JP2010249647A - Recovery rate evaluation method of polycyclic aromatic hydrocarbons - Google Patents

Recovery rate evaluation method of polycyclic aromatic hydrocarbons Download PDF

Info

Publication number
JP2010249647A
JP2010249647A JP2009099103A JP2009099103A JP2010249647A JP 2010249647 A JP2010249647 A JP 2010249647A JP 2009099103 A JP2009099103 A JP 2009099103A JP 2009099103 A JP2009099103 A JP 2009099103A JP 2010249647 A JP2010249647 A JP 2010249647A
Authority
JP
Japan
Prior art keywords
pahs
recovery rate
heat desorption
dep
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009099103A
Other languages
Japanese (ja)
Inventor
Keiko Shibata
慶子 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2009099103A priority Critical patent/JP2010249647A/en
Publication of JP2010249647A publication Critical patent/JP2010249647A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a recovery rate evaluation method of polycyclic aromatic hydrocarbons which accurately determine a recovery rate of PAHs by a GC/MS method with a heat desorption device. <P>SOLUTION: The method includes storing a quartz filter or a silica wool bearing DEP in a heat desorption tube 12, analyzing the heat desorption tube 12 until no PAH is detected by a GC/MS 10 with a heat desorption device; injecting a certain amount of PAHs reference substance, about which concentration of each PAH is known, into a quartz filter 15B where only carbon remains within a heat desorption tube 12a; analyzing the reference PAHs by the GC/MS 10 with a heat desorption device under this condition; and comparing the analysis values with reference concentrations of PAHs of the PAHs reference substance, thereby the recovery rate of each PAH to be analyzed is determined. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ディーゼル排気粒子中の多環芳香族炭化水素類をガスクロ分析する際の多環芳香族炭化水素類の回収率評価方法に関するものである。   The present invention relates to a method for evaluating the recovery rate of polycyclic aromatic hydrocarbons when gas chromatographic analysis of polycyclic aromatic hydrocarbons in diesel exhaust particles is performed.

ディーゼル排気粒子(Diese1 Exhaust Particle、以下DEPと略す)は、燃料や潤滑油の未燃成分であり、炭素の周りに有機溶媒に溶解する有機可溶性成分(Soluble 0rganic Fraction、以下SOFと略す)と、有機溶媒には溶解しない硫酸塩及び硝酸塩、元素状炭素、金属等(Insoluble 0rganic Fraction、以下ISOFと略す)が吸着している集合体である。また、その組成については燃料や潤滑油、エンジン種の影響を強く受けることが知られている。   Diesel exhaust particles (Diese 1 Exhaust Particle, hereinafter abbreviated as DEP) are unburned components of fuel and lubricating oil, and are organic soluble components (Solutable 0 Fraction, hereinafter abbreviated as SOF) that dissolve in an organic solvent around carbon. It is an aggregate in which sulfates and nitrates, elemental carbon, metals, etc. (Insoluble 0 raging Fraction, hereinafter abbreviated as ISOF) that are not dissolved in an organic solvent are adsorbed. Further, it is known that the composition is strongly influenced by fuel, lubricating oil, and engine type.

多環芳香族炭化水素類(Polycyclic 0rganic Hydrocarbons、以下PAHsと略す)は、DEP中SOFの中に含まれており、非常に微量でありながら発癌性が高いことから、ここ十数年程でその分析方法が研究、確立されてきた。   Polycyclic aromatic hydrocarbons (hereinafter abbreviated as PAHs) are contained in SEP in DEP and are extremely carcinogenic although they are very small amounts. Analytical methods have been researched and established.

従来、ディーゼル粒子の分析には、排ガスをテフロン(登録商標)コーティングガラス繊維ろ紙を通してディーゼル粒子を吸着させ、そのろ紙を折りたたむなどして小さくし、有機溶媒で抽出してガスクロマトグラフィによる分析を行うものであるが、ディーゼル粒子中PAHsの定量には、2日半程度の分析前処理が必要である。   Conventionally, diesel particles are analyzed by gas chromatography using exhaust gas from Teflon (registered trademark) coated glass fiber filter paper to adsorb diesel particles, making the filter paper small by folding it, extracting it with an organic solvent, etc. However, the analysis pretreatment for about two and a half days is necessary for the determination of PAHs in diesel particles.

この分析前処理法とは、有機溶媒を用いたSOF分離のための抽出工程、分析感度向上のための濃縮・乾固工程、最終分析溶媒への溶解工程という3つの工程が基本となっており、広く用いられている。   This pre-analysis method is based on three steps: an extraction step for SOF separation using an organic solvent, a concentration / drying step for improving analytical sensitivity, and a dissolution step in the final analysis solvent. Widely used.

また、前記抽出工程はソックスレ抽出法を用いるのが一般的であるが、簡易方法として超音波抽出があり、大学等で用いられている。   The extraction step generally uses a Soxhlet extraction method, but there is an ultrasonic extraction as a simple method, which is used in universities and the like.

しかし、このような有機溶媒を用いた前処理は、分析対象物がロスするだけでなく、工程途中で汚染物質の混入(コンタミネーション)が起こりやすく、労作時間が長くかかる。   However, the pretreatment using such an organic solvent not only loses the object to be analyzed, but also tends to cause contamination (contamination) during the process, resulting in a long labor time.

そこで、フィルタを有機溶媒で抽出する代わりに、市販の加熱脱着装置と、質量検出器(Mass Spectrometer、以下MS)付ガスクロマトグラフ(Gas Chromatograph、以下GC)とを連結させた加熱脱着装置付きGC/MSで分析することを検討した。   Therefore, instead of extracting the filter with an organic solvent, a GC / with a heat desorption device in which a commercially available heat desorption device is connected to a gas chromatograph (hereinafter referred to as GC) with a mass detector (MS). It was considered to analyze by MS.

この加熱脱着装置付きGC/MSは、従来大気や室内の揮発性有機化合物(以下Volatile 0rganic Compounds;VOC)の分析に用いられてきたが、本発明者等は、PAHsも分析出来る技術を確立させた(柴田慶子ら,第49回大気環境学会,2008)。   This GC / MS with a heat desorption device has been used for the analysis of volatile organic compounds (VOC) in the atmosphere and indoors, but the present inventors have established a technique that can also analyze PAHs. (Keiko Shibata et al., 49th Japan Society for Atmospheric Environment, 2008).

この加熱脱着装置付きGC/MSは、ディーゼル粒子を吸着させ、所定サイズに打ち抜いたサンプルをパイレックス(登録商標)製加熱脱着チューブに収容し、加熱脱着装置で加熱してPAHsをガス化させ、これを一旦冷却した後、急速に再加熱してガス化させてカラムに通し、このガス成分をMSで検出することで定量分析するものである。   This GC / MS with a heat desorption device adsorbs diesel particles, puts a sample punched out to a predetermined size into a Pyrex (registered trademark) heat desorption tube, heats it with a heat desorption device, and gasifies PAHs. After the sample is cooled, it is rapidly reheated, gasified and passed through a column, and this gas component is detected by MS for quantitative analysis.

加熱脱着装置付きGC/MSによる、分析技術確立の確認に必要な分析バリデーションは、主に検量線の直線性と範囲、分析繰り返し再現性、検出限界と定量限界、回収率等を確認することであり、これらが良好な場合、その分析法は技術的に確立した信頼性の高い分析法と言うことができる。   Analytical validation necessary for confirmation of establishment of analytical technology by GC / MS with a heat desorption device is mainly by confirming the linearity and range of the calibration curve, reproducibility of the analysis, detection limit and quantitative limit, recovery rate, etc. If these are good, the analysis method can be said to be a technically established and reliable analysis method.

PAHsの添加回収率を調べるために、従来の有機溶媒抽出とガスクロ分析との組合せによる方法では、試料が存在しない状態で、前処理工程の第一工程である抽出工程で用いる有機溶媒の中に、あらかじめ濃度がわかっている液体のPAHs標準物質を一定量添加し、通常の前処理を行い、最終的に分析で得られた値が添加した濃度に対して、何%回収出来たかを計算で求めることができる。   In order to investigate the addition recovery rate of PAHs, in the conventional method using a combination of organic solvent extraction and gas chromatography analysis, in the absence of a sample, the organic solvent used in the extraction step, which is the first step of the pretreatment step, is included. Add a certain amount of liquid PAHs standard substance whose concentration is known in advance, perform normal pretreatment, and calculate the percentage of the final concentration obtained by analysis to recover the concentration. Can be sought.

特開2000−46814号公報JP 2000-46814 A

しかしながら、加熱脱着装置付きGC/MS法では、加熱脱着装置とGC/MSが一体になっているために、前処理が不要であり、有機溶媒抽出のような分析法のようにPAHsの回収率を求めることが難しい。   However, in the GC / MS method with a heat desorption device, since the heat desorption device and the GC / MS are integrated, no pretreatment is required, and the recovery rate of PAHs is the same as in an analysis method such as organic solvent extraction. It is difficult to ask for.

すなわち、加熱脱着装置付きGC/MS法で、PAHsの分析回収率を調べるには、液体標準物質を石英フィルタにマイクロシリンジで注入し、これを加熱脱着チューブに入れて、加熱脱着装置のオートサンプラーのトレイに置き、自動分析させたときに得られたPAHsの分析値が、市販されている液体標準物質の保証値と同じと仮定し、キャリブレーションを行っている。   That is, in order to examine the analysis recovery rate of PAHs by the GC / MS method with a heat desorption device, a liquid standard substance is injected into a quartz filter with a microsyringe, and this is put into a heat desorption tube, and an autosampler of the heat desorption device. Calibration is performed on the assumption that the analysis value of PAHs obtained when the sample is placed on the tray and automatically analyzed is the same as the guaranteed value of the commercially available liquid standard.

しかし通常、4環以上の蒸気圧が低めの多環芳香族炭化水素類(PAHs)は、炭素の周りに吸着した状態で大気へ排出される。従って分析対象はDEPに吸着されたPAHsであり、DEPに吸着されたPAHsを、その状態で分析したときの回収率を求めたいが、石英フィルタに付着しているDEP量もそのDEPに吸着されているPAHsも未知である。従って、単に石英フィルタに市販されているDEP標準物質(例えば、NIST製SRM1650bや2975など、SRM;Standard Reference Material)を載せて分析しても、目的の分析対象のPAHの他に、それと分子量が全く同じである異性体も含まれており、通常のGC/MSでは、これら異性体分離まで行うのは難しいため、加熱脱着装置付きGC/MS法でPAHsの回収率を正しく求めることが出来なかった。   However, normally, polycyclic aromatic hydrocarbons (PAHs) having a low vapor pressure of 4 or more rings are discharged to the atmosphere while adsorbed around the carbon. Therefore, the analysis target is PAHs adsorbed on DEP, and we want to determine the recovery rate when analyzing PAHs adsorbed on DEP in that state, but the amount of DEP adhering to the quartz filter is also adsorbed on that DEP. The PAHs that are present are also unknown. Therefore, even if a DEP standard substance (for example, SRM 1650b or 2975 made by NIST, SRM; Standard Reference Material) is put on the quartz filter and analyzed, in addition to the target PAH to be analyzed, its molecular weight The same isomers are also included, and it is difficult to separate these isomers with ordinary GC / MS, so it is not possible to correctly determine the recovery rate of PAHs by the GC / MS method with a thermal desorption device. It was.

そこで、本発明の目的は、上記課題を解決し、加熱脱着装置付きGC/MS法でPAHsの回収率を正しく求めることができる多環芳香族炭化水素類の回収率評価方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for evaluating the recovery rate of polycyclic aromatic hydrocarbons that can solve the above-mentioned problems and can correctly determine the recovery rate of PAHs by the GC / MS method with a thermal desorption device. is there.

上記目的を達成するために請求項1の発明は、フィルタで、ディーゼル排気粒子(DEP)を捕捉し、その捕捉したDEPの周りに吸着している多環芳香族炭化水素類(PAHs)を、加熱脱着装置と質量検出器(MS)付きガスクロマトグラフ(GC)を連結させた加熱脱着装置付きGC/MSで分析する際の多環芳香族炭化水素類の回収率評価方法において、DEPが付着した石英フィルタ又は石英ウールを加熱脱着チューブに収容し、その加熱脱着チューブを加熱脱着装置付きGC/MSでPAHsが検出されなくなるまで分析し、その後、加熱脱着チューブ内で、炭素のみ残った石英フィルタに、各PAHの濃度が既知のPAHs標準物質を一定量注入し、その状態で加熱脱着装置付きGC/MSで標準PAHsを分析し、その分析値と、PAHs標準物質の各PAHの標準濃度を比較して、分析する目的のPAH毎の回収率を求めることを特徴とする多環芳香族炭化水素類の回収率評価方法である。   In order to achieve the above-mentioned object, the invention of claim 1 is characterized in that diesel exhaust particles (DEP) are captured by a filter, and polycyclic aromatic hydrocarbons (PAHs) adsorbed around the captured DEP, In the method for evaluating the recovery rate of polycyclic aromatic hydrocarbons when analyzing by GC / MS with a heat desorption device, in which a heat desorption device is connected to a gas chromatograph (GC) with a mass detector (MS), DEP is attached. Quartz filter or quartz wool is placed in a heat desorption tube, and the heat desorption tube is analyzed until no PAHs are detected by GC / MS with a heat desorption device. A fixed amount of a PAHs standard substance having a known concentration of each PAH is injected, and in that state, standard PAHs are analyzed by GC / MS with a thermal desorption device. If, by comparing the standard concentration of each PAH of PAHs standard, a polycyclic aromatic recovery method of evaluating hydrocarbons and obtaining a recovery rate for each PAH for purposes of analysis.

請求項2の発明は、加熱脱着チューブは、ヘリウムなどの不活性ガス雰囲気下で400℃、1時間加熱し、石英フィルタおよび石英ウール700℃、2時間加熱して汚染物質を除去しておく請求項1記載の多環芳香族炭化水素類の回収率評価方法である。   In the invention of claim 2, the heat desorption tube is heated at 400 ° C. for 1 hour in an inert gas atmosphere such as helium, and the contaminant is removed by heating the quartz filter and quartz wool at 700 ° C. for 2 hours. It is a recovery rate evaluation method for polycyclic aromatic hydrocarbons according to Item 1.

請求項3の発明は、ディーゼルエンジン或いはディーゼル車を運転させて、排気管から採取したDEP或いは市販のDEP標準物質を秤量し、これを石英フィルタおよび石英ウールに付着させて加熱脱着チューブに収容して回収率評価用のサンプルを作製する請求項1又は2記載の多環芳香族炭化水素類の回収率評価方法である。   The invention of claim 3 operates a diesel engine or a diesel vehicle, weighs DEP collected from an exhaust pipe or a commercially available DEP standard substance, attaches it to a quartz filter and quartz wool, and accommodates it in a heat desorption tube. The recovery rate evaluation method for polycyclic aromatic hydrocarbons according to claim 1 or 2, wherein a sample for recovery rate evaluation is prepared.

請求項4の発明は、前記加熱脱着装置で、前記加熱脱着チューブを加熱して、炭素に吸着したPAHsを揮発させた後、これを冷却し、しかる後再加熱してガス化してカラムに通し、そのカラムから分子量220以上のPAHsをSIMモードにて質量分析する請求項1記載の多環芳香族炭化水素類の回収率評価方法である。   According to a fourth aspect of the present invention, the heat desorption apparatus heats the heat desorption tube to volatilize the PAHs adsorbed on the carbon, then cools it, and then reheats it to gasify it and pass it through the column. The method for evaluating the recovery rate of polycyclic aromatic hydrocarbons according to claim 1, wherein PAHs having a molecular weight of 220 or more are mass-analyzed in the SIM mode from the column.

本発明によれば、PAHsの回収率を、90〜110%程度の範囲にして、加熱脱着装置付きGC/MSでの分析が行えるという優れた効果を発揮するものである。   According to the present invention, the PAHs recovery rate is in the range of about 90 to 110%, and an excellent effect is exhibited that analysis can be performed by GC / MS with a heat desorption device.

本発明で用いる、液体PAHs標準物質として市販されている16PAHsの構造式を示す図である。It is a figure which shows the structural formula of 16 PAHs marketed as a liquid PAHs standard substance used by this invention. 本発明の方法を説明する図である。It is a figure explaining the method of this invention. 本発明の方法に用いる加熱脱着装置付きGC/MSの概略図である。It is the schematic of GC / MS with a heat desorption apparatus used for the method of this invention. 本発明の方法によりPAHsの回収率の評価結果を示す図である。It is a figure which shows the evaluation result of the recovery rate of PAHs by the method of this invention. 通常のGC/MS法で、NIST製SRM1650bをそのまま分析した場合の回収率を示す図である。It is a figure which shows the collection | recovery rate at the time of analyzing SRM1650b made from NIST as it is by normal GC / MS method.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

先ず図1に、16種の多管芳香族炭化水素(PAH)の構造式を示した。   First, FIG. 1 shows the structural formulas of 16 types of multi-tubular aromatic hydrocarbons (PAH).

次に、図3により、加熱脱着装置付きGC/MS10を説明する。   Next, the GC / MS 10 with a heat desorption device will be described with reference to FIG.

オートサンプラーとしてのサンプルボックス11には、分析に用いる加熱脱着チューブ12が多数収容され、ガスクロマトグラフ13にセットされる。   A sample box 11 as an autosampler contains a large number of heat desorption tubes 12 used for analysis and is set in a gas chromatograph 13.

サンプルボックス11内の加熱脱着チューブ12は、加熱脱着部14に自動的にセットされ、そこで350℃に加熱され、加熱脱着チューブ12内の石英フィルタ15Bや石英ウール15aに付着されたDEP15に吸着したPAHsがDEP(炭素)から脱着、揮発しガス化する。この揮発ガスは、クライオフォーカス部16で液体窒素により−100℃に冷却されて脱着、揮発ガスのほぼ全てを一旦回収して濃縮し、その後、回収した脱着、揮発ガスを、325℃まで、50℃/secで再加熱し、そのガスをカラム17を通し、質量分析器(MS)20でその脱着ガスを分析する。なお、18は、不要のガスを排出するスプリットラインである。   The heat desorption tube 12 in the sample box 11 is automatically set in the heat desorption section 14, where it is heated to 350 ° C. and adsorbed to the DEP 15 attached to the quartz filter 15B or the quartz wool 15a in the heat desorption tube 12. PAHs are desorbed from DEP (carbon), volatilized and gasified. This volatile gas is cooled to −100 ° C. by liquid nitrogen in the cryofocus unit 16 and desorbed, and almost all of the volatile gas is temporarily collected and concentrated. Thereafter, the collected desorbed and volatile gas is reduced to 325 ° C. up to 50 ° C. The gas is passed through the column 17 and the desorbed gas is analyzed by a mass spectrometer (MS) 20. Reference numeral 18 denotes a split line for discharging unnecessary gas.

脱着ガスの分析の際、MS20は、SIM(Selected Ion Monitoring)法で、主イオン(分子量)が220以上のPAHsを測定する。   When analyzing the desorption gas, the MS 20 measures PAHs having a main ion (molecular weight) of 220 or more by a SIM (Selected Ion Monitoring) method.

この分子量220以上のPAHsは、図1の多管芳香族炭化水素(PAH)の構造式中、ベンゾ(a)アントラセン(BaA)からベンゾ(ghi)ペリレンの8種類(8PAHs)が質量分析される。   The PAHs having a molecular weight of 220 or more are subjected to mass spectrometry of 8 types (8PAHs) of benzo (a) anthracene (BaA) to benzo (ghi) perylene in the structural formula of the multi-tubular aromatic hydrocarbon (PAH) in FIG. .

ここで、分析に用いる加熱脱着チューブ12(外径6mm、内径4mm、長さ17.8mmのパイレックスチューブ)は、あらかじめヘリウムなどの不活性雰囲気下オーブンで400℃、1時間加熱し、石英フィルタ15Bや石英ウール15aは電気炉で700℃、2時間加熱してそれぞれ汚染物質を除去しておく。   Here, the heat desorption tube 12 (pyrex tube having an outer diameter of 6 mm, an inner diameter of 4 mm, and a length of 17.8 mm) used for the analysis is preliminarily heated in an oven in an inert atmosphere such as helium at 400 ° C. for 1 hour to obtain a quartz filter 15B. The quartz wool 15a is heated in an electric furnace at 700 ° C. for 2 hours to remove contaminants.

実際の分析では、ディーゼルエンジンあるいはディーゼル車を運転させて、石英フィルタ15Bでディーゼル排気粒子15を採取した後、これをポンチで10mmφに打ち抜き、内部標準物質であるChrysene−d12を添加注入し、これをピンセット23にて適宜の大きさに折り畳んで加熱脱着チューブ12に入れて分析する。   In actual analysis, a diesel engine or a diesel vehicle was operated, and diesel exhaust particles 15 were collected with a quartz filter 15B. Is folded into an appropriate size with tweezers 23 and placed in the heat desorption tube 12 for analysis.

本発明の回収率の評価においては、上述のように採取したDEP或いは市販のDEP標準物質(例えば、NIST製SRM1650bや2975など)を20μg秤量し、用意した石英フィルタ15Bにまぶし、それでもとりきれない場合は用意した石英ウール15aでまぶしとって、加熱脱着チューブ12に入れ、内部標準物質を添加して、これをサンプルボックス11に収容し、加熱脱着装置付きGC/MS10でPAHs分析の条件下、分析を繰り返す。   In the evaluation of the recovery rate of the present invention, 20 μg of DEP collected as described above or a commercially available DEP standard (for example, SRM1650b or 2975 made by NIST) is weighed and applied to the prepared quartz filter 15B, but still cannot be removed. In this case, the prepared silica wool 15a is applied to the heated desorption tube 12 and an internal standard substance is added. The sample is stored in the sample box 11 and is subjected to PAHs analysis under the conditions of the GC / MS 10 with a thermal desorption device. Repeat the analysis.

繰り返し分析のたびに、分析対象PAHの濃度減少を確認しながら、最終的に分析対象PAHが検出できなくなるまで分析を繰り返す。同じ試料で5回ほど分析を繰り返すと分析対象PAHが検出されなくなるので、その状態ですぐに、加熱脱着チューブ12a内に、液体のPAHs標準物質(例えば16PAHsが混合されているNIST製1647eなど)を一定量シリンジ24にて、石英フィルタ15B+対象PAHsを含有しないDEP15の上に注入した後、DEPに吸着させ、さらに加熱脱着チューブ12a内にヘリウムガスを注入してDEPに吸着していないPAHsをパージさせ、その回収率評価用サンプルとしての加熱脱着チューブ12aを加熱脱着装置付きGC/MS10で、上述と同条件で分析する。   In each repeated analysis, the analysis is repeated until the analysis target PAH can no longer be detected while confirming the decrease in the concentration of the analysis target PAH. When the analysis is repeated about 5 times with the same sample, the PAH to be analyzed is not detected, and immediately in that state, a liquid PAHs standard substance (for example, NIST 1647e mixed with 16 PAHs) is heated in the heat desorption tube 12a. Is injected into the quartz filter 15B + the DEP 15 not containing the target PAHs by a fixed amount of syringe 24, then adsorbed on the DEP, and further helium gas is injected into the heat desorption tube 12a to remove the PAHs not adsorbed on the DEP. The heat desorption tube 12a as a sample for recovery rate evaluation is purged and analyzed by the GC / MS 10 with a heat desorption device under the same conditions as described above.

この石英フィルタ15Bは分析対象PAHを含有しないDEPと液体PAHs標準物質が混合されており、分析試料のディーゼル排気粒子に似た状態を作り出すことで、目的のPAHごとの回収率を正しく求めることが出来る。   This quartz filter 15B is a mixture of DEP that does not contain PAH to be analyzed and a liquid PAHs standard substance. By creating a state similar to diesel exhaust particles in the analysis sample, the recovery rate for each target PAH can be accurately obtained. I can do it.

図2で説明したように、石英フィルタ15Bに付着させるDEPは、NIST製SRM2975やSRM1650bの標準DEPを用いる。但しこの標準DEPの代わりにディーゼルエンジンまたはディーゼル車を運転させた後にテールパイプから採取したDEPを用いても良い。   As described with reference to FIG. 2, the standard DEP of NIST SRM2975 or SRM1650b is used as the DEP attached to the quartz filter 15B. However, instead of this standard DEP, DEP collected from a tail pipe after a diesel engine or a diesel vehicle is operated may be used.

先ず加熱脱着装置付きGC/MS10によるPAHs分析方法では、一般に知られている内部標準法を用いる。内部標準法はキャピラリーカラムを用いて、広い沸点範囲にわたる多くの試料成分混合物を分析する場合に多用され、最も簡便かつ精密に定量できる方法であるといわれる。内部標準法によれば、試料中にガスクロマトグラフィで検出できない不揮発成分が存在しても、定量ができる(特許文献1参照)。   First, in the PAHs analysis method using the GC / MS 10 with a heat desorption device, a generally known internal standard method is used. The internal standard method is often used when analyzing many sample component mixtures over a wide boiling range using a capillary column, and is said to be the most simple and accurate method. According to the internal standard method, even if a non-volatile component that cannot be detected by gas chromatography is present in the sample, it can be quantified (see Patent Document 1).

内部標準法では、目的の試料を分析する前に、各PAHと内部標準物質の面積比と濃度比(どちらがX軸・Y軸でも良い)の検量線を作成しておく。その検量線は、あとで未知濃度の試料を分析した場合に、内部標準物質との面積比から濃度比を求めるのに用いる。この濃度比に既知である内部標準物質濃度を乗じると各PAHの濃度がわかる。   In the internal standard method, before analyzing a target sample, a calibration curve of the area ratio and concentration ratio (both X axis and Y axis) of each PAH and the internal standard substance is prepared. The calibration curve is used to obtain the concentration ratio from the area ratio with the internal standard substance when a sample with an unknown concentration is analyzed later. The concentration of each PAH can be found by multiplying this concentration ratio by a known internal standard concentration.

さて、本発明において、加熱脱着装置付きGC/MSによるPAHsの回収率を正しく求めるためには、市販されているDEP標準物質(NIST製1650bあるいは2975)もしくは、実際のディーゼルエンジンやディーゼル車を運転させてテールパイプから採取したDEPを加熱脱着装置付きGC/MSで繰り返し分析にかけ、Benzo(a)anthracene(ベンゾ(a)アントラセン;BaA),Chrysene(クリセン;CHR),Benzo(k)fluoranthene(ベンゾ(k)フルオランテン;BkF),Benzo(b)fluoranthene(ベンゾ(b)フルオランテン;BbF)、 Benzo(a)pyrene(ベンゾ(a)ピレン;BaP),Indeno(123−cd)pyrene(インディノ(123−cd)ピレン;IcdP),Dibenzo(a,h)anthracene(ジベンゾ(a,h)アントラセン;DahA),Benzo(ghi)pelyrene(ベンゾ(ghi)ペリレン;BghiP)の8PHAsが検出できない状態になったときすぐに、液体のPAHs標準物質(例えば16PAHsが混合されているNIST製1647eなど)を一定量、石英フィルタ+対象PAHsを含有しないDEPの上に注入し、同条件で分析する。   In the present invention, in order to correctly determine the recovery rate of PAHs by GC / MS with a heat desorption device, a commercially available DEP standard (NIST 1650b or 2975) or an actual diesel engine or diesel vehicle is operated. The DEP collected from the tailpipe was repeatedly analyzed with a GC / MS equipped with a heat desorption device. (K) fluoranthene; BkF), Benzo (b) fluoranthene (benzo (b) fluoranthene; BbF), Benzo (a) pyrene (benzo (a) pyrene; BaP), Indeno (123-cd) p 8PHAs of rene (indino (123-cd) pyrene; IcdP), Divenzo (a, h) anthracene (dibenzo (a, h) anthracene; DahA), Benzo (ghi) polyrene (benzo (ghi) perylene; BghiP) detected As soon as it becomes impossible, a certain amount of liquid PAHs standard substance (for example, NIST 1647e mixed with 16PAHs) is injected over DEP not containing quartz filter + target PAHs and analyzed under the same conditions. To do.

この石英フィルタは分析対象PAHを含有しないDEPと液体PAHs標準物質が混合されており、分析試料のディーゼル排気粒子に似た状態を作り出すことで、目的のPAHごとの回収率を正しく求めることが出来る。   This quartz filter is a mixture of DEP that does not contain PAH to be analyzed and liquid PAHs standard material, and by creating a state similar to diesel exhaust particles in the analysis sample, the recovery rate for each target PAH can be accurately obtained. .

この本発明の評価方法によるPAHs回収率の結果を表1および図4に示す。   The results of the PAHs recovery rate according to the evaluation method of the present invention are shown in Table 1 and FIG.

Figure 2010249647
Figure 2010249647

表1において、8PAHsの回収率と、SRM1647eのPAHsの標準濃度と分子量を記載し、図4は、8PAHsの回収率をグラフにしたものである。   In Table 1, the recovery rate of 8PAHs, the standard concentration and molecular weight of PAHs of SRM1647e are described, and FIG. 4 is a graph of the recovery rate of 8PAHs.

この表1と図4より、8PAHsの回収率は、94.1〜109.4%と良好な結果が得られた。   From Table 1 and FIG. 4, the recovery rate of 8PAHs was 94.1 to 109.4%, which was a good result.

本発明の方法を用いず、市販のDEP標準物質(NIST1650b)の回収率を、加熱脱着装置付きGC/MS分析から求めた結果を図5に示す。   FIG. 5 shows the results of obtaining the recovery rate of a commercially available DEP reference material (NIST1650b) from GC / MS analysis with a thermal desorption device without using the method of the present invention.

なお図5では、図5の8PAHsの他に、図1の構造式で示したFLA(分子量202)、PYR(分子量202)も、僅かに検出されたのであわせて示した。   In FIG. 5, in addition to the 8PAHs in FIG. 5, FLA (molecular weight 202) and PYR (molecular weight 202) shown in the structural formula of FIG.

この図5において、Benzo(b)fluoranthene(BbF)の回収率が405.9%とかなり高い結果となった。   In FIG. 5, the recovery rate of Benzo (b) fluoranthene (BbF) was as high as 405.9%.

この理由として、Benzo(b)fluorantheneと同じ分子量で異性体のBenzo(j)fluorantheneがこのピークと重なっている可能性があると考えられた。   The reason for this is thought to be the possibility that the isomer Benzo (j) fluoranthene has the same molecular weight as Benzo (b) fluoranthene and this peak may overlap.

DEP標準物質(NIST1650b)のBenzo(b)fluoranthene含有保証値は6.77±0.84(mg/kg)、Benzo(j)fluorantheneの含有保証値は、3.24±0.42(mg/kg)であり、Benzo(b)fluorantheneの半分程度の含有量があり、それらのピークが重なって大きめのピークになった可能性が高い。   The DEP reference material (NIST1650b) has a guaranteed content of Benzo (b) fluoranthene of 6.77 ± 0.84 (mg / kg), and a guaranteed content of Benzo (j) fluoranthene of 3.24 ± 0.42 (mg / kg). kg), which is about half the content of Benzo (b) fluoranthene, and it is highly possible that these peaks overlap to form a larger peak.

以上より、他含有物質の妨害がない状態にしてから回収率を評価しないと妨害物質により、実際より大きいピーク面積になってしまうため、本発明の方法を使うのが良いと判断される。   From the above, it is judged that the method of the present invention should be used because the peak area is larger than the actual peak due to the interfering substances unless the recovery rate is evaluated after the other containing substances are not interfering.

以上より、本発明では、PAHsの正しい回収率を評価でき、加熱脱着装置付きGC/MS法によるPAHs分析の信頼性が増すことが可能となる。   From the above, in the present invention, the correct recovery rate of PAHs can be evaluated, and the reliability of PAHs analysis by the GC / MS method with a heat desorption apparatus can be increased.

また、分析技術確立の確認に必要な分析バリデーションは、主に検量線の直線性と範囲、分析繰り返し再現性、検出限界と定量限界、回収率等を確認することであり、これらが良好な場合、その分析法は技術的に確立している信頼性が高いことになる。これらの項目のうち回収率が90〜110%程度の範囲で成立しないと分析法自体の確立・信頼性を疑うことになるが、本発明は、回収率以外のバリデーション項目が成立しているのに、回収率だけが成立しないという課題を解決するものである。   Analytical validation necessary to confirm the establishment of analytical technology is mainly to confirm the linearity and range of the calibration curve, reproducibility of analysis, detection limit and quantification limit, recovery rate, etc. The analysis method is technically established and reliable. Of these items, if the recovery rate is not established within the range of about 90 to 110%, the establishment / reliability of the analysis method itself is doubted. However, in the present invention, validation items other than the recovery rate are established. Furthermore, it solves the problem that only the recovery rate is not established.

10 加熱脱着装置付きGC/MS
12 加熱脱着チューブ
13 ガスクロマトグラフ(GC)
15 DEP
15B 石英フィルタ
20 質量分析器(MS)
10 GC / MS with heat desorption device
12 Heat desorption tube 13 Gas chromatograph (GC)
15 DEP
15B Quartz filter 20 Mass spectrometer (MS)

Claims (4)

フィルタで、ディーゼル排気粒子(DEP)を捕捉し、その捕捉したDEPの周りに吸着している多環芳香族炭化水素類(PAHs)を、加熱脱着装置と質量検出器(MS)付きガスクロマトグラフ(GC)を連結させた加熱脱着装置付きGC/MSで分析する際の多環芳香族炭化水素類の回収率評価方法において、DEPが付着した石英フィルタ又は石英ウールを加熱脱着チューブに収容し、その加熱脱着チューブを加熱脱着装置付きGC/MSでPAHsが検出されなくなるまで分析し、その後、加熱脱着チューブ内で、炭素のみ残った石英フィルタに、各PAHの濃度が既知のPAHs標準物質を一定量注入し、その状態で加熱脱着装置付きGC/MSで標準PAHsを分析し、その分析値と、PAHs標準物質の各PAHの標準濃度を比較して、分析する目的のPAH毎の回収率を求めることを特徴とする多環芳香族炭化水素類の回収率評価方法。   Diesel exhaust particles (DEP) are captured by a filter, and polycyclic aromatic hydrocarbons (PAHs) adsorbed around the captured DEP are converted into a gas chromatograph with a thermal desorption device and a mass detector (MS) ( In a method for evaluating the recovery rate of polycyclic aromatic hydrocarbons when analyzing by GC / MS with a heat desorption apparatus connected with GC), a quartz filter or quartz wool with DEP attached is housed in a heat desorption tube. Analyze the heat-desorbed tube until no PAHs are detected by GC / MS with a heat-desorbing device. Then, in the heat-desorbed tube, add a certain amount of PAHs standard substance with a known concentration of each PAH to the quartz filter where only carbon remains. The standard PAHs were analyzed by GC / MS with a heat desorption device in that state, and the analysis value and the standard concentration of each PAH of the PAHs standard substance In comparison, polycyclic aromatic recovery method of evaluating hydrocarbons and obtaining a recovery rate for each PAH for purposes of analysis. 加熱脱着チューブは、ヘリウムなどの不活性ガス雰囲気下で400℃、1時間加熱し、石英フィルタおよび石英ウール700℃、2時間加熱して汚染物質を除去しておく請求項1記載の多環芳香族炭化水素類の回収率評価方法。   2. The polycyclic aroma according to claim 1, wherein the heat desorption tube is heated at 400 ° C. for 1 hour in an inert gas atmosphere such as helium, and the contaminant is removed by heating the quartz filter and quartz wool at 700 ° C. for 2 hours. For evaluating the recovery rate of aromatic hydrocarbons. ディーゼルエンジン或いはディーゼル車を運転させて、排気管から採取したDEP或いは市販のDEP標準物質を秤量し、これを石英フィルタおよび石英ウールに付着させて加熱脱着チューブに収容して回収率評価用のサンプルを作製する請求項1又は2記載の多環芳香族炭化水素類の回収率評価方法。   Diesel engine or diesel car is operated, DEP collected from exhaust pipe or commercially available DEP standard substance is weighed, and this is attached to quartz filter and quartz wool and accommodated in a heat desorption tube and sample for recovery rate evaluation The method for evaluating the recovery rate of polycyclic aromatic hydrocarbons according to claim 1 or 2, wherein: 前記加熱脱着装置で、前記加熱脱着チューブを加熱して、炭素に吸着したPAHsを揮発させた後、これを冷却し、しかる後再加熱してガス化してカラムを通し、そのカラムから分子量220以上のPAHsをSIMモードにて質量分析する請求項1記載の多環芳香族炭化水素類の回収率評価方法。   In the heat desorption apparatus, the heat desorption tube is heated to volatilize the PAHs adsorbed on the carbon, and then cooled, and then reheated to gasify and pass through the column, and the molecular weight of 220 or more from the column. The method for evaluating the recovery rate of polycyclic aromatic hydrocarbons according to claim 1, wherein the PAHs are subjected to mass spectrometry in SIM mode.
JP2009099103A 2009-04-15 2009-04-15 Recovery rate evaluation method of polycyclic aromatic hydrocarbons Pending JP2010249647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009099103A JP2010249647A (en) 2009-04-15 2009-04-15 Recovery rate evaluation method of polycyclic aromatic hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009099103A JP2010249647A (en) 2009-04-15 2009-04-15 Recovery rate evaluation method of polycyclic aromatic hydrocarbons

Publications (1)

Publication Number Publication Date
JP2010249647A true JP2010249647A (en) 2010-11-04

Family

ID=43312152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009099103A Pending JP2010249647A (en) 2009-04-15 2009-04-15 Recovery rate evaluation method of polycyclic aromatic hydrocarbons

Country Status (1)

Country Link
JP (1) JP2010249647A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636606A (en) * 2012-03-30 2012-08-15 西安近代化学研究所 Guide-sample-free GC-FID (Gas Chromatograph-Flame Ionization Detector) accurate quantifying method for organic impurities in an organic ester
CN102980935A (en) * 2012-12-06 2013-03-20 济南大学 Electrochemical method for detecting anthracene-phenanthrene resultant of polycyclic aromatic hydrocarbon
CN103776924A (en) * 2014-01-02 2014-05-07 上海交通大学 Method for detecting polycyclic aromatic hydrocarbon in fried food
CN103837591A (en) * 2014-03-11 2014-06-04 济南大学 Electrochemical method for detecting polyaromatic hydrocarbon [k] benzofluoranthrene
WO2015083792A1 (en) * 2013-12-05 2015-06-11 株式会社堀場エステック Gas chromatograph and validation method therefor
CN105044253A (en) * 2015-08-18 2015-11-11 云南中烟工业有限责任公司 Pretreatment device for polycyclic aromatic hydrocarbon detection and application thereof
JP2015222222A (en) * 2014-05-23 2015-12-10 いすゞ自動車株式会社 Method of collecting exhaust gas component by use of on-line derivatization
JP2016504591A (en) * 2012-12-26 2016-02-12 アール バイオ カンパニー リミテッドR Bio Co., Ltd. Cancer diagnosis method using respiratory gas
CN105738515A (en) * 2016-02-24 2016-07-06 郭文建 Analyzing method for 16 kinds of polycyclic aromatic hydrocarbon in environment sample
JP2017215275A (en) * 2016-06-02 2017-12-07 いすゞ自動車株式会社 Method and system for measuring amount of unburned fuel in exhaust gas
CN108169388A (en) * 2017-12-25 2018-06-15 中国第汽车股份有限公司 The assay method of 18 kinds of polycyclic aromatic hydrocarbon PAHs in filling tires oil
CN108680668A (en) * 2018-05-08 2018-10-19 江苏安舜技术服务有限公司 The assay method of polycyclic aromatic hydrocarbons (PAH) in a kind of food
CN109470790A (en) * 2018-11-22 2019-03-15 国衡环境监测有限公司 A kind of method of Accelerate solvent extraction and BaP in purification Simultaneous Determination soil
CN109521126A (en) * 2018-12-23 2019-03-26 广东省江门市质量计量监督检测所 A kind of thermal desorption/Gas Chromatography-Mass Spectrometry is burnt incense the methods of 16 kinds of polycyclic aromatic hydrocarbon contents in smog

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636606A (en) * 2012-03-30 2012-08-15 西安近代化学研究所 Guide-sample-free GC-FID (Gas Chromatograph-Flame Ionization Detector) accurate quantifying method for organic impurities in an organic ester
CN102636606B (en) * 2012-03-30 2014-02-05 西安近代化学研究所 Guide-sample-free GC-FID (Gas Chromatograph-Flame Ionization Detector) accurate quantifying method for organic impurities in organic ester
CN102980935A (en) * 2012-12-06 2013-03-20 济南大学 Electrochemical method for detecting anthracene-phenanthrene resultant of polycyclic aromatic hydrocarbon
US9955898B2 (en) 2012-12-26 2018-05-01 Jeong-Chan Ra Cancer diagnosis method using respiratory gas
JP2016504591A (en) * 2012-12-26 2016-02-12 アール バイオ カンパニー リミテッドR Bio Co., Ltd. Cancer diagnosis method using respiratory gas
WO2015083792A1 (en) * 2013-12-05 2015-06-11 株式会社堀場エステック Gas chromatograph and validation method therefor
CN103776924A (en) * 2014-01-02 2014-05-07 上海交通大学 Method for detecting polycyclic aromatic hydrocarbon in fried food
CN103837591A (en) * 2014-03-11 2014-06-04 济南大学 Electrochemical method for detecting polyaromatic hydrocarbon [k] benzofluoranthrene
JP2015222222A (en) * 2014-05-23 2015-12-10 いすゞ自動車株式会社 Method of collecting exhaust gas component by use of on-line derivatization
CN105044253A (en) * 2015-08-18 2015-11-11 云南中烟工业有限责任公司 Pretreatment device for polycyclic aromatic hydrocarbon detection and application thereof
CN105738515A (en) * 2016-02-24 2016-07-06 郭文建 Analyzing method for 16 kinds of polycyclic aromatic hydrocarbon in environment sample
CN105738515B (en) * 2016-02-24 2018-04-03 郭文建 The analysis method of 16 kinds of polycyclic aromatic hydrocarbons in a kind of environmental sample
JP2017215275A (en) * 2016-06-02 2017-12-07 いすゞ自動車株式会社 Method and system for measuring amount of unburned fuel in exhaust gas
CN108169388A (en) * 2017-12-25 2018-06-15 中国第汽车股份有限公司 The assay method of 18 kinds of polycyclic aromatic hydrocarbon PAHs in filling tires oil
CN108680668A (en) * 2018-05-08 2018-10-19 江苏安舜技术服务有限公司 The assay method of polycyclic aromatic hydrocarbons (PAH) in a kind of food
CN109470790A (en) * 2018-11-22 2019-03-15 国衡环境监测有限公司 A kind of method of Accelerate solvent extraction and BaP in purification Simultaneous Determination soil
CN109470790B (en) * 2018-11-22 2022-03-18 国衡环境监测有限公司 Method for synchronously measuring benzopyrene in soil through rapid solvent extraction and purification
CN109521126A (en) * 2018-12-23 2019-03-26 广东省江门市质量计量监督检测所 A kind of thermal desorption/Gas Chromatography-Mass Spectrometry is burnt incense the methods of 16 kinds of polycyclic aromatic hydrocarbon contents in smog

Similar Documents

Publication Publication Date Title
JP2010249647A (en) Recovery rate evaluation method of polycyclic aromatic hydrocarbons
Hawthorne et al. Extraction and recovery of organic pollutants from environmental solids and Tenax-GC using supercritical CO2
Sánchez et al. Quantification of polycyclic aromatic hydrocarbons (PAHs) found in gas and particle phases from pyrolytic processes using gas chromatography–mass spectrometry (GC–MS)
Pandey et al. A review of techniques for the determination of polycyclic aromatic hydrocarbons in air
Szulejko et al. Review of progress in solvent-extraction techniques for the determination of polyaromatic hydrocarbons as airborne pollutants
JP7315962B2 (en) A Rapid Subambient Temperature Multicapillary Column Preconcentration System for Volatile Chemical Analysis by Gas Chromatography
Bates et al. Analysis of polycyclic aromatic hydrocarbons (PAHs) in airborne particles by direct sample introduction thermal desorption GC/MS
Sadiktsis et al. Particulate associated polycyclic aromatic hydrocarbon exhaust emissions from a portable power generator fueled with three different fuels–A comparison between petroleum diesel and two biodiesels
Pozzoli et al. Polycyclic aromatic hydrocarbons in the atmosphere: Monitoring, sources, sinks and fate. I: Monitoring and sources
de Perre et al. Development of solid-phase microextraction to study dissolved organic matter—polycyclic aromatic hydrocarbon interactions in aquatic environment
Elorduy et al. Optimization and Validation of Thermal Desorption Gas Chromatography‐Mass Spectrometry for the Determination of Polycyclic Aromatic Hydrocarbons in Ambient Air
JP2022535126A (en) Improved Recovery of Organic Compounds in Liquid Samples Using Full Evaporative Vacuum Extraction, Thermal Desorption, and GCMS Analysis
Portet-Koltalo et al. Analytical methodologies for the control of particle-phase polycyclic aromatic compounds from diesel engine exhaust
Munyeza et al. Development and optimization of a plunger assisted solvent extraction method for polycyclic aromatic hydrocarbons sampled onto multi-channel silicone rubber traps
Yuan et al. Rapid determination of 16 polycyclic aromatic hydrocarbons in PM2. 5 by microwave assisted extraction-high performance liquid chromatography
Pietrogrande et al. Determination of particulate polycyclic aromatic hydrocarbons in ambient air by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction
Beghi et al. Use of poly (ethylene terephtalate) film bag to sample and remove humidity from atmosphere containing volatile organic compounds
Dobrzyńska et al. Needle‐trap device for the sampling and determination of chlorinated volatile compounds
Shu et al. Analysis of polycyclic aromatic hydrocarbons in airborne particles using open-vessel focused microwave-assisted extraction
Sheesley et al. Development of an in situ derivatization technique for rapid analysis of levoglucosan and polar compounds in atmospheric organic aerosol
JP2009097886A (en) Simplified measuring method of dioxins
Buczyńska et al. Optimization of sample clean-up for the GC–C-IRMS and GC–IT-MS analyses of PAHs from air particulate matter
Waterman et al. Application of micro-scale sealed vessel thermal desorption–gas chromatography–mass spectrometry for the organic analysis of airborne particulate matter: Linearity, reproducibility and quantification
Ueta et al. Needle extraction device for rapid and quantitative gas chromatographic determination of volatile chlorinated hydrocarbons and benzene in soil
Masala et al. Pressurized liquid extraction as an alternative to the Soxhlet extraction procedure stated in the US EPA method TO-13A for the recovery of polycyclic aromatic hydrocarbons adsorbed on polyurethane foam plugs