JP2010246179A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2010246179A
JP2010246179A JP2009088903A JP2009088903A JP2010246179A JP 2010246179 A JP2010246179 A JP 2010246179A JP 2009088903 A JP2009088903 A JP 2009088903A JP 2009088903 A JP2009088903 A JP 2009088903A JP 2010246179 A JP2010246179 A JP 2010246179A
Authority
JP
Japan
Prior art keywords
overcurrent
current
switching element
detection
mosfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009088903A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kagawa
泰宏 香川
Akihiko Furukawa
彰彦 古川
Satoshi Yamakawa
聡 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009088903A priority Critical patent/JP2010246179A/en
Publication of JP2010246179A publication Critical patent/JP2010246179A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an overload current detection circuit capable of suppressing erroneous detection of overload currents of switching elements, and to provide a semiconductor device including the overcurrent detection circuit. <P>SOLUTION: The semiconductor device includes a main switching element 1, namely a MOSFET for controlling the drive current supplied to a load, based on a control signal Vg applied to a gate terminal; and the overload current detection circuit for detecting an overload current of the main switching element 1. The overload current detection circuit is constituted of a series circuit. The series circuit includes a current sense element 2, namely a MOSFET, including a gate terminal to which a control signal Vg is applied; a MOSFET 3 for current detection, where a threshold voltage is not less than a voltage drop of the main switching element 1 in normal operation and the gate terminal is connected to a drain terminal; and a resistive element 7. A voltage drop Vs1 of the resistive element 7 is used as a detection signal, indicating the occurrence of an overload current. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気モータ等の負荷に電流を供給するスイッチング素子を備える半導体装置に関し、特に、スイッチング素子の過電流検出回路に関する。   The present invention relates to a semiconductor device including a switching element that supplies a current to a load such as an electric motor, and more particularly to an overcurrent detection circuit for the switching element.

パワーエレクトロニクス機器において、電気モータ等の負荷を駆動する電流(駆動電流)の供給/遮断を切り替えるスイッチング素子として、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field Effect Transistor)が使用されている。また近年では、当該スイッチング素子に炭化珪素MOSFETを使用することも検討されている。これらはいずれも絶縁ゲート型半導体装置である。   In power electronics equipment, IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) are used as switching elements for switching between supply / cutoff of currents (drive currents) that drive loads such as electric motors. . In recent years, the use of a silicon carbide MOSFET for the switching element has also been studied. These are all insulated gate semiconductor devices.

このようなスイッチング素子において、例えば負荷が短絡状態となったことにより過電流が流れると、素子破壊などの不具合が発生する。そのため、主スイッチング素子の過電流を検出する過電流検出回路および過電流が検出されたときに主スイッチング素子を流れる電流を制限する保護回路を備える半導体装置が種々提案されている(例えば特許文献1−2)。   In such a switching element, when an overcurrent flows due to, for example, a load being short-circuited, problems such as element destruction occur. Therefore, various semiconductor devices including an overcurrent detection circuit that detects an overcurrent of the main switching element and a protection circuit that limits a current flowing through the main switching element when an overcurrent is detected have been proposed (for example, Patent Document 1). -2).

特許文献1に開示の過電流検出回路は、主スイッチング素子を流れる駆動電流に比例した微小電流(センス電流)を流すセンス素子と、それに直列接続した電流検出用抵抗とから成っている。電流検出用抵抗には駆動電流に比例した電圧降下が生じ、その電圧降下が過電流の検出信号として用いられる。   The overcurrent detection circuit disclosed in Patent Document 1 includes a sense element for passing a minute current (sense current) proportional to a drive current flowing through a main switching element, and a current detection resistor connected in series thereto. A voltage drop proportional to the drive current occurs in the current detection resistor, and the voltage drop is used as an overcurrent detection signal.

また特許文献2では、電流検出用抵抗に代えて、ゲート電極がドレイン電極に接続した電流検出用MOSFETをセンス素子に直列接続させた構成が開示されている。この構成の過電流検出回路では、電流検出用MOSFETのソース・ゲート(ドレイン)間に掛かる電圧が過電流の検出信号として用いられるため、過電流が発生したときの検出信号の電圧値を、電流検出用MOSFETの閾値電圧以上にすることができる。電流検出用抵抗を用いた場合よりも、高い電圧の検出信号を出力できるので、高精度での過電流検出が可能になる。   Patent Document 2 discloses a configuration in which a current detection MOSFET having a gate electrode connected to a drain electrode is connected in series to a sense element instead of a current detection resistor. In the overcurrent detection circuit having this configuration, the voltage applied between the source and gate (drain) of the current detection MOSFET is used as an overcurrent detection signal. Therefore, the voltage value of the detection signal when an overcurrent occurs is expressed as the current value. The threshold voltage of the detection MOSFET can be made higher. Since a detection signal with a higher voltage can be output than when a current detection resistor is used, overcurrent detection with high accuracy becomes possible.

特許第3649154号公報Japanese Patent No. 3649154 特開平9−191103号公報JP-A-9-191103

特許文献1の過電流検出回路では、過電流発生時だけでなく、過電流が発生していない通常動作時においても電流検出用抵抗には主スイッチング素子を流れる駆動電流に比例した電流が流れる。そのため過電流の検出信号の電圧は、常にある程度の大きさを有することとなる。同様に、特許文献2の過電流検出回路では、過電流発生時だけでなく通常動作時においても、電流検出用MOSFETに主スイッチング素子を流れる駆動電流に応じた電圧が掛かるので、過電流の検出信号の電圧は常にある程度の大きさを有することとなる。   In the overcurrent detection circuit of Patent Document 1, a current proportional to the drive current flowing through the main switching element flows through the current detection resistor not only when an overcurrent occurs but also during a normal operation where no overcurrent occurs. Therefore, the voltage of the overcurrent detection signal always has a certain level. Similarly, in the overcurrent detection circuit of Patent Document 2, a voltage corresponding to the drive current flowing through the main switching element is applied to the current detection MOSFET not only when an overcurrent occurs but also during a normal operation. The voltage of the signal will always have a certain magnitude.

このように過電流の検出信号の電圧が、0Vとは異なる電圧を有していると、ノイズの影響等により過電流の誤検出が生じやすくなり、保護回路が誤動作することが懸念される。   Thus, if the voltage of the overcurrent detection signal has a voltage different from 0V, erroneous detection of overcurrent is likely to occur due to the influence of noise and the like, and there is a concern that the protection circuit malfunctions.

本発明は以上のような課題を解決するためになされたものであり、スイッチング素子の過電流の誤検出を抑制可能な過電流検出回路およびそれを備える半導体装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an overcurrent detection circuit capable of suppressing erroneous detection of an overcurrent of a switching element and a semiconductor device including the same.

本発明に係る半導体装置は、ゲート端子に印加される制御信号に基づき、負荷に供給する駆動電流を制御する駆動用スイッチング素子と、前記駆動用スイッチング素子の過電流を検出する過電流検出回路とを備える半導体装置であって、前記過電流検出回路は、前記制御信号が印加されるゲート端子を有する電流センス用スイッチング素子と、閾値電圧が通常動作時における前記駆動用スイッチング素子の電圧降下以上であり、ゲート端子がドレイン端子に接続した第1検出用MOSFETと、第1抵抗素子とを含み、前記過電流検出回路において、前記電流センス用スイッチング素子、前記第1検出用MOSFETおよび前記第1抵抗素子による直列回路が、前記駆動用スイッチング素子に並列に接続しており、前記第1抵抗素子の電圧降下が、前記過電流の発生を示す第1検出信号として用いられるものである。   A semiconductor device according to the present invention includes a driving switching element that controls a driving current supplied to a load based on a control signal applied to a gate terminal, and an overcurrent detection circuit that detects an overcurrent of the driving switching element. The overcurrent detection circuit includes a current sensing switching element having a gate terminal to which the control signal is applied, and a threshold voltage equal to or higher than a voltage drop of the driving switching element during normal operation. A first detection MOSFET having a gate terminal connected to the drain terminal, and a first resistance element, wherein in the overcurrent detection circuit, the current sensing switching element, the first detection MOSFET, and the first resistance A series circuit of elements is connected in parallel with the switching element for driving, and the voltage drop of the first resistance element. But is used as a first detection signal indicating the occurrence of said overcurrent.

本発明によれば、駆動用スイッチング素子の通常動作時には、検出用MOSFETがオフを維持するため、電流センス用スイッチング素子には電流が流れない。その間、抵抗素子に電流が流れないため、その電圧降下すなわち第1検出信号の電圧は0Vである。一方、過電流発生時には、検出用MOSFETがオンし、センス用スイッチング素子および抵抗素子に電流が流れ、第1検出信号の電圧が大きくなる。このように通常動作時の第1検出信号の電圧が0Vになることで過電流発生時との区別が明確になり、過電流の誤検出が抑えられる。よって過電流の検出精度が向上する。   According to the present invention, during the normal operation of the driving switching element, since the detection MOSFET is kept off, no current flows through the current sensing switching element. In the meantime, since no current flows through the resistance element, the voltage drop, that is, the voltage of the first detection signal is 0V. On the other hand, when an overcurrent occurs, the detection MOSFET is turned on, a current flows through the sensing switching element and the resistance element, and the voltage of the first detection signal increases. Thus, when the voltage of the first detection signal during normal operation becomes 0 V, the distinction from the occurrence of overcurrent becomes clear, and erroneous detection of overcurrent is suppressed. Therefore, the detection accuracy of overcurrent is improved.

実施の形態1に係る過電流検出回路を備える半導体装置の回路図である。1 is a circuit diagram of a semiconductor device including an overcurrent detection circuit according to a first embodiment. 実施の形態1に係る半導体装置の動作を示す信号波形図である。FIG. 6 is a signal waveform diagram illustrating an operation of the semiconductor device according to the first embodiment. 実施の形態1に係る半導体装置の変形例を示す図である。FIG. 6 is a diagram showing a modification of the semiconductor device according to the first embodiment. 実施の形態2に係る過電流検出回路を備える半導体装置の回路図である。FIG. 6 is a circuit diagram of a semiconductor device including an overcurrent detection circuit according to a second embodiment. 実施の形態2における第1および第2センス電圧Vs1,Vs2と駆動電流Icとの関係を示す図である。FIG. 10 is a diagram showing a relationship between first and second sense voltages Vs1, Vs2 and drive current Ic in the second embodiment. 実施の形態2に係る半導体装置の過電流検出時における動作を示す信号波形図である。FIG. 10 is a signal waveform diagram showing an operation when an overcurrent is detected in the semiconductor device according to the second embodiment. 実施の形態2に係る半導体装置の変形例を示す回路図である。FIG. 10 is a circuit diagram showing a modification of the semiconductor device according to the second embodiment.

<実施の形態1>
図1は、本発明の実施の形態1に係る半導体装置の回路図である。当該半導体装置は、シリコンないしは炭化珪素の半導体基板を用いて形成され、負荷に流す駆動電流の供給/遮断を切り換える駆動用スイッチング素子(以下「主スイッチング素子」)1と、この主スイッチング素子1の過電流を検出する過電流検出回路を備えるものである。主スイッチング素子1は、ゲート端子に制御信号発生器6が生成する制御信号Vgを受けるMOSFETである。主スイッチング素子1は、制御信号Vgがハイ(H)レベルのときオン、ロー(L)レベルのときオフになる。
<Embodiment 1>
FIG. 1 is a circuit diagram of a semiconductor device according to Embodiment 1 of the present invention. The semiconductor device is formed by using a semiconductor substrate of silicon or silicon carbide, and includes a driving switching element (hereinafter referred to as “main switching element”) 1 for switching between supply / cutoff of a driving current flowing to a load, and the main switching element 1. An overcurrent detection circuit for detecting an overcurrent is provided. The main switching element 1 is a MOSFET that receives a control signal Vg generated by the control signal generator 6 at its gate terminal. The main switching element 1 is turned on when the control signal Vg is high (H) level and turned off when the control signal Vg is low (L) level.

電源5は、負荷4に負荷電流を流すための電源であり、低電圧側端子は接地されている。負荷4および主スイッチング素子1は、電源5の高電圧側端子と低電圧側端子との間に直列に接続される。ここでは主スイッチング素子1が低電圧側に接続されており、そのソース端子が接地される。   The power source 5 is a power source for causing a load current to flow through the load 4, and the low voltage side terminal is grounded. The load 4 and the main switching element 1 are connected in series between the high voltage side terminal and the low voltage side terminal of the power supply 5. Here, the main switching element 1 is connected to the low voltage side, and its source terminal is grounded.

過電流検出回路は、電流センス用スイッチング素子2(以下「電流センス素子」)、検出用MOSFET3および抵抗素子7から成る直列回路が主スイッチング素子1に並列接続することで構成されている。電流センス素子2は、主スイッチング素子1と同様にゲート端子に制御信号Vgを受けるMOSFETであり、そのドレイン端子は主スイッチング素子1のドレイン端子に接続する。電流センス素子2も、制御信号VgがHレベルのときオン、Lレベルのときオフになる。   The overcurrent detection circuit is configured by connecting a series circuit including a current sensing switching element 2 (hereinafter “current sensing element”), a detection MOSFET 3 and a resistance element 7 in parallel to the main switching element 1. The current sensing element 2 is a MOSFET that receives a control signal Vg at its gate terminal, similarly to the main switching element 1, and its drain terminal is connected to the drain terminal of the main switching element 1. The current sense element 2 is also turned on when the control signal Vg is at the H level and turned off when the control signal Vg is at the L level.

電流検出用MOSFET3はゲート端子がドレイン端子に接続され、当該ドレイン端子は電流センス素子2のソース端子に接続されている。電流検出用MOSFET3の閾値電圧は、通常動作(主スイッチング素子1が過電流を伴わずに負荷4に負荷電流を供給/遮断する動作)時に生じる主スイッチング素子1の電圧降下以上に設定されている。   The current detection MOSFET 3 has a gate terminal connected to the drain terminal, and the drain terminal is connected to the source terminal of the current sensing element 2. The threshold voltage of the current detection MOSFET 3 is set to be equal to or higher than the voltage drop of the main switching element 1 that occurs during normal operation (operation in which the main switching element 1 supplies / cuts off the load current without overcurrent). .

抵抗素子7は、電流検出用MOSFET3のソース端子と主スイッチング素子1のソース端子(接地電位)との間に接続される。過電流検出回路では、抵抗素子7に生じる電圧降下Vs1が、過電流の発生を示す検出信号として用いられる。以下、この電圧降下Vs1を「センス電圧」と称す。   The resistance element 7 is connected between the source terminal of the current detection MOSFET 3 and the source terminal (ground potential) of the main switching element 1. In the overcurrent detection circuit, the voltage drop Vs1 generated in the resistance element 7 is used as a detection signal indicating the occurrence of overcurrent. Hereinafter, this voltage drop Vs1 is referred to as a “sense voltage”.

図2を参照し、図1の半導体装置の動作を説明する。まず、通常動作時すなわち主スイッチング素子1に過電流が発生していない場合の動作について説明する。   The operation of the semiconductor device of FIG. 1 will be described with reference to FIG. First, the operation during normal operation, that is, when no overcurrent has occurred in the main switching element 1 will be described.

制御信号発生器6が出力する制御信号VgがHレベルになると、主スイッチング素子1と電流センス素子2がオンになる。よって、負荷22には、電源5から供給される駆動電流Icが流れる。負荷4には、駆動電流Icによって電圧降下VLが生じる。よって主スイッチング素子1のドレイン・ソース間電圧Vdsすなわち主スイッチング素子1に生じる電圧降下は、電源5の発生電圧(電源電圧)VBから負荷4の電圧降下VLを引いた値となる(Vds=VB−VL)。   When the control signal Vg output from the control signal generator 6 becomes H level, the main switching element 1 and the current sensing element 2 are turned on. Therefore, the drive current Ic supplied from the power supply 5 flows through the load 22. A voltage drop VL occurs in the load 4 due to the drive current Ic. Therefore, the drain-source voltage Vds of the main switching element 1, that is, the voltage drop generated in the main switching element 1 is a value obtained by subtracting the voltage drop VL of the load 4 from the generated voltage (power supply voltage) VB of the power supply 5 (Vds = VB). -VL).

このとき電流センス素子2はオンであるため、電流検出用MOSFET3のソース・ドレイン(ゲート)間には、主スイッチング素子1のソース・ドレイン間電圧Vdsにほぼ等しい電圧がかかる。しかし、電流検出用MOSFET3の閾値電圧は、通常動作時に生じる主スイッチング素子1の電圧降下以上に設定されているので、電流検出用MOSFET3はオフに維持される。よって電流センス素子2には電流(センス電流)Isが流れず(Is=0)、抵抗素子7にも電流は流れないため、センス電圧Vs1は0である。なお、センス電流Isが0Vなので、このとき主スイッチング素子1を流れる主電流Ic2は、負荷4を流れる駆動電流Icに等しい。   At this time, since the current sense element 2 is on, a voltage substantially equal to the source-drain voltage Vds of the main switching element 1 is applied between the source and drain (gate) of the current detection MOSFET 3. However, since the threshold voltage of the current detection MOSFET 3 is set to be equal to or higher than the voltage drop of the main switching element 1 generated during normal operation, the current detection MOSFET 3 is kept off. Therefore, the current (sense current) Is does not flow through the current sense element 2 (Is = 0), and no current flows through the resistance element 7, so the sense voltage Vs1 is zero. Since the sense current Is is 0 V, the main current Ic2 flowing through the main switching element 1 at this time is equal to the drive current Ic flowing through the load 4.

続いて制御信号VgがLレベルになると、主スイッチング素子1および電流センス素子2がオフになるので、負荷4に駆動電流Icが流れなくなる(Ic=0)。当然、主電流Ic2およびセンス電流Isも流れない(Ic=0、Is=0)。よってこのときも抵抗素子7には電流が流れず、センス電圧Vs1は0Vである。   Subsequently, when the control signal Vg becomes the L level, the main switching element 1 and the current sense element 2 are turned off, so that the drive current Ic does not flow through the load 4 (Ic = 0). Naturally, neither the main current Ic2 nor the sense current Is flows (Ic = 0, Is = 0). Therefore, even at this time, no current flows through the resistance element 7, and the sense voltage Vs1 is 0V.

次に、負荷4の短絡等に起因して、主スイッチング素子1に過電流が流れたときの動作について説明する。図2の時刻t1において、負荷4の短絡が生じたとする。すると駆動電流Icが過大になるため、主スイッチング素子1を流れる主電流Ic2も大きくなる。それにより主スイッチング素子1の電圧降下(ソース・ドレイン間電圧Vds)が大きくなり、電流検出用MOSFET3のドレイン(ゲート)電圧も高くなる。その結果、電流検出用MOSFET3のソース・ドレイン(ゲート)間電圧が閾値電圧よりも大きくなり、電流検出用MOSFET3がオンになる。応じて電流センス素子2にセンス電流Isが流れ、抵抗素子7に電圧降下が発生するため、センス電圧Vsが0Vから大きくなる。不図示の保護回路等は、このセンス電圧Vsの増大を検出することで、過電流の発生を検知することができる。   Next, an operation when an overcurrent flows through the main switching element 1 due to a short circuit of the load 4 or the like will be described. Assume that a short circuit of the load 4 occurs at time t1 in FIG. Then, since the drive current Ic becomes excessive, the main current Ic2 flowing through the main switching element 1 also increases. As a result, the voltage drop (source-drain voltage Vds) of the main switching element 1 increases, and the drain (gate) voltage of the current detection MOSFET 3 also increases. As a result, the voltage between the source and drain (gate) of the current detection MOSFET 3 becomes larger than the threshold voltage, and the current detection MOSFET 3 is turned on. Accordingly, the sense current Is flows through the current sense element 2 and a voltage drop occurs in the resistance element 7, so that the sense voltage Vs increases from 0V. A protection circuit (not shown) or the like can detect the occurrence of an overcurrent by detecting the increase in the sense voltage Vs.

本実施の形態の過電流検出回路では、過電流が発生していないときは、主スイッチング素子1のオン、オフに関わらず、過電流検出信号であるセンス電圧Vs1は常に0Vとなる。そして過電流が発生すると、センス電圧Vs1が0Vから変化する。このように、過電流が発生していないときに、過電流検出信号が0Vに固定されることで、過電流発生時と通常状態との区別が明確になり、過電流の誤検出が生じにくくなる。よって過電流の検出精度が向上する。   In the overcurrent detection circuit of the present embodiment, when no overcurrent is generated, the sense voltage Vs1 that is an overcurrent detection signal is always 0 V regardless of whether the main switching element 1 is on or off. When an overcurrent occurs, the sense voltage Vs1 changes from 0V. As described above, when the overcurrent is not generated, the overcurrent detection signal is fixed at 0 V, so that the distinction between the overcurrent occurrence and the normal state becomes clear, and the overcurrent is not likely to be erroneously detected. Become. Therefore, the detection accuracy of overcurrent is improved.

なお、図1では、主スイッチング素子1および電流センス素子2をMOSFETとしたが、IGBTを用いてもよい。その場合の回路図を図3に示す。MOSFETのドレイン端子およびソース端子は、それぞれIGBTのコレクタ端子、エミッタ端子に対応する。   In FIG. 1, the main switching element 1 and the current sensing element 2 are MOSFETs, but IGBTs may be used. A circuit diagram in that case is shown in FIG. The drain terminal and source terminal of the MOSFET correspond to the collector terminal and emitter terminal of the IGBT, respectively.

<実施の形態2>
図4は、実施の形態2に係る過電流検出回路を備える半導体装置の回路図である。当該半導体装置は、図1の回路に対し、電流検出用MOSFET3および抵抗素子7から成る直列回路に並列に、電流検出用MOSFET8および抵抗素子9から成るもう一つの直列回路を接続させたものである。以下、電流検出用MOSFET3を「第1の電流検出用MOSFET」、抵抗素子7を「第1の抵抗素子」、電流検出用MOSFET8を「第2の電流検出用MOSFET」、抵抗素子9を「第2の抵抗素子」と称する。
<Embodiment 2>
FIG. 4 is a circuit diagram of a semiconductor device including the overcurrent detection circuit according to the second embodiment. The semiconductor device is obtained by connecting another series circuit consisting of a current detection MOSFET 8 and a resistance element 9 in parallel to the series circuit consisting of a current detection MOSFET 3 and a resistance element 7 to the circuit of FIG. . Hereinafter, the current detection MOSFET 3 is the “first current detection MOSFET”, the resistance element 7 is the “first resistance element”, the current detection MOSFET 8 is the “second current detection MOSFET”, and the resistance element 9 is the “first resistance element”. 2 ".

第2の電流検出用MOSFET8は、ゲート端子がドレイン端子に接続され、当該ドレイン端子は電流センス素子2のソース端子に接続されている。第2の電流検出用MOSFET8の閾値電圧は、通常動作時に生じる主スイッチング素子1の電圧降下以上で、第1の電流検出用MOSFET3のものより小さい値に設定されている。第2の抵抗素子9は、第2の電流検出用MOSFET8のソース端子と主スイッチング素子1のソース端子(接地電位)との間に接続される。   The second current detection MOSFET 8 has a gate terminal connected to the drain terminal, and the drain terminal connected to the source terminal of the current sensing element 2. The threshold voltage of the second current detection MOSFET 8 is set to a value that is equal to or higher than the voltage drop of the main switching element 1 generated during normal operation and smaller than that of the first current detection MOSFET 3. The second resistance element 9 is connected between the source terminal of the second current detection MOSFET 8 and the source terminal (ground potential) of the main switching element 1.

図5は、主スイッチング素子1に流れる駆動電流Icと、第1および第2の抵抗素子7,9の電圧降下Vs1,Vs2との関係を示す図である。第2の電流検出用MOSFET8は第1の電流検出用MOSFET3よりも閾値電圧が低いため、第2の電流検出用MOSFET8には、駆動電流Icがより小さいときから電流が流れ始める。また同じ駆動電流Icに対して、第2の電流検出用MOSFET8には、第1の電流検出用MOSFET3より多くの電流が流れる。従って図5の如く、第2の抵抗素子9の電圧降下Vs2のレベルは、第1の抵抗素子7の電圧降下Vs1と比較して、より小さい値の駆動電流Icの値で上昇し始め、また第1の抵抗素子7の電圧降下Vs1よりも大きな値になる。   FIG. 5 is a diagram showing the relationship between the drive current Ic flowing through the main switching element 1 and the voltage drops Vs1 and Vs2 of the first and second resistance elements 7 and 9. In FIG. Since the second current detection MOSFET 8 has a lower threshold voltage than the first current detection MOSFET 3, a current starts to flow through the second current detection MOSFET 8 when the drive current Ic is smaller. For the same drive current Ic, more current flows in the second current detection MOSFET 8 than in the first current detection MOSFET 3. Therefore, as shown in FIG. 5, the level of the voltage drop Vs2 of the second resistance element 9 starts to increase at a smaller value of the drive current Ic than the voltage drop Vs1 of the first resistance element 7, The value is larger than the voltage drop Vs1 of the first resistance element 7.

本実施の形態では、第1の抵抗素子7の電圧降下Vs1を、過電流の発生を示す検出信号(第1検出信号)として用い、第2の抵抗素子9の電圧降下Vs2を、過電流の解消を示す検出信号(第2検出信号)として用いる。以下、第1の抵抗素子7の電圧降下Vs1を「第1センス電圧」、第2の抵抗素子9の電圧降下Vs2を「第2センス電圧」と称す。   In the present embodiment, the voltage drop Vs1 of the first resistance element 7 is used as a detection signal (first detection signal) indicating the occurrence of overcurrent, and the voltage drop Vs2 of the second resistance element 9 is Used as a detection signal (second detection signal) indicating cancellation. Hereinafter, the voltage drop Vs1 of the first resistor element 7 is referred to as a “first sense voltage”, and the voltage drop Vs2 of the second resistor element 9 is referred to as a “second sense voltage”.

図5に示す基準電圧Vs0を、保護回路等における第1および第2センス電圧Vs1,Vs2の検出の閾値とする。本実施の形態の半導体装置では、第1センス電圧Vs1が基準電圧Vs0を超えたとき(図5のA点)に過電流が発生したものと判定され、第2センス電圧Vs2が基準電圧Vs0を下回ったとき(図5のB点)に過電流が解消されたものと判定される。   The reference voltage Vs0 shown in FIG. 5 is used as a threshold for detecting the first and second sense voltages Vs1 and Vs2 in the protection circuit or the like. In the semiconductor device of the present embodiment, it is determined that an overcurrent has occurred when the first sense voltage Vs1 exceeds the reference voltage Vs0 (point A in FIG. 5), and the second sense voltage Vs2 has the reference voltage Vs0. When it falls below (point B in FIG. 5), it is determined that the overcurrent has been eliminated.

例えば、駆動電流Ic、第1および第2センス電圧Vs1,Vs2が、図6のように変化した場合における、過電流検出回路の動作を説明する。まず時刻t1では、第1および第2センス電圧Vs1,Vs2は共に基準電圧Vs0よりも小さいので、このときの駆動電流Ic(Icc)は過電流として判定されない。続いて時刻t2で、駆動電流Icが大きくなると、第2センス電圧Vs2が基準電圧Vs0を超えるが、過電流発生の検出信号である第1センス電圧Vs1は基準電圧Vs0よりも小さいので、このときの駆動電流Ic(Icb)も過電流として判定されない。そして時刻t3で、駆動電流Icがさらに大きくなり、第1および第2センス電圧Vs1,Vs2が共に基準電圧Vs0を超えると、このときの駆動電流Ic(Ica)は過電流として判定される。   For example, the operation of the overcurrent detection circuit when the drive current Ic and the first and second sense voltages Vs1, Vs2 change as shown in FIG. 6 will be described. First, at time t1, the first and second sense voltages Vs1, Vs2 are both smaller than the reference voltage Vs0, so that the drive current Ic (Icc) at this time is not determined as an overcurrent. Subsequently, when the drive current Ic increases at time t2, the second sense voltage Vs2 exceeds the reference voltage Vs0, but the first sense voltage Vs1 that is a detection signal for the occurrence of overcurrent is smaller than the reference voltage Vs0. The drive current Ic (Icb) is not determined as an overcurrent. At time t3, when the drive current Ic further increases and both the first and second sense voltages Vs1, Vs2 exceed the reference voltage Vs0, the drive current Ic (Ica) at this time is determined as an overcurrent.

その後、時刻t4で、駆動電流Icが時刻t2のときと同じ値(Icb)に戻ったとする。それにより第1センス電圧Vs1は基準電圧Vs0を下回るが、過電流解消の検出信号である第2センス電圧Vs2が基準電圧Vs0よりも大きいままであるため、過電流は解消されていないと判断されて、このときの駆動電流Icは過電流として取り扱われる。   Thereafter, at time t4, it is assumed that the drive current Ic returns to the same value (Icb) as at time t2. As a result, the first sense voltage Vs1 is lower than the reference voltage Vs0. However, since the second sense voltage Vs2 that is a detection signal for overcurrent cancellation remains larger than the reference voltage Vs0, it is determined that the overcurrent has not been canceled. Thus, the drive current Ic at this time is handled as an overcurrent.

続いて時刻t5で、駆動電流Icが時刻t1のときと同じ値(Icc)に戻ったとする。すると第1および第2センス電圧Vs1,Vs2の両方が基準電圧Vs0よりも小さくなるので、過電流は解消されたものと判断されて、このときの駆動電流Ic(Icc)は過電流でないものとして取り扱われる。   Subsequently, at time t5, it is assumed that the drive current Ic returns to the same value (Icc) as at time t1. Then, since both the first and second sense voltages Vs1, Vs2 are smaller than the reference voltage Vs0, it is determined that the overcurrent has been eliminated, and the drive current Ic (Icc) at this time is assumed not to be an overcurrent. Handled.

このように本実施の形態では、過電流の発生が検出される駆動電流Icの値と、過電流の解消が検出される駆動電流Icの値とが異なる。よって過電流の判定についてヒステリシス特性を持つことになり、ノイズの影響などによる過電流の誤判定の発生をより確実に防止することができる。   As described above, in the present embodiment, the value of the drive current Ic from which the occurrence of the overcurrent is detected is different from the value of the drive current Ic from which the cancellation of the overcurrent is detected. Therefore, the overcurrent determination has a hysteresis characteristic, and an erroneous determination of overcurrent due to the influence of noise or the like can be prevented more reliably.

なお図4の回路において、過電流が発生しない通常動作時には、第1の電流検出用MOSFET3のソース・ドレイン(ゲート)間電圧は閾値電圧を超えず、且つ、第2の電流検出用MOSFET8のソース・ドレイン(ゲート)間電圧も閾値電圧を超えないので、第1および第2の電流検出用MOSFET3,8はオフに維持される。よって第1の抵抗素子7,9には電流が流れず、第1および第2センス電圧Vs1,Vs2は共に0である。従って、過電流発生時と通常状態との区別が明確になり、過電流の誤検出が生じにくくなるという効果も、実施の形態1と同様に得られる。   In the circuit of FIG. 4, during normal operation in which no overcurrent occurs, the voltage between the source and drain (gate) of the first current detection MOSFET 3 does not exceed the threshold voltage, and the source of the second current detection MOSFET 8 Since the drain-gate voltage does not exceed the threshold voltage, the first and second current detection MOSFETs 3 and 8 are kept off. Therefore, no current flows through the first resistance elements 7 and 9, and the first and second sense voltages Vs1 and Vs2 are both zero. Therefore, the distinction between the occurrence of overcurrent and the normal state is clarified, and the effect that erroneous detection of overcurrent is less likely to occur is obtained as in the first embodiment.

第1および第2の電流検出用MOSFET3,8は、主スイッチング素子1や電流センス素子2と同一基板上に形成してもよいし、別の基板に形成してもよい。同一基板上に作成する場合には、図7のように第2の電流検出用MOSFET8のバックゲート端子を、主スイッチング素子のソース端子に接続してもよい。それにより、第2の電流検出用MOSFET8のソース端子とバックゲート端子に電位差が生じるため、バックゲート効果により第2の電流検出用MOSFET8の閾値電圧は低くなる。従って、第1および第2の電流検出用MOSFET3,8として、互いに同一構成のもの(バックゲート効果なしでの閾値電圧も同一のもの)を使用することができ、半導体装置設計の簡略化に寄与できる。   The first and second current detection MOSFETs 3 and 8 may be formed on the same substrate as the main switching element 1 and the current sensing element 2 or may be formed on different substrates. In the case of forming on the same substrate, the back gate terminal of the second current detection MOSFET 8 may be connected to the source terminal of the main switching element as shown in FIG. As a result, a potential difference is generated between the source terminal and the back gate terminal of the second current detection MOSFET 8, and the threshold voltage of the second current detection MOSFET 8 is lowered due to the back gate effect. Accordingly, the first and second current detection MOSFETs 3 and 8 can have the same configuration (the same threshold voltage without the back gate effect), which contributes to simplification of the semiconductor device design. it can.

また図示は省略するが、本実施の形態においても、主スイッチング素子1および電流センス素子2としてIGBTを用いてもよい。   Although not shown, IGBTs may be used as the main switching element 1 and the current sensing element 2 in the present embodiment.

1 主スイッチング素子、2 電流センス素子、3,8 電流検出用MOSFET、4 負荷、5 電源、6 制御信号発生器、7,9 抵抗素子。   DESCRIPTION OF SYMBOLS 1 Main switching element, 2 Current sense element, 3, 8 Current detection MOSFET, 4 Load, 5 Power supply, 6 Control signal generator, 7, 9 Resistance element.

Claims (3)

ゲート端子に印加される制御信号に基づき、負荷に供給する駆動電流を制御する駆動用スイッチング素子と、
前記駆動用スイッチング素子の過電流を検出する過電流検出回路とを備える半導体装置であって、
前記過電流検出回路は、
前記制御信号が印加されるゲート端子を有する電流センス用スイッチング素子と、
閾値電圧が通常動作時における前記駆動用スイッチング素子の電圧降下以上であり、ゲート端子がドレイン端子に接続した第1検出用MOSFETと、
第1抵抗素子とを含み、
前記過電流検出回路において、
前記電流センス用スイッチング素子、前記第1検出用MOSFETおよび前記第1抵抗素子による直列回路が、前記駆動用スイッチング素子に並列に接続しており、
前記第1抵抗素子の電圧降下が、前記過電流の発生を示す第1検出信号として用いられる
ことを特徴とする半導体装置。
A driving switching element for controlling a driving current supplied to the load based on a control signal applied to the gate terminal;
An overcurrent detection circuit that detects an overcurrent of the driving switching element, and a semiconductor device comprising:
The overcurrent detection circuit includes:
A current sensing switching element having a gate terminal to which the control signal is applied;
A first detection MOSFET having a threshold voltage equal to or higher than a voltage drop of the driving switching element during normal operation, and a gate terminal connected to a drain terminal;
A first resistance element;
In the overcurrent detection circuit,
A series circuit including the current sensing switching element, the first detection MOSFET, and the first resistance element is connected in parallel to the driving switching element,
The semiconductor device according to claim 1, wherein a voltage drop of the first resistance element is used as a first detection signal indicating the occurrence of the overcurrent.
請求項1記載の半導体装置であって、
前記過電流検出回路は、
閾値電圧が前記第1検出用MOSFETのものより小さく、ゲート端子がドレイン端子に接続した第2検出用MOSFETと、
第2抵抗素子とをさらに含み、
前記過電流検出回路において、
前記第2検出用MOSFETおよび前記第2抵抗素子による直列回路が、前記第1検出用MOSFETおよび前記第1抵抗素子による直列回路に並列に接続し、
前記第2抵抗素子の電圧降下が、前記過電流の解消を示す第2検出信号として用いられる
ことを特徴とする半導体装置。
The semiconductor device according to claim 1,
The overcurrent detection circuit includes:
A second detection MOSFET having a threshold voltage smaller than that of the first detection MOSFET and having a gate terminal connected to the drain terminal;
A second resistance element;
In the overcurrent detection circuit,
A series circuit including the second detection MOSFET and the second resistance element is connected in parallel to the series circuit including the first detection MOSFET and the first resistance element;
A semiconductor device, wherein a voltage drop of the second resistance element is used as a second detection signal indicating cancellation of the overcurrent.
請求項2記載の半導体装置であって、
前記第2検出用MOSFETのバックゲートが、前記駆動用スイッチング素子のソース端子に接続されている
ことを特徴とする半導体装置。
The semiconductor device according to claim 2,
The semiconductor device, wherein a back gate of the second detection MOSFET is connected to a source terminal of the driving switching element.
JP2009088903A 2009-04-01 2009-04-01 Semiconductor device Pending JP2010246179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009088903A JP2010246179A (en) 2009-04-01 2009-04-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009088903A JP2010246179A (en) 2009-04-01 2009-04-01 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2010246179A true JP2010246179A (en) 2010-10-28

Family

ID=43098607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009088903A Pending JP2010246179A (en) 2009-04-01 2009-04-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2010246179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080335A (en) * 2013-10-16 2015-04-23 株式会社東芝 Gate drive circuit
US9720029B2 (en) 2012-12-17 2017-08-01 Fuji Electric Co., Ltd. Semiconductor device including a sense element and a main element, and current detector circuit using the semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9720029B2 (en) 2012-12-17 2017-08-01 Fuji Electric Co., Ltd. Semiconductor device including a sense element and a main element, and current detector circuit using the semiconductor device
JP2015080335A (en) * 2013-10-16 2015-04-23 株式会社東芝 Gate drive circuit

Similar Documents

Publication Publication Date Title
US8466734B2 (en) Gate driving circuit for power semiconductor element
US8729929B2 (en) Gate driving circuit
JP4740320B2 (en) Semiconductor device drive circuit
US9203393B2 (en) Semiconductor apparatus
US9476916B2 (en) Overcurrent detection apparatus and intelligent power module using same
TWI462416B (en) High-voltage device with integrated over-voltage protection
JP6264379B2 (en) Semiconductor device
JP2008206348A (en) Semiconductor device
JP5831528B2 (en) Semiconductor device
JP2007228769A (en) Drive circuit of power semiconductor switching element
JP5958317B2 (en) Overcurrent detection device and semiconductor drive device including the same
US20130314834A1 (en) Semiconductor driving circuit and semiconductor device
US11387642B2 (en) Overcurrent sense control of semiconductor device
US20160241242A1 (en) Drive unit
JPH09205727A (en) Power transistor with short-circuit protection
US20130229840A1 (en) Semiconductor device
WO2014097739A1 (en) Semiconductor device and current detection circuit using said semiconductor device
JP2015080335A (en) Gate drive circuit
JP5831527B2 (en) Semiconductor device
JP6658269B2 (en) Overcurrent detection circuit
JP2010246179A (en) Semiconductor device
JP2014121199A (en) Drive circuit for transistor, semiconductor breaker using the same, and method of controlling interruption of the same
WO2017143998A1 (en) Transistor driving circuit
JP2015220932A (en) Semiconductor device
JP4011085B2 (en) Switching circuit