JP2010256670A - Diffraction grating, spectroscopic unit using the same, spectrometer, and method for preparing diffraction grating - Google Patents

Diffraction grating, spectroscopic unit using the same, spectrometer, and method for preparing diffraction grating Download PDF

Info

Publication number
JP2010256670A
JP2010256670A JP2009107432A JP2009107432A JP2010256670A JP 2010256670 A JP2010256670 A JP 2010256670A JP 2009107432 A JP2009107432 A JP 2009107432A JP 2009107432 A JP2009107432 A JP 2009107432A JP 2010256670 A JP2010256670 A JP 2010256670A
Authority
JP
Japan
Prior art keywords
diffraction grating
surface layer
housing
molding
layer portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009107432A
Other languages
Japanese (ja)
Inventor
Kenji Imura
健二 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2009107432A priority Critical patent/JP2010256670A/en
Publication of JP2010256670A publication Critical patent/JP2010256670A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the temperature dependence of a lattice constant in a low-cost diffraction grating made of resin. <P>SOLUTION: By using so-called dichroic molding (two-material molding, composite molding), a thin surface layer part 4a is integrally stacked on a housing 2 formed with high rigidity by a material having a small thermal expansion coefficient, and a diffraction grating 4 is formed (transferred from a mold when molding) on the surface layer part 4a. Thus, the thermal expansion coefficient of the diffraction grating 4 molded integrally with the housing 2 is controlled by the thermal expansion coefficient of the housing 2 with high rigidity, and the thermal expansion coefficient of the entire housing 2 including the diffraction grating 4 can be suppressed to a low value by using a resin material excellent in thermal stability after molding, preferably stability with the lapse of time, for the housing 2. By using a resin material excellent in smoothness, preferably moldability, for the surface layer part 4a, high optical characteristics can be obtained. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、回折格子およびそれを用いる分光ユニット、分光計ならびに回折格子の作成方法に関し、特に前記回折格子としては、安価な樹脂製のものに関する。   The present invention relates to a diffraction grating, a spectroscopic unit using the same, a spectrometer, and a method for producing a diffraction grating, and in particular, relates to an inexpensive resin-made diffraction grating.

分光計、特にセンサアレイを用いて測定波長域の分光分布を同時に測定する低コストなポリクロメータ型の分光計が、いわば部品としてさまざまな分野で用いられるようになり、より低コスト化が求められるようになっている。そのコストを削減する上で、回折格子とハウジングとを射出成形された樹脂製にすることは効果がある。特許文献1は、両者を一体で射出成形した分光ユニットを提示している。その具体的構成を図4で示す。この分光ユニット51は、一面を開放した箱形のハウジング52の内底面52aに反射型の凹面回折格子54が形成され、その箱を閉止する印刷配線基板55側に、光導入孔(スリット)56が形成されるとともに、前記光導入孔56から入射し、前記回折格子54で分光された各波長の光強度を同時測定するセンサアレイ57が設けられて構成されている。このような分光ユニット51に、前記センサアレイ57からの出力を処理する処理回路を前記印刷配線基板55などに備えて、分光輝度計や分光測色計などに組み込まれる分光計が構成される。こうして、先ず回折格子54の材料を従来のガラスから樹脂に変更することでコストを低減し、さらに該回折格子54をハウジング52に一体成型することで、組み立てに伴うコストならびに誤差を低減して、一層のコスト低減が図られている。   Spectrometers, especially low-cost polychromator-type spectrometers that simultaneously measure the spectral distribution in the measurement wavelength range using a sensor array, have come to be used in various fields as a so-called component, and further cost reduction is required. It is like that. In order to reduce the cost, it is effective to make the diffraction grating and the housing made of injection molded resin. Patent Document 1 presents a spectroscopic unit in which both are integrally formed by injection molding. The specific configuration is shown in FIG. In this spectroscopic unit 51, a reflective concave diffraction grating 54 is formed on an inner bottom surface 52a of a box-shaped housing 52 with one surface open, and a light introduction hole (slit) 56 is formed on the printed wiring board 55 side that closes the box. And a sensor array 57 that simultaneously measures the light intensity of each wavelength incident from the light introduction hole 56 and dispersed by the diffraction grating 54 is provided. In such a spectroscopic unit 51, a processing circuit for processing the output from the sensor array 57 is provided in the printed wiring board 55 and the like, and a spectrophotometer incorporated in a spectral luminance meter, a spectrocolorimeter, or the like is configured. Thus, the cost is reduced by changing the material of the diffraction grating 54 from the conventional glass to the resin, and the diffraction grating 54 is integrally formed with the housing 52 to reduce the cost and error associated with the assembly. Further cost reduction is achieved.

しかしながら、樹脂の線膨張係数が7×10−5/℃前後と、ガラスの10倍近いために、上述のような樹脂製の回折格子は、格子定数の温度依存性が大きく、波長精度で劣るという問題がある。すなわち、温度変化によって格子のピッチが変わり、波長に応じたシフトが生じてしまう。 However, since the linear expansion coefficient of the resin is around 7 × 10 −5 / ° C., which is nearly 10 times that of glass, the resin diffraction grating as described above has a large temperature dependence of the lattice constant and is inferior in wavelength accuracy. There is a problem. That is, the pitch of the grating changes due to a temperature change, and a shift corresponding to the wavelength occurs.

そこで、樹脂にガラス繊維などの充填材を入れると、線膨張係数を1/3以下に抑制できるが、充填材が表面の平滑性を損ない、格子の光学性能を損なってしまう。このため、特許文献2では、充填材を含まない樹脂で回折格子を成型して格子の光学性能を確保しつつ、別体のハウジングを回折格子の樹脂に近い線膨張率をもつ樹脂で成型し、格子定数の熱膨張をハウジングの熱膨張で補償する技術を開示している。   Therefore, when a filler such as glass fiber is added to the resin, the linear expansion coefficient can be suppressed to 1/3 or less, but the filler impairs the smoothness of the surface and impairs the optical performance of the grating. For this reason, in Patent Document 2, a diffraction grating is molded with a resin that does not contain a filler to ensure the optical performance of the grating, and a separate housing is molded with a resin having a linear expansion coefficient close to that of the diffraction grating resin. Discloses a technique for compensating for the thermal expansion of the lattice constant by the thermal expansion of the housing.

この従来技術では、補償は回折格子とハウジングとの温度差が十分小さいことが前提となる。しかし、樹脂製の回折格子やハウジングは熱伝導率が低く、特に光源を内蔵して測定物を照明し、反射光の分光分布を測定する反射特性測定装置では、前記回折格子とハウジング(特にセンサアレイが搭載され、光導入孔(スリット)が形成される印刷配線基板側)との間で温度上昇の不均一性が生じ、補償が不十分となって精度低下が避けられないという問題がある。   In this prior art, compensation is premised on the temperature difference between the diffraction grating and the housing being sufficiently small. However, resin-made diffraction gratings and housings have low thermal conductivity. In particular, in a reflection characteristic measuring apparatus that illuminates a measurement object with a built-in light source and measures the spectral distribution of reflected light, the diffraction grating and housing (especially sensors) There is a problem that non-uniformity of temperature rise occurs between the array and the light-introducing holes (slits) on the printed wiring board side), compensation is insufficient, and accuracy is inevitable. .

一方、温度による波長誤差には、上述のような格子定数の変化に起因するものだけでなく、印刷配線基板55とハウジング52や回折格子54の線膨張係数の差や形状変化に起因するものがある。しかしながら、これらの格子定数変化によらない要因の多くは、全波長一律の誤差を生じるので、たとえば本願発明者による特許文献3の方法で、補正することができる。   On the other hand, the wavelength error due to temperature is not only due to a change in the lattice constant as described above, but also due to a difference in linear expansion coefficient between the printed wiring board 55 and the housing 52 or the diffraction grating 54 or a shape change. is there. However, many of the factors that do not depend on the change in the lattice constant cause an error that is uniform over all wavelengths, and can be corrected by, for example, the method of Patent Document 3 by the present inventor.

特表2006−514277号公報JP-T-2006-514277 特開2000−298066号公報JP 2000-298066 A 特開2005−69784号公報JP 2005-69784 A

本発明の目的は、樹脂製であっても、格子定数の温度依存性を小さくすることができる回折格子およびそれを用いる分光ユニット、分光計ならびに回折格子の作成方法を提供することである。   An object of the present invention is to provide a diffraction grating, a spectroscopic unit using the same, a spectrometer, and a method for producing the diffraction grating, which can reduce the temperature dependence of the lattice constant even if it is made of resin.

本発明の回折格子は、樹脂製の回折格子において、前記回折格子が形成される薄肉の表層部と、前記表層部よりも熱膨張係数が小さい材料によって、該表層部よりも高い剛性で、該表層部に一体成型される基部とを含むことを特徴とする。   The diffraction grating of the present invention is a resin-made diffraction grating having a thin surface layer portion on which the diffraction grating is formed and a material having a smaller coefficient of thermal expansion than the surface layer portion, and having a rigidity higher than that of the surface layer portion, And a base portion formed integrally with the surface layer portion.

また、本発明の回折格子の作成方法は、樹脂製の回折格子を作成するための方法において、転写すべき前記回折格子が刻設されたコア(たとえば内型)に、第1の所定の空間を空けて第1のキャビティ(外型)を嵌め合せ、前記第1の空間に第1の樹脂材料を射出して薄肉の表層部を形成する工程と、前記第1のキャビティ(外型)に代えて、第2の所定の空間を空けて第2のキャビティ(外型)を嵌め合せ、前記第2の空間に前記第1の樹脂材料よりも熱膨張係数が小さい第2の樹脂材料を射出して、前記表層部よりも高い剛性となる基部を、前記表層部に一体成型する工程とを含むことを特徴とする。   The diffraction grating creating method of the present invention is a method for creating a resin-made diffraction grating, wherein a first predetermined space is formed in a core (for example, an inner mold) in which the diffraction grating to be transferred is engraved. And fitting a first cavity (outer mold) and injecting a first resin material into the first space to form a thin surface layer portion; and in the first cavity (outer mold) Instead, a second predetermined space is provided to fit a second cavity (outer mold), and a second resin material having a smaller thermal expansion coefficient than that of the first resin material is injected into the second space. And a step of integrally molding a base portion having higher rigidity than the surface layer portion into the surface layer portion.

上記の構成によれば、低コスト化が可能な樹脂製の回折格子において、単一材料で該回折格子を成型するのではなく、いわゆる2色成型(2材成型、複合成型)を用いて、少なくとも2つの材料で成型する。さらにその成型にあたっては、熱膨張係数が小さい材料によって高い剛性に成型する基部に、薄肉の表層部を積層し、その表層部に前記回折格子を形成(成型の際に型から転写)する。前記基部を前記表層部よりも剛性を高めるためには、該基部を厚く形成したり、リブを形成したりするなどの構造的な工夫や、材料に補強剤を分散させる等の工夫で実現することができる。   According to the above configuration, in the resin-made diffraction grating capable of reducing the cost, instead of molding the diffraction grating with a single material, so-called two-color molding (two-material molding, composite molding) Molded with at least two materials. Further, in the molding, a thin surface layer portion is laminated on a base portion that is molded with high rigidity by a material having a small thermal expansion coefficient, and the diffraction grating is formed on the surface layer portion (transferred from the mold at the time of molding). In order to increase the rigidity of the base portion than the surface layer portion, it is realized by structural measures such as forming the base portion thicker or forming ribs, or by devising a reinforcing agent in the material. be able to.

したがって、一体成型された回折格子において、その熱膨張係数は剛性の高い基部の熱膨張係数が支配的となり、該基部に成形後の熱的な安定性および好ましくは経時の安定性にも優れた樹脂材料を用いることで、回折格子を含む基部全体での熱膨張係数を小さく抑えることができる。これに対して、前記表層部には、前記補強剤などの格子表面を荒らす材料を含まない、平滑性および好ましくは成形性にも優れた樹脂材料を用いて、高い光学特性を得ることができる。こうして、低コストの樹脂製の回折格子においても、格子定数の温度依存性を小さくすることができる。   Therefore, in the integrally molded diffraction grating, the thermal expansion coefficient of the base portion having high rigidity is dominant, and the base portion is excellent in thermal stability after molding, and preferably in stability over time. By using the resin material, the coefficient of thermal expansion of the entire base including the diffraction grating can be kept small. On the other hand, the surface layer portion does not contain a material that roughens the lattice surface such as the reinforcing agent, and high optical characteristics can be obtained by using a resin material having excellent smoothness and preferably moldability. . Thus, even in a low-cost resin diffraction grating, the temperature dependence of the lattice constant can be reduced.

さらにまた、本発明の回折格子では、前記表層部は、熱膨張係数の抑制のための充填材を含まない第1の樹脂材料から成り、前記基部は、前記第1の樹脂材料に前記充填材を充填した第2の樹脂材料から成ることを特徴とする。   Furthermore, in the diffraction grating of the present invention, the surface layer portion is made of a first resin material that does not include a filler for suppressing a thermal expansion coefficient, and the base portion is formed by adding the filler to the first resin material. It consists of the 2nd resin material filled with.

上記の構成によれば、前記表層部と基部とに同一の樹脂ベースを用いることで、前記一体成型によって両者は良好に一体化する。そして、基部だけに充填材を添加することで、前記のような該基部が前記表層部よりも熱膨張係数が小さい状況を実現することができる。   According to said structure, both are favorably integrated by the said integral molding by using the same resin base for the said surface layer part and a base part. Then, by adding the filler only to the base portion, it is possible to realize a situation where the base portion has a smaller thermal expansion coefficient than the surface layer portion.

また、本発明の分光ユニットは、前記の回折格子を用い、前記基部がハウジングの少なくとも一部を構成することを特徴とする。   The spectroscopic unit of the present invention is characterized in that the diffraction grating is used, and the base portion forms at least a part of a housing.

上記の構成によれば、分光輝度計や分光測色計などの分光計に用いられ、光導入孔が形成されたハウジングに、少なくとも回折格子およびそれによる分光強度を測定するセンサを備えて成る分光ユニットにおいて、回折格子には前記の2色成型による回折格子を用い、その基部にハウジングの少なくとも一部を構成させることで、回折格子とハウジングとの結合作業や、結合に伴う調整作業が不要になり、熱的な安定性が高い分光ユニットをより低コストで実現することができる。   According to said structure, it is used for spectrometers, such as a spectroluminance meter and a spectrocolorimeter, The spectrum which comprises at least a diffraction grating and the sensor which measures the spectral intensity by it in the housing in which the light introduction hole was formed. In the unit, the diffraction grating using the above-mentioned two-color molding is used as the diffraction grating, and at least a part of the housing is formed at the base thereof, so that the work of coupling the diffraction grating and the housing and the adjustment work associated with the coupling are unnecessary. Therefore, a spectroscopic unit having high thermal stability can be realized at a lower cost.

さらにまた、本発明の分光計は、前記の分光ユニットに、その分光ユニット内の分光強度測定用のセンサからの出力を処理する処理回路を備えて成ることを特徴とする。   Furthermore, the spectrometer of the present invention is characterized in that the above-mentioned spectroscopic unit is provided with a processing circuit for processing the output from the sensor for measuring the spectral intensity in the spectroscopic unit.

上記の構成によれば、熱的な安定性が高く安価な分光計を実現することができる。   According to the above configuration, an inexpensive spectrometer having high thermal stability can be realized.

本発明の回折格子およびそれを用いる分光ユニット、分光計ならびに回折格子の作成方法は、以上のように、いわゆる2色成型(2材成型、複合成型)を用いて、熱膨張係数が小さい材料によって高い剛性に成型する基部に、薄肉の表層部を積層し、その表層部に回折格子を形成(成型の際に型から転写)する。   As described above, the diffraction grating of the present invention, the spectroscopic unit using the same, the spectrometer, and the method of creating the diffraction grating are made of a material having a small thermal expansion coefficient using so-called two-color molding (two-material molding, composite molding). A thin surface layer portion is laminated on a base portion to be molded with high rigidity, and a diffraction grating is formed on the surface layer portion (transferred from a mold at the time of molding).

それゆえ、一体成型された回折格子において、その熱膨張係数は剛性の高い基部の熱膨張係数が支配的となるので、該基部に成形後の熱的な安定性および好ましくは経時の安定性にも優れた樹脂材料を用いることで、回折格子を含む基部全体での熱膨張係数を小さく抑えることができるとともに、前記表層部には、補強剤などの格子表面を荒らす材料を含まない、平滑性および好ましくは成形性にも優れた樹脂材料を用いることで、高い光学特性を得ることができる。こうして、低コストの樹脂製の回折格子においても、格子定数の温度依存性を小さくすることができる。   Therefore, in the integrally molded diffraction grating, the coefficient of thermal expansion is dominated by the coefficient of thermal expansion of the base portion having high rigidity. In addition, it is possible to keep the coefficient of thermal expansion of the entire base including the diffraction grating small by using an excellent resin material, and the surface layer does not include a material that roughens the grating surface such as a reinforcing agent, and is smooth. High optical characteristics can be obtained by using a resin material having excellent moldability. Thus, even in a low-cost resin diffraction grating, the temperature dependence of the lattice constant can be reduced.

本発明の実施の一形態に係る分光ユニットの断面図である。It is sectional drawing of the spectroscopy unit which concerns on one Embodiment of this invention. 本発明による回折格子の作成方法の一例を説明するための断面図である。It is sectional drawing for demonstrating an example of the production method of the diffraction grating by this invention. 本発明の実施の一形態に係る分光ユニットの断面図である。It is sectional drawing of the spectroscopy unit which concerns on one Embodiment of this invention. 典型的な従来技術による分光ユニットのブロック図である。1 is a block diagram of a typical prior art spectroscopic unit. FIG.

(実施の形態1)
図1は、本発明の実施の一形態に係る分光ユニット1の断面図である。この分光ユニット1は、一面を開放した箱形のハウジング2の内底面2aに反射型の凹面回折格子4が形成され、その箱を閉止する印刷配線基板5に、光導入孔(スリット)6が形成されるとともに、前記光導入孔6から入射し、前記回折格子4で分光された各波長の光強度を同時測定するセンサアレイ7が設けられて構成されている。前記印刷配線基板5に、前記センサアレイ7からの出力を処理する処理回路を備えて、分光輝度計や分光測色計などに組み込まれる分光計が構成される。以上の構成は、前述の図4で示す分光ユニット51と同様である。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a spectroscopic unit 1 according to an embodiment of the present invention. In this spectroscopic unit 1, a reflective concave diffraction grating 4 is formed on an inner bottom surface 2 a of a box-shaped housing 2 whose one surface is open, and a light introduction hole (slit) 6 is formed in a printed wiring board 5 that closes the box. A sensor array 7 that is formed and simultaneously measures the light intensity of each wavelength incident from the light introduction hole 6 and dispersed by the diffraction grating 4 is provided. The printed wiring board 5 is provided with a processing circuit for processing the output from the sensor array 7 to constitute a spectrometer incorporated in a spectral luminance meter, a spectral colorimeter or the like. The above configuration is the same as that of the spectroscopic unit 51 shown in FIG.

注目すべきは、この分光ユニット1では、コスト低減のために前記回折格子4を樹脂製とし、さらに該回折格子4をハウジング2に一体成型することで、組み立てに伴うコストならびに誤差を低減して、一層のコスト低減を実現するにあたって、さらにその樹脂製の回折格子4を第1の樹脂材料による射出成型で薄肉の表層部4aに形成し、その表層部4aに、第2の樹脂材料による射出成型で、基部となる前記ハウジング2を、いわゆる2色成型(2材成型、複合成型)を用いて一体成型することである。   It should be noted that in this spectroscopic unit 1, the diffraction grating 4 is made of resin for cost reduction, and the diffraction grating 4 is integrally formed with the housing 2 to reduce the cost and error associated with assembly. In order to achieve further cost reduction, the resin diffraction grating 4 is formed on the thin surface layer portion 4a by injection molding using the first resin material, and the surface layer portion 4a is injected with the second resin material. The molding is to integrally form the housing 2 serving as a base using so-called two-color molding (two-material molding, composite molding).

そして、前記第1の樹脂材料には、ガラス繊維などの格子表面を荒らす材料を含んでおらず、平滑性および好ましくは成形性にも優れた樹脂材料、たとえばポリカーボネイトが用いられる。また、前記第2の樹脂材料には、第1の樹脂材料に、前記ガラス繊維などの熱膨張係数が小さい補強材と、遮光のための黒色顔料とが充填材として添加される。さらに、薄肉の表層部4aに比べて、基部であるハウジング2が厚肉に形成されており、これによってハウジング2は表層部4aに比べて格段に高い剛性に形成される。この他にも、前記剛性を高めるために、リブを形成するなどの構造的な配慮を施すこともできる。また、前記第2の樹脂材料の充填材には、前記のガラス繊維(針状)に限らず、成型後の等方的な安定性を得るために、ディスク状あるいは球状の充填材を用いてもよい。   The first resin material does not include a material that roughens the lattice surface such as glass fiber, and a resin material that is excellent in smoothness and preferably moldability, such as polycarbonate, is used. In addition, a reinforcing material having a small thermal expansion coefficient such as the glass fiber and a black pigment for light shielding are added to the first resin material as fillers. Furthermore, the housing 2 which is the base is formed thicker than the thin surface layer portion 4a, so that the housing 2 is formed with much higher rigidity than the surface layer portion 4a. In addition, in order to increase the rigidity, structural considerations such as formation of ribs can be given. In addition, the filler of the second resin material is not limited to the glass fiber (needle shape), and a disk-like or spherical filler is used in order to obtain isotropic stability after molding. Also good.

図2は、前記表層部4aおよびハウジング2の成型過程の一例を示す断面図である。前記2色成型(2材成型、複合成型)は、1つのコア型(内型)11に、異なる形状の2つのキャビティ型(外型)12,13を組み合わせて行われる。前記回折格子4を転写するための格子型11aは、コア型11の凸面部11bに形成されている。そして、先ず図2(a)で示すように、コア型11と第1のキャビティ型12とが嵌め合せられ、格子型11a面を含む狭い間隙(第1の空間)に、前述のようなガラス繊維を含まない第1の樹脂材料が射出され、凹面の回折格子4を含む薄肉の表層部4aが形成される。   FIG. 2 is a cross-sectional view showing an example of the molding process of the surface layer portion 4a and the housing 2. As shown in FIG. The two-color molding (two-material molding, composite molding) is performed by combining one core mold (inner mold) 11 and two cavity molds (outer molds) 12 and 13 having different shapes. The grating mold 11 a for transferring the diffraction grating 4 is formed on the convex surface portion 11 b of the core mold 11. First, as shown in FIG. 2A, the core mold 11 and the first cavity mold 12 are fitted together, and the glass as described above is placed in a narrow gap (first space) including the surface of the lattice mold 11a. A first resin material that does not contain fibers is injected to form a thin surface layer portion 4 a that includes a concave diffraction grating 4.

次に、図2(b)で示すように、エジェクターピンなどで前記表層部4aがコア型11に付着した状態で、第1のキャビティ型12が外される。代わって、図2(c)で示すように、表層部4aが付着したコア型11に第2のキャビティ型13が嵌め合せられ、ハウジング2を形成する比較的広い間隙(第2の空間)に、前記ガラス繊維と黒色顔料とを充填した第2の樹脂材料が射出され、ハウジング2が表層部4aに融合および密着し、それらは一体に形成されることになる。その後、図2(d)で示すように、第2のキャビティ型13およびコア型11が外され、凹面の回折格子4と一体化されたハウジング2が取り出されて成型が終了する。   Next, as shown in FIG. 2B, the first cavity mold 12 is removed with the surface layer portion 4a attached to the core mold 11 with an ejector pin or the like. Instead, as shown in FIG. 2C, the second cavity mold 13 is fitted to the core mold 11 to which the surface layer portion 4 a is attached, and a relatively wide gap (second space) forming the housing 2 is formed. Then, the second resin material filled with the glass fiber and the black pigment is injected, and the housing 2 is fused and adhered to the surface layer portion 4a, and they are integrally formed. Thereafter, as shown in FIG. 2D, the second cavity mold 13 and the core mold 11 are removed, the housing 2 integrated with the concave diffraction grating 4 is taken out, and the molding is completed.

このように前記表層部4aとハウジング2とを異なる樹脂材料で成型する成型法には、2つのキャビティ型12,13を用いる上述の2色成型法に限らず、1つのキャビティ型13を用い、先ず第1の樹脂材料をコアに射出して前記表層部4aを成型した後、第2の樹脂材料を射出・充填してハウジング2を成型するサンドイッチ成型法を用いることもできる。その後、コア型11から外された表層部4aと一体化したハウジング2の回折格子4の部分にのみアルミ蒸着されて、反射型凹面回折格子が形成される。   As described above, the molding method for molding the surface layer portion 4a and the housing 2 with different resin materials is not limited to the above-described two-color molding method using the two cavity molds 12 and 13, and one cavity mold 13 is used. A sandwich molding method in which the first resin material is first injected into the core to mold the surface layer portion 4a, and then the second resin material is injected and filled to mold the housing 2 can be used. Thereafter, aluminum is vapor-deposited only on the portion of the diffraction grating 4 of the housing 2 integrated with the surface layer portion 4a removed from the core mold 11 to form a reflective concave diffraction grating.

一方、前記印刷配線基板5には、予めセンサアレイ7が取付けられるとともに、前記光導入孔6と、位置決め用の孔5aとが穿設されている。このような印刷配線基板5に、前記のように作成されたハウジング2が、その取付け用のフランジ2cに立設された位置決め用のピン2bを前記孔5aに嵌め込んで位置決めされ、接着されることで組付けられる。必要に応じて、前記印刷配線基板5や別途の基板に前記センサアレイ7からの出力を処理する処理回路が取付けられて、分光計が完成する。   On the other hand, a sensor array 7 is attached to the printed wiring board 5 in advance, and the light introduction hole 6 and a positioning hole 5a are formed. On the printed wiring board 5, the housing 2 created as described above is positioned and bonded by fitting positioning pins 2 b erected on the mounting flange 2 c into the holes 5 a. Can be assembled. If necessary, a processing circuit for processing the output from the sensor array 7 is attached to the printed wiring board 5 or a separate board to complete the spectrometer.

このように構成することで、低コスト化が可能な樹脂製の回折格子4と、ハウジング2とを、それぞれに適した材料で、いわゆる2色成型(2材成型、複合成型)を用いて一体成型することで、熱膨張係数については剛性の高いハウジング2に支配されて小さく抑えられ、光学的には平滑性に優れた材料を用いて高い特性をもつ回折格子4を得ることができる。こうして、低コストな樹脂製の回折格子4においても、格子定数の温度依存性を小さくすることができる。   With this configuration, the resin diffraction grating 4 and the housing 2 that can be reduced in cost and the housing 2 are made of materials suitable for each, so-called two-color molding (two-material molding, composite molding) is integrated. By molding, the thermal expansion coefficient is controlled by the highly rigid housing 2 to be small, and the diffraction grating 4 having high characteristics can be obtained by using a material excellent in optical smoothness. Thus, the temperature dependence of the grating constant can be reduced even in the low-cost resin diffraction grating 4.

また、前記回折格子4を形成する表層部4aとハウジング2とに同一の樹脂ベースを用いることで、前記一体成型によって両者は良好に一体化(融合および密着)する。そして、ハウジング2だけに少なくとも前記熱膨張係数の抑制のための充填材を添加することで、前記のように該ハウジング2の熱膨張係数を前記表層部4aよりも小さくすることができる。   Further, by using the same resin base for the surface layer portion 4a forming the diffraction grating 4 and the housing 2, both are well integrated (fused and closely adhered) by the integral molding. Then, by adding at least the filler for suppressing the thermal expansion coefficient only to the housing 2, the thermal expansion coefficient of the housing 2 can be made smaller than that of the surface layer portion 4a as described above.

さらにまた、光導入孔6が形成されたハウジング2に、少なくとも回折格子4およびそれによる分散光を受光するセンサアレイ7を備えて成る分光ユニット1において、回折格子4には前記の2色成型による回折格子を用い、その回折格子4の基部にハウジング2の少なくとも一部を構成させることで、回折格子4とハウジング2との結合作業や、結合に伴う調整作業が不要になり、熱的な安定性が高い分光ユニットをより低コストで実現し、分光輝度計や分光測色計などに組み込まれる分光計に用いることができる。   Furthermore, in the spectroscopic unit 1 in which the housing 2 in which the light introduction hole 6 is formed is provided with at least the diffraction grating 4 and the sensor array 7 for receiving the dispersed light thereby, the diffraction grating 4 is formed by the above two-color molding. By using the diffraction grating and forming at least a part of the housing 2 at the base of the diffraction grating 4, the coupling work between the diffraction grating 4 and the housing 2 and the adjustment work associated with the coupling become unnecessary, and thermal stability is achieved. A highly spectroscopic unit can be realized at a lower cost, and can be used in a spectrometer incorporated in a spectral luminance meter, a spectral colorimeter, or the like.

(実施の形態2)
図3は、本発明の実施の他の形態に係る分光ユニット21のブロック図である。この分光ユニット21は、前述の分光ユニット1に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。前述の分光ユニット1では、前記回折格子4を備えるハウジング2が印刷配線基板5に直付けされているのに対して、注目すべきは、本実施の形態の分光ユニット21では、ハウジング22の開口部分にもう1つのハウジング23が接合され、そのハウジング23に、前記センサアレイ7を搭載した印刷配線基板25が取付けられることである。このため、前記光導入孔6はハウジング23に形成され、この光導入孔6には光ファイバ26によって被測定光が入射する。
(Embodiment 2)
FIG. 3 is a block diagram of a spectroscopic unit 21 according to another embodiment of the present invention. The spectroscopic unit 21 is similar to the spectroscopic unit 1 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. In the above-described spectroscopic unit 1, the housing 2 including the diffraction grating 4 is directly attached to the printed wiring board 5, while it should be noted that in the spectroscopic unit 21 of the present embodiment, the opening of the housing 22 is notable. The other housing 23 is joined to the portion, and the printed wiring board 25 on which the sensor array 7 is mounted is attached to the housing 23. Therefore, the light introduction hole 6 is formed in the housing 23, and light to be measured is incident on the light introduction hole 6 through the optical fiber 26.

前記ハウジング23もハウジング2と同様に、樹脂ベースに、前記ガラス繊維などの熱膨張係数が小さい補強材および遮光のための黒色顔料が充填材として添加された前記第2の樹脂材料が用いられ、厚肉(高剛性)に成型される。そして、図示しない位置決め部材によって位置決めされた後、開口の端面2d,23d同士が接着される。   Similarly to the housing 2, the housing 23 is also made of the second resin material in which a resin base is added with a reinforcing material having a small thermal expansion coefficient such as the glass fiber and a black pigment for shading as a filler, Molded to be thick (high rigidity). And after positioning by the positioning member which is not shown in figure, the end surfaces 2d and 23d of opening are adhere | attached.

このように構成することで、2つのハウジング部品が必要になるが、光導入孔6の位置や入射方向、センサアレイ7の位置や受光面の方向について、より大きな設計自由度を得ることができる。   With this configuration, two housing parts are required, but a greater degree of design freedom can be obtained with respect to the position and incident direction of the light introduction hole 6, the position of the sensor array 7, and the direction of the light receiving surface. .

1,21 分光ユニット
2,22,23 ハウジング
2a 内底面
4 回折格子
4a 表層部
5,25 印刷配線基板
6 光導入孔
7 センサアレイ
11 コア型
11a 格子型
11b 凸面部
12 第1のキャビティ型
13 第2のキャビティ型
26 光ファイバ
1, 21 Spectroscopic unit 2, 22, 23 Housing 2a Inner bottom surface 4 Diffraction grating 4a Surface layer part 5, 25 Printed wiring board 6 Light introducing hole 7 Sensor array 11 Core type 11a Lattice type 11b Convex part 12 First cavity type 13 First 2 cavity type 26 optical fiber

Claims (5)

樹脂製の回折格子において、
前記回折格子が形成される薄肉の表層部と、
前記表層部よりも熱膨張係数が小さい材料によって、該表層部よりも高い剛性で、該表層部に一体成型される基部とを含むことを特徴とする回折格子。
In resin diffraction grating,
A thin surface layer portion on which the diffraction grating is formed;
A diffraction grating comprising: a base having a lower thermal expansion coefficient than that of the surface layer portion, and a base portion integrally molded with the surface layer portion with higher rigidity than the surface layer portion.
前記表層部は、熱膨張係数の抑制のための充填材を含まない第1の樹脂材料から成り、前記基部は、前記第1の樹脂材料に前記充填材を充填した第2の樹脂材料から成ることを特徴とする請求項1記載の回折格子。   The surface layer portion is made of a first resin material that does not include a filler for suppressing a thermal expansion coefficient, and the base portion is made of a second resin material in which the filler is filled in the first resin material. The diffraction grating according to claim 1. 前記請求項1または2記載の回折格子を用い、前記基部がハウジングの少なくとも一部を構成することを特徴とする分光ユニット。   3. A spectroscopic unit using the diffraction grating according to claim 1 or 2, wherein the base constitutes at least a part of a housing. 前記請求項3記載の分光ユニットに、その分光ユニット内の分光強度測定用のセンサからの出力を処理する処理回路を備えて成ることを特徴とする分光計。   The spectrometer according to claim 3, further comprising a processing circuit for processing an output from a sensor for measuring a spectral intensity in the spectral unit. 樹脂製の回折格子を作成するための方法において、
転写すべき前記回折格子が刻設されたコアに、第1の所定の空間を空けて第1のキャビティを嵌め合せ、前記第1の空間に第1の樹脂材料を射出して薄肉の表層部を形成する工程と、
前記第1のキャビティに代えて、第2の所定の空間を空けて第2のキャビティを嵌め合せ、前記第2の空間に前記第1の樹脂材料よりも熱膨張係数が小さい第2の樹脂材料を射出して、前記表層部よりも高い剛性となる基部を、前記表層部に一体成型する工程とを含むことを特徴とする回折格子の作成方法。
In a method for creating a resin diffraction grating,
The first cavity is fitted into the core on which the diffraction grating to be transferred is engraved, the first resin material is injected into the first space, and a thin surface layer portion is formed. Forming a step;
Instead of the first cavity, a second predetermined space is provided to fit the second cavity, and the second resin material has a smaller thermal expansion coefficient than the first resin material in the second space. And a step of integrally molding a base portion having higher rigidity than the surface layer portion into the surface layer portion.
JP2009107432A 2009-04-27 2009-04-27 Diffraction grating, spectroscopic unit using the same, spectrometer, and method for preparing diffraction grating Pending JP2010256670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107432A JP2010256670A (en) 2009-04-27 2009-04-27 Diffraction grating, spectroscopic unit using the same, spectrometer, and method for preparing diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107432A JP2010256670A (en) 2009-04-27 2009-04-27 Diffraction grating, spectroscopic unit using the same, spectrometer, and method for preparing diffraction grating

Publications (1)

Publication Number Publication Date
JP2010256670A true JP2010256670A (en) 2010-11-11

Family

ID=43317642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107432A Pending JP2010256670A (en) 2009-04-27 2009-04-27 Diffraction grating, spectroscopic unit using the same, spectrometer, and method for preparing diffraction grating

Country Status (1)

Country Link
JP (1) JP2010256670A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014166015A1 (en) * 2013-04-08 2014-10-16 宁波源禄光电有限公司 Small temperature-stabilized spectrograph
WO2015119118A1 (en) * 2014-02-05 2015-08-13 浜松ホトニクス株式会社 Spectrometer, and spectrometer production method
WO2017022840A1 (en) * 2015-08-04 2017-02-09 浜松ホトニクス株式会社 Spectroscope, and spectroscope production method
JP2017201330A (en) * 2017-07-19 2017-11-09 浜松ホトニクス株式会社 Spectrometer
JP2018138924A (en) * 2018-04-17 2018-09-06 浜松ホトニクス株式会社 Spectrometer
JP2018173426A (en) * 2018-08-02 2018-11-08 浜松ホトニクス株式会社 Spectrometer
US10132683B2 (en) 2015-08-04 2018-11-20 Hamamatsu Photonics K.K. Spectroscope
JP2019002941A (en) * 2018-09-26 2019-01-10 浜松ホトニクス株式会社 Spectrometer
WO2020158757A1 (en) * 2019-01-30 2020-08-06 浜松ホトニクス株式会社 Spectroscope and spectroscope production method
WO2020158745A1 (en) * 2019-01-30 2020-08-06 浜松ホトニクス株式会社 Spectrometer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114501A (en) * 1994-09-29 1996-05-07 Microparts G Fuer Mikrostrukturtechnik Mbh Infrared ray spectral sensor for gas
JP2000206348A (en) * 1999-01-13 2000-07-28 Furukawa Electric Co Ltd:The Compensation method of light transmission wavelength of optical waveguide circuit
JP2003025377A (en) * 2001-07-19 2003-01-29 Ichikoh Ind Ltd Lens for vehicle lamp, mold for the lens, and method for manufacturing the same
JP2004510607A (en) * 2000-10-02 2004-04-08 クラウス−マッファイ クンストシュトッフテヒニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for producing thick molded parts
JP2004170575A (en) * 2002-11-19 2004-06-17 Nippon Zeon Co Ltd Portable electronic device with image pickup unit
JP2004354176A (en) * 2003-05-28 2004-12-16 Hamamatsu Photonics Kk Photodetector and spectrometer using it
JP2006514277A (en) * 2003-02-04 2006-04-27 カール ツァイス イエナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Compact spectrometer
JP2009080115A (en) * 2007-09-25 2009-04-16 Carl Zeiss Microimaging Gmbh Spectrometer having inlet slit, and manufacturing of inlet slit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114501A (en) * 1994-09-29 1996-05-07 Microparts G Fuer Mikrostrukturtechnik Mbh Infrared ray spectral sensor for gas
JP2000206348A (en) * 1999-01-13 2000-07-28 Furukawa Electric Co Ltd:The Compensation method of light transmission wavelength of optical waveguide circuit
JP2004510607A (en) * 2000-10-02 2004-04-08 クラウス−マッファイ クンストシュトッフテヒニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for producing thick molded parts
JP2003025377A (en) * 2001-07-19 2003-01-29 Ichikoh Ind Ltd Lens for vehicle lamp, mold for the lens, and method for manufacturing the same
JP2004170575A (en) * 2002-11-19 2004-06-17 Nippon Zeon Co Ltd Portable electronic device with image pickup unit
JP2006514277A (en) * 2003-02-04 2006-04-27 カール ツァイス イエナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Compact spectrometer
JP2004354176A (en) * 2003-05-28 2004-12-16 Hamamatsu Photonics Kk Photodetector and spectrometer using it
JP2009080115A (en) * 2007-09-25 2009-04-16 Carl Zeiss Microimaging Gmbh Spectrometer having inlet slit, and manufacturing of inlet slit

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014166015A1 (en) * 2013-04-08 2014-10-16 宁波源禄光电有限公司 Small temperature-stabilized spectrograph
US9921103B2 (en) 2014-02-05 2018-03-20 Hamamatsu Photonics K.K. Spectrometer, and spectrometer production method
WO2015119118A1 (en) * 2014-02-05 2015-08-13 浜松ホトニクス株式会社 Spectrometer, and spectrometer production method
JP2015148485A (en) * 2014-02-05 2015-08-20 浜松ホトニクス株式会社 Spectrometer, and method for manufacturing spectrometer
CN105960579A (en) * 2014-02-05 2016-09-21 浜松光子学株式会社 Spectrometer, and spectrometer production method
US9976900B2 (en) 2014-02-05 2018-05-22 Hamamatsu Photonics K.K. Spectrometer, and spectrometer production method
WO2017022840A1 (en) * 2015-08-04 2017-02-09 浜松ホトニクス株式会社 Spectroscope, and spectroscope production method
CN107850489A (en) * 2015-08-04 2018-03-27 浜松光子学株式会社 The manufacture method of optical splitter and optical splitter
KR20180037176A (en) 2015-08-04 2018-04-11 하마마츠 포토닉스 가부시키가이샤 METHOD FOR MANUFACTURING SPECTROSCOPE,
JP6106811B1 (en) * 2015-08-04 2017-04-05 浜松ホトニクス株式会社 Spectrometer and method of manufacturing the spectrometer
US10539461B2 (en) 2015-08-04 2020-01-21 Hamamatsu Photonics K.K. Spectroscope
US10132683B2 (en) 2015-08-04 2018-11-20 Hamamatsu Photonics K.K. Spectroscope
US10871397B2 (en) 2015-08-04 2020-12-22 Hamamatsu Photonics K.K. Spectroscope
US10260944B2 (en) 2015-08-04 2019-04-16 Hamamatsu Photonics K.K. Spectroscope
US10408677B2 (en) 2015-08-04 2019-09-10 Hamamatsu Photonics K.K. Spectroscope, and spectroscope production method
JP2017201330A (en) * 2017-07-19 2017-11-09 浜松ホトニクス株式会社 Spectrometer
JP2018138924A (en) * 2018-04-17 2018-09-06 浜松ホトニクス株式会社 Spectrometer
JP2018173426A (en) * 2018-08-02 2018-11-08 浜松ホトニクス株式会社 Spectrometer
JP2019002941A (en) * 2018-09-26 2019-01-10 浜松ホトニクス株式会社 Spectrometer
WO2020158757A1 (en) * 2019-01-30 2020-08-06 浜松ホトニクス株式会社 Spectroscope and spectroscope production method
WO2020158745A1 (en) * 2019-01-30 2020-08-06 浜松ホトニクス株式会社 Spectrometer
CN113366290A (en) * 2019-01-30 2021-09-07 浜松光子学株式会社 Light splitter
US11725986B2 (en) 2019-01-30 2023-08-15 Hamamatsu Photonics K.K. Spectroscope and spectroscope production method
CN113366290B (en) * 2019-01-30 2024-04-12 浜松光子学株式会社 Light splitter

Similar Documents

Publication Publication Date Title
JP2010256670A (en) Diffraction grating, spectroscopic unit using the same, spectrometer, and method for preparing diffraction grating
JP5601000B2 (en) Imaging device
JP5903892B2 (en) Manufacturing method of imaging lens unit
JP5127546B2 (en) Optical connector
KR101614962B1 (en) Method for manufacturing spectrometer
US8947795B2 (en) Plastic optical element and method of manufacturing the same
JP5058549B2 (en) Optical element module
JP2011527764A (en) Method and apparatus for reducing thermal effects in small adjustable optical lenses
US7535557B2 (en) Lens measuring method and device for determining decenter and tilt of the lens
CN208689238U (en) Optical module and optics module
CN106062600B (en) Light beam combiner and chip type multi-wavelength laser light source
WO2014024718A1 (en) Spectrometer
CN108731804B (en) Light splitter
FR3075465A1 (en) COVER OF ELECTRONIC CIRCUIT BOX
US20110064353A1 (en) Method of manufacturing optical path change optical connector, and optical path change optical connector
JP2973542B2 (en) Optical module, its manufacturing apparatus and its manufacturing method
TWI653437B (en) Splitter
JP2009244337A (en) Method of manufacturing electro-optical module and electro-optical module
US20160202120A1 (en) Optical base body for a spectrometer, method for producing an optical base body for a spectrometer and spectrometer comprising such optical base body
KR101113523B1 (en) Injection mold for forming lens
JP2008066650A (en) Optical element, optical module, optical connector, and manufacturing method of the optical module
JP5491658B2 (en) Manufacturing method of optical path conversion type optical connector
JP5282988B2 (en) Optical connector
US10613292B2 (en) Optical filter switch module and lens assembly
JP2019184659A (en) Optical element, and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110909

A977 Report on retrieval

Effective date: 20130325

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008