JP2010253518A - Welding robot device of large frame structure - Google Patents

Welding robot device of large frame structure Download PDF

Info

Publication number
JP2010253518A
JP2010253518A JP2009107849A JP2009107849A JP2010253518A JP 2010253518 A JP2010253518 A JP 2010253518A JP 2009107849 A JP2009107849 A JP 2009107849A JP 2009107849 A JP2009107849 A JP 2009107849A JP 2010253518 A JP2010253518 A JP 2010253518A
Authority
JP
Japan
Prior art keywords
welding
robot
frame
frame structure
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009107849A
Other languages
Japanese (ja)
Other versions
JP5327709B2 (en
Inventor
Hiroshi Saito
浩 齋藤
Akihiro Nishimi
昭浩 西見
Takeyoshi Eguchi
武芳 江口
Toru Iijima
亨 飯島
Susumu Oga
進 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009107849A priority Critical patent/JP5327709B2/en
Publication of JP2010253518A publication Critical patent/JP2010253518A/en
Application granted granted Critical
Publication of JP5327709B2 publication Critical patent/JP5327709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding robot device of a large frame structure which can perform the permanent welding of intersection parts of the large frame structure, in which longitudinals and transverses are intersected with each other on a panel, is less in restriction of welding parts capable of performing the permanent welding, is almost needless of manual welding by human hands, can be more downsized as the entire device in comparison with a conventional multi-robot welding apparatus using a large gantry structure, and can eliminate any complicated control system. <P>SOLUTION: The welding robot device of the large frame structure has a robot frame 10 having a horizontal supporting frame base 12 fixed to the large frame structure across an objective welding area 4 and located on an upper part of the objective area while the objective welding area 4 is a space of frames of a rectangular shape surrounded by a pair of longitudinals 2 and one transverse or a plurality of transverses 3, and a welding robot 20 which is mounted on a lower side of the horizontal supporting frame base 12 and capable of executing the welding by performing the numerical control of a welding head in a three-dimensional manner over the entire area within the frame of the rectangular shape (the objective welding area 4). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、大型船舶、LNG洋上設備、橋梁、水門などの大型枠組構造物の溶接ロボット装置に関する。   The present invention relates to a welding robot apparatus for large frame structures such as large ships, LNG offshore facilities, bridges, and sluices.

大型船舶、LNG洋上設備、橋梁、水門などでは、大型の枠組構造物が製造工程の途中(例えば、造船における組立工程)において、多数製造される。   In large ships, LNG offshore facilities, bridges, sluices, etc., a large number of large frame structures are manufactured during the manufacturing process (for example, an assembly process in shipbuilding).

図1は、特許文献1に開示された枠組構造物の模式図である。枠組構造物Bは、平板状のパネル1の表面に複数列のロンジ2を配置する一方、これらロンジ2と直交する方向にトランス3を一定間隔で配置し、パネル1とロンジ2とトランス3とで形成される三方または四方が囲まれた各枠組みされた部分4の交差部5をそれぞれ溶接して構成される。   FIG. 1 is a schematic diagram of a framework structure disclosed in Patent Document 1. FIG. In the frame structure B, a plurality of rows of longes 2 are arranged on the surface of the flat panel 1, while transformers 3 are arranged at regular intervals in a direction orthogonal to the longes 2. Are formed by welding the intersecting portions 5 of each framed portion 4 surrounded by three or four sides.

このような枠組構造物B(例えば、船殻平板ブロック)は、まず、パネル1、ロンジ2、トランス3等の構成材を配材して仮溶接を行って組立た後、これを定盤上に搬送して上記各枠組みされた部分4の交差部5を本溶接することが行われる。   Such a frame structure B (for example, a hull flat plate block) is first assembled by performing temporary welding after assembling components such as the panel 1, the longe 2, the transformer 3 and the like. Is carried out and main welding is performed on the crossing portions 5 of the respective framed portions 4.

上述した枠組構造物Bの交差部5を本溶接する手段として、従来から、(1)小型溶接ロボットをワーク上に設置しての溶接(例えば、特許文献1)、や(2)大型ガントリ構造によるマルチロボット溶接装置を用いた溶接(例えば、特許文献2)が提案され、実施されている。   Conventionally, as means for main welding the intersection 5 of the frame structure B described above, (1) welding with a small welding robot installed on a workpiece (for example, Patent Document 1), or (2) large gantry structure Welding (for example, Patent Document 2) using a multi-robot welding apparatus is proposed and implemented.

図2は、特許文献1に開示された小型溶接ロボットの斜視図である。
この図において、枠組構造物への位置決め装置50は、枠組構造物の各枠組みされた部分に溶接ロボットRを位置決めするのに使用される。これにより、枠組構造物への位置決め台の搬送から最終位置決めまでを簡単かつ高精度に行なうことができ、大型の船殻平板ブロック等の枠組構造物の溶接ロボットによる自動溶接を簡単にできるようになっている。
FIG. 2 is a perspective view of the small welding robot disclosed in Patent Document 1. As shown in FIG.
In this figure, a positioning device 50 for a framework structure is used to position the welding robot R on each framed portion of the framework structure. As a result, it is possible to carry out from the positioning table transport to the frame structure to the final positioning easily and with high accuracy, so that automatic welding by a welding robot for frame structures such as large hull flat plate blocks can be simplified. It has become.

図3は、特許文献2に開示されたマルチロボット溶接装置の斜視図である。
この図において、マルチロボット溶接装置52は、各6軸の多関節型の溶接ロボット53がそれぞれ3軸のスライド機構54、55、56に天吊り姿勢で配置され、合計9軸の移動機構により、上下(Z軸方向)、前後(Y軸方向)、左右(X軸方向)にそれぞれ移動可能なようにしている。更に、各多関節型の溶接ロボット53は、その先端に、溶接トーチをそれぞれ備えており、ワークを溶接するようになっている。
FIG. 3 is a perspective view of the multi-robot welding apparatus disclosed in Patent Document 2. As shown in FIG.
In this figure, a multi-robot welding device 52 includes a 6-axis articulated welding robot 53 arranged in a suspended position on 3-axis slide mechanisms 54, 55 and 56, respectively, and a total of 9-axis moving mechanisms It can be moved up and down (Z-axis direction), front and rear (Y-axis direction), and left and right (X-axis direction). Further, each multi-joint type welding robot 53 is provided with a welding torch at the tip thereof to weld workpieces.

特許第3065166号公報、「枠組構造物への位置決め装置」Japanese Patent No. 3065166, “Positioning device for frame structure” 特開2002−116817号公報、「タスク割付方法およびこれを適用した制御装置」Japanese Patent Laid-Open No. 2002-116817, “Task Allocation Method and Control Device Applying the Method”

上述した特許文献1のように小型溶接ロボットをワーク(枠組構造物)の升目内に配置する場合、溶接時のロボットアームとワークとの干渉が生じやすく、本溶接が可能な溶接部位が制約され、人手に頼る手溶接部分が多くなる問題点がある。   When the small welding robot is arranged in the grid of the work (framework structure) as in Patent Document 1 described above, the robot arm and the work are likely to interfere with each other at the time of welding, and the welding site where the main welding can be performed is restricted. There is a problem that the number of manually welded parts that rely on human hands increases.

また、特許文献1のようマルチロボット溶接装置は、装置全体が大型であり、また複数のロボットを効率良く稼動させるために複雑な制御システムが必要となり、高コストなシステムとなる。また、構造上の問題から複数のロボットを自由な位置に配置することが困難である。   In addition, the multi-robot welding apparatus as disclosed in Patent Document 1 is large in size, and requires a complicated control system to efficiently operate a plurality of robots, resulting in a high-cost system. In addition, it is difficult to place a plurality of robots at free positions due to structural problems.

本発明は上述した問題点を解決するために創案されたものである。すなわち本発明の目的は、パネル上にロンジとトランスが交差している大型の枠組構造物の交差部を本溶接することができ、本溶接が可能な溶接部位の制約が少なく、人手に頼る手溶接がほとんど不要であり、大型ガントリ構造による従来のマルチロボット溶接装置と比較して装置全体を小型化でき、複雑な制御システムが不要である大型枠組構造物の溶接ロボット装置を提供することにある。   The present invention has been developed to solve the above-described problems. That is, the object of the present invention is to allow main welding at the intersection of a large frame structure where a longe and a transformer intersect on the panel, and there are few restrictions on the welding site where the main welding can be performed, and it is a manual operation. It is to provide a welding robot apparatus for a large frame structure that requires almost no welding, can be downsized as a whole compared to a conventional multi-robot welding apparatus with a large gantry structure, and does not require a complicated control system. .

本発明によれば、水平に位置するパネルと、該パネルの上面に所定の第1間隔を隔てて配置された複数列のロンジと、該ロンジと直交しかつ前記パネルの上面に所定の第2間隔を隔てて配置された複数列のトランスとからなる大型枠組構造物の溶接装置であって、
1対のロンジと1又は1対のトランスで囲まれた升目形状の枠内を溶接対象領域とし、
該溶接対象領域を跨いで大型枠組構造物に固定され、前記溶接対象領域の上部に位置する水平支持架台を有するロボット架台と、
該水平支持架台の下面に取付けられ、前記升目形状枠内の全域にわたり溶接ヘッドを3次元的に数値制御して溶接可能な溶接ロボットとを備えたことを特徴とする大型枠組構造物の溶接装置が提供される。
According to the present invention, a horizontally positioned panel, a plurality of rows of longes disposed on the upper surface of the panel with a predetermined first interval, and a predetermined second on the upper surface of the panel that are orthogonal to the longes. A welding apparatus for a large frame structure comprising a plurality of rows of transformers arranged at intervals,
A grid-shaped frame surrounded by a pair of longes and one or a pair of transformers is a welding target region,
A robot gantry having a horizontal support gantry fixed to a large frame structure straddling the welding object region and positioned above the welding object region;
A welding apparatus for a large frame structure, comprising a welding robot attached to the lower surface of the horizontal support frame and capable of welding by numerically controlling a welding head three-dimensionally over the entire area of the grid-shaped frame. Is provided.

本発明の実施形態によれば、前記ロボット架台は、前記溶接対象領域を跨いでこれに隣接する1対の枠組内に脚部と対象部が位置固定可能な構造を有する門型フレームを有し、
前記水平支持架台は、門型フレームに固定され、前記溶接対象領域の上部に前記升目形状枠の長辺方向に沿って水平に延び、
前記溶接ロボットは、水平支持架台の下面に前記長辺方向に沿って水平移動可能に取付けられた水平移動台を有し、該水平移動台を数値制御可能に駆動する1軸スライダ装置と、
該水平移動台に逆さに取付けられ、前記升目形状枠の短辺方向全域にわたり溶接ヘッドを3次元的に数値制御して溶接可能な逆吊多関節溶接ロボットとからなる。
According to an embodiment of the present invention, the robot mount has a gate-type frame having a structure in which a leg portion and a target portion can be fixed in a pair of frames adjacent to the welding target region. ,
The horizontal support frame is fixed to the portal frame, and extends horizontally along the long side direction of the grid-shaped frame at the upper part of the welding target region,
The welding robot has a horizontal moving table attached to a lower surface of a horizontal support frame so as to be horizontally movable along the long side direction, and a single-axis slider device that drives the horizontal moving table so as to be numerically controllable;
It comprises a reverse-hanging articulated welding robot that is attached to the horizontal moving table upside down and can be welded by numerically controlling the welding head three-dimensionally over the entire short-side direction of the grid-shaped frame.

前記門型フレームは、前記溶接対象領域のトランスの長さ方向に隣接する1対の枠組内に、ロンジの長さ方向に間隔を隔てて位置し、それぞれ大型枠組構造物に着脱可能に固定された4つの柱支持装置と、
該4つの柱支持装置に下端が着脱可能に固定支持され、上方に鉛直に延びる4本の柱と、
該4本の柱に4隅が固定され、前記水平支持架台を下面に支持する天井フレームとからなる。
The portal frame is positioned in a pair of frames adjacent to each other in the length direction of the transformer in the welding target area and spaced apart in the longitudinal direction of the longi, and is detachably fixed to the large frame structure. Four pillar support devices,
The four pillar support devices are fixedly supported so that the lower end is detachable, and four pillars extend vertically upwards.
Four corners are fixed to the four pillars, and the ceiling frame supports the horizontal support frame on the lower surface.

また、前記1軸スライダ装置は、前記水平移動台の下面を水平に維持したまま前記長辺方向に沿って案内する直動ガイドと、
前記水平移動台を前記長辺方向に沿って駆動するボールねじと、
該ボールねじを数値制御可能に回転駆動するサーボモータとからなる。
Further, the single-axis slider device includes a linear motion guide that guides along the long side direction while keeping a lower surface of the horizontal moving table horizontal.
A ball screw for driving the horizontal moving table along the long side direction;
A servo motor that rotationally drives the ball screw so as to be numerically controllable.

上記本発明の構成によれば、ロボット架台が溶接対象領域を跨いで大型枠組構造物に固定され、ロボット架台の水平支持架台の下面に溶接ロボットが取付けられているので、溶接対象領域内に溶接ロボットの溶接ヘッドと干渉する部材は存在しない。
従って、この溶接ロボットにより大型の枠組構造物の交差部(溶接対象領域)を本溶接することができ、かつ本溶接が可能な溶接部位の制約が少なく、人手に頼る手溶接をほとんど不要にできる。
According to the configuration of the present invention, the robot frame is fixed to the large frame structure across the welding target region, and the welding robot is attached to the lower surface of the horizontal support frame of the robot frame. There are no members that interfere with the robot's welding head.
Therefore, this welding robot can perform the main welding of the intersection (area to be welded) of the large frame structure, and there are few restrictions on the welding parts where the main welding can be performed, and the manual welding that relies on humans can be made almost unnecessary. .

また、本発明の実施形態によれば、前記溶接ロボットは、1軸スライダ装置と逆吊多関節溶接ロボットからなるので、逆吊多関節溶接ロボットが水平移動台に逆さに取付けられる構成により、逆吊多関節溶接ロボットのワーキングエリアを有効に活用でき、溶接ヘッドを前記升目形状枠内(溶接対象領域)の短辺方向全域にわたるように設定しても、逆吊多関節溶接ロボットを小型軽量化できる。
さらに、1軸スライダ装置により水平移動台を升目形状枠内(溶接対象領域)の長辺方向に沿って水平移動可能であるので、小型軽量の逆吊多関節溶接ロボットで、前記升目形状枠内(溶接対象領域)の長辺方向全域を溶接することができる。
Further, according to the embodiment of the present invention, the welding robot includes a single-axis slider device and a reverse suspension articulated welding robot. The working area of the suspended articulated welding robot can be used effectively, and the inverted suspended articulated welding robot can be reduced in size and weight even if the welding head is set to cover the entire area in the short side of the grid-shaped frame (area to be welded). it can.
Furthermore, since the horizontal moving table can be moved horizontally along the long side direction in the grid-shaped frame (welding target area) by the single-axis slider device, a small and lightweight reverse suspension articulated welding robot can be used. It is possible to weld the entire region in the long side direction of the (welding target region).

また、逆吊多関節溶接ロボットを小型軽量化でき、かつ門型フレームの脚部が溶接対象領域を跨いでこれに隣接する1対の枠組内に着脱可能に固定されるので、大型ガントリ構造による従来のマルチロボット溶接装置と比較して装置全体を小型化できる。
さらに、1対のロンジと1又は1対のトランスで囲まれた升目形状枠内を溶接対象領域とする場合、1台の逆吊多関節溶接ロボットと1台の1軸スライダ装置で単一の溶接対象領域の溶接箇所(交差部)の全体を本溶接できるので、大型ガントリ構造による従来のマルチロボット溶接装置と比較して制御が容易であり、複雑な制御システムを不要にできる。
In addition, the reverse-hanging articulated welding robot can be reduced in size and weight, and the leg portion of the gate-type frame straddles the region to be welded and is detachably fixed in a pair of adjacent frames, so that a large gantry structure is used. Compared to a conventional multi-robot welding apparatus, the entire apparatus can be reduced in size.
Furthermore, when the inside of the grid-shaped frame surrounded by a pair of longes and one or a pair of transformers is used as a welding target region, a single reverse-hanging articulated welding robot and one single-axis slider device can be used as a single unit. Since the entire welding point (intersection) in the welding target area can be subjected to main welding, control is easier than a conventional multi-robot welding apparatus having a large gantry structure, and a complicated control system can be eliminated.

従って、ロボット架台を小型の門型構造とすることで機械構造を小型化すると共に、ロボット制御もシンプルなものとなり、圧倒的なコストダウンが図れる。また、溶接ロボットとロボット架台が1対1であるため、生産量に応じてワークの任意の位置で溶接施工ができる。逆吊多関節溶接ロボットを天吊り(逆吊り)とし、1軸スライダ装置を装備することで溶接時のロボットアームとワークとの干渉を回避すると共に、溶接可能範囲を広げ、ロンジとトランスからなる升目形状の枠内を段取替え無しで溶接施工可能となる。
Therefore, by making the robot base into a small portal structure, the mechanical structure can be reduced in size, and the robot control can be simplified, resulting in an overwhelming cost reduction. Moreover, since the welding robot and the robot mount are in a one-to-one relationship, welding can be performed at an arbitrary position on the workpiece according to the production amount. The reverse suspension articulated welding robot is a ceiling suspension (reverse suspension) and equipped with a single-axis slider device to avoid interference between the robot arm and the workpiece during welding and to expand the weldable range, consisting of a longe and a transformer Welding can be performed without changing the setup inside the square frame.

特許文献1に開示された枠組構造物の模式図である。It is a schematic diagram of the framework structure disclosed by patent document 1. FIG. 特許文献1に開示された小型溶接ロボットの斜視図である。It is a perspective view of the small welding robot disclosed by patent document 1. FIG. 特許文献2に開示されたマルチロボット溶接装置の斜視図である。It is a perspective view of the multi-robot welding device disclosed in Patent Document 2. 本発明が溶接対象とする大型枠組構造物の説明図である。It is explanatory drawing of the large sized frame structure which this invention makes the welding object. 本発明による溶接装置の全体側面図である。1 is an overall side view of a welding apparatus according to the present invention. 図5のA-A矢視図である。It is an AA arrow line view of FIG.

以下、本発明を実施するための最良の実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, the best mode for carrying out the invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図4は、本発明が溶接対象とする大型枠組構造物の説明図である。
この図において、(A)はロンジの長さ方向から見た側面図、(B)はそのB-B矢視図である。
この図に示すように、本発明が溶接対象とする大型枠組構造物は、水平に位置するパネル1と、パネル1の上面に所定の第1間隔L1を隔てて配置された複数列のロンジ2と、ロンジ2と直交しかつパネル1の上面に所定の第2間隔L2を隔てて配置された複数列のトランス3とからなる。
パネル1の大きさは、例えば10m×10m、20m×20m程度である。また、ロンジ2は、例えば高さ600〜800mm、第1間隔L1は、800〜1000mmである。さらにトランス3は、例えば高さ1800〜2000mm、第2間隔L2は、2000〜3000mmである。
なお、本発明において、大型枠組構造物は、この構成に限定されず、その他の構造であってもよい。
FIG. 4 is an explanatory view of a large frame structure to be welded by the present invention.
In this figure, (A) is a side view seen from the longitudinal direction of the longe, and (B) is a view taken along the line BB.
As shown in this figure, a large frame structure to be welded by the present invention includes a horizontally positioned panel 1 and a plurality of rows of longes 2 arranged on the upper surface of the panel 1 with a predetermined first interval L1. And a plurality of rows of transformers 3 which are orthogonal to the longes 2 and are arranged on the upper surface of the panel 1 with a predetermined second interval L2.
The size of the panel 1 is, for example, about 10 m × 10 m and 20 m × 20 m. Further, the longe 2 has a height of 600 to 800 mm, for example, and the first interval L1 is 800 to 1000 mm. Furthermore, the transformer 3 has a height of 1800 to 2000 mm, for example, and the second interval L2 is 2000 to 3000 mm.
In the present invention, the large frame structure is not limited to this configuration, and may have other structures.

図4において、本発明が対象とする溶接領域(溶接対象領域4)は、1対のロンジ2と1又は1対のトランス3で囲まれた升目形状の枠内である。
また、溶接対象領域4の具体的な溶接箇所は、図中に5で示す交差部である。なお、本発明の溶接箇所は、この例に限定されず、溶接対象領域4の内側であればよい。
In FIG. 4, a welding region (welding target region 4) targeted by the present invention is within a grid-shaped frame surrounded by a pair of longes 2 and one or a pair of transformers 3.
Moreover, the specific welding location of the welding object area | region 4 is the cross | intersection part shown by 5 in the figure. In addition, the welding location of this invention is not limited to this example, What is necessary is just to be inside the welding object area | region 4. FIG.

図5は本発明による溶接装置の全体側面図、図6は図5のA-A矢視図である。なお、図5は、対象とする大型枠組構造物のロンジの長さ方向から見た側面図である。   FIG. 5 is an overall side view of the welding apparatus according to the present invention, and FIG. 6 is a view taken along the line AA of FIG. In addition, FIG. 5 is the side view seen from the length direction of the longage of the large sized frame structure made into object.

図5及び図6において、本発明による大型枠組構造物の溶接装置(以下、単に「溶接装置」という)は、ロボット架台10と溶接ロボット20とを備える。   5 and 6, the large frame structure welding apparatus according to the present invention (hereinafter simply referred to as “welding apparatus”) includes a robot base 10 and a welding robot 20.

ロボット架台10は、溶接対象領域4を跨いで大型枠組構造物に固定され、溶接対象領域4の上部に位置する水平支持架台12を有する。   The robot gantry 10 includes a horizontal support gantry 12 that is fixed to the large frame structure straddling the welding target region 4 and is positioned above the welding target region 4.

この例において、ロボット架台10は、溶接対象領域4を跨いでこれに隣接する1対の枠組内に脚部が着脱可能に固定された門型フレーム14を有する。   In this example, the robot pedestal 10 has a portal frame 14 in which legs are detachably fixed in a pair of frames that straddle the welding target region 4 and are adjacent thereto.

門型フレーム14は、4つの柱支持装置15と4本の柱16と天井フレーム17とからなる。   The portal frame 14 includes four column support devices 15, four columns 16, and a ceiling frame 17.

4つの柱支持装置15は、溶接対象領域4のトランス3の長さ方向に隣接する1対の枠組内に、ロンジ2の長さ方向に間隔を隔てて位置し、それぞれ大型枠組構造物に着脱可能に固定されている。柱支持装置15の固定手段は、例えばマグネット、吸盤吸着或いは別途専用の固定治具によるのがよい。   The four column support devices 15 are located in a pair of frames adjacent to each other in the length direction of the transformer 3 in the welding target region 4 and are spaced from each other in the length direction of the longe 2, and are attached to and detached from the large frame structure. It is fixed as possible. The fixing means of the column support device 15 may be, for example, a magnet, suction cup adsorption, or a separate dedicated fixing jig.

4本の柱16は、本例では4つの柱支持装置15に下端が着脱可能に固定支持され、上方に鉛直に延びる。この柱16と柱支持装置15は、一体構造としても構わない。
天井フレーム17は、4本の柱16に4隅が固定され、水平支持架台12を下面に支持する。
In this example, the four columns 16 are fixedly supported by the four column support devices 15 so that their lower ends are detachable, and extend vertically upward. The pillar 16 and the pillar support device 15 may be integrated.
The ceiling frame 17 has four corners fixed to the four columns 16 and supports the horizontal support frame 12 on the lower surface.

水平支持架台12は、門型フレーム14の下面に固定され、溶接対象領域4の上部に升目形状枠の長辺方向に沿って水平に延びる。   The horizontal support frame 12 is fixed to the lower surface of the portal frame 14 and extends horizontally along the long side direction of the grid-shaped frame at the upper part of the welding target region 4.

溶接ロボット20は、水平支持架台12の下面に取付けられ、升目形状枠内(溶接対象領域4)の全域にわたり溶接ヘッド21を3次元的に数値制御して溶接できるようになっている。   The welding robot 20 is attached to the lower surface of the horizontal support gantry 12 and can perform welding by numerically controlling the welding head 21 over the entire area within the grid-shaped frame (the welding target area 4).

溶接ロボット20は、1軸スライダ装置30と逆吊多関節溶接ロボット22とからなる。
逆吊多関節溶接ロボット22は、ロボットアーム23の先端に溶接ヘッド21を有する多関節ロボットであり、後述する水平移動台31に逆さに取付けられ、升目形状枠(溶接対象領域4)の短辺方向全域にわたり溶接ヘッド21を3次元的に数値制御して溶接する。
この場合、逆吊多関節溶接ロボット22のワーキングエリアは、図5の円弧A,Bと円弧Cで囲まれる領域であり、升目形状枠(溶接対象領域4)の短辺方向全域を完全にカバーしている。
The welding robot 20 includes a single-axis slider device 30 and a reverse suspension articulated welding robot 22.
The reverse suspension articulated welding robot 22 is an articulated robot having a welding head 21 at the tip of a robot arm 23, and is attached upside down to a horizontal moving table 31 to be described later, and has a short side of a grid-shaped frame (welding target region 4). The welding head 21 is welded by three-dimensional numerical control over the entire direction.
In this case, the working area of the reverse suspension articulated welding robot 22 is an area surrounded by the arcs A and B and the arc C in FIG. 5 and completely covers the entire short-side direction of the grid-shaped frame (welding target area 4). is doing.

なお、逆吊多関節溶接ロボット22は、この例に限定されず、升目形状枠(溶接対象領域4)の短辺方向全域にわたり溶接ヘッド21を3次元的に数値制御して溶接できる限りで、その他の溶接ロボットであってもよい。   In addition, the reverse suspension articulated welding robot 22 is not limited to this example, as long as the welding head 21 can be numerically controlled three-dimensionally over the entire short-side direction of the grid-shaped frame (welding target region 4), and welding can be performed. Other welding robots may be used.

1軸スライダ装置30は、水平支持架台12の下面に長辺方向に沿って水平移動可能に取付けられた水平移動台31を有し、水平移動台31を数値制御可能に駆動する。
この例において、1軸スライダ装置30は、直動ガイド32、ボールねじ34及びサーボモータ36からなる。
直動ガイド32は、例えばリニアガイドであり、水平移動台31の下面を水平に維持したまま升目形状枠(溶接対象領域4)の長辺方向に沿って水平移動台31を案内する。
ボールねじ34は、例えば転造ボールネジであり、水平移動台31を升目形状枠(溶接対象領域4)の長辺方向に沿って駆動する。
サーボモータ36は、好ましくは減速器を介してボールねじ34を数値制御可能に回転駆動する。
この構成により、水平移動台31を升目形状枠(溶接対象領域4)の長辺方向に沿って数値制御して移動させることができる。
The uniaxial slider device 30 has a horizontal moving table 31 attached to the lower surface of the horizontal support frame 12 so as to be horizontally movable along the long side direction, and drives the horizontal moving table 31 so as to be numerically controllable.
In this example, the uniaxial slider device 30 includes a linear motion guide 32, a ball screw 34, and a servo motor 36.
The linear motion guide 32 is, for example, a linear guide, and guides the horizontal movement table 31 along the long side direction of the grid-shaped frame (welding target region 4) while keeping the lower surface of the horizontal movement table 31 horizontal.
The ball screw 34 is, for example, a rolled ball screw, and drives the horizontal moving table 31 along the long side direction of the grid-shaped frame (welding target region 4).
The servo motor 36 preferably rotationally drives the ball screw 34 via a speed reducer so that numerical control is possible.
With this configuration, the horizontal moving table 31 can be moved by numerical control along the long side direction of the grid-shaped frame (the welding target region 4).

上述した本発明の構成によれば、ロボット架台10が溶接対象領域4を跨いで大型枠組構造物に固定され、ロボット架台の水平支持架台12の下面に溶接ロボット20が取付けられているので、溶接対象領域4内に溶接ロボットの溶接ヘッド21と干渉する部材は存在しない。
従って、この溶接ロボット20により大型の枠組構造物の交差部(溶接対象領域4)を本溶接することができ、かつ本溶接が可能な溶接部位の制約が少なく、人手に頼る手溶接をほとんど不要にできる。
According to the configuration of the present invention described above, the robot base 10 is fixed to the large frame structure across the welding target region 4 and the welding robot 20 is attached to the lower surface of the horizontal support base 12 of the robot base. There are no members in the target area 4 that interfere with the welding head 21 of the welding robot.
Therefore, the welding robot 20 can perform the main welding of the intersection (the welding target region 4) of the large frame structure, and there are few restrictions on the welding parts where the main welding can be performed. Can be.

また、上述した実施形態によれば、溶接ロボット20は、1軸スライダ装置30と逆吊多関節溶接ロボット22からなるので、逆吊多関節溶接ロボット22が水平移動台31に逆さに取付けられる構成により、逆吊多関節溶接ロボット22のワーキングエリア(図5の円弧A,Bと円弧Cで囲まれる領域)を有効に活用でき、溶接ヘッド21を升目形状枠内(溶接対象領域4)の短辺方向全域にわたるように設定しても、逆吊多関節溶接ロボット22を小型軽量化できる。
さらに、1軸スライダ装置30により水平移動台31を升目形状枠内(溶接対象領域4)の長辺方向に沿って水平移動可能であるので、小型軽量の逆吊多関節溶接ロボット22で、升目形状枠内(溶接対象領域4)の長辺方向全域を溶接することができる。
In addition, according to the above-described embodiment, the welding robot 20 includes the single-axis slider device 30 and the reverse-hanging articulated welding robot 22, so that the reverse-hanging articulated welding robot 22 is attached to the horizontal moving table 31 upside down. Thus, the working area (the area surrounded by the arcs A and B and the arc C in FIG. 5) of the reverse suspension articulated welding robot 22 can be used effectively, and the welding head 21 can be shortened within the grid-shaped frame (the welding target area 4). Even if it is set so as to cover the entire side direction, the reverse suspension articulated welding robot 22 can be reduced in size and weight.
Further, since the horizontal moving table 31 can be moved horizontally along the long side direction in the grid-shaped frame (welding target area 4) by the single-axis slider device 30, the small and lightweight reverse suspension articulated welding robot 22 can The entire region in the long side direction within the shape frame (welding target region 4) can be welded.

また、逆吊多関節溶接ロボット22を小型軽量化でき、かつ門型フレーム14の脚部(柱支持装置15)が溶接対象領域4を跨いでこれに隣接する1対の枠組内に着脱可能に固定されるので、大型ガントリ構造による従来のマルチロボット溶接装置と比較して装置全体を小型化できる。
さらに、1対のロンジ2と1又は1対のトランス3で囲まれた升目形状枠内を溶接対象領域4とする場合、1台の逆吊多関節溶接ロボット22と1台の1軸スライダ装置30で単一の溶接対象領域4の溶接箇所(交差部)の全体を本溶接できるので、大型ガントリ構造による従来のマルチロボット溶接装置と比較して制御が容易であり、複雑な制御システムを不要にできる。
Further, the reverse suspension articulated welding robot 22 can be reduced in size and weight, and the leg portion (column support device 15) of the portal frame 14 can be attached to and detached from a pair of frames adjacent to the region to be welded 4. Since it is fixed, the entire apparatus can be reduced in size as compared with a conventional multi-robot welding apparatus having a large gantry structure.
Furthermore, when the inside of the grid-shaped frame surrounded by a pair of longes 2 and one or a pair of transformers 3 is a welding target region 4, one reverse-hanging articulated welding robot 22 and one single-axis slider device. Since the entire welding point (intersection) of the single welding target region 4 can be main-welded in 30, it is easier to control than a conventional multi-robot welding device with a large gantry structure, and no complicated control system is required. Can be.

従って、ロボット架台10を小型の門型構造とすることで機械構造を小型化すると共に、ロボット制御もシンプルなものとなり、圧倒的なコストダウンが図れる。また、溶接ロボット20とロボット架台10が1対1であるため、生産量に応じてワークの任意の位置で溶接施工ができる。
さらに、逆吊多関節溶接ロボット22を天吊り(逆吊り)とし、1軸スライダ装置30を装備することで溶接時のロボットアーム23とワークとの干渉を回避すると共に、溶接可能範囲を広げ、ロンジ2とトランス3からなる升目形状の枠内を段取替え無しで溶接施工可能となる。
Therefore, by making the robot mount 10 into a small portal structure, the mechanical structure can be reduced in size, and the robot control can be simplified, so that an overwhelming cost reduction can be achieved. Further, since the welding robot 20 and the robot mount 10 are in a one-to-one relationship, welding can be performed at an arbitrary position of the workpiece according to the production amount.
Furthermore, the reverse suspension articulated welding robot 22 is suspended from the ceiling (reverse suspension), and equipped with the single-axis slider device 30 avoids interference between the robot arm 23 and the workpiece during welding, and widens the weldable range. It is possible to perform welding in the grid-shaped frame composed of the longi 2 and the transformer 3 without changing the setup.

従って、上述した溶接ロボット装置を用い、ワーク(大型枠組構造物)上の溶接施工箇所上にクレーン等を用いてロボット架台10を設置して固定し、ロンジ2とトランス3からなる升目とパネル1の間(すなわち溶接対象領域4)のすみ肉溶接を段取替え無しで溶接することができる。   Accordingly, using the above-described welding robot apparatus, the robot mount 10 is installed and fixed on the welding work place on the work (large frame structure) using a crane or the like, and the grid and panel 1 composed of the longe 2 and the transformer 3 are installed. (That is, the weld target region 4) can be welded without changeover.

なお、本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, a various change can be added in the range which does not deviate from the summary of this invention.

1 パネル、2 ロンジ、3 トランス、
4 溶接対象領域、5 交差部(溶接箇所)、
10 ロボット架台、12 水平支持架台、
14 門型フレーム、15 柱支持装置、
16 柱、17 天井フレーム、
20 溶接ロボット、21 溶接ヘッド、
22 逆吊多関節溶接ロボット、23 ロボットアーム、
30 1軸スライダ装置、31 水平移動台、
32 直動ガイド、34 ボールねじ、36 サーボモータ
1 panel, 2 longi, 3 transformer,
4 Welding target area, 5 intersection (welding point),
10 robot mounts, 12 horizontal support mounts,
14 portal frame, 15 pillar support device,
16 pillars, 17 ceiling frame,
20 welding robots, 21 welding heads,
22 reverse hanging articulated welding robot, 23 robot arm,
30 1-axis slider device, 31 Horizontal moving table,
32 Linear guide, 34 Ball screw, 36 Servo motor

Claims (4)

水平に位置するパネルと、該パネルの上面に所定の第1間隔を隔てて配置された複数列のロンジと、該ロンジと直交しかつ前記パネルの上面に所定の第2間隔を隔てて配置された複数列のトランスとからなる大型枠組構造物の溶接装置であって、
1対のロンジと1又は1対のトランスで囲まれた升目形状の枠内を溶接対象領域とし、
該溶接対象領域を跨いで大型枠組構造物に固定され、前記溶接対象領域の上部に位置する水平支持架台を有するロボット架台と、
該水平支持架台の下面に取付けられ、前記升目形状枠内の全域にわたり溶接ヘッドを3次元的に数値制御して溶接可能な溶接ロボットとを備えたことを特徴とする大型枠組構造物の溶接装置。
A horizontally positioned panel; a plurality of rows of longes disposed on the upper surface of the panel with a predetermined first interval; and a plurality of longes orthogonal to the longe and disposed on the upper surface of the panel with a predetermined second interval. A welding apparatus for a large frame structure comprising a plurality of rows of transformers,
A grid-shaped frame surrounded by a pair of longes and one or a pair of transformers is a welding target region,
A robot frame having a horizontal support frame that is fixed to a large frame structure straddling the region to be welded and located above the region to be welded;
A welding apparatus for a large frame structure, comprising a welding robot attached to the lower surface of the horizontal support frame and capable of welding by numerically controlling a welding head three-dimensionally over the entire area of the grid-shaped frame. .
前記ロボット架台は、前記溶接対象領域を跨いでこれに隣接する1対の枠組内に脚部と対象部が位置固定可能な構造を有する門型フレームを有し、
前記水平支持架台は、門型フレームに固定され、前記溶接対象領域の上部に前記升目形状枠の長辺方向に沿って水平に延び、
前記溶接ロボットは、水平支持架台の下面に前記長辺方向に沿って水平移動可能に取付けられた水平移動台を有し、該水平移動台を数値制御可能に駆動する1軸スライダ装置と、
該水平移動台に逆さに取付けられ、前記升目形状枠の短辺方向全域にわたり溶接ヘッドを3次元的に数値制御して溶接可能な逆吊多関節溶接ロボットとからなる、ことを特徴とする請求項1に記載の大型枠組構造物の溶接装置。
The robot mount has a gate-type frame having a structure in which a leg portion and a target portion can be fixed in a pair of frames adjacent to the welding target region.
The horizontal support frame is fixed to the portal frame, and extends horizontally along the long side direction of the grid-shaped frame at the upper part of the welding target region,
The welding robot has a horizontal moving table attached to a lower surface of a horizontal support frame so as to be horizontally movable along the long side direction, and a single-axis slider device that drives the horizontal moving table so as to be numerically controllable;
An inverted suspension articulated welding robot which is attached to the horizontal moving table upside down and can be welded by three-dimensional numerical control of the welding head over the entire short side direction of the grid-shaped frame. Item 2. A welding apparatus for a large frame structure according to Item 1.
前記門型フレームは、前記溶接対象領域のトランスの長さ方向に隣接する1対の枠組内に、ロンジの長さ方向に間隔を隔てて位置し、それぞれ大型枠組構造物に着脱可能に固定された4つの柱支持装置と、
該4つの柱支持装置に下端が着脱可能に固定支持され、上方に鉛直に延びる4本の柱と、
該4本の柱に4隅が固定され、前記水平支持架台を下面に支持する天井フレームとからなる、ことを特徴とする請求項2に記載の大型枠組構造物の溶接装置。
The portal frame is positioned at a distance in the longitudinal direction of a pair of frames adjacent to each other in the length direction of the transformer in the welding target region and is detachably fixed to the large frame structure. Four pillar support devices,
The four pillar support devices are fixedly supported so that their lower ends are detachable, and four pillars extend vertically upward,
The welding apparatus for a large-sized frame structure according to claim 2, comprising four ceilings fixed to the four columns and a ceiling frame that supports the horizontal support frame on the lower surface.
前記1軸スライダ装置は、前記水平移動台の下面を水平に維持したまま前記長辺方向に沿って案内する直動ガイドと、
前記水平移動台を前記長辺方向に沿って駆動するボールねじと、
該ボールねじを数値制御可能に回転駆動するサーボモータとからなる、ことを特徴とする請求項2に記載の大型枠組構造物の溶接装置。
The uniaxial slider device includes a linear motion guide that guides along the long side direction while keeping the lower surface of the horizontal moving table horizontal.
A ball screw for driving the horizontal moving table along the long side direction;
The welding apparatus for a large frame structure according to claim 2, comprising a servo motor that rotationally drives the ball screw so as to be numerically controllable.
JP2009107849A 2009-04-27 2009-04-27 Welding robot system for large frame structures Active JP5327709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107849A JP5327709B2 (en) 2009-04-27 2009-04-27 Welding robot system for large frame structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107849A JP5327709B2 (en) 2009-04-27 2009-04-27 Welding robot system for large frame structures

Publications (2)

Publication Number Publication Date
JP2010253518A true JP2010253518A (en) 2010-11-11
JP5327709B2 JP5327709B2 (en) 2013-10-30

Family

ID=43315059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107849A Active JP5327709B2 (en) 2009-04-27 2009-04-27 Welding robot system for large frame structures

Country Status (1)

Country Link
JP (1) JP5327709B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537852A (en) * 2010-11-01 2013-10-07 サムスン ヘビー インダストリーズ カンパニー リミテッド Mobile device and docking method between mobile devices
KR20190120283A (en) 2017-03-21 2019-10-23 가부시키가이샤 고베 세이코쇼 Motion program correction method and welding robot system
KR20190121329A (en) 2017-03-21 2019-10-25 가부시키가이샤 고베 세이코쇼 Welding pass specific methods, programs, teaching programs and welding robotic systems
KR20200003179A (en) 2017-06-06 2020-01-08 가부시키가이샤 고베 세이코쇼 Welding device
CN112276980A (en) * 2020-11-06 2021-01-29 山东理工大学 Cam-driven liquid medium micro-operation manipulator
CN112874723A (en) * 2021-02-04 2021-06-01 豆兴苗 Be used for marine part installation component
CN114802646A (en) * 2022-04-24 2022-07-29 广船国际有限公司 Method for installing hinge base
CN114888814A (en) * 2022-06-30 2022-08-12 中船黄埔文冲船舶有限公司 Welding robot control method and system based on intermediate assembly section

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163369U (en) * 1984-09-28 1986-04-30
JPS62174795U (en) * 1986-04-25 1987-11-06
JPH05329643A (en) * 1992-05-28 1993-12-14 Kobe Steel Ltd Square welding method
JPH07144273A (en) * 1993-11-25 1995-06-06 Mitsubishi Heavy Ind Ltd Structural block automatic welding system
JPH07299567A (en) * 1994-05-02 1995-11-14 Hitachi Zosen Corp Supporting device of welding robot
JPH08295482A (en) * 1995-04-27 1996-11-12 Nkk Corp Lounge material temporary mounting device for hull block

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163369U (en) * 1984-09-28 1986-04-30
JPS62174795U (en) * 1986-04-25 1987-11-06
JPH05329643A (en) * 1992-05-28 1993-12-14 Kobe Steel Ltd Square welding method
JPH07144273A (en) * 1993-11-25 1995-06-06 Mitsubishi Heavy Ind Ltd Structural block automatic welding system
JPH07299567A (en) * 1994-05-02 1995-11-14 Hitachi Zosen Corp Supporting device of welding robot
JPH08295482A (en) * 1995-04-27 1996-11-12 Nkk Corp Lounge material temporary mounting device for hull block

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537852A (en) * 2010-11-01 2013-10-07 サムスン ヘビー インダストリーズ カンパニー リミテッド Mobile device and docking method between mobile devices
US9126331B2 (en) 2010-11-01 2015-09-08 Samsung Heavy Ind. Co., Ltd. Moving apparatus and docking method between moving apparatuses
KR20190120283A (en) 2017-03-21 2019-10-23 가부시키가이샤 고베 세이코쇼 Motion program correction method and welding robot system
KR20190121329A (en) 2017-03-21 2019-10-25 가부시키가이샤 고베 세이코쇼 Welding pass specific methods, programs, teaching programs and welding robotic systems
KR20200003179A (en) 2017-06-06 2020-01-08 가부시키가이샤 고베 세이코쇼 Welding device
CN112276980A (en) * 2020-11-06 2021-01-29 山东理工大学 Cam-driven liquid medium micro-operation manipulator
CN112874723A (en) * 2021-02-04 2021-06-01 豆兴苗 Be used for marine part installation component
CN114802646A (en) * 2022-04-24 2022-07-29 广船国际有限公司 Method for installing hinge base
CN114888814A (en) * 2022-06-30 2022-08-12 中船黄埔文冲船舶有限公司 Welding robot control method and system based on intermediate assembly section

Also Published As

Publication number Publication date
JP5327709B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5327709B2 (en) Welding robot system for large frame structures
JP2016190296A (en) Robot system
CN110394589B (en) Welding system
JP3230453B2 (en) Robotic equipment for welding large structures
CN103862213B (en) Welding clamping device for standard knot square frame of construction elevator
JP6582492B2 (en) Robot system
KR101199858B1 (en) A fixing machine by multi-DOF positioning control
CN104816112A (en) Five-axis linkage numerically-controlled mechanical hand welding machine
CN102655986A (en) A computer aided beam fabrication machine
JP2016190297A (en) Robot system
JP2011005530A (en) Welding apparatus
JP2019034415A5 (en)
RU2285602C1 (en) Metal cutting high-speed five-coordinate center with tripod-module
JP2020062675A (en) Filed welding method and filed welding device
KR20110054160A (en) System cutting section steel
JP6098925B2 (en) Large frame structure welding equipment
JP5327710B2 (en) Platform positioning device for welding equipment for large frame structures
JP3182511U (en) Rotary welding equipment
JPH05200550A (en) Steel-frame joint welding equipment
JP4725486B2 (en) Welding robot
JP2007260771A (en) Automatic spot welding method
JP5170225B2 (en) Work positioning device and production system using the same
CN110867109A (en) Real platform of instructing of robot anchor clamps installation and debugging
JP2003334775A (en) Twin welding robot device
RU114285U1 (en) ROBOTIC DEVICE FOR WELDING

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130701

R151 Written notification of patent or utility model registration

Ref document number: 5327709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130714

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250