を形成する工程と、
(C)前記導体の一部を除去することにより、前記樹脂層のビア孔部分のみに導体層を形成する工程と、
を含むことを特徴とする複合体の製造方法。
A method for producing a composite comprising a resin layer and a conductor layer,
(A) A step of forming a via hole having an arithmetic mean roughness (Ra) of the inner surface of 0.05 μm or more and 0.45 μm or less in the resin layer by laser light;
(B) forming a conductor on the surface of the resin layer by electroless plating;
(C) forming a conductor layer only in the via hole portion of the resin layer by removing a part of the conductor;
The manufacturing method of the composite_body | complex characterized by including.
前記工程(A)が、レーザー光によって、樹脂層に内部の表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下であるビア孔と、樹脂層表面に内部表面の算術平均粗さ(Ra)が0.05μm以上、0.45μm以下である溝とを形成する工程であり、且つ、
前記工程(C)が、前記導体の一部を除去することにより、前記樹脂層のビア孔及び前記樹脂層表面の溝部分のみに導体層を形成する工程、
であることを特徴とする請求項11に記載の複合体の製造方法。
In the step (A), an arithmetic average roughness (Ra) of the inner surface of the resin layer is 0.05 μm or more and 0.45 μm or less by the laser beam, and an arithmetic average of the inner surface on the resin layer surface Forming a groove having a roughness (Ra) of 0.05 μm or more and 0.45 μm or less, and
The step (C) of forming a conductor layer only in the via hole of the resin layer and the groove portion of the resin layer surface by removing a part of the conductor;
The method for producing a composite according to claim 11, wherein:
前記工程(C)の後に、
(D)前記樹脂層と前記導体層の上に別の樹脂層を形成する工程、
を含むことを特徴とする請求項11又は12に記載の複合体の製造方法。
After the step (C),
(D) forming another resin layer on the resin layer and the conductor layer;
The method for producing a composite according to claim 11 or 12, wherein
前記工程(A)と前記工程(B)の間に、プラズマ又は薬液によってデスミアする工程を含むことを特徴とする請求項9ないし13のいずれか1項に記載の複合体の製造方法。   The method for producing a complex according to any one of claims 9 to 13, further comprising a step of desmearing with plasma or a chemical solution between the step (A) and the step (B). 前記工程(B)と前記工程(C)の間に、電解めっきでさらに導体形成する工程を含むことを特徴とする請求項9ないし14のいずれか1項に記載の複合体の製造方法。   The method for producing a composite according to any one of claims 9 to 14, further comprising a step of forming a conductor by electrolytic plating between the step (B) and the step (C). 前記レーザー光がエキシマレーザー又はYAGレーザーであることを特徴とする請求項9ないし15のいずれか1項に記載の複合体の製造方法。   The method for producing a composite according to any one of claims 9 to 15, wherein the laser beam is an excimer laser or a YAG laser. 前記工程(A)において、前記樹脂層に無機充填材が含まれ、当該無機充填材は、2μm超過の粗粒が500ppm以下であることを特徴とする請求項9ないし16のいずれか1項に記載の複合体の製造方法。   The said process (A) WHEREIN: The inorganic filler is contained in the said resin layer, The coarse particle | grains exceeding 2 micrometers are 500 ppm or less, The said inorganic filler is any one of Claim 9 thru | or 16 characterized by the above-mentioned. The manufacturing method of the composite_body | complex described. 前記工程(A)において、前記樹脂層に無機充填材が含まれ、当該無機充填材の平均粒径が0.05μm以上、1.0μm以下であることを特徴とする請求項9ないし17のいずれか1項に記載の複合体の製造方法。   18. In the step (A), the resin layer contains an inorganic filler, and the inorganic filler has an average particle size of 0.05 μm or more and 1.0 μm or less. A method for producing the composite according to claim 1. 前記複合体が、プリント配線板、半導体素子、メタルコア配線板の中から選ばれた少なくともひとつであることを特徴とする、請求項9ないし18のいずれか1項に記載の複合体の製造方法。   The method of manufacturing a composite according to any one of claims 9 to 18, wherein the composite is at least one selected from a printed wiring board, a semiconductor element, and a metal core wiring board. 請求項1ないし8のいずれか1項に記載の複合体がプリント配線板又はメタルコア配線板であって、当該複合体に半導体素子を搭載してなることを特徴とする半導体装置。   9. The semiconductor device according to claim 1, wherein the composite body according to claim 1 is a printed wiring board or a metal core wiring board, and a semiconductor element is mounted on the composite body.
JP2010028952A 2009-02-12 2010-02-12 Composite body, method of manufacturing the same, and semiconductor device Pending JP2010258415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010028952A JP2010258415A (en) 2009-02-12 2010-02-12 Composite body, method of manufacturing the same, and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009029360 2009-02-12
JP2009089710 2009-04-02
JP2010028952A JP2010258415A (en) 2009-02-12 2010-02-12 Composite body, method of manufacturing the same, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2010258415A true JP2010258415A (en) 2010-11-11

Family

ID=43318939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010028952A Pending JP2010258415A (en) 2009-02-12 2010-02-12 Composite body, method of manufacturing the same, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2010258415A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023666A (en) * 2011-07-25 2013-02-04 Sekisui Chem Co Ltd Epoxy resin material, cured product, and plasma-roughened cured product
JP2015138921A (en) * 2014-01-24 2015-07-30 日本ゼオン株式会社 Substrate for electronic material
JP2017041607A (en) * 2015-08-21 2017-02-23 株式会社アルバック Processing method of resin substrate
JP2017049826A (en) * 2015-09-02 2017-03-09 株式会社フジクラ Wiring body, wiring board, and touch sensor
WO2017043312A1 (en) * 2015-09-11 2017-03-16 株式会社村田製作所 Treated liquid crystal polymer resin sheet and method for production thereof, and resin multilayer substrate and method for production thereof
WO2017051809A1 (en) * 2015-09-25 2017-03-30 大日本印刷株式会社 Mounting component, wiring board, electronic device, and methods for manufacturing same
JP2020096005A (en) * 2018-12-10 2020-06-18 凸版印刷株式会社 Semiconductor package substrate
JP2020161848A (en) * 2015-08-28 2020-10-01 日立化成株式会社 Semiconductor device, and manufacturing method thereof
JP2023026453A (en) * 2016-09-26 2023-02-24 株式会社レゾナック Resin composition, wiring layer laminate for semiconductor and semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003198086A (en) * 2001-12-25 2003-07-11 Fujikura Ltd Circuit board and laminated circuit board as well as their manufacturing method
JP2004111471A (en) * 2002-09-13 2004-04-08 Kyocera Corp Wiring board
JP2005342738A (en) * 2004-06-01 2005-12-15 D D K Ltd Laser beam machining method and stock for laser machining obtained by using the method
JP2006117824A (en) * 2004-10-22 2006-05-11 Toray Ind Inc Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using it
JP2007088288A (en) * 2005-09-22 2007-04-05 Sumitomo Electric Ind Ltd Circuit board, manufacturing method thereof, and multilayer circuit board
JP2008135685A (en) * 2006-10-23 2008-06-12 Fujifilm Corp Method of manufacturing wiring substrate, and wiring substrate, as well as method of manufacturing multi-layer wiring substrate, and multi-layer wiring substrate
JP2008205331A (en) * 2007-02-22 2008-09-04 Toppan Printing Co Ltd Method for manufacturing multilayered wiring board and multilayered wiring board
JP2008252146A (en) * 2008-07-22 2008-10-16 Ibiden Co Ltd Multilayer printed wiring board and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003198086A (en) * 2001-12-25 2003-07-11 Fujikura Ltd Circuit board and laminated circuit board as well as their manufacturing method
JP2004111471A (en) * 2002-09-13 2004-04-08 Kyocera Corp Wiring board
JP2005342738A (en) * 2004-06-01 2005-12-15 D D K Ltd Laser beam machining method and stock for laser machining obtained by using the method
JP2006117824A (en) * 2004-10-22 2006-05-11 Toray Ind Inc Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using it
JP2007088288A (en) * 2005-09-22 2007-04-05 Sumitomo Electric Ind Ltd Circuit board, manufacturing method thereof, and multilayer circuit board
JP2008135685A (en) * 2006-10-23 2008-06-12 Fujifilm Corp Method of manufacturing wiring substrate, and wiring substrate, as well as method of manufacturing multi-layer wiring substrate, and multi-layer wiring substrate
JP2008205331A (en) * 2007-02-22 2008-09-04 Toppan Printing Co Ltd Method for manufacturing multilayered wiring board and multilayered wiring board
JP2008252146A (en) * 2008-07-22 2008-10-16 Ibiden Co Ltd Multilayer printed wiring board and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023666A (en) * 2011-07-25 2013-02-04 Sekisui Chem Co Ltd Epoxy resin material, cured product, and plasma-roughened cured product
JP2015138921A (en) * 2014-01-24 2015-07-30 日本ゼオン株式会社 Substrate for electronic material
JP2017041607A (en) * 2015-08-21 2017-02-23 株式会社アルバック Processing method of resin substrate
JP2020161848A (en) * 2015-08-28 2020-10-01 日立化成株式会社 Semiconductor device, and manufacturing method thereof
JP2017049826A (en) * 2015-09-02 2017-03-09 株式会社フジクラ Wiring body, wiring board, and touch sensor
JPWO2017043312A1 (en) * 2015-09-11 2018-04-26 株式会社村田製作所 Processed liquid crystal polymer resin sheet, method for producing the same, resin multilayer substrate and method for producing the same
WO2017043312A1 (en) * 2015-09-11 2017-03-16 株式会社村田製作所 Treated liquid crystal polymer resin sheet and method for production thereof, and resin multilayer substrate and method for production thereof
US10864698B2 (en) 2015-09-11 2020-12-15 Murata Manufacturing Co., Ltd. Treated liquid crystal polymer resin sheet and resin multilayer substrate
WO2017051809A1 (en) * 2015-09-25 2017-03-30 大日本印刷株式会社 Mounting component, wiring board, electronic device, and methods for manufacturing same
US10276515B2 (en) 2015-09-25 2019-04-30 Dai Nippon Printing Co., Ltd. Mounting component, wiring substrate, electronic device and manufacturing method thereof
US10672722B2 (en) 2015-09-25 2020-06-02 Dai Nippon Printing Co., Ltd. Mounting component and electronic device
JP2023026453A (en) * 2016-09-26 2023-02-24 株式会社レゾナック Resin composition, wiring layer laminate for semiconductor and semiconductor device
JP2020096005A (en) * 2018-12-10 2020-06-18 凸版印刷株式会社 Semiconductor package substrate

Similar Documents

Publication Publication Date Title
WO2010092932A1 (en) Resin composition for wiring board, resin sheet for wiring board, composite body, method for producing composite body, and semiconductor device
JP5493853B2 (en) Epoxy resin composition, prepreg, laminate, multilayer printed wiring board, semiconductor device, insulating resin sheet, and method for producing multilayer printed wiring board
US8357859B2 (en) Insulating resin sheet laminate and multi-layer printed circuit board including insulating resin sheet laminate
JP2010258415A (en) Composite body, method of manufacturing the same, and semiconductor device
TWI494337B (en) Epoxy resin composition for circuit board, prepreg, laminate, resin sheet, laminated base material for printed wiring board, printed wiring board and semiconductor device
JP5892157B2 (en) Printed circuit board, method for manufacturing printed circuit board, and semiconductor device
JP2010174242A (en) Biphenyl aralkyl type cyanate ester resin, resin composition containing biphenyl aralkyl type cyanate ester resin, and prepreg, laminated plate, resin sheet, multilayer printed wiring board, and semiconductor device obtained using the resin composition
JP5359026B2 (en) Slurry composition, method for producing slurry composition, method for producing resin varnish
JP5282487B2 (en) Multilayer printed wiring board manufacturing method, multilayer printed wiring board, and semiconductor device
JP2009007469A (en) Resin composition, prepreg, laminate and semiconductor device
KR101574907B1 (en) Prepreg, laminated plate, semiconductor package and method for manufacturing laminated plate
JP5737028B2 (en) Pre-preg for printed wiring board, laminated board, printed wiring board, and semiconductor package
JP5732729B2 (en) Resin composition for wiring board and resin sheet for wiring board
JP5515225B2 (en) Multilayer printed wiring board and semiconductor device
JP5245253B2 (en) Resin composition, insulating resin sheet with film or metal foil, multilayer printed wiring board, and semiconductor device
WO2014192421A1 (en) Printed wiring board and semiconductor device
JP2012131946A (en) Resin composition for printed wiring board, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP2011099072A (en) Resin composition, insulating layer, prepreg, laminate, print wiring board and semiconductor device
JP5672694B2 (en) Resin sheet, printed wiring board, and semiconductor device
JP4840303B2 (en) Insulated resin sheet with glass fiber woven fabric, laminated board, multilayer printed wiring board, and semiconductor device
JP2009067852A (en) Insulation resin sheet impregnated with glass fiber woven fabric, laminated plate, multilayered printed wiring board, and semiconductor device
JP2011023428A (en) Method for manufacturing composite, and composite
JP5929639B2 (en) Cyanate ester compound, resin composition, prepreg, laminate, resin sheet, multilayer printed wiring board, and semiconductor device
JP2012158645A (en) Epoxy resin composition for printed wiring board, prepreg, metal-clad laminate, resin sheet, printed wiring board, and semiconductor device
JP2011254026A (en) Method of producing composite and composite

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527