JP2010248362A - Carbonization furnace - Google Patents

Carbonization furnace Download PDF

Info

Publication number
JP2010248362A
JP2010248362A JP2009098791A JP2009098791A JP2010248362A JP 2010248362 A JP2010248362 A JP 2010248362A JP 2009098791 A JP2009098791 A JP 2009098791A JP 2009098791 A JP2009098791 A JP 2009098791A JP 2010248362 A JP2010248362 A JP 2010248362A
Authority
JP
Japan
Prior art keywords
furnace
carbonization
central
plate
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009098791A
Other languages
Japanese (ja)
Inventor
Tetsuji Moriguchi
哲次 森口
Tetsuo Murata
鉄雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIRUMEN KAGOSHIMA KK
Birumen Kagoshima Co Ltd
Original Assignee
BIRUMEN KAGOSHIMA KK
Birumen Kagoshima Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIRUMEN KAGOSHIMA KK, Birumen Kagoshima Co Ltd filed Critical BIRUMEN KAGOSHIMA KK
Priority to JP2009098791A priority Critical patent/JP2010248362A/en
Publication of JP2010248362A publication Critical patent/JP2010248362A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbonization furnace which can manufacture a high-quality carbonized product without unevenness by completing carbonization with high combustion efficiency in a short time and by advancing uniform carbonization in the whole furnace even when a carbonization material to be used has a small size and has inferior thermal conductivity, and which has a simple structure and gives high thermal efficiency. <P>SOLUTION: The carbonization furnace includes a central heat radiation tube 5 standing on the center of a furnace body 1 and having an exhaust gas-introducing hole 7 in the lower part, and a peripheral hollow radiation plate 9 extending transversely in a radial direction through the body 1 of the furnace to communicate with the central heat radiation tube 5. When the carbonization material T is spontaneously carbonized in deficient oxygen, generated combustion gas G rises in the hollow part 9a of the peripheral hollow radiation plate 9, is introduced, at the rising end, into the central heat radiation tube 5, descends in the central heat radiation tube 5, and is discharged to the outside from an exhaust gas recovery tube 8 mounted in the central heat radiation tube 5. In the meantime, the carbonization material T in the body 1 of the furnace is heated by the radiation from the peripheral hollow radiation plate 9 and the central heat radiation tube 5 both being red heated by the combustion gas G. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば木材や竹材の粉砕物、ペレット、チップ、削り屑等を始めとする種々の有機質原料を酸素不足状態で自発燃焼させて炭化するための炭化炉に関する。   The present invention relates to a carbonization furnace for spontaneously burning and carbonizing various organic raw materials such as pulverized products of wood and bamboo, pellets, chips, shavings and the like in an oxygen-deficient state.

近年、木炭を始めとする炭は、その調湿作用、脱臭作用、マイナスイオン放出作用、有害物質吸着作用、防黴性、防ダニ性等の優れた性質が注目され、一般家庭では室内各所や床下に配置したり、炊飯器内に入れたり、飲料水や風呂水等に浸漬して用いている。また、細片化ないし粉末化したものを各種の建築資材や建具、畳等にサンドイッチ状態にしたものや、布団等の寝具類の内部に納めたものも商品化され、更に土壌改質に用いたり、樹脂やセラミック材料等に混入する等、様々な方面に用途が拡がりつつあり、その需要はますます増大する傾向にある。   In recent years, charcoal, including charcoal, has attracted attention for its excellent properties such as humidity control, deodorization, negative ion release, harmful substance adsorption, antifungal properties, and mite resistance. It is placed under the floor, placed in a rice cooker, or immersed in drinking water or bath water. In addition, products that have been crushed or pulverized into various building materials, joinery, tatami mats, etc., and those that are placed inside bedding, such as futons, are also commercialized and used for soil modification. Applications are expanding in various fields, such as mixing with resin and ceramic materials, and the demand is increasing.

しかるに、古典的な炭焼き釜によって製造される炭は、備長炭に代表されるように緻密で固いため、例えば脱臭剤や吸着剤あるいは土壌改質剤等の用途には不向きであり、しかも製造に時間と手間がかかって量産性に乏しい上、原料的にも限定されて高コストに付き、また釜の設置場所にも大きく制約を受けるという難点があった。   However, charcoal produced by a classic charcoal kettle is dense and hard as represented by Bincho charcoal, so it is unsuitable for applications such as deodorizers, adsorbents, or soil conditioners, and is also suitable for production. It took time and effort, and it was difficult to mass-produce. In addition, it was limited in terms of raw materials and was expensive, and there was a problem that the location of the kettle was greatly restricted.

そこで、本発明者は先に、炭化炉として、上部側を開閉蓋付きの材料出入口とする炉本体の内部に、下部に排気導入孔を備えた炭化用加熱筒が炉本体の中心部に立設されると共に、その上端側が横切り筒を介して外部の排気筒が接続配管され、炉本体の底部に空気供給口を有するものを提案している(特許文献1)。そして更に改良型の炭化装置として、前記の炭化用加熱筒に代えて、下部に炉内空間に連通する排気導入孔を備えて上部が閉塞した外筒と、この外筒内に同心状に配置して下端が炉外への排気路に繋がる内筒とからなる二重筒状の排気加熱筒を設けたものも提案している(特許文献2)。   Therefore, the present inventor firstly established a carbonization heating cylinder having an exhaust inlet hole in the lower portion in the center of the furnace main body, with the upper side serving as a material inlet / outlet with an open / close lid as a carbonization furnace. It has been proposed that an external exhaust pipe is connected to the upper end of the furnace body through a cross-cut cylinder and has an air supply port at the bottom of the furnace body (Patent Document 1). As a further improved carbonization apparatus, instead of the carbonization heating cylinder, an outer cylinder having an exhaust introduction hole communicating with the furnace space in the lower part and closed at the upper part, and concentrically disposed in the outer cylinder And what provided the double cylinder-shaped exhaust heating cylinder which consists of an inner cylinder connected to the exhaust path to the exterior of a furnace is also proposed (patent document 2).

上記前者の炭化炉では、炉本体内に装填された炭化用材料に底部側から着火して酸素不足状態で自発燃焼させるが、その燃焼ガスの吸入によって炭化用加熱筒が赤熱状態になり、上位の炭化用材料は下方から上昇してくる熱気と赤熱した炭化用加熱筒から周囲への放熱とで加熱されて熱分解し、更に自燃温度に達して自発燃焼し、この自発燃焼・熱分解の領域の拡大に伴う燃焼ガスの増加が炭化用加熱筒を更に高温化して熱放射を増大させる相乗効果を生み、もって炭化用材料の炭化が著しく促進される。また、上記後者の改良型の炭化炉では、炭化用材料の自発燃焼にて発生する高温の燃焼排ガスが二重筒状の排気加熱筒内を上下往復して炉外へ出ることになり、燃焼排ガスから加熱排気筒への熱伝播量の増大によって高い熱効率が得られる上、加熱排気筒全体の蓄熱による赤熱化が急速に進行し、その熱放射によって炉内温度がより早く上昇し、もって炭化用材料の熱分解及び自発燃焼がより促進され、完全炭化に要する時間がより短縮される。   In the former carbonization furnace, the carbonization material charged in the furnace body is ignited from the bottom side and spontaneously combusts in an oxygen-deficient state. The material for carbonization is heated and decomposed by the hot air rising from below and the heat dissipated from the red-hot carbonization heating cylinder to the surroundings, and further reaches the self-combustion temperature and spontaneously combusts. The increase in the combustion gas accompanying the expansion of the region brings about a synergistic effect of increasing the temperature of the heating cylinder for carbonization and increasing the heat radiation, and thus the carbonization of the carbonization material is remarkably promoted. In the latter improved type carbonization furnace, the high-temperature combustion exhaust gas generated by the spontaneous combustion of the carbonizing material goes back and forth inside the double cylinder exhaust heating cylinder and goes out of the furnace. High heat efficiency can be obtained by increasing the amount of heat transfer from the exhaust gas to the heated exhaust stack, and red heat generation due to heat accumulation in the entire heated exhaust stack proceeds rapidly. The thermal decomposition and spontaneous combustion of the construction material are further promoted, and the time required for complete carbonization is further shortened.

しかして、これらの炭化炉は、脱臭性能や吸着性能に優れて粉砕容易な柔らかな消し炭状態の炭化物を短時間で量産でき、しかも構造的に簡単で設置場所に制約を受けないという多くの利点を有することから、既に実用に供されて好評を博している。
特開2003−119468号公報 特許第4017556号公報
Therefore, these carbonization furnaces have many advantages that they can mass-produce soft extinguished charcoal that is excellent in deodorizing performance and adsorption performance and can be easily pulverized in a short time, and are structurally simple and not restricted by the installation location. Therefore, it has already been put to practical use and has been well received.
JP 2003-119468 A Japanese Patent No. 4017556

前記炭化炉に供される炭化用材料は、従来では木材や竹材のチップとして数cmから十数cm程度のサイズが主流であったが、最近では間伐材や伐採竹材を粉砕処理したものや、おが屑からのプレス処理でペレット化したもの等、概して10mm以下の細かいものが多くなっている。これは、炭化物を燃料化したり、他の材料に混合したり、土壌改質材として土に混ぜたりする上で、粒度が小さい方が使い易いことによる。   The carbonization material used in the carbonization furnace has conventionally been mainly used in the size of several centimeters to several tens of centimeters as wood or bamboo chips, but recently, thinned timber or harvested bamboo pulverized, In general, there are many fine items of 10 mm or less, such as pellets formed by pressing from sawdust. This is because a smaller particle size is easier to use when turning carbide into fuel, mixing it with other materials, or mixing it with soil as a soil modifier.

しかしながら、炭化用材料のサイズが小さくなると、炭化炉に装填した際に材料密度が高くなることから、隙間に存在する空気量が減って燃焼しにくくなると共に、通気性の低下で燃焼に伴う熱気が浸透しにくい上、中央の排気加熱筒からの放熱も伝播しにくくなる。また、炭化用材料として処理形態や材質によって熱伝導性の低いものもあり、このような材料は当然に燃焼性が悪くなる。従って、前記従来の炭化炉では、炭化用材料としてサイズの小さいものや熱伝導性に劣るものを用いた場合、炭化に要する時間が長くなることに加え、炉内の中央側と周辺側とで炭化の進行度合の差が大きいため、むら焼けによる炭化物の品質低下を生じ易いという難点があった。   However, if the size of the carbonizing material is reduced, the material density increases when it is loaded into the carbonization furnace, so that the amount of air present in the gap is reduced and combustion is difficult, and the hot air that accompanies combustion is reduced due to a decrease in air permeability. Is less likely to penetrate, and heat from the central exhaust heating cylinder is less likely to propagate. Some carbonization materials have low thermal conductivity depending on the processing form and material, and such materials naturally have poor flammability. Therefore, in the conventional carbonization furnace, when a small carbonization material or a material having poor thermal conductivity is used, the time required for carbonization becomes longer, and the center side and the peripheral side in the furnace are longer. Since the difference in the degree of progress of carbonization is large, there is a problem that the quality of the carbide is easily deteriorated due to uneven burning.

本発明は、上述の情況に鑑み、炭化用材料としてサイズの小さいものや熱伝導性に劣るものを用いても、高い燃焼効率によって短時間で炭化が完了する上、炉内全体の均等な炭化進行によってむら焼けのない高品質の炭化物を製出でき、また構造的に簡素で高い熱効率が得られる炭化炉を提供することを目的としている。   In view of the above situation, the present invention completes carbonization in a short time with high combustion efficiency even when a small carbonization material or a material with poor thermal conductivity is used, and uniform carbonization throughout the furnace. It is an object of the present invention to provide a carbonization furnace capable of producing high-quality carbides without uneven burning by progress, and having a simple structure and high thermal efficiency.

上記目的を達成するために、本発明の請求項1に係る炭化炉は、図面の参照符号を付して示せば、底部側に着火口2及び供給量調整可能な空気供給口3を有する炉本体1と、該炉本体1の上部側の材料出入口1aを開閉する蓋板4と、該炉本体1内の中央部に立設されてその上端部5aが炉本体天井部近傍に達してその上端部5aが閉塞されその下部5bに炉内空間6に連通する排気導入孔7を備えた中央部放熱筒5と、該中央部放熱筒5内に配置された排気回収筒8とを備えた炭化炉Fであって、前記中央部放熱筒5に該放熱筒5の立設高さに相当する縦幅L1を有し且つ炉本体1内を径方向に横断して延びる横幅L2を有する周辺部中空放熱板9が突設され、該周辺部中空放熱板9の下部が中央部放熱筒5の下部に下部連通孔10を介して連通され、該周辺部中空放熱板9の上部が中央部放熱筒5の上部に上部連通孔11を介して連通され、前記炉本体1内に装填された炭化用材料Tを前記着火口2からの着火によって酸素不足状態で自発燃焼させて炭化する際に、発生する燃焼ガスGが前記排気導入孔7から前記中央部放熱筒5内に導入された燃焼ガスGが中央部放熱筒5内を上昇するのを阻止するため中央放熱筒5とその内部の排気回収筒8との間に遮断板25を設けて、前記排気導入孔7から前記周辺部中空放熱板9内に導入された燃焼ガスGは前記下部連通孔10から該周辺部中空放熱板9の中空部9aに導入され、この燃焼ガスGが周辺部中空放熱板9内を上昇してその上昇過程での該周辺部中空放熱板9からの放熱によって炉本体1内の炭化用材料Tが加熱されると共に、周辺部中空放熱板9内を上昇して上部連通孔11を介して中央放熱筒5内に流入した燃焼ガスGは中央部放熱筒5内を下降して排気回収筒8から外部に回収され、燃焼ガスGの下降過程での該中央部放熱筒5からの放熱によって炉本体1内の炭化用材料Tが加熱されるるようになっているように構成されてなる。   In order to achieve the above object, a carbonization furnace according to claim 1 of the present invention is provided with an ignition port 2 and an air supply port 3 capable of adjusting the supply amount on the bottom side, if indicated with reference numerals in the drawings. The main body 1, the lid plate 4 that opens and closes the material inlet / outlet port 1a on the upper side of the furnace body 1, and the upper end portion 5a of the furnace body 1 that stands in the center of the furnace body 1 reaches the vicinity of the furnace body ceiling. A central part radiating cylinder 5 provided with an exhaust introduction hole 7 whose upper end part 5a is closed and communicated with the in-furnace space 6 at the lower part 5b, and an exhaust recovery cylinder 8 disposed in the central part radiating cylinder 5 are provided. A carbonization furnace F, which has a vertical width L1 corresponding to the standing height of the heat radiating cylinder 5 in the central portion radiating cylinder 5 and a horizontal width L2 extending transversely in the furnace body 1 in the radial direction A hollow heat radiating plate 9 is projected, and a lower portion of the peripheral hollow heat radiating plate 9 is connected to a lower portion of the central radiating tube 5 via a lower communication hole 10. The upper portion of the peripheral hollow radiator plate 9 is communicated with the upper portion of the central radiator tube 5 through the upper communication hole 11, and the carbonized material T loaded in the furnace body 1 is fed from the ignition port 2. The combustion gas G generated from the exhaust gas introduction hole 7 into the central heat radiating cylinder 5 is carbonized in the central heat radiating cylinder 5 when the carbon gas is spontaneously combusted in an oxygen-deficient state due to ignition. Combustion gas introduced from the exhaust introduction hole 7 into the peripheral hollow heat dissipating plate 9 by providing a blocking plate 25 between the central heat dissipating tube 5 and the exhaust gas collecting tube 8 inside the central heat dissipating tube 5 to prevent the ascent. G is introduced from the lower communication hole 10 into the hollow portion 9a of the peripheral hollow heat radiating plate 9, and this combustion gas G rises in the peripheral hollow heat radiating plate 9 and the peripheral hollow heat radiating plate in the rising process. The material for carbonization T in the furnace body 1 is heated by the heat radiation from 9. In both cases, the combustion gas G rising in the peripheral hollow heat sink 9 and flowing into the central heat radiating cylinder 5 through the upper communication hole 11 descends in the central heat radiating cylinder 5 and is recovered from the exhaust recovery cylinder 8 to the outside. Thus, the carbonization material T in the furnace body 1 is heated by the heat radiation from the central heat radiation cylinder 5 in the descending process of the combustion gas G.

請求項2に係る発明は、前記周辺部中空放熱板9は、中央部放熱筒5に放射状に等間隔に複数個突設されてなる請求項1に記載の構成からなる。   The invention according to claim 2 has the configuration according to claim 1, wherein a plurality of the peripheral hollow heat radiating plates 9 are radially projected from the central heat radiating tube 5 at equal intervals.

請求項3に係る発明は、前記周辺部中空放熱板9の中空部9aには中空部内壁にその上方に向かって炉本体1内中央側及び周辺側に交互に突出する邪魔板12,13を配設し、該邪魔板12,13によって中空部9aが蛇行状のガス通路14に形成されてなる請求項1又は2に記載の構成からなる。   According to a third aspect of the present invention, the hollow portion 9a of the peripheral hollow radiator plate 9 has baffle plates 12 and 13 protruding alternately on the inner wall of the hollow portion toward the center side and the peripheral side in the furnace body 1 upward. The hollow portion 9a is formed in the meandering gas passage 14 by the baffle plates 12 and 13, and has the configuration according to claim 1 or 2.

請求項4に係る発明は、前記周辺部中空放熱板9は、前記中央部放熱筒5の立設高さに相当する縦幅L1と炉本体1内を径方向に横断して炉本体1内壁近傍に達する横幅L2とを有する矩形中空板状に形成されてなる請求項1〜3の何れかに記載の構成からなる。   According to a fourth aspect of the present invention, the peripheral hollow radiator plate 9 has a longitudinal width L1 corresponding to the standing height of the central radiator tube 5 and the inner wall of the furnace main body 1 across the furnace main body 1 in the radial direction. It consists of the structure in any one of Claims 1-3 formed in the rectangular hollow plate shape which has lateral width L2 which reaches the vicinity.

次に、本発明の効果について、図面を参照して具体的に説明する。まず、請求項1の炭化炉では、炉本体1内に装填された炭化用材料Tを前記着火口2からの着火によって酸素不足状態で自発燃焼させて炭化する際に、発生する燃焼ガスGが前記排気導入孔7から前記中央部放熱筒5内に導入された燃焼ガスGが直接に前記周辺部中空放熱板9の中空部9aに導入され、この燃焼ガスGが周辺部中空放熱板9内を上昇してその上昇過程での該周辺部中空放熱板9からの放熱によって炉本体1内の炭化用材料Tが加熱されると共に、周辺部中空放熱板9内を上昇して上部連通孔11を介して中央放熱筒5内に流入した燃焼ガスGは中央部放熱筒5内を下降して排気回収筒8から外部に回収され、燃焼ガスGの下降過程での該中央部放熱筒5からの放熱によって炉本体1内の炭化用材料Tが加熱されるるようになっているようにいるため、炉本体1内を径方向に横断して周辺部中空放熱板9からの放熱によって炉内の中央側から中間部及び周辺側に至る領域にある炭化用材料Mが加熱され、しかも周辺部中空放熱板9から中央部放熱筒5に導入された燃焼ガスGは未だ高温であるため、その熱によって中央部放熱筒5の管壁が加熱されて赤熱し、この赤熱した管壁から炉内空間10へ熱気が放射される。しかして、中央部放熱筒5は炉内空間10の中央に位置する一方、これから炉本体1内を径方向に横断して周辺部中空放熱板9が配設されているから、中央部放熱筒5からの放熱によって炉内の中央側にある炭化用材料Mが加熱されると共に、炉本体1内を径方向に横断して周辺部中空放熱板9からの放熱によって炉内の中央側から中間部及び周辺側に至る領域にある炭化用材料Mが加熱され、もって周辺部中空放熱板9と中央部放熱筒5とからの熱放射が炉本体1内に装填された炭化用材料Mの全体に行き渡ることになる。   Next, the effects of the present invention will be specifically described with reference to the drawings. First, in the carbonization furnace of claim 1, the combustion gas G generated when the carbonization material T loaded in the furnace body 1 is carbonized by spontaneous combustion in an oxygen-deficient state by ignition from the ignition port 2 is generated. The combustion gas G introduced into the central radiator tube 5 from the exhaust introduction hole 7 is directly introduced into the hollow portion 9a of the peripheral hollow radiator plate 9, and the combustion gas G is introduced into the peripheral hollow radiator plate 9. The carbonization material T in the furnace body 1 is heated by the heat radiation from the peripheral hollow radiator plate 9 in the ascending process, and rises in the peripheral hollow radiator plate 9 to raise the upper communication hole 11. The combustion gas G that has flowed into the central radiating cylinder 5 passes through the central part radiating cylinder 5 and is recovered to the outside from the exhaust recovery cylinder 8, and from the central radiating cylinder 5 in the downward process of the combustion gas G The carbonization material T in the furnace body 1 is heated by the heat dissipation. Therefore, the carbonization material M in the region from the central side to the intermediate part and the peripheral side in the furnace is heated by the heat radiation from the peripheral hollow heat sink 9 across the inside of the furnace body 1 in the radial direction. Moreover, since the combustion gas G introduced from the peripheral hollow radiator plate 9 into the central radiator cylinder 5 is still at a high temperature, the tube wall of the central radiator cylinder 5 is heated by the heat and becomes red hot. Hot air is radiated from the tube wall to the furnace space 10. The central radiator tube 5 is located at the center of the furnace space 10, and since the peripheral hollow radiator plate 9 is disposed so as to cross the inside of the furnace body 1 in the radial direction, the central radiator tube The carbonization material M on the center side in the furnace is heated by the heat radiation from the center 5, and the middle from the center side in the furnace by the heat radiation from the peripheral hollow heat sink 9 across the inside of the furnace body 1 in the radial direction. The carbonizing material M in the region extending to the peripheral part and the peripheral side is heated, so that the heat radiation from the peripheral hollow radiator plate 9 and the central radiator cylinder 5 is entirely charged in the furnace body 1. Will be spread out.

従って、この炭化炉によれば、炭化用材料Mとしてサイズの小さいものや熱伝導性に劣るものを用いても、中央部放熱筒5及び周辺部中空放熱板9からの熱放射によって炉本体1内の中央部から中間部及び周辺部の全体が加熱されるため、装填時の空気量の少なさや熱気の浸透性の低さ、更には熱伝導性の悪さを補って高い燃焼効率が得られ、これによって短時間で炭化が完了して高い炭化処理能率を達成できる上、その炭化が炉内全体に均等に進行するから、むら焼けのない高品質の炭化物を製出できる。また、この炭化炉は、中央部放熱筒5及びそれより炉内径方向に横断して広く突設される周辺部中空放熱板9からなり、全体の放熱面積が広く、効率的に放熱エネルギーが発生し消費されるため、燃焼ガスGによって炉外へ持ち出される熱量が少なくなり、それだけ高い熱効率が得られることに加え、構造的に簡素であるために安価に製作できるという利点もある。   Therefore, according to this carbonization furnace, even if the carbonization material M having a small size or inferior in thermal conductivity is used, the furnace main body 1 is heated by the heat radiation from the central radiator tube 5 and the peripheral hollow radiator plate 9. Since the entire middle and peripheral parts are heated from the central part of the inside, high combustion efficiency can be obtained by compensating for the low air volume during loading, low hot air permeability, and poor thermal conductivity. As a result, the carbonization is completed in a short time and a high carbonization efficiency can be achieved. Further, since the carbonization proceeds evenly throughout the furnace, a high quality carbide without uneven burning can be produced. In addition, this carbonization furnace comprises a central radiator tube 5 and a peripheral hollow radiator plate 9 projecting widely across the inner diameter direction of the furnace, and the entire heat radiation area is wide, and heat radiation energy is efficiently generated. In addition to the fact that the amount of heat taken out of the furnace by the combustion gas G is reduced, and thus high thermal efficiency is obtained, there is also an advantage that it can be manufactured at low cost because of its structural simplicity.

請求項2に係る発明によれば、前記周辺部中空放熱板9は、中央部放熱筒5に放射状に等間隔に複数個突設されてなるため、一層効率的に炭化が炉内全体に均等に進行し、むら焼けのない高品質の炭化物を短時間に製出できる。   According to the second aspect of the present invention, a plurality of the peripheral hollow radiator plates 9 are radially projected from the central radiator tube 5 at equal intervals, so that carbonization is more evenly distributed throughout the furnace. It is possible to produce high-quality carbide without uneven burning in a short time.

請求項3に係る発明によれば、周辺部中空放熱板9の中空部9aには中空部内壁にその上方に向かって炉本体1内中央側及び周辺側に交互に突出する邪魔板12,13を配設し、該邪魔板12,13によって中空部9aが蛇行状のガス通路14に形成されてなるため、前記排気導入孔7から前記周辺部中空放熱板9内に導入された燃焼ガスGがその中空部9aを蛇行状に上昇することによって、周辺部中空放熱板9の周辺側から中央部側にかけての壁面全域に均一に燃焼ガスGが接触し、該壁面からの放熱効率を格段に向上させることができる。   According to the third aspect of the present invention, the baffle plates 12 and 13 that alternately protrude toward the center side and the peripheral side in the furnace body 1 toward the upper portion of the hollow portion inner wall toward the hollow portion 9a of the peripheral portion hollow heat dissipation plate 9. Since the hollow portion 9a is formed in the meandering gas passage 14 by the baffle plates 12 and 13, the combustion gas G introduced into the peripheral hollow radiator plate 9 from the exhaust introduction hole 7 is formed. However, when the hollow portion 9a rises in a meandering manner, the combustion gas G uniformly contacts the entire wall surface from the peripheral side to the center side of the peripheral hollow heat radiating plate 9, and the heat dissipation efficiency from the wall surface is markedly increased. Can be improved.

請求項4に係る発明によれば、前記周辺部中空放熱板9は、前記中央部放熱筒5の立設高さに相当する縦幅L1と炉本体1内を径方向に横断して炉本体1内壁近傍に達する横幅L2とを有する矩形中空板状に形成されてなるため、炉内空間6の下部側から上部側にかけて、又炉内空間6の中央部側から中間部及び周辺部にかけて均一に放熱され、もって炉本体1内全体の炭化用材料Tをむらなく均等化して効率よく炭化が進行し、より短い炭化時間でより高品位の炭化物が得られる。   According to the fourth aspect of the present invention, the peripheral hollow radiator plate 9 has a longitudinal width L1 corresponding to the standing height of the central radiator tube 5 and the furnace body 1 radially passing through the furnace body 1. 1 Since it is formed in the shape of a rectangular hollow plate having a lateral width L2 reaching the vicinity of the inner wall, it is uniform from the lower side to the upper side of the furnace space 6 and from the center side to the middle part and the peripheral part of the furnace space 6 Thus, the entire carbonization material T in the furnace body 1 is evenly distributed and carbonization proceeds efficiently, and a higher quality carbide can be obtained in a shorter carbonization time.

本発明の一実施形態に係る炭化炉の縦断側面図である。It is a vertical side view of the carbonization furnace concerning one embodiment of the present invention. 同炭化炉の横断平面図である。It is a cross-sectional plan view of the carbonization furnace.

以下に、本発明に係る炭化炉の一実施形態について、図面を参照して具体的に説明する。図1は炭化炉全体の縦断側面図、図2は同横断平面図を示す。   Hereinafter, an embodiment of a carbonization furnace according to the present invention will be specifically described with reference to the drawings. FIG. 1 is a longitudinal side view of the entire carbonization furnace, and FIG. 2 is a transverse plan view thereof.

図1及び図2に示すように、炭化炉Fは、有底縦円筒状に形成されて上端開口部を材料出入口1aとする金属製の炉本体1と、この炉本体1の材料出入口1aを開閉する金属製の蓋板4と、この炉本体1内の中心部に立設された中央部放熱筒5と、該中央部放熱筒5から炉本体1内径方向に突設する周辺部中空放熱板9とを備えている。   As shown in FIGS. 1 and 2, the carbonization furnace F includes a metal furnace main body 1 that is formed in a bottomed vertical cylindrical shape and has an upper end opening as a material inlet / outlet 1 a, and a material inlet / outlet 1 a of the furnace main body 1. A metal lid plate 4 that opens and closes, a central radiating cylinder 5 erected at the center of the furnace body 1, and a peripheral hollow radiation that projects from the central radiating cylinder 5 toward the inner diameter of the furnace body 1. And a plate 9.

炉本体1は、周壁部21の内周面及び内底面にロックウールからなる断熱材15が金属製押さえネット16を介して張設されており、底部には金属製である内底板17と内面を断熱材15で被覆した金属製の外底板18との間に着火室20が構成され、炉本体1の周壁部21を貫通して着火室20の着火口2を形成する着火導入管22を連通配置している。なお、この着火導入管22は、図2に示すように、例えばエルボ管等によって断熱材15で被覆した外底板18を貫通して下方から着火室20に着火口2が上向きに開口するように連通配置してもよい。また側方外部より空気供給管21が周壁部21を貫通して着火室20内に突入配置し、その内端開口が空気供給口3を形成している。   In the furnace body 1, a heat insulating material 15 made of rock wool is stretched on the inner peripheral surface and the inner bottom surface of the peripheral wall portion 21 via a metal presser net 16, and a metal inner bottom plate 17 and an inner surface are formed on the bottom portion. An ignition chamber 20 is formed between the outer bottom plate 18 and the metal outer base plate 18 covered with the heat insulating material 15, and an ignition introduction pipe 22 that penetrates the peripheral wall portion 21 of the furnace body 1 and forms the ignition port 2 of the ignition chamber 20. Communication is arranged. As shown in FIG. 2, the ignition introduction pipe 22 penetrates the outer bottom plate 18 covered with the heat insulating material 15 by, for example, an elbow pipe or the like so that the ignition port 2 opens upward from the lower side to the ignition chamber 20. You may communicate and arrange. Further, an air supply pipe 21 penetrates the peripheral wall portion 21 from the side and enters into the ignition chamber 20, and the inner end opening forms the air supply port 3.

そして、炉本体10の内底板17は、ドーナツ板状をなし、その全面にわたって多数の空気導入孔23aが穿設されると共に、各空気導入孔23aの上面側に炭化用材料Tが空気導入孔23aに侵入しないように侵入防止用の山形カバー片23bが溶接固着されている。なお、この内底板17は外底板18に突設された突片30によって支持されるようになっており、且つ該内底板17と炉本体1の周壁部21との間には若干の隙間が形成されており、燃焼ガスGの高温によって熱膨張する内底板17の変形を防止するようになっている。   The inner bottom plate 17 of the furnace body 10 has a donut plate shape, and a large number of air introduction holes 23a are formed over the entire surface, and the carbonizing material T is formed on the upper surface side of each air introduction hole 23a. A mountain-shaped cover piece 23b for preventing intrusion is fixed by welding so as not to invade 23a. The inner bottom plate 17 is supported by a projecting piece 30 protruding from the outer bottom plate 18, and a slight gap is formed between the inner bottom plate 17 and the peripheral wall portion 21 of the furnace body 1. The inner bottom plate 17 that is formed and thermally expands due to the high temperature of the combustion gas G is prevented.

炉本体1内の中心部に立設された中央部放熱筒5は、内底板17を貫通して該内底板17に溶接固着されており、該中央部放熱筒5は、閉塞板24にて閉塞した上端部5aが炉本体1の材料出入口1a近傍に達する高さを有する金属製の筒体からなり、この中央部放熱筒5内の下部側に、金属製の排気回収筒8が中央部放熱筒5の内壁と排気回収筒8の外壁との間にかけて一体的に固着された遮断板25によって同心状態に支持されている。   The central radiating cylinder 5 erected at the center in the furnace body 1 penetrates the inner bottom plate 17 and is welded and fixed to the inner bottom plate 17. The closed upper end portion 5a is made of a metal cylinder having a height that reaches the vicinity of the material inlet / outlet port 1a of the furnace body 1, and a metal exhaust recovery cylinder 8 is provided at the center of the lower portion in the center portion radiating cylinder 5. It is supported in a concentric state by a blocking plate 25 that is integrally fixed between the inner wall of the radiating cylinder 5 and the outer wall of the exhaust collecting cylinder 8.

排気回収筒8は、図示のように中央部放熱筒5の下部側で短筒状のものを取り付けるだけでよいから、その製作費が極めて安価であるというメリットがある。   As shown in the figure, the exhaust recovery cylinder 8 only has to be attached in a short cylindrical shape at the lower side of the central radiating cylinder 5, so that there is an advantage that its manufacturing cost is extremely low.

中央部放熱筒5の下部周囲に炉内空間6に臨む多数の排気導入孔7…が穿設されている。中央部放熱筒5の下端部と排気回収筒8との間は下部閉塞板26によって閉塞され、外部に燃焼ガスGが漏洩しないようになっている。   A number of exhaust introduction holes 7... Facing the furnace space 6 are formed around the lower portion of the central radiating cylinder 5. A space between the lower end of the central radiating cylinder 5 and the exhaust collecting cylinder 8 is blocked by a lower blocking plate 26 so that the combustion gas G does not leak to the outside.

そして、排気回収筒8は、炉本体1の底部から下方に延びてその水平管部8aが図示しない排気ファンを備えた排気管28に繋がれている。   The exhaust recovery cylinder 8 extends downward from the bottom of the furnace body 1 and its horizontal pipe portion 8a is connected to an exhaust pipe 28 having an exhaust fan (not shown).

しかして、炉本体10の左右両側には、基台32上に支持フレーム29a,29bが立設されており、両支持フレーム29a,29bに設けた図示しない軸受部によって炉本体1がその直立姿勢から前方への転倒姿勢とに転換可能に支持されていることは前記従来技術に示すとおりである。   Thus, support frames 29a and 29b are erected on the base 32 on both the left and right sides of the furnace body 10, and the furnace body 1 is in an upright posture by bearing portions (not shown) provided on the support frames 29a and 29b. As shown in the above-mentioned prior art, it is supported so as to be convertible to a forward falling posture.

また、支持フレーム29aの上端部に枢軸33によって逆へ字形の取付けアーム34が取り付けられ、該取付フレーム44によって蓋板4が開閉可能に取り付けられており、なお蓋板4の閉塞時には、図示しないクランプ具によって炉本体1の開口部が閉塞ロックされるようになっていることも従来技術に示すとおりである。   In addition, a reverse-shaped attachment arm 34 is attached to the upper end portion of the support frame 29a by a pivot 33, and the cover plate 4 is attached by the attachment frame 44 so that the cover plate 4 can be opened and closed. As shown in the prior art, the opening of the furnace body 1 is closed and locked by the clamp.

しかして、前記中央部放熱筒5の外周壁には、その立設高さに相当する縦幅L1を有し且つ炉本体1内を径方向に横断して延び炉本体1内壁近傍に達する横幅L2を有する矩形中空板状の周辺部中空放熱板9が、図2に示すように、中央部放熱筒5から所定の放射角αをもって、図示では120°の等間隔をもって3個の周辺部中空放熱板9が放射状に突設されている。なお又前記縦幅L1と横幅L2とは、その高さと横長さが、本発明による作用効果を発揮する範囲内で若干長短に形成される範囲を包含するものである。   Thus, the outer peripheral wall of the central radiating cylinder 5 has a vertical width L1 corresponding to the standing height and extends in the radial direction in the furnace body 1 and reaches the vicinity of the inner wall of the furnace body 1. As shown in FIG. 2, the rectangular hollow plate-shaped peripheral hollow heat sink 9 having L2 has three peripheral hollow portions with a predetermined radiation angle α from the central heat dissipating tube 5 and at equal intervals of 120 ° in the drawing. The heat radiating plate 9 is projected radially. The vertical width L1 and the horizontal width L2 include a range in which the height and the horizontal length are formed to be slightly longer and shorter within the range in which the effect of the present invention is exhibited.

そして、該周辺部中空放熱板9の下部が中央部放熱筒5の下部に下部連通孔10を介して連通され、該周辺部中空放熱板9の上部が中央部放熱筒5の上部に上部連通孔11を介して連通されており、又該周辺部中空放熱板9の中空部9aには、中空部内壁にその上方に向かって炉本体1内中央側及び周辺側に交互に突出する邪魔板12,13が配設され、該邪魔板12,13によって中空部9aが蛇行状のガス通路14に形成されている。   The lower part of the peripheral hollow heat radiating plate 9 communicates with the lower part of the central heat radiating cylinder 5 through the lower communication hole 10, and the upper part of the peripheral hollow heat radiating plate 9 communicates with the upper part of the central heat radiating cylinder 5. The baffle plates communicated through the holes 11 and alternately project toward the center side and the peripheral side in the furnace body 1 toward the upper portion of the hollow portion inner wall toward the hollow portion 9a of the peripheral portion hollow radiator plate 9. 12 and 13, and the baffle plates 12 and 13 form a hollow portion 9 a in a meandering gas passage 14.

上記構成の炭化炉Fを備えた炭化炉によって炭化処理を行うには、所要の炭化用材料Tを炉本体1内に投入し、蓋板4で材料出入口1aを閉鎖した状態で、排気管28の排気ファン(図示省略)を駆動してこれに繋がれる排気回収筒8を介して、中央部放熱筒5及びこれに繋がる周辺部中空放熱板9を通して吸引排気することにより、炉本体1内を減圧状態に維持しつつ、炉本体10の内底板17の全面にわたって設けられている多数の空気導入孔23aより外気を、空気供給管19に設置した供給量調整バルブ31による設定流量で炉内空間6に矢印で示すように導入させ、着火口2よりガスバーナー(図示省略)の火炎等の着火熱源を導入し、炎を吹き込んで着火させる。そして、炉本体1内の最下部の炭化用材料Tが自発燃焼し始めるのを確認した上で、着火口2を閉鎖する。   In order to perform carbonization by the carbonization furnace provided with the carbonization furnace F having the above-described configuration, the exhaust pipe 28 in a state where the required carbonization material T is charged into the furnace body 1 and the material inlet / outlet port 1a is closed by the cover plate 4. The inside of the furnace main body 1 is sucked and exhausted through the central radiating cylinder 5 and the peripheral hollow radiating plate 9 connected thereto through an exhaust collecting cylinder 8 connected to the exhaust fan (not shown). While maintaining the reduced pressure state, the outside space of the furnace body 10 is set at a flow rate set by the supply amount adjusting valve 31 installed in the air supply pipe 19 through a large number of air introduction holes 23a provided over the entire surface of the inner bottom plate 17 of the furnace body 10. 6 is introduced as indicated by an arrow, an ignition heat source such as a flame of a gas burner (not shown) is introduced from the ignition port 2, and a flame is blown to ignite. Then, after confirming that the lowermost carbonization material T in the furnace body 1 starts to spontaneously burn, the ignition port 2 is closed.

上記自発燃焼の開始に伴い、発生する高温の燃焼ガスが炭化用材料T間の隙間を通って上昇して熱気を下から上へ伝播させると共に、該燃焼ガスGの一部は中央部放熱筒5の下部に設けた排気導入孔7より中央部放熱筒5内に吸い込まれる。そして、吸い込まれた燃焼ガスGは、該中央部放熱筒5と排気回収筒8との間が遮断板25により閉塞されているため、前記下部連通孔10を介して該周辺部中空放熱板9の中空部9aに直接的に導入され、この燃焼ガスGが中空部9aを上昇してその上昇過程での該周辺部中空放熱板9からの放熱によって炉本体1内の主に中間部及び周辺部の炭化用材料Tが加熱される。そして、周辺部中空放熱板9内を上昇して上部連通孔11を介して中央放熱筒5内に流入した燃焼ガスGは中央部放熱筒5内を下降して排気回収筒8から外部に回収され、燃焼ガスGの下降過程での該中央部放熱筒5からの放熱によって炉本体1内の炭化用材料Tが加熱され、しかして排気回収筒8内を下降して排気管28を通って外部に回収ないし排出されるようになっている。   As the spontaneous combustion starts, the generated high-temperature combustion gas rises through the gaps between the carbonizing materials T and propagates hot air from the bottom to the top. 5 is sucked into the central radiating cylinder 5 through the exhaust introduction hole 7 provided in the lower part of the gas. The suctioned combustion gas G is closed between the central radiator tube 5 and the exhaust recovery cylinder 8 by a blocking plate 25, so that the peripheral hollow radiator plate 9 is interposed through the lower communication hole 10. The combustion gas G rises up the hollow portion 9a and heat is dissipated from the peripheral hollow heat sink 9 in the ascending process, so that the furnace body 1 mainly has an intermediate portion and a peripheral portion. Part of the carbonizing material T is heated. Then, the combustion gas G that has risen in the peripheral hollow radiator plate 9 and has flowed into the central radiator cylinder 5 through the upper communication hole 11 descends in the central radiator cylinder 5 and is recovered from the exhaust recovery cylinder 8 to the outside. Then, the carbonization material T in the furnace body 1 is heated by the heat radiation from the central radiating cylinder 5 in the descending process of the combustion gas G, and then descends in the exhaust collecting cylinder 8 and passes through the exhaust pipe 28. It can be collected or discharged outside.

このように高温の燃焼ガスGが継続して排気回収筒8を通って排出されることにより、まず周辺部中空放熱板9の下部が、内部を通過する燃焼ガスGの熱気と、周囲の炭化用材料Tの自発燃焼による熱気とで内外両側から熱せられて赤熱する。そして更に炉内空間6での自発燃焼が拡がるにしたがい、増加する燃焼ガスの熱気と蓄熱によって周辺部中空放熱板9の赤熱部分が次第に上方へ拡大してゆくと共に、中央部放熱筒5も熱せられて下部から赤熱し始め、遂には周辺部中空放熱板9及び中央部放熱筒5の全体が赤熱状態になる。   As the high-temperature combustion gas G is continuously discharged through the exhaust gas collection cylinder 8, the lower part of the peripheral hollow radiator plate 9 firstly generates the hot air of the combustion gas G passing through the inside and the surrounding carbonization. It is heated from both the inside and outside by the hot air generated by the spontaneous combustion of the material T, and becomes red hot. As the spontaneous combustion in the furnace space 6 further expands, the red hot part of the peripheral hollow radiator plate 9 gradually expands upward due to the increased amount of hot air and heat stored in the combustion gas, and the central radiator tube 5 also heats up. As a result, red heat starts from the lower part, and finally the entire peripheral hollow radiator plate 9 and the central radiator pipe 5 become red hot.

これにより、炉内空間6に堆積している炭化用材料Tは、下方から上昇してくる熱気と、赤熱した周辺部中空放熱板9及び中央部放熱筒5から周囲へ放射される熱気とで加熱され、該炉内空間6の中央側から周辺側までの全体にわたって均等に、下部側から次第に上方へ移行する形で熱分解が進行し、更に自燃温度に達して自発燃焼する。そして、この自発燃焼・熱分解の領域が上方へ拡がるに伴い、周辺部中空放熱板9及び中央部放熱筒5に流入する燃焼ガスGの増加によって更に高温化して周囲への熱放射を増し、その相乗効果で炭化用材料Tの熱分解反応の進行と自発燃焼領域の拡大が速められ、やがて炉内空間6全体が均一な高温状態になり、装填した炭化用材料Mの全てが熱分解して炭化する。   Thereby, the carbonization material T deposited in the furnace space 6 is composed of hot air rising from below and hot air radiated from the peripheral hollow radiator plate 9 and the central radiator tube 5 to the surroundings. It is heated, and the thermal decomposition proceeds in the form of gradually moving upward from the lower side evenly from the center side to the peripheral side of the inner space 6 of the furnace, and further reaches the self-combustion temperature and spontaneously combusts. And as this spontaneous combustion / pyrolysis region expands upward, the temperature is further increased by the increase in the combustion gas G flowing into the peripheral hollow radiator plate 9 and the central radiator tube 5, and the heat radiation to the surroundings is increased. Due to the synergistic effect, the progress of the pyrolysis reaction of the carbonizing material T and the expansion of the spontaneous combustion region are accelerated, and eventually the entire furnace space 6 becomes a uniform high temperature state, and all of the loaded carbonizing material M is pyrolyzed. And carbonize.

この炭化処理においては、排気回収筒8からの燃焼ガスGの排出に伴い、炉本体1の内底板17の穿設されている多数の空気導入孔23aより炉本体1内へ外気が吸入されるが、この空気吸入量は空気供給管19に設けた供給量調整バルブ31によって炉内空間6が酸素不足状態を維持するように制限される。これにより、炭化用材料Tは、不完全燃焼によって炭素成分が殆ど燃焼しない状態で熱分解を継続し、もって最終的に内部まで完全に炭化することになる。なお、排気回収筒8は中央部放熱筒5の下部側で短筒状のものでよいから安価に製作することができる。   In this carbonization treatment, along with the discharge of the combustion gas G from the exhaust collection cylinder 8, the outside air is sucked into the furnace body 1 from the numerous air introduction holes 23a formed in the inner bottom plate 17 of the furnace body 1. However, the air intake amount is limited by the supply amount adjustment valve 31 provided in the air supply pipe 19 so that the furnace space 6 is maintained in an oxygen-deficient state. Thereby, the carbonization material T continues thermal decomposition in a state in which the carbon component hardly burns due to incomplete combustion, so that the carbonization material T is finally completely carbonized to the inside. The exhaust recovery cylinder 8 may be a short cylinder on the lower side of the central radiating cylinder 5 and can be manufactured at low cost.

また、炭化炉Fの炉内温度は、空気供給口3より供給される空気量の増減によって変化するため、供給量調整バルブ31の開閉及び開度変更によって調整できる。しかして、この供給量調整バルブ31の開閉及び開度調整は、予め得た試験データに基づいて使用する炭化用材料Mの種類と大きさ、含水率、装填量等に応じた処理温度条件を求めておき、排気回収筒8を経て外部配管へ排出される排ガスの計測温度と炉内温度に関連付けた制御データとして制御装置(図示省略)に入力し、該制御装置からの指令信号によって自動的に行うように設定すればよい。なお、炉内温度は、通常350℃〜500℃程度で継続するように設定すればよいが、特に初期段階で自発燃焼を活発化させるために例えば処理開始から1時間内に一時的に1000℃近くに達するように条件設定してもよい。   Further, since the temperature in the furnace of the carbonization furnace F changes depending on the increase or decrease in the amount of air supplied from the air supply port 3, it can be adjusted by opening and closing the supply amount adjusting valve 31 and changing the opening. Therefore, the opening / closing and opening degree adjustment of the supply amount adjusting valve 31 is performed according to the processing temperature conditions according to the type and size of the carbonizing material M to be used based on the test data obtained in advance, the moisture content, the loading amount, and the like. Obtained and input to the control device (not shown) as control data associated with the measured temperature of the exhaust gas discharged to the external piping through the exhaust gas collection cylinder 8 and the furnace temperature, and automatically by a command signal from the control device It can be set to be performed. The in-furnace temperature may be normally set to continue at about 350 ° C. to 500 ° C., but in order to activate spontaneous combustion particularly in the initial stage, for example, temporarily 1000 ° C. within one hour from the start of the treatment. You may set conditions so that it may come near.

炭化用材料Tの熱分解が終息すれば、炉外へ排出されるガス温度が急速に低下するから、これを温度センサー等で検出することによって炭化の完了が判明する。この炭化完了後、生成した炭化物の温度がある程度低下するのを待って、炭化炉Fの全体を水平よりも若干下向きになるまで前方へ傾倒させ、生成した炭化物を流出させ、また要すれば適当な道具で掻き出せばよい。   When the thermal decomposition of the carbonizing material T is finished, the temperature of the gas discharged to the outside of the furnace is rapidly lowered. Therefore, the completion of the carbonization is found by detecting this with a temperature sensor or the like. After the completion of the carbonization, the temperature of the generated carbide is waited for a certain degree of decrease, and the entire carbonization furnace F is tilted forward until it is slightly lower than the horizontal, so that the generated carbide flows out and is appropriate if necessary. Just scrape with a simple tool.

この炭化炉においては、中央部放熱筒5は炉内空間6の中央に位置する一方、これから炉本体1内を径方向に横断して周辺部中空放熱板9が配設されているから、中央部放熱筒5からの放熱によって炉内の中央側にある炭化用材料Mが主に加熱されると共に、炉本体1内を径方向に横断して周辺部中空放熱板9からの放熱によって炉内の中央側から中間部及び周辺側に至る領域にある炭化用材料Mが加熱され、もって中央部放熱筒5と周辺部中空放熱板9とからの熱放射が炉本体1内に装填された炭化用材料Mの全体に行き渡ることになる。   In this carbonization furnace, the central radiator tube 5 is located at the center of the furnace space 6, and since the peripheral hollow radiator plate 9 is disposed so as to traverse the inside of the furnace body 1 in the radial direction, The carbonization material M on the center side in the furnace is mainly heated by the heat radiation from the partial heat radiating cylinder 5, and the inside of the furnace is radiated from the peripheral hollow heat radiation plate 9 across the inside of the furnace body 1 in the radial direction. The carbonization material M in the region from the center side to the middle part and the peripheral side is heated, so that the heat radiation from the central part radiating cylinder 5 and the peripheral part hollow heat radiating plate 9 is loaded into the furnace body 1. The entire material M will be distributed.

この際、前記周辺部中空放熱板9は、中央部放熱筒5に放射状に等間隔に複数個突設されてなるため、一層効率的に炭化が炉内全体に均等に進行するから、むら焼けのない高品質の炭化物を短時間に製出できる。   At this time, a plurality of the peripheral hollow radiator plates 9 are radially projected from the central radiator tube 5 at equal intervals, so that carbonization proceeds more evenly throughout the furnace. High-quality carbides without any problems can be produced in a short time.

又、周辺部中空放熱板9の中空部9aには中空部内壁にその上方に向かって炉本体1内中央側及び周辺側に交互に突出する邪魔板12,13を配設し、該邪魔板12,13によって中空部9aが蛇行状のガス通路14に形成されるようにすれば、前記排気導入孔7から前記周辺部中空放熱板9内に導入された燃焼ガスGがその中空部9aを蛇行状に上昇することになり、周辺部中空放熱板9の周辺側から中央部側にかけての壁面全域に均一に燃焼ガスGが接触し、該壁面からの放熱効率を格段に向上させることができる。   Further, baffle plates 12 and 13 that alternately protrude toward the center side and the peripheral side in the furnace main body 1 are disposed on the inner wall of the hollow portion in the hollow portion 9a of the peripheral hollow heat radiating plate 9, and the baffle plate If the hollow portion 9a is formed in the meandering gas passage 14 by the reference numerals 12 and 13, the combustion gas G introduced into the peripheral hollow radiator plate 9 from the exhaust introduction hole 7 causes the hollow portion 9a to pass through the hollow portion 9a. As a result, the combustion gas G uniformly contacts the entire wall surface from the peripheral side to the center side of the peripheral hollow radiator plate 9, and the heat dissipation efficiency from the wall surface can be significantly improved. .

更には、前記周辺部中空放熱板9は、前記中央部放熱筒5の立設高さに相当する縦幅L1と炉本体1内を径方向に横断して炉本体1内壁近傍に達する横幅L2とを有する矩形中空板状に形成されることにより、炉内空間6の下部側から上部側にかけて、又炉内空間6の中央部側から中間部及び周辺部にかけて均一に放熱され、もって炉本体1内全体の炭化用材料Mをむらなく均等化して効率よく炭化が進行し、より短い炭化時間でより高品位の炭化物が得られる。   Further, the peripheral hollow radiator plate 9 has a vertical width L1 corresponding to the standing height of the central radiator tube 5 and a lateral width L2 that traverses the inside of the furnace body 1 in the radial direction and reaches the vicinity of the inner wall of the furnace body 1. Are uniformly radiated from the lower side to the upper side of the furnace space 6 and from the center side to the middle part and the peripheral part of the furnace space 6. The entire carbonization material M in 1 is evenly distributed and carbonization proceeds efficiently, and a higher quality carbide can be obtained in a shorter carbonization time.

本発明の炭化炉では、中央部放熱筒5及び周辺部中空放熱板9として上述のような形態を採用するだけで、他に格別な機構や特殊な構造部分を必要とせず、全体的に構造が簡素であるために安価に製作できるという利点もある。ただし、中央部放熱筒5及び周辺部中空放熱板9を経て排出される燃焼ガスは、炭化用材料Tの熱分解による揮発成分を含む乾留ガスであるから、この炭化処理の後工程として再燃焼を行ったり、ガス中の有用成分を回収する設備を付設してもよい。例えば、古くには木材乾留として工業的に行われていたように、木材や竹材の加熱に伴って気化する揮発成分中には酢酸を主として種々の有用な有機成分が含まれており、その凝縮によって木材からは木酢液、竹材からは竹酢液が得られるから、炉外排気管路4に繋がる外部配管を抽出器内を経由させ、木酢液や竹酢液を抽出して回収することができる。なお、このように炭化炉Fから排出される燃焼ガスを再燃焼させたり、木・竹酢液を抽出して回収するための好適な設備構成については、本出願人による先願特許公報(前記特許文献2)に具体的に開示しているため、ここでは説明を省略する。   In the carbonization furnace of the present invention, only the form as described above is adopted as the central radiator tube 5 and the peripheral hollow radiator plate 9, and no other special mechanism or special structural part is required. Has the advantage that it can be manufactured at low cost. However, since the combustion gas discharged through the central radiator tube 5 and the peripheral hollow radiator plate 9 is a dry distillation gas containing a volatile component due to thermal decomposition of the carbonizing material T, it is recombusted as a post-process of this carbonization treatment. Or a facility for recovering useful components in the gas. For example, volatile components that vaporize when wood and bamboo are heated, as in the past, industrially used as wood carbonization, contain mainly various useful organic components such as acetic acid. Since wood vinegar is obtained from wood and bamboo vinegar is obtained from bamboo, the external piping connected to the exhaust pipe 4 outside the furnace is routed through the extractor to extract and collect the wood vinegar and bamboo vinegar. it can. As for a suitable equipment configuration for recombusting the combustion gas discharged from the carbonization furnace F or extracting and recovering the wood / bamboo vinegar as described above, the prior patent application (see above) Since it is specifically disclosed in Patent Document 2), the description is omitted here.

なお、炭化炉Fの空気供給口3の供給量調整については、例示した供給量調整バルブ31を用いた自動調整に限らず、手動バルブやダンパー等による手動調整を行うようにしてもよい。その他、本発明の炭化装置では、炭化炉の設置構造、中央部放熱筒5及び周辺部中空放熱板9の管路構成、蓋板4の取付構造等、細部構成や付属設備について種々設定可能である。   The supply amount adjustment of the air supply port 3 of the carbonization furnace F is not limited to the automatic adjustment using the exemplified supply amount adjustment valve 31, but may be manually adjusted by a manual valve, a damper, or the like. In addition, in the carbonization apparatus of the present invention, various configurations and accessory equipment can be set, such as the installation structure of the carbonization furnace, the pipe structure of the central radiator tube 5 and the peripheral hollow radiator plate 9, and the mounting structure of the cover plate 4. is there.

F 炭化炉
T 炭化用材料
G 燃焼ガス
1 炉本体
1a 材料出入口
2 着火口
3 空気供給口
4 蓋板
5 中央部放熱筒
5a 中央部放熱筒の上端部
5b 中央部放熱筒の下部
6 炉内空間
7 排気導入孔
8 排気回収筒
9 周辺部中空放熱板
9a 周辺部中空放熱板の中空部
L1 周辺部中空放熱板の縦幅
L2 周辺部中空放熱板の横幅
10 下部連通孔
11 上部連通孔
12 邪魔板
13 邪魔板
14 ガス通路
25 遮断板
F Carbonization furnace T Carbonization material G Combustion gas 1 Furnace body 1a Material inlet / outlet 2 Ignition port 3 Air supply port 4 Cover plate 5 Central part radiating cylinder 5a Upper part of central radiating cylinder 5b Lower part of central radiating cylinder 6 Furnace space 7 Exhaust introduction hole 8 Exhaust collection cylinder 9 Peripheral hollow heat sink 9a Hollow part of peripheral hollow heat sink L1 Vertical width of peripheral hollow heat sink L2 Horizontal width of peripheral hollow heat sink 10 Lower communication hole 11 Upper communication hole 12 Baffle Plate 13 Baffle plate 14 Gas passage 25 Blocking plate

Claims (4)

底部側に着火口及び供給量調整可能な空気供給口を有する炉本体と、該炉本体の上部側の材料出入口を開閉する蓋板と、該炉本体内の中央部に立設されてその上端部が炉本体天井部近傍に達してその上端部が閉塞されその下部に炉内空間に連通する排気導入孔を備えた中央部放熱筒と、該中央部放熱筒内に配置された排気回収筒とを備えた炭化炉であって、
前記中央部放熱筒に該放熱筒の立設高さに相当する縦幅を有し且つ炉本体内を径方向に横断して延びる横幅を有する周辺部中空放熱板が突設され、該周辺部中空放熱板の下部が中央部放熱筒の下部に下部連通孔を介して連通され、該周辺部中空放熱板の上部が中央部放熱筒の上部に上部連通孔を介して連通され、
前記炉本体内に装填された炭化用材料を前記着火口からの着火によって酸素不足状態で自発燃焼させて炭化する際に、発生する燃焼ガスが前記排気導入孔から前記中央部放熱筒内に導入された燃焼ガスが中央部放熱筒内を上昇するのを阻止するため中央放熱筒とその内部の排気回収筒との間に遮断板を設けて、
前記排気導入孔から前記周辺部中空放熱板内に導入された燃焼ガスは前記下部連通孔から該周辺部中空放熱板の中空部に導入され、この燃焼ガスが周辺部中空放熱板内を上昇してその上昇過程での該周辺部中空放熱板からの放熱によって炉本体内の炭化用材料Tが加熱されると共に、周辺部中空放熱板内を上昇して上部連通孔を介して中央部放熱筒内に流入した燃焼ガスは中央部放熱筒内を下降して排気回収筒から外部に回収され、燃焼ガスの下降過程での該中央部放熱筒からの放熱によって炉本体内の炭化用材料が加熱されるるように構成されてなる炭化炉。
A furnace body having an ignition port and an air supply port whose supply amount can be adjusted on the bottom side, a lid plate for opening and closing a material inlet / outlet on the upper side of the furnace body, and an upper end of the furnace body that stands upright in the center of the furnace body A central radiant cylinder having an exhaust introduction hole communicating with the space inside the furnace, and an exhaust gas recovery cylinder disposed in the central radiant cylinder A carbonization furnace comprising:
A peripheral hollow heat radiation plate having a vertical width corresponding to the standing height of the heat radiating cylinder and having a horizontal width extending in the radial direction in the furnace body is projected from the central radiating cylinder. The lower part of the hollow radiator plate is communicated with the lower part of the central radiator tube through the lower communication hole, the upper part of the peripheral hollow radiator plate is communicated with the upper part of the central radiator tube through the upper communication hole,
When the carbonizing material charged in the furnace body is spontaneously burned and carbonized in an oxygen-deficient state by ignition from the ignition port, the generated combustion gas is introduced into the central radiator tube from the exhaust introduction hole. In order to prevent the generated combustion gas from rising in the central radiating cylinder, a blocking plate is provided between the central radiating cylinder and the exhaust recovery cylinder inside thereof,
Combustion gas introduced into the peripheral hollow radiator plate from the exhaust introduction hole is introduced into the hollow portion of the peripheral hollow radiator plate from the lower communication hole, and the combustion gas rises in the peripheral hollow radiator plate. The carbonization material T in the furnace body is heated by the heat radiation from the peripheral hollow heat sink in the ascending process, and the central heat sink is raised through the upper communication hole by rising in the peripheral hollow heat sink. The combustion gas that has flowed into the interior descends in the central radiating cylinder and is recovered to the outside from the exhaust recovery cylinder, and the carbonization material in the furnace body is heated by the radiation from the central radiating cylinder in the descending process of the combustion gas. A carbonization furnace configured to be made.
前記周辺部中空放熱板は、中央部放熱筒に放射状に等間隔に複数個突設されてなる請求項1に記載の炭化炉。   2. The carbonization furnace according to claim 1, wherein a plurality of the peripheral hollow heat radiating plates are radially projected from the central heat radiating cylinder at equal intervals. 前記周辺部中空放熱板の中空部には中空部内壁にその上方に向かって炉本体内中央側及び周辺側に交互に突出する邪魔板を配設し、該邪魔板によって中空部が蛇行状のガス通路に形成されてなる請求項1又は2に記載の炭化炉。   In the hollow portion of the peripheral hollow radiator plate, a baffle plate that alternately protrudes toward the center side and the peripheral side in the furnace main body is disposed on the inner wall of the hollow portion, and the hollow portion is meandering by the baffle plate. The carbonization furnace according to claim 1 or 2, wherein the carbonization furnace is formed in a gas passage. 前記周辺部中空放熱板は、前記中央部放熱筒の立設高さに相当する縦幅と炉本体内を径方向に横断して炉本体内壁近傍に達する横幅とを有する矩形中空板状に形成されてなる請求項1〜3の何れかに記載の炭化炉。   The peripheral hollow radiator plate is formed in a rectangular hollow plate shape having a vertical width corresponding to the standing height of the central radiator tube and a horizontal width that traverses the inside of the furnace body in the radial direction and reaches the vicinity of the inner wall of the furnace body. The carbonization furnace in any one of Claims 1-3 formed.
JP2009098791A 2009-04-15 2009-04-15 Carbonization furnace Withdrawn JP2010248362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098791A JP2010248362A (en) 2009-04-15 2009-04-15 Carbonization furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098791A JP2010248362A (en) 2009-04-15 2009-04-15 Carbonization furnace

Publications (1)

Publication Number Publication Date
JP2010248362A true JP2010248362A (en) 2010-11-04

Family

ID=43311058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098791A Withdrawn JP2010248362A (en) 2009-04-15 2009-04-15 Carbonization furnace

Country Status (1)

Country Link
JP (1) JP2010248362A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087316A (en) * 2014-07-15 2014-10-08 北京神雾环境能源科技集团股份有限公司 Rotating bed dry distillation furnace
CN109554182A (en) * 2018-11-27 2019-04-02 王守信 The carbide furnace of gas collection fistulae and Flapper type
CN112811025A (en) * 2020-12-24 2021-05-18 商都中建金马冶金化工有限公司 Mining and smelting raw material bin tank equipment
WO2023063901A1 (en) * 2021-10-15 2023-04-20 Etna Deri̇ Mamülleri̇ Ve Teknoloji̇ Ürünleri̇ Sanayi̇ Ti̇caret Li̇mi̇ted Şi̇rketi̇ Energy-saving heating and drying device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087316A (en) * 2014-07-15 2014-10-08 北京神雾环境能源科技集团股份有限公司 Rotating bed dry distillation furnace
CN109554182A (en) * 2018-11-27 2019-04-02 王守信 The carbide furnace of gas collection fistulae and Flapper type
CN112811025A (en) * 2020-12-24 2021-05-18 商都中建金马冶金化工有限公司 Mining and smelting raw material bin tank equipment
CN112811025B (en) * 2020-12-24 2023-04-07 商都中建金马冶金化工有限公司 Mining and smelting raw material bin tank equipment
WO2023063901A1 (en) * 2021-10-15 2023-04-20 Etna Deri̇ Mamülleri̇ Ve Teknoloji̇ Ürünleri̇ Sanayi̇ Ti̇caret Li̇mi̇ted Şi̇rketi̇ Energy-saving heating and drying device

Similar Documents

Publication Publication Date Title
JP3799449B2 (en) Combustion device, carbonization furnace and gasification furnace having a structure of lower gasification combustion of solid biomass
JP5199204B2 (en) Heat generating device and insecticidal device for plant cultivation space
JP2010248362A (en) Carbonization furnace
JP2007146016A (en) Carbonization furnace for woody material
JP2008088310A (en) High temperature carbonization method and high temperature carbonization apparatus
JP4017556B2 (en) Carbonization equipment
JP2010241973A (en) Carbonization furnace
WO2014063200A2 (en) Wood fuelled heating stove
JP2010070661A (en) Carbonizing apparatus
TW201832886A (en) Spontaneous combustion carbonization heat treatment device and spontaneous combustion carbonization heat treatment method using the same capable of easily performing carbonization treatment to even a carbonization material with relatively small size such as rice husk and shortening the time required for carbonization treatment
JP2014126356A (en) Heater with firewood as its fuel
JP7231528B2 (en) Batch type carbonization equipment
CN105668542B (en) A kind of energy saving kiln of high efficiency production bamboo charcoal
JP3899219B2 (en) Carbonization furnace
JP2009002594A (en) Small combustion furnace for manufacturing rice husk ash
JP2001107055A (en) Method and apparatus for manufacturing charcoal
TW593660B (en) Apparatus for manufacturing conductive coal
JP4700399B2 (en) Charcoal kiln
RU46557U1 (en) FIRE OF A BOILING LAYER WITH A FIRE MASS
JP4730882B2 (en) Carbon material raw material drying method and carbon material raw material drying furnace
JP2002146361A (en) Carbonizing equipment
JP2005023131A (en) Carbonization apparatus
JP3112662U (en) Carbonization equipment
RU76912U1 (en) CHARCOAL INSTALLATION
JPH1194256A (en) Charcoal stove

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120703