JP2010243055A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2010243055A
JP2010243055A JP2009091741A JP2009091741A JP2010243055A JP 2010243055 A JP2010243055 A JP 2010243055A JP 2009091741 A JP2009091741 A JP 2009091741A JP 2009091741 A JP2009091741 A JP 2009091741A JP 2010243055 A JP2010243055 A JP 2010243055A
Authority
JP
Japan
Prior art keywords
refrigeration
compressor
refrigerator
expansion mechanism
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009091741A
Other languages
Japanese (ja)
Other versions
JP5402176B2 (en
Inventor
Toshikazu Sakai
寿和 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009091741A priority Critical patent/JP5402176B2/en
Publication of JP2010243055A publication Critical patent/JP2010243055A/en
Application granted granted Critical
Publication of JP5402176B2 publication Critical patent/JP5402176B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator for obtaining energy-saving effects obtained by raising an evaporation temperature while keeping the minimum amount of coolant enclosure by solving a problem of an excessive capacity of a refrigerating system with the raised evaporation temperature, regarding the refrigerating system and a refrigerator having the refrigerating system. <P>SOLUTION: Even if a suitable evaporation temperature from -15&deg;C to -5&deg;C at the time of cooling a refrigerating zone is obtained, an increase of a coolant circulation amount is suppressed by making a ratio of a cylinder volume of a refrigerating compressor 21 to a cylinder volume of a freezing compressor 11 from 1/3 to 2/3. Accordingly, performance improvement effects by raising the evaporation temperature can be obtained, and capacity adjustment performed by the speed reduction of the refrigerating compressor becomes unnecessary. Furthermore, efficiency improvement by making the speed variable can be expected. Furthermore, as compressor efficiency in a high evaporation temperature area can be improved by decreasing the cylinder volume of the refrigerating compressor, synergistic effects to the performance improvement can be obtained. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、蒸気圧縮式冷凍システムを搭載した冷蔵庫において、冷凍ゾーンを冷却する冷凍システムとは独立して、冷蔵ゾーンを冷却する第二の冷凍システムを有する冷蔵庫の高効率化に関するものである。   The present invention relates to an improvement in efficiency of a refrigerator having a second refrigeration system for cooling a refrigeration zone independently of a refrigeration system for cooling a refrigeration zone in a refrigerator equipped with a vapor compression refrigeration system.

従来、庫内容積が大きい業務用冷蔵庫においては、冷凍ゾーンを冷却する冷凍システムと、冷蔵ゾーンを冷却する第二の冷凍システムとの2個の冷凍システム(以下、2システム構成という)を用いて冷凍能力を確保していた(例えば、特許文献1および特許文献2参照)。この場合、冷凍能力を確保することが優先され、冷蔵ゾーンを冷却する際の高効率化については十分検討されていなかった。   Conventionally, in a commercial refrigerator having a large internal volume, two refrigeration systems (hereinafter referred to as a two-system configuration) including a refrigeration system for cooling a refrigeration zone and a second refrigeration system for cooling a refrigeration zone are used. The refrigerating capacity was ensured (see, for example, Patent Document 1 and Patent Document 2). In this case, priority is given to ensuring the refrigerating capacity, and high efficiency in cooling the refrigeration zone has not been sufficiently studied.

一方、家庭用冷蔵庫においては、省エネルギーを追求するために、冷蔵ゾーンを冷却する際に高蒸発温度化を図ることが盛んに検討されてきた(例えば、特許文献3参照)。しかしながら、冷蔵庫の庫内容積を最大化する観点から、1個の冷凍システムを用いて冷凍ゾーンと冷蔵ゾーンとを切り替えながら冷却する方式が追求され、2システム構成を用いた省エネルギーに関しては十分な知見がなかった。   On the other hand, in home refrigerators, in order to save energy, it has been actively studied to increase the evaporation temperature when cooling the refrigeration zone (see, for example, Patent Document 3). However, from the standpoint of maximizing the refrigerator's internal volume, a cooling system that uses a single refrigeration system while switching between the refrigeration zone and the refrigeration zone has been pursued, and sufficient knowledge regarding energy saving using a two-system configuration has been pursued. There was no.

以下、図面を参照しながら従来の冷蔵庫を説明する。   Hereinafter, a conventional refrigerator will be described with reference to the drawings.

図6は従来の冷蔵庫の冷媒回路図、図7は従来の冷蔵庫における蒸発温度と蒸気密度の関係を示した図である。   FIG. 6 is a refrigerant circuit diagram of a conventional refrigerator, and FIG. 7 is a diagram showing the relationship between the evaporation temperature and the vapor density in the conventional refrigerator.

図6において、51は圧縮機、52は凝縮器、53は流路切換手段、54は冷凍用膨張機構、55は冷蔵用膨張機構、56は冷凍用蒸発器、57は冷蔵用蒸発器、58は逆止弁、59は冷凍冷蔵システムである。ここで、流路切換手段53は、凝縮器52の出口冷媒を冷凍用膨張機構54から冷凍用蒸発器56に供給する冷凍モード、あるいは冷蔵用膨張機構55から冷蔵用蒸発器57に供給する冷蔵モードのどちらか一方に流路を切換える。   In FIG. 6, 51 is a compressor, 52 is a condenser, 53 is a flow path switching means, 54 is a refrigeration expansion mechanism, 55 is a refrigeration expansion mechanism, 56 is a refrigeration evaporator, 57 is a refrigeration evaporator, 58 Is a check valve and 59 is a refrigeration system. Here, the flow path switching means 53 is a refrigeration mode in which the outlet refrigerant of the condenser 52 is supplied from the refrigeration expansion mechanism 54 to the refrigeration evaporator 56, or refrigeration supplied from the refrigeration expansion mechanism 55 to the refrigeration evaporator 57. Switch the flow path to either mode.

また、冷媒は炭化水素系冷媒を使用し、圧縮機51は可変速圧縮機であり能力調整できる。   Moreover, the refrigerant | coolant uses a hydrocarbon-type refrigerant | coolant, and the compressor 51 is a variable speed compressor and can adjust capacity.

また、冷凍用蒸発器56は冷蔵庫の冷凍ゾーン(図示せず)内の空気と熱交換して冷却し、冷蔵用蒸発器57は冷蔵庫の冷蔵ゾーン(図示せず)内の空気と熱交換して冷却する。逆止弁58は、飽和圧力の高い冷媒ガスが冷蔵用蒸発器57から圧縮機51へ還流する際に冷凍用蒸発器56内で凝縮しないように、冷凍用蒸発器56の出口に設けている。   The refrigeration evaporator 56 is cooled by exchanging heat with air in the refrigerator refrigeration zone (not shown), and the refrigeration evaporator 57 is exchanged with air in the refrigerator refrigeration zone (not shown). Cool down. The check valve 58 is provided at the outlet of the refrigeration evaporator 56 so that refrigerant gas having a high saturation pressure does not condense in the refrigeration evaporator 56 when the refrigerant gas flows back from the refrigeration evaporator 57 to the compressor 51. .

以上のように構成された従来の冷蔵庫について、以下にその動作を説明する。   About the conventional refrigerator comprised as mentioned above, the operation | movement is demonstrated below.

冷蔵庫の冷凍ゾーンを冷却する場合、流路切換手段53を冷凍モードに切換えて、圧縮機51を起動する。圧縮機51から吐出された冷媒は凝縮器51で凝縮した後、流路切換手段53を介して冷凍用膨張機構54で減圧され、冷凍用蒸発器56に供給される。そして、冷凍用蒸発器56で蒸発した冷媒は逆止弁58を介して圧縮機51へ還流する。この時、冷凍用蒸発器56の蒸発温度が−30℃程度になり、かつ冷凍最大負荷を乗り切れるように、圧縮機51の冷凍能力と冷凍用膨張機構54の流路抵抗が設計されている。   When cooling the freezing zone of the refrigerator, the flow path switching means 53 is switched to the freezing mode and the compressor 51 is started. The refrigerant discharged from the compressor 51 is condensed by the condenser 51, then decompressed by the refrigeration expansion mechanism 54 via the flow path switching means 53, and supplied to the refrigeration evaporator 56. Then, the refrigerant evaporated in the refrigeration evaporator 56 returns to the compressor 51 through the check valve 58. At this time, the refrigerating capacity of the compressor 51 and the flow resistance of the refrigerating expansion mechanism 54 are designed so that the evaporating temperature of the refrigerating evaporator 56 is about −30 ° C. and the maximum refrigerating load can be overcome.

一方、冷蔵庫の冷蔵ゾーンを冷却する場合、流路切換手段53を冷蔵モードに切換えて
、圧縮機51を起動する。圧縮機51から吐出された冷媒は凝縮器51で凝縮した後、流路切換手段53を介して冷蔵用膨張機構55で減圧され、冷蔵用蒸発器57に供給される。そして、冷蔵用蒸発器57で蒸発した冷媒は圧縮機51へ還流する。この時、冷蔵用蒸発器57の蒸発温度が比較的高くなるように、圧縮機51を低速駆動する。
On the other hand, when cooling the refrigeration zone of the refrigerator, the flow path switching means 53 is switched to the refrigeration mode and the compressor 51 is started. The refrigerant discharged from the compressor 51 is condensed by the condenser 51, then depressurized by the refrigeration expansion mechanism 55 via the flow path switching means 53, and supplied to the refrigeration evaporator 57. Then, the refrigerant evaporated in the refrigeration evaporator 57 returns to the compressor 51. At this time, the compressor 51 is driven at a low speed so that the evaporation temperature of the refrigeration evaporator 57 becomes relatively high.

このように、同じ圧縮機51と凝縮器52とを用いて、冷蔵庫の冷凍ゾーンと冷蔵ゾーンとを交互に冷却する場合、比較的負荷の大きい冷凍ゾーンに合わせて圧縮機51の冷凍能力や冷凍用膨張機構54の流路抵抗、冷凍用蒸発器56と凝縮器52の熱交換能力などが設計されるとともに、冷蔵ゾーンを冷却する時には、圧縮機51を低速駆動することで蒸発温度を高めて高効率化を図る。   As described above, when the refrigerator 51 and the refrigerator zone of the refrigerator are alternately cooled using the same compressor 51 and condenser 52, the refrigerating capacity and the refrigerating capacity of the compressor 51 are adjusted in accordance with the refrigerating zone having a relatively large load. The flow resistance of the expansion mechanism 54 and the heat exchange capacity of the refrigeration evaporator 56 and the condenser 52 are designed, and when the refrigeration zone is cooled, the evaporation temperature is increased by driving the compressor 51 at a low speed. Increase efficiency.

図7に示したように、冷凍用蒸発器56の蒸発温度−30℃に対して、冷蔵用蒸発器57の蒸発温度を−15〜−5℃まで高めると、飽和蒸気密度が180〜260%と大きくなる。この結果、冷蔵庫の冷蔵ゾーンを冷却する際に圧縮機51の低速化なしでは、飽和蒸気密度にほぼ比例して冷媒循環量が著しく増大し、凝縮器52の熱交換能力が不足して性能低下を招くなどの問題が生じるためである。   As shown in FIG. 7, when the evaporation temperature of the refrigeration evaporator 57 is increased to −15 to −5 ° C. with respect to the evaporation temperature −30 ° C. of the refrigeration evaporator 56, the saturated vapor density is 180 to 260%. And get bigger. As a result, if the compressor 51 is not slowed down when the refrigerator zone of the refrigerator is cooled, the amount of refrigerant circulation increases remarkably in proportion to the saturated vapor density, and the heat exchange capacity of the condenser 52 is insufficient, resulting in performance degradation. This is because of problems such as inviting.

一方、冷蔵庫の冷蔵ゾーンを冷却する状態に合わせて、圧縮機51の冷凍能力や凝縮器52の熱交換能力などを設計する場合、冷凍ゾーンを冷却する際に冷媒循環量が著しく減少してしまうために、予め過剰に大きい圧縮機51の冷凍能力や凝縮器52の熱交換能力を確保する必要があり、可燃性のある炭化水素系冷媒の封入量が増大する問題が生じる。
特開2005−106454号公報 特開2005−121309号公報 特開2000−121178号公報
On the other hand, when the refrigeration capacity of the compressor 51 and the heat exchange capacity of the condenser 52 are designed in accordance with the state of cooling the refrigeration zone of the refrigerator, the amount of refrigerant circulation is significantly reduced when the refrigeration zone is cooled. For this reason, it is necessary to ensure in advance an excessively large refrigerating capacity of the compressor 51 and a heat exchange capacity of the condenser 52, and there arises a problem that the amount of the flammable hydrocarbon refrigerant is increased.
JP-A-2005-106454 JP-A-2005-121309 JP 2000-121178 A

しかしながら、上記従来の構成では、冷蔵庫の冷蔵ゾーンを冷却する際に、適正な冷媒循環量で効率よく運転するためには、圧縮機51を常に最低速近傍で断続運転する必要があり、冷蔵ゾーン冷却時には可変速化による庫内温度の安定や断続回数低下に伴う停止損失低減の効果が十分活かせないという問題があった。また、軸受けの耐荷重性が低下する最低速近傍で常に運転するため、軸受け面積の拡大や潤滑油粘度の増加などによる耐久性向上が必要となり、結果として、圧縮機51の圧縮機効率が低下して高蒸発温度化によるシステム効率向上を相殺するという問題があった。   However, in the above conventional configuration, when the refrigerator refrigeration zone is cooled, in order to operate efficiently with an appropriate amount of refrigerant circulation, the compressor 51 must always be intermittently operated near the minimum speed. At the time of cooling, there is a problem that the effect of reducing the stop loss due to the stabilization of the internal temperature by the variable speed and the decrease in the number of intermittent operations cannot be fully utilized. Also, since the bearing always operates near the lowest speed where the load bearing capacity decreases, it is necessary to improve the durability by increasing the bearing area or increasing the viscosity of the lubricating oil. As a result, the compressor efficiency of the compressor 51 decreases. As a result, there is a problem that the improvement in system efficiency due to the high evaporation temperature is offset.

これは、冷凍ゾーン冷却時の適正な蒸発温度−30℃と冷蔵ゾーン冷却時の適正な蒸発温度−15〜−5℃の冷媒循環量比率が180〜260%程度と大きく、冷蔵用圧縮機の可変速化による能力調整比率2〜3倍とほぼ一致する結果、可変速化によるメリットをほぼ相殺してしまうためである。つまり、従来の冷蔵庫では、可変速圧縮機を使用して、冷蔵ゾーン冷却時に適正な蒸発温度を実現しても、さらなる性能向上効果が小さくなるという問題があった。   This is because the refrigerant circulation rate ratio between the proper evaporating temperature −30 ° C. at the time of cooling the freezing zone and the appropriate evaporating temperature −15 to −5 ° C. at the time of cooling the refrigerating zone is as large as about 180 to 260%. This is because, as a result of almost the same as the ability adjustment ratio of 2 to 3 times due to the variable speed, the advantage of the variable speed is almost offset. That is, in the conventional refrigerator, there is a problem that even if an appropriate evaporation temperature is realized at the time of cooling in the refrigeration zone by using a variable speed compressor, a further performance improvement effect is reduced.

また、従来の業務用冷蔵庫と同様に2システム構成として、冷凍ゾーンを冷却する冷凍システムとは独立した冷蔵ゾーンを冷却する冷蔵システムを搭載する場合、冷蔵ゾーン冷却時の蒸発温度−15〜−5℃を実現する適正な可変速圧縮機や凝縮器を選定すればよいが、冷蔵システムの冷凍能力が冷凍システムの冷凍能力に比べて大きい場合には、冷蔵システムの冷媒封入量が増大するという問題が生じる。また、冷凍能力が大きい冷蔵システムの冷媒封入量を削減するために、凝縮温度を高く設計するなど、冷凍システムの凝縮器とは異なる設計が必要となり、両システムの凝縮器をコンパクトな一体構成にできないという問題が生じる。   Moreover, when mounting the refrigeration system which cools the refrigeration zone independent of the refrigeration system which cools a freezing zone as 2 system structure similarly to the conventional commercial refrigerator, the evaporation temperature at the time of refrigeration zone cooling -15-5 A suitable variable speed compressor or condenser that achieves ℃ can be selected, but if the refrigeration system has a larger refrigeration capacity than the refrigeration system, the amount of refrigerant in the refrigeration system increases. Occurs. In addition, in order to reduce the amount of refrigerant enclosed in a refrigeration system with a large refrigeration capacity, a design different from the condenser of the refrigeration system, such as a high condensation temperature, is required, and the condensers of both systems have a compact integrated configuration. The problem of being unable to occur

本発明は、上記従来の課題を解決するもので、冷蔵ゾーン冷却時に適正な蒸発温度を実現して、可変速圧縮機を使用した場合に比べて、さらなる性能向上効果を有するとともに、可燃性冷媒を用いた場合でも、最低限の冷媒封入量を維持しながら、コンパクトな一体構成の凝縮器を有する冷蔵庫を提供することを目的とする。   The present invention solves the above-described conventional problems, achieves an appropriate evaporation temperature during cooling in a refrigerated zone, has a further performance improvement effect as compared with the case where a variable speed compressor is used, and a combustible refrigerant. It is an object of the present invention to provide a refrigerator having a compact integrated condenser while maintaining a minimum amount of refrigerant filled even when using the above.

上記従来の課題を解決するために、本発明の冷蔵庫は、冷凍ゾーンを冷却する冷凍システムと冷蔵ゾーンを冷却する冷蔵システムからなる2システム構成とし、冷凍システムに搭載する冷凍用圧縮機の気筒容積に対して、冷蔵システムに搭載する冷蔵用圧縮機の気筒容積の割合を1/3〜2/3とするものである。これによって、冷蔵ゾーン冷却時の適正な蒸発温度−15〜−5℃を実現した場合でも、冷媒循環量の増大を抑制することとなり、高蒸発温度化による性能向上効果が得られるとともに、冷蔵用圧縮機の低速化による能力調整が不要となり、可変速化によるさらなる効率向上が期待できる。   In order to solve the above-described conventional problems, the refrigerator of the present invention has a two-system configuration including a refrigeration system for cooling a refrigeration zone and a refrigeration system for cooling a refrigeration zone, and the cylinder volume of a refrigeration compressor installed in the refrigeration system. On the other hand, the ratio of the cylinder volume of the refrigeration compressor mounted in the refrigeration system is 1/3 to 2/3. As a result, even when an appropriate evaporation temperature of -15 to -5 ° C during cooling in the refrigeration zone is realized, an increase in the circulation amount of the refrigerant is suppressed, and the performance improvement effect due to the high evaporation temperature can be obtained. It is not necessary to adjust the capacity by reducing the compressor speed, and further improvement in efficiency can be expected by increasing the speed.

本発明の冷蔵庫は、2システム構成とし、適正な圧縮機能力と凝縮器構成を選定することで、最低限の冷媒封入量を維持するとともに、冷蔵ゾーン冷却時に、適正な蒸発温度を実現して、可変速圧縮機を使用した場合に比べて、さらなる性能向上効果を得るものである。   The refrigerator of the present invention has a two-system configuration, and by selecting an appropriate compression function and condenser configuration, it can maintain a minimum amount of refrigerant filling and realize an appropriate evaporation temperature during cooling in the refrigeration zone. Compared with the case where a variable speed compressor is used, a further performance improvement effect is obtained.

請求項1に記載の発明は、食品等を冷凍温度で貯蔵する冷凍室と、冷凍用圧縮機と、冷凍用凝縮器と、冷凍用膨張機構と、冷凍用蒸発器と、からなり、前記冷凍室を冷却する冷凍システムと、食品等を冷蔵温度で貯蔵する冷蔵室と、冷蔵用圧縮機と、冷蔵用凝縮器と、冷蔵用膨張機構と、冷蔵用蒸発器と、からなり、前記冷蔵室を冷却する冷蔵システムと、を有する冷蔵庫において、前記冷凍用圧縮機の気筒容積に対する前記冷蔵用圧縮機の気筒容積の割合を1/3〜2/3とすることにより、冷蔵ゾーン冷却時の適正な蒸発温度−15〜−5℃を実現した場合でも、冷媒循環量の増大を抑制することとなり、高蒸発温度化による性能向上効果が得られるとともに、冷蔵用圧縮機の低速化による能力調整が不要となり、可変速化によるさらなる効率向上が期待できる。さらに、冷蔵用圧縮機の小気筒容積化により、高蒸発温度域での圧縮機効率が向上できるので、性能向上に対する相乗効果を得ることができる。   The invention according to claim 1 includes a freezing room for storing food or the like at a freezing temperature, a freezing compressor, a freezing condenser, a freezing expansion mechanism, and a freezing evaporator. A refrigerating system for cooling the room, a refrigerating room for storing food or the like at a refrigerating temperature, a refrigerating compressor, a refrigerating condenser, a refrigerating expansion mechanism, and a refrigerating evaporator. In the refrigerator having the refrigeration system, the ratio of the cylinder volume of the refrigeration compressor to the cylinder volume of the refrigeration compressor is set to 1/3 to 2/3, so that the appropriateness at the time of cooling the refrigeration zone Even when an evaporating temperature of -15 to -5 ° C. is achieved, an increase in the circulation rate of the refrigerant is suppressed, and an effect of improving the performance by increasing the evaporating temperature is obtained. It becomes unnecessary, and further by variable speed Efficiency improvement can be expected. Furthermore, since the compressor efficiency in the high evaporation temperature region can be improved by reducing the cylinder volume of the refrigeration compressor, a synergistic effect on performance improvement can be obtained.

請求項2に記載の発明は、請求項1に記載の発明において、前記冷凍用凝縮器と前記冷蔵用凝縮器とは、前記冷蔵庫の外郭を形成する外箱の内面に密着固定された冷媒配管とするとともに、前記外箱を共通の放熱面としたことにより、冷蔵ゾーン冷却時の最大冷凍能力と冷凍ゾーン冷却時の最大冷凍能力を略同一とし、同等の冷媒封入量で過負荷時の凝縮温度を略同一とすることができ、可燃性冷媒を用いた場合でも、最低限の冷媒封入量を維持しながら、共通の放熱面を利用したコンパクトな凝縮器を構成することができる。   A second aspect of the present invention is the refrigerant pipe according to the first aspect, wherein the refrigeration condenser and the refrigeration condenser are closely fixed to an inner surface of an outer box forming an outer shell of the refrigerator. In addition, by using the outer casing as a common heat dissipation surface, the maximum refrigeration capacity during cooling in the refrigeration zone and the maximum refrigeration capacity during cooling in the refrigeration zone are substantially the same, and condensing during overload with the same amount of refrigerant filled The temperatures can be made substantially the same, and even when a flammable refrigerant is used, a compact condenser using a common heat radiation surface can be configured while maintaining a minimum refrigerant charging amount.

請求項3に記載の発明は、請求項1または2に記載の発明において、前記冷凍用圧縮機と前記冷蔵用圧縮機とを可変速圧縮機として、前記冷蔵用圧縮機の最低回転数は、前記冷凍用圧縮機の最低回転数よりも小さくしたことにより、可変速化による効率向上が期待できるとともに、冷蔵用圧縮機の低速化により高蒸発温度域での圧縮機効率が向上できるので、性能向上に対する相乗効果を得ることができる。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the refrigeration compressor and the refrigeration compressor are variable speed compressors, and the minimum rotational speed of the refrigeration compressor is: By making it smaller than the minimum rotation speed of the refrigeration compressor, it can be expected to improve efficiency by variable speed, and by reducing the speed of the refrigeration compressor, the efficiency of the compressor in the high evaporation temperature region can be improved. A synergistic effect on improvement can be obtained.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明において、前記冷凍用膨張機構は、前段膨張機構と後段膨張機構とを有るとともに、前記前段膨張機構と前記後段膨張機構の間に設置され、前記冷蔵用蒸発器あるいは前記冷蔵室と熱交換する過
冷却熱交換器を有することにより、効率の高い冷蔵システムの冷凍能力を利用して冷凍用蒸発器入口の乾き度を低下して冷凍効果を大きくすることにより、冷凍システムと冷蔵システムを総合したシステム効率の高性能化が図れる。
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the refrigerating expansion mechanism includes a front-stage expansion mechanism and a rear-stage expansion mechanism, and the front-stage expansion mechanism and the By installing a refrigeration evaporator or a supercooling heat exchanger that exchanges heat with the refrigeration chamber, it is installed between the latter-stage expansion mechanisms, so that the refrigeration capacity of the refrigeration system with high efficiency can be utilized. By reducing the dryness and increasing the refrigeration effect, it is possible to improve the system efficiency by combining the refrigeration system and the refrigeration system.

請求項5に記載の発明は、請求項4に記載の発明において、前記冷凍用圧縮機の吸入配管と前記前段膨張機構とを熱交換することで前記吸入配管の冷排熱の回収を行うとともに、熱交換部分を前記冷蔵室の断熱壁面内に埋設したことにより、冷凍用圧縮機の吸入配管の温度を外気温近傍まで上昇することにより、結露が防止できるとともに、前段膨張機構が冷凍ゾーンと熱交換することを抑制して効率低下を防止できる。   According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the heat recovery between the suction pipe of the refrigeration compressor and the pre-stage expansion mechanism is performed to collect cold exhaust heat from the suction pipe. By embedding the heat exchange part in the heat insulating wall of the refrigerator compartment, the temperature of the suction pipe of the refrigeration compressor is increased to near the outside air temperature, so that condensation can be prevented and the front expansion mechanism is connected to the refrigeration zone. It is possible to prevent a decrease in efficiency by suppressing heat exchange.

請求項6に記載の発明は、請求項4または5に記載の発明において、前記過冷却熱交換器と前記冷蔵用蒸発器とを一体で形成し、前記過冷却熱交換器の配管を前記冷蔵用蒸発器よりも風上側に配置したことにより、冷蔵用蒸発器への着霜防止効果により、除霜負荷の低減と冷蔵ゾーンの高湿度化が図れる。   The invention according to claim 6 is the invention according to claim 4 or 5, wherein the supercooling heat exchanger and the refrigeration evaporator are integrally formed, and piping of the supercooling heat exchanger is connected to the refrigeration. By arranging it on the windward side of the evaporator for refrigeration, the defrosting load can be reduced and the humidity of the refrigeration zone can be increased due to the effect of preventing frost formation on the refrigeration evaporator.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the same reference numerals are given to the same components as those of the conventional example, and detailed description thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における冷蔵庫の冷媒回路図、図2は、本発明の実施の形態1における冷蔵庫背面の模式図である。
(Embodiment 1)
FIG. 1 is a refrigerant circuit diagram of the refrigerator according to Embodiment 1 of the present invention, and FIG. 2 is a schematic diagram of the back of the refrigerator according to Embodiment 1 of the present invention.

図1において、10は冷凍室、11は冷凍用圧縮機、12は冷凍用凝縮器、13は冷凍用膨張機構、14は冷凍用蒸発器であり、冷凍システム15は、冷凍用圧縮機11と、冷凍用凝縮器12と、冷凍用膨張機構13と、冷凍用蒸発器14とからなる。   In FIG. 1, 10 is a freezing room, 11 is a freezing compressor, 12 is a freezing condenser, 13 is a freezing expansion mechanism, 14 is a freezing evaporator, and the freezing system 15 includes a freezing compressor 11 and The refrigeration condenser 12, the refrigeration expansion mechanism 13, and the refrigeration evaporator 14.

また、20は冷蔵室、21は冷蔵用圧縮機、22は冷蔵用凝縮器、23は冷蔵用膨張機構、24は冷蔵用蒸発器であり、冷蔵システム25は、冷蔵用圧縮機21と、冷蔵用凝縮器22と、冷蔵用膨張機構23と、冷蔵用蒸発器24とからなる。   Reference numeral 20 denotes a refrigeration chamber, 21 denotes a refrigeration compressor, 22 denotes a refrigeration condenser, 23 denotes a refrigeration expansion mechanism, 24 denotes a refrigeration evaporator, and the refrigeration system 25 includes the refrigeration compressor 21 and the refrigeration. The condenser 22 for cooling, the expansion mechanism 23 for refrigeration, and the evaporator 24 for refrigeration are comprised.

ここで、冷凍システム15と冷蔵システム25とは、それぞれ炭化水素冷媒であるイソブタンを70g使用し、冷凍用圧縮機11は気筒容積約10mLのレシプロ型可変速圧縮機であり、冷蔵用圧縮機21は気筒容積約6mLのレシプロ型可変速圧縮機である。   Here, the refrigeration system 15 and the refrigeration system 25 each use 70 g of isobutane which is a hydrocarbon refrigerant, the refrigeration compressor 11 is a reciprocating variable speed compressor having a cylinder volume of about 10 mL, and the refrigeration compressor 21. Is a reciprocating variable speed compressor having a cylinder volume of about 6 mL.

また、冷凍室10の設定温度は約−20℃、冷蔵室20の設定温度は約3℃である。   Moreover, the set temperature of the freezer compartment 10 is about −20 ° C., and the set temperature of the refrigerator compartment 20 is about 3 ° C.

図2において、26は冷蔵庫の外郭を形成する冷蔵庫背面であり、冷媒配管からなる冷凍用凝縮器12と冷蔵用凝縮器22とは、冷蔵庫背面26の内側にアルミ箔テープで密着固定されている。ここで、冷蔵庫背面26は、冷凍システム15と冷蔵システム25の共用の放熱面となっており、凝縮熱は冷凍用凝縮器12および冷蔵用凝縮器22それぞれの冷媒配管から接触部やアルミ箔テープなどを介した固体熱伝導によって冷蔵庫背面26へ伝熱される。また、冷蔵庫背面26を含む冷蔵庫外郭の内側にはウレタン発泡断熱材(図示せず)が形成されており、冷凍室10および冷蔵室20を外界から断熱している。   In FIG. 2, reference numeral 26 denotes a refrigerator rear surface that forms the outer shell of the refrigerator, and the refrigeration condenser 12 and the refrigeration condenser 22 that are made of refrigerant pipes are closely fixed to the inner side of the refrigerator rear surface 26 with aluminum foil tape. . Here, the refrigerator back surface 26 is a heat radiating surface shared by the refrigeration system 15 and the refrigeration system 25, and the condensation heat flows from the refrigerant pipes of the refrigeration condenser 12 and the refrigeration condenser 22 to the contact portions and aluminum foil tape. The heat is transferred to the refrigerator back surface 26 by solid heat conduction through the like. In addition, a urethane foam heat insulating material (not shown) is formed inside the refrigerator shell including the refrigerator back surface 26 to insulate the freezer compartment 10 and the refrigerator compartment 20 from the outside.

以上のように構成された本発明の実施の形態1における冷蔵庫について、以下その動作を説明する。   About the refrigerator in Embodiment 1 of this invention comprised as mentioned above, the operation | movement is demonstrated below.

冷凍室10が所定の温度まで上昇すると、冷凍システム15を稼動する。このとき、冷凍用圧縮機11から吐出された冷媒は冷凍用凝縮器12で凝縮した後、冷凍用膨張機構1
3で減圧され、冷凍用蒸発器14に供給される。そして、冷凍用蒸発器14で蒸発した冷媒は冷凍用圧縮機11へ還流する。同時に、冷凍室10内の空気は冷凍用蒸発器14と熱交換して冷却される。一方、冷蔵室20が所定の温度まで上昇すると、冷蔵システム25を稼動する。このとき、冷蔵用圧縮機21から吐出された冷媒は冷蔵用凝縮器22で凝縮した後、冷蔵用膨張機構23で減圧され、冷蔵用蒸発器24に供給される。そして、冷蔵用蒸発器24で蒸発した冷媒は冷蔵用圧縮機21へ還流する。同時に、冷蔵室20内の空気は冷蔵用蒸発器24と熱交換して冷却される。
When the freezer compartment 10 rises to a predetermined temperature, the refrigeration system 15 is operated. At this time, the refrigerant discharged from the refrigeration compressor 11 is condensed by the refrigeration condenser 12 and then the refrigeration expansion mechanism 1.
The pressure is reduced at 3 and supplied to the refrigeration evaporator 14. Then, the refrigerant evaporated in the freezing evaporator 14 returns to the freezing compressor 11. At the same time, the air in the freezer compartment 10 is cooled by exchanging heat with the freezing evaporator 14. On the other hand, when the refrigerator compartment 20 rises to a predetermined temperature, the refrigerator system 25 is operated. At this time, the refrigerant discharged from the refrigeration compressor 21 is condensed by the refrigeration condenser 22, then decompressed by the refrigeration expansion mechanism 23, and supplied to the refrigeration evaporator 24. Then, the refrigerant evaporated in the refrigeration evaporator 24 is returned to the refrigeration compressor 21. At the same time, the air in the refrigerator compartment 20 is cooled by exchanging heat with the evaporator 24 for refrigerator.

ここで、冷凍室10の室内空気温度の高低と外気温に合わせて、冷凍用圧縮機11を増減速することによって、蒸発温度−30〜−25℃で効率よく運転する。同様に、冷蔵室20の室内空気温度の高低と外気温に合わせて、冷蔵用圧縮機21を増減速することによって、蒸発温度−15〜−5℃で効率よく運転する。このとき、冷蔵用圧縮機21の気筒容積を冷凍用圧縮機11の約60%にしているため、蒸発温度が高い冷蔵システム25の冷媒循環量と冷凍システム15の冷媒循環量とをほぼ同等とすることができる。   Here, the compressor 11 for refrigeration is accelerated and decelerated according to the indoor air temperature of the freezer compartment 10 and the outside air temperature, thereby efficiently operating at an evaporation temperature of −30 to −25 ° C. Similarly, the compressor 21 for refrigeration is accelerated and decelerated in accordance with the indoor air temperature of the refrigerator compartment 20 and the outside air temperature, thereby efficiently operating at an evaporation temperature of -15 to -5 ° C. At this time, since the cylinder volume of the refrigeration compressor 21 is about 60% of that of the refrigeration compressor 11, the refrigerant circulation amount of the refrigeration system 25 having a high evaporation temperature and the refrigerant circulation amount of the refrigeration system 15 are substantially equal. can do.

この結果、冷凍室10と冷蔵室20の温度がともに高い、電源投入時などの過負荷条件においては、冷凍用圧縮機11と冷蔵用圧縮機21はともに高速運転として冷凍能力を増大することができるとともに、冷凍室10と冷蔵室20の温度がともに設定温度に近い安定条件においては、冷凍用圧縮機11と冷蔵用圧縮機21はともに低速運転として冷凍効率を向上することができる。また、家庭用冷蔵庫における冷凍室10に対する冷蔵室20の冷凍負荷の比率は、通常0.5〜1.5の範囲で変動するが、冷凍用圧縮機11と冷蔵用圧縮機21の運転率と回転数を調整して対応することができる。   As a result, under the overload conditions such as when the temperature of the freezer compartment 10 and the refrigerator compartment 20 are both high and when the power is turned on, both the compressor 11 for freezing and the compressor 21 for refrigerator can increase the refrigerating capacity by operating at high speed. In addition, both the freezing compressor 11 and the refrigerating compressor 21 can be operated at a low speed to improve the refrigerating efficiency under the stable condition where the temperatures of the freezing room 10 and the refrigerating room 20 are both close to the set temperature. Moreover, although the ratio of the freezing load of the refrigerator compartment 20 with respect to the freezer compartment 10 in a household refrigerator usually fluctuates in the range of 0.5 to 1.5, the operation rate of the compressor 11 for freezing and the compressor 21 for refrigerator is It can respond by adjusting the number of rotations.

また、冷蔵用圧縮機21は、冷凍用圧縮機11をベースとしたレシプロ型可変速圧縮機であり気筒容積を約60%にしているため、高蒸発温度条件における圧縮機効率が向上し、冷凍用圧縮機11を−15〜−5℃の高蒸発温度で稼動する場合に比べて、冷蔵用圧縮機21ではさらに10%以上の効率向上が達成できた。さらに、気筒容積の小さい冷蔵用圧縮機21は冷凍用圧縮機11よりも振動が小さいため、より低速まで運転が可能となるので、冷凍用圧縮機11を用いた場合に比べてさらなる効率向上が図れた。   The refrigeration compressor 21 is a reciprocating variable speed compressor based on the refrigeration compressor 11 and has a cylinder volume of about 60%. Therefore, the compressor efficiency under high evaporation temperature conditions is improved, and the refrigeration compressor 21 is refrigerated. Compared with the case where the compressor 11 is operated at a high evaporation temperature of −15 to −5 ° C., the refrigeration compressor 21 can achieve an efficiency improvement of 10% or more. Furthermore, since the refrigeration compressor 21 having a small cylinder volume has less vibration than the refrigeration compressor 11, it can be operated to a lower speed. Therefore, the efficiency can be further improved as compared with the case where the refrigeration compressor 11 is used. I was able to.

また、前記したように、蒸発温度が高い冷蔵システム25の冷媒循環量を冷凍システム15とほぼ同等とすることができるので、過負荷条件においても同じ冷媒封入量で冷凍用凝縮器12と冷蔵用凝縮器22の凝縮温度を略同一とできる。この結果、冷蔵庫背面26を共有の放熱面としても、放熱能力に偏りがなく、コンパクトな凝縮器を構成することができる。ここで、冷凍用凝縮器12と冷蔵用凝縮器22の凝縮温度の差は5℃以内が望ましい。10℃以上の温度差で放熱面を共有した場合、凝縮温度の低い方の凝縮器がほとんど放熱できないという問題が生じる。   Further, as described above, since the refrigerant circulation amount of the refrigeration system 25 having a high evaporation temperature can be made substantially equal to that of the refrigeration system 15, the refrigeration condenser 12 and the refrigeration condenser can be refrigerated with the same refrigerant filling amount even in an overload condition. The condensation temperature of the condenser 22 can be made substantially the same. As a result, even if the refrigerator back surface 26 is used as a common heat radiating surface, the heat radiating capacity is not biased and a compact condenser can be configured. Here, the difference in condensation temperature between the freezing condenser 12 and the refrigeration condenser 22 is preferably within 5 ° C. When the heat radiation surface is shared by a temperature difference of 10 ° C. or more, there arises a problem that the condenser having the lower condensation temperature hardly radiates heat.

以上のように、本発明の冷蔵庫においては、冷凍ゾーンを冷却する冷凍システムと冷蔵ゾーンを冷却する冷蔵システムからなる2システム構成とし、冷凍システムに搭載する冷凍用圧縮機の気筒容積に対して、冷蔵システムに搭載する冷蔵用圧縮機の気筒容積の割合を約60%とすることにより、冷蔵ゾーン冷却時の適正な蒸発温度−15〜−5℃を実現した場合でも、冷媒循環量の増大を抑制することができるので、高蒸発温度化による性能向上効果が得られるとともに、冷蔵用圧縮機の低速化による能力調整が不要となり、可変速化によるさらなる効率向上が期待できる。   As described above, the refrigerator of the present invention has a two-system configuration including a refrigeration system that cools the refrigeration zone and a refrigeration system that cools the refrigeration zone. With respect to the cylinder volume of the refrigeration compressor installed in the refrigeration system, By setting the ratio of the cylinder volume of the refrigeration compressor mounted in the refrigeration system to approximately 60%, even when an appropriate evaporation temperature of -15 to -5 ° C. during cooling of the refrigeration zone is realized, the refrigerant circulation rate can be increased. Therefore, it is possible to obtain the performance improvement effect by increasing the evaporation temperature, making it unnecessary to adjust the capacity by reducing the speed of the compressor for refrigeration, and expecting further efficiency improvement by increasing the variable speed.

また、本発明の冷蔵庫においては、冷凍ゾーンを冷却する冷凍システムと冷蔵ゾーンを冷却する冷蔵システムからなる2システム構成とし、冷凍システムに搭載する冷凍用圧縮機の気筒容積に対して、冷蔵システムに搭載する冷蔵用圧縮機の気筒容積の割合を約60%とするとともに、冷凍用凝縮器と冷蔵用凝縮器とは、冷蔵庫の外郭を形成する外箱の内
面に密着固定された冷媒配管とするとともに、外箱を共通の放熱面としたものである。これによって、可燃性冷媒を用いた場合でも、最低限の冷媒封入量を維持しながら、共通の放熱面を利用したコンパクトな凝縮器を構成することができる。
The refrigerator of the present invention has a two-system configuration including a refrigeration system that cools the refrigeration zone and a refrigeration system that cools the refrigeration zone, and the refrigeration system has a cylinder volume of a refrigeration compressor installed in the refrigeration system. The ratio of the cylinder volume of the refrigeration compressor to be mounted is about 60%, and the refrigeration condenser and the refrigeration condenser are refrigerant pipes that are closely fixed to the inner surface of the outer box that forms the outer shell of the refrigerator. In addition, the outer box has a common heat dissipation surface. Thereby, even when a flammable refrigerant is used, a compact condenser using a common heat radiating surface can be configured while maintaining a minimum refrigerant charging amount.

なお、本発明の冷蔵庫においては、冷凍用圧縮機の気筒容積に対して冷蔵用圧縮機の気筒容積の割合を約60%としたが、その割合は1/3〜2/3とすることが望ましい。2/3以上では小気筒容積化の効果が十分得られないとともに、1/3以下では冷媒循環量が逆転して冷蔵システムの方が小さくなるため、増速して能力調整する必要があり、従来と同様の問題が発生する。   In the refrigerator of the present invention, the ratio of the cylinder volume of the refrigeration compressor to the cylinder volume of the refrigeration compressor is about 60%, but the ratio may be 1/3 to 2/3. desirable. At 2/3 or more, the effect of reducing the capacity of the small cylinder cannot be obtained sufficiently, and at 1/3 or less, the refrigerant circulation amount is reversed and the refrigeration system becomes smaller, so it is necessary to increase the speed and adjust the capacity. The same problem as before occurs.

(実施の形態2)
以下、本発明の実施の形態2について、図面を参照しながら説明するが、本発明の実施の形態1と同一構成については同一符号を付して、その詳細な説明は省略する。
(Embodiment 2)
Hereinafter, the second embodiment of the present invention will be described with reference to the drawings. The same components as those of the first embodiment of the present invention are denoted by the same reference numerals, and detailed description thereof will be omitted.

図3は、本発明の実施の形態2における冷蔵庫の冷媒回路図、図4は、本発明の実施の形態2における冷蔵庫の冷蔵用蒸発器の模式図、図5は、本発明の実施の形態2の冷蔵庫における冷凍システムのモリエル線図である。   FIG. 3 is a refrigerant circuit diagram of a refrigerator according to Embodiment 2 of the present invention, FIG. 4 is a schematic diagram of a refrigerator for refrigeration according to Embodiment 2 of the present invention, and FIG. 5 is an embodiment of the present invention. It is a Mollier diagram of the refrigeration system in 2 refrigerators.

図3において、10は冷凍室、11は冷凍用圧縮機、12は冷凍用凝縮器、31は前段膨張機構、32は後段膨張機構、33は過冷却熱交換器、14は冷凍用蒸発器であり、冷凍システム34は、冷凍用圧縮機11と、冷凍用凝縮器12と、前段膨張機構31と、後段膨張機構32と、過冷却熱交換器33と、冷凍用蒸発器14と、からなる。   In FIG. 3, 10 is a freezing room, 11 is a freezing compressor, 12 is a freezing condenser, 31 is a front stage expansion mechanism, 32 is a rear stage expansion mechanism, 33 is a supercooling heat exchanger, and 14 is a freezing evaporator. The refrigeration system 34 includes a refrigeration compressor 11, a refrigeration condenser 12, a front stage expansion mechanism 31, a rear stage expansion mechanism 32, a supercooling heat exchanger 33, and a refrigeration evaporator 14. .

また、20は冷蔵室、21は冷蔵用圧縮機、22は冷蔵用凝縮器、23は冷蔵用膨張機構、24は冷蔵用蒸発器であり、冷蔵システム25は、冷蔵用圧縮機21と、冷蔵用凝縮器22と、冷蔵用膨張機構23と、冷蔵用蒸発器24と、からなる。   Reference numeral 20 denotes a refrigeration chamber, 21 denotes a refrigeration compressor, 22 denotes a refrigeration condenser, 23 denotes a refrigeration expansion mechanism, 24 denotes a refrigeration evaporator, and the refrigeration system 25 includes the refrigeration compressor 21 and the refrigeration. The condenser 22 for cooling, the expansion mechanism 23 for refrigeration, and the evaporator 24 for refrigeration are comprised.

図4において、冷蔵用蒸発器24は、放熱フィン41と冷媒配管42からなり、過冷却熱交換器33は、放熱フィン41と冷媒配管43からなり、冷蔵用蒸発器24と過冷却熱交換器33とはフィンチューブ熱交換器で一体に形成され、風上側に過冷却熱交換器33の冷媒配管43を配置している。本実施の形態では、具体的には、放熱フィン41はアルミニウム、冷媒配管42、43は銅が使用されているが、放熱フィンを銅、冷媒配管をアルミニウムとしてもよい。   In FIG. 4, the refrigeration evaporator 24 includes radiating fins 41 and refrigerant piping 42, and the supercooling heat exchanger 33 includes radiating fins 41 and refrigerant piping 43, and the refrigeration evaporator 24 and supercooling heat exchangers. 33 is integrally formed with a fin tube heat exchanger, and a refrigerant pipe 43 of the supercooling heat exchanger 33 is arranged on the windward side. Specifically, in the present embodiment, aluminum is used for the heat radiation fins 41 and copper is used for the refrigerant pipes 42 and 43, but copper may be used for the heat radiation fins and aluminum may be used for the refrigerant pipes.

ここで、過冷却熱交換器33は、前段膨張機構31と後段膨張機構32の間に位置し、前段膨張機構31にて減圧された冷媒と冷蔵室20内の空気を熱交換した後、後段膨張機構32に供給するものである。また、前段膨張機構31と後段膨張機構32はそれぞれ冷凍用圧縮機11の吸入配管と内部熱交換し、前段膨張機構31と吸入配管の熱交換部は冷蔵室20と外郭を断熱する断熱壁面(図示せず)内に埋設している。   Here, the supercooling heat exchanger 33 is located between the front stage expansion mechanism 31 and the rear stage expansion mechanism 32, and after exchanging heat between the refrigerant decompressed by the front stage expansion mechanism 31 and the air in the refrigerator compartment 20, This is supplied to the expansion mechanism 32. Further, the front stage expansion mechanism 31 and the rear stage expansion mechanism 32 exchange heat internally with the suction pipe of the refrigeration compressor 11, respectively, and the heat exchange part of the front stage expansion mechanism 31 and suction pipe respectively insulates the refrigerator compartment 20 from the outer wall ( (Not shown).

また、冷凍システム34と冷蔵システム25はそれぞれ炭化水素冷媒であるイソブタンを70g使用し、冷凍用圧縮機11は気筒容積約10mLのレシプロ型可変速圧縮機であり、冷蔵用圧縮機21は気筒容積約6mLのレシプロ型可変速圧縮機である。また、冷凍室10の設定温度は約−20℃、冷蔵室20の設定温度は約3℃である。   The refrigeration system 34 and the refrigeration system 25 use 70 g of isobutane as a hydrocarbon refrigerant, the refrigeration compressor 11 is a reciprocating variable speed compressor having a cylinder volume of about 10 mL, and the refrigeration compressor 21 has a cylinder volume. It is a reciprocating type variable speed compressor of about 6 mL. Moreover, the set temperature of the freezer compartment 10 is about −20 ° C., and the set temperature of the refrigerator compartment 20 is about 3 ° C.

以上のように構成された本発明の実施の形態2における冷蔵庫について、以下その動作を説明する。   About the refrigerator in Embodiment 2 of this invention comprised as mentioned above, the operation | movement is demonstrated below.

冷凍室10が所定の温度まで上昇すると、冷凍システム34を稼動する。このとき、冷凍用圧縮機11から吐出された冷媒は冷凍用凝縮器12で凝縮した後、前段膨張機構31
で減圧され、過冷却熱交換器33に供給される。過冷却熱交換器33に供給された冷媒は冷蔵室20内の空気と熱交換して冷却された後、後段膨張機構32で再度減圧され、蒸発器14に供給される。そして、冷凍用蒸発器14で蒸発した冷媒は冷凍用圧縮機11へ還流する。同時に、冷凍室10内の空気は冷凍用蒸発器14と熱交換して冷却される。一方、冷蔵室20が所定の温度まで上昇すると、冷蔵システム25を稼動する。このとき、冷蔵用圧縮機21から吐出された冷媒は冷蔵用凝縮器22で凝縮した後、冷蔵用膨張機構23で減圧され、冷蔵用蒸発器24に供給される。そして、冷蔵用蒸発器24で蒸発した冷媒は冷蔵用圧縮機21へ還流する。同時に、冷蔵室20内の空気は冷蔵用蒸発器24と熱交換して冷却される。
When the freezer compartment 10 rises to a predetermined temperature, the refrigeration system 34 is operated. At this time, the refrigerant discharged from the refrigeration compressor 11 is condensed by the refrigeration condenser 12, and then the pre-stage expansion mechanism 31.
And is supplied to the supercooling heat exchanger 33. The refrigerant supplied to the supercooling heat exchanger 33 is cooled by exchanging heat with the air in the refrigerator compartment 20, then depressurized again by the post-stage expansion mechanism 32, and supplied to the evaporator 14. Then, the refrigerant evaporated in the freezing evaporator 14 returns to the freezing compressor 11. At the same time, the air in the freezer compartment 10 is cooled by exchanging heat with the freezing evaporator 14. On the other hand, when the refrigerator compartment 20 rises to a predetermined temperature, the refrigerator system 25 is operated. At this time, the refrigerant discharged from the refrigeration compressor 21 is condensed by the refrigeration condenser 22, then decompressed by the refrigeration expansion mechanism 23, and supplied to the refrigeration evaporator 24. Then, the refrigerant evaporated in the refrigeration evaporator 24 is returned to the refrigeration compressor 21. At the same time, the air in the refrigerator compartment 20 is cooled by exchanging heat with the evaporator 24 for refrigerator.

また、図5において、Aは冷凍用圧縮機11の吸入冷媒、Bは冷凍用圧縮機11の吐出冷媒、Cは冷凍用凝縮器12の出口冷媒、Eは前段膨張機構31の出口冷媒、Fは過冷却熱交換器33の出口冷媒、Hは後段膨張機構32の出口冷媒、Iは蒸発器14の出口冷媒の状態を示す。ここで、過冷却熱交換器33による冷却効果はEF間のエンタルピー変化で示される。また、前段膨張機構31と後段膨張機構32はそれぞれ冷凍用圧縮機11の吸入配管と内部熱交換し、IJ間で示された吸入配管内の冷媒の温度上昇分の冷排熱がGH間で示された後段膨張機構32の冷媒の凝縮潜熱として回収されるとともに、JA間で示された吸入配管内の冷媒の温度上昇分の冷排熱がDE間で示された前段膨張機構31の冷媒の凝縮潜熱として回収される。   Further, in FIG. 5, A is an intake refrigerant of the refrigeration compressor 11, B is a discharge refrigerant of the refrigeration compressor 11, C is an outlet refrigerant of the refrigeration condenser 12, E is an outlet refrigerant of the pre-stage expansion mechanism 31, F Is the outlet refrigerant of the supercooling heat exchanger 33, H is the outlet refrigerant of the post-stage expansion mechanism 32, and I is the outlet refrigerant state of the evaporator 14. Here, the cooling effect by the supercooling heat exchanger 33 is shown by the enthalpy change between EFs. Further, the front stage expansion mechanism 31 and the rear stage expansion mechanism 32 respectively exchange internal heat with the suction pipe of the refrigeration compressor 11, and the cold exhaust heat corresponding to the temperature rise of the refrigerant in the suction pipe shown between IJ is between GH. The refrigerant of the upstream expansion mechanism 31 is recovered as the latent heat of condensation of the refrigerant shown in the post-stage expansion mechanism 32 and the cold exhaust heat corresponding to the temperature rise of the refrigerant in the intake pipe shown between JA is shown between the DEs. Recovered as latent heat of condensation.

この結果、過冷却熱交換器33による冷却効果の分だけ冷凍システム34の冷凍効果が大きくなり、冷凍システム34の運転率が減少する。一方、過冷却熱交換器33による冷却効果は冷蔵システム25の負荷となるので冷蔵システム25の運転率が増加するが、冷凍システム34に比べて冷蔵システム25が高効率であるため、総合効率を向上することができる。同時に、負荷を調整することで冷蔵システム25が能力過多になる問題を緩和することができる。   As a result, the refrigeration effect of the refrigeration system 34 increases as much as the cooling effect of the supercooling heat exchanger 33, and the operating rate of the refrigeration system 34 decreases. On the other hand, the cooling effect of the supercooling heat exchanger 33 becomes a load on the refrigeration system 25, so that the operating rate of the refrigeration system 25 increases. However, since the refrigeration system 25 is more efficient than the refrigeration system 34, the overall efficiency is improved. Can be improved. At the same time, the problem of excessive capacity of the refrigeration system 25 can be alleviated by adjusting the load.

ここで、前段膨張機構31と後段膨張機構32の流路抵抗で調整される過冷却熱交換器33の冷媒圧力は、冷蔵室20の設定温度である約3℃よりも5〜15℃高い飽和圧力とすることが望ましい。温度差が5℃以下では熱交換が困難になるとともに、15℃以上高い飽和圧力に設定した場合、前段膨張機構31と冷凍用圧縮機11の吸入配管との熱交換が困難となり、吸入配管が温度低下して結露の問題が発生する。同様に、前段膨張機構31を使用せず、冷凍用凝縮器12の出口冷媒を直接過冷却熱交換器33に供給すると、冷凍用圧縮機11の吸入配管が温度低下して結露の問題が発生するとともに、過冷却熱交換器33内が液冷媒で満たされるために冷媒封入量が大きく増加する問題も発生する。   Here, the refrigerant pressure of the supercooling heat exchanger 33 adjusted by the flow path resistance of the upstream expansion mechanism 31 and the downstream expansion mechanism 32 is saturated by 5 to 15 ° C. higher than about 3 ° C. which is the set temperature of the refrigerator compartment 20. It is desirable to use pressure. When the temperature difference is 5 ° C. or less, heat exchange becomes difficult, and when a saturation pressure higher than 15 ° C. is set, heat exchange between the pre-stage expansion mechanism 31 and the suction pipe of the refrigeration compressor 11 becomes difficult, and the suction pipe is The temperature drops and condensation problems occur. Similarly, if the outlet refrigerant of the refrigeration condenser 12 is directly supplied to the supercooling heat exchanger 33 without using the pre-stage expansion mechanism 31, the temperature of the suction pipe of the refrigeration compressor 11 is lowered and the problem of condensation occurs. In addition, since the inside of the supercooling heat exchanger 33 is filled with the liquid refrigerant, there arises a problem that the amount of the refrigerant enclosed greatly increases.

また、前段膨張機構31と吸入配管の熱交換部は冷蔵室20と外郭を断熱する断熱壁面(図示せず)内に埋設することが望ましい。前段膨張機構31と吸入配管の熱交換部を冷凍室10の近傍に配置すると、冷凍室10との間に熱移動が生じて冷凍室10の負荷が増えるとともに、冷凍用圧縮機11の吸入配管が温度低下して結露の問題が発生する。   Moreover, it is desirable that the pre-stage expansion mechanism 31 and the heat exchange part of the suction pipe are embedded in a heat insulating wall surface (not shown) that insulates the refrigerator compartment 20 and the outer shell. When the pre-stage expansion mechanism 31 and the heat exchange part of the suction pipe are arranged in the vicinity of the freezer compartment 10, heat transfer occurs between the freezer compartment 10 and the load on the freezer compartment 10 increases, and the intake pipe of the freezing compressor 11 is increased. However, the temperature drops and condensation occurs.

また、冷蔵用蒸発器24と過冷却熱交換器33を一体で形成することにより、冷凍システム34と冷蔵システム25が同時に稼動した場合に、冷蔵用蒸発器24の蒸発熱を利用して過冷却熱交換器33をより冷却することができるので、より大きな効率向上効果が期待できる。   Further, by forming the refrigeration evaporator 24 and the supercooling heat exchanger 33 integrally, when the refrigeration system 34 and the refrigeration system 25 are operated simultaneously, the supercooling is performed using the heat of evaporation of the refrigeration evaporator 24. Since the heat exchanger 33 can be further cooled, a greater efficiency improvement effect can be expected.

また、過冷却熱交換器33を冷蔵用蒸発器24の風上側に配置することにより、冷凍システム34が稼動して冷蔵システム25が停止した場合に、冷蔵用蒸発器24の除霜を促進することができ、冷蔵室20をより高湿に保つことができる。   Further, by disposing the supercooling heat exchanger 33 on the windward side of the refrigeration evaporator 24, the defrosting of the refrigeration evaporator 24 is promoted when the refrigeration system 34 is operated and the refrigeration system 25 is stopped. The refrigerator compartment 20 can be kept at higher humidity.

以上のように、本発明の冷蔵庫においては、冷凍ゾーンを冷却する冷凍システムと冷蔵ゾーンを冷却する冷蔵システムからなる2システム構成とし、冷凍システムの前段膨張機構と後段膨張機構の間に設けた過冷却熱交換器を冷蔵室内の空気で冷却することにより、冷凍用圧縮機の吸入配管が温度低下することを回避しながら、総合効率を向上することができるとともに、負荷を調整することで冷蔵システムが能力過多になる問題を緩和することができる。   As described above, the refrigerator of the present invention has a two-system configuration including a refrigeration system that cools the refrigeration zone and a refrigeration system that cools the refrigeration zone, and is provided between the front-stage expansion mechanism and the rear-stage expansion mechanism of the refrigeration system. By cooling the cooling heat exchanger with air in the refrigeration room, the overall efficiency can be improved while avoiding the temperature drop of the suction piping of the refrigeration compressor, and the refrigeration system can be adjusted by adjusting the load. Can alleviate the problem of overcapacity.

以上のように、本発明にかかる冷蔵庫は、冷凍ゾーンを冷却する冷凍システムとは独立して、冷蔵ゾーンを冷却する第二の冷凍システムを有する冷蔵庫において、最低限の冷媒封入量を維持しながら圧縮機の冷凍能力を調整することで高効率化を図ることができるので、可燃性冷媒を使用した2システム構成の冷凍機器にも適用できる。   As described above, the refrigerator according to the present invention is independent of the refrigeration system that cools the refrigeration zone, and has a second refrigeration system that cools the refrigeration zone, while maintaining a minimum refrigerant filling amount. Since high efficiency can be achieved by adjusting the refrigerating capacity of the compressor, it can also be applied to a two-system refrigerating apparatus using a combustible refrigerant.

本発明の実施の形態1における冷蔵庫の冷媒回路図Refrigerant circuit diagram of refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫背面の模式図The schematic diagram of the refrigerator back in Embodiment 1 of this invention 本発明の実施の形態2における冷蔵庫の冷媒回路図Refrigerant circuit diagram of refrigerator in Embodiment 2 of the present invention 本発明の実施の形態2における冷蔵庫の冷蔵用蒸発器の模式図Schematic diagram of a refrigerator refrigeration evaporator in Embodiment 2 of the present invention 本発明の実施の形態2の冷蔵庫における冷凍システムのモリエル線図Mollier diagram of the refrigeration system in the refrigerator according to the second embodiment of the present invention. 従来の冷蔵庫の冷媒回路図Conventional refrigerator refrigerant circuit diagram 従来の冷蔵庫における蒸発温度と蒸気密度の関係を示した図Diagram showing the relationship between evaporation temperature and vapor density in a conventional refrigerator

10 冷凍室
11 冷凍用圧縮機
13 冷凍用膨張機構
15 冷凍システム
20 冷蔵室
21 冷蔵用圧縮機
24 冷蔵用蒸発器
25 冷蔵システム
26 冷蔵庫背面
31 前段膨張機構
32 後段膨張機構
33 過冷却熱交換器
34 冷凍システム
41 放熱フィン
42 冷媒配管
43 冷媒配管
DESCRIPTION OF SYMBOLS 10 Freezer room 11 Compressor for refrigeration 13 Expansion mechanism for refrigeration 15 Refrigeration system 20 Refrigeration room 21 Compressor for refrigeration 24 Refrigerator evaporator 25 Refrigeration system 26 Refrigerator back surface 31 Pre-stage expansion mechanism 32 Subsequent expansion mechanism 33 Supercooling heat exchanger 34 Refrigeration system 41 Radiating fins 42 Refrigerant piping 43 Refrigerant piping

Claims (6)

食品等を冷凍温度で貯蔵する冷凍室と、冷凍用圧縮機と、冷凍用凝縮器と、冷凍用膨張機構と、冷凍用蒸発器と、からなり、前記冷凍室を冷却する冷凍システムと、
食品等を冷蔵温度で貯蔵する冷蔵室と、冷蔵用圧縮機と、冷蔵用凝縮器と、冷蔵用膨張機構と、冷蔵用蒸発器と、からなり、前記冷蔵室を冷却する冷蔵システムと、
を有する冷蔵庫において、
前記冷凍用圧縮機の気筒容積に対する前記冷蔵用圧縮機の気筒容積の割合を1/3〜2/3とする冷蔵庫。
A freezing room for storing food at a freezing temperature; a freezing compressor; a freezing condenser; a freezing expansion mechanism; and a freezing evaporator; a freezing system for cooling the freezing room;
A refrigeration system for storing food at a refrigeration temperature; a refrigeration compressor; a refrigeration condenser; a refrigeration expansion mechanism; and a refrigeration evaporator;
In a refrigerator having
A refrigerator in which a ratio of a cylinder volume of the refrigeration compressor to a cylinder volume of the refrigeration compressor is 1/3 to 2/3.
前記冷凍用凝縮器と前記冷蔵用凝縮器とは、前記冷蔵庫の外郭を形成する外箱の内面に密着固定された冷媒配管とするとともに、前記外箱を共通の放熱面とした請求項1に記載の冷蔵庫。 The said refrigeration condenser and the said refrigerator for refrigeration are made into the refrigerant | coolant piping closely_contact | adhered and fixed to the inner surface of the outer box which forms the outer shell of the said refrigerator, The said outer box was made into the common heat dissipation surface. The refrigerator described. 前記冷凍用圧縮機と前記冷蔵用圧縮機とを可変速圧縮機として、前記冷蔵用圧縮機の最低回転数は、前記冷凍用圧縮機の最低回転数よりも小さくした請求項1または2に記載の冷蔵庫。 The minimum speed of the refrigeration compressor is made smaller than the minimum speed of the refrigeration compressor, using the refrigeration compressor and the refrigeration compressor as variable speed compressors. Refrigerator. 前記冷凍用膨張機構は、前段膨張機構と後段膨張機構とを有るとともに、前記前段膨張機構と前記後段膨張機構の間に設置され、前記冷蔵用蒸発器あるいは前記冷蔵室と熱交換する過冷却熱交換器を有する請求項1から3のいずれか一項に記載の冷蔵庫。 The refrigeration expansion mechanism has a pre-stage expansion mechanism and a rear-stage expansion mechanism, and is installed between the front-stage expansion mechanism and the rear-stage expansion mechanism, and performs supercooling heat that exchanges heat with the refrigeration evaporator or the refrigeration chamber. The refrigerator as described in any one of Claim 1 to 3 which has an exchanger. 前記冷凍用圧縮機の吸入配管と前記前段膨張機構とを熱交換することで前記吸入配管の冷排熱の回収を行うとともに、熱交換部分を前記冷蔵室の断熱壁面内に埋設した請求項4に記載の冷蔵庫。 5. The heat exhausting portion of the refrigeration compressor and the pre-stage expansion mechanism are subjected to heat exchange to collect cold exhaust heat from the suction piping, and the heat exchange portion is embedded in the heat insulating wall of the refrigerator compartment. Refrigerator. 前記過冷却熱交換器と前記冷蔵用蒸発器とを一体で形成し、前記過冷却熱交換器の配管を前記冷蔵用蒸発器よりも風上側に配置した請求項4または5記載の冷蔵庫。 The refrigerator according to claim 4 or 5, wherein the supercooling heat exchanger and the refrigeration evaporator are integrally formed, and a pipe of the supercooling heat exchanger is arranged on the windward side of the refrigeration evaporator.
JP2009091741A 2009-04-06 2009-04-06 refrigerator Expired - Fee Related JP5402176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009091741A JP5402176B2 (en) 2009-04-06 2009-04-06 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009091741A JP5402176B2 (en) 2009-04-06 2009-04-06 refrigerator

Publications (2)

Publication Number Publication Date
JP2010243055A true JP2010243055A (en) 2010-10-28
JP5402176B2 JP5402176B2 (en) 2014-01-29

Family

ID=43096242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009091741A Expired - Fee Related JP5402176B2 (en) 2009-04-06 2009-04-06 refrigerator

Country Status (1)

Country Link
JP (1) JP5402176B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175365A (en) * 2013-04-23 2013-06-26 合肥美的荣事达电冰箱有限公司 Refrigerator
JP2015072091A (en) * 2013-10-03 2015-04-16 三菱電機株式会社 Refrigerating device
JP2016125774A (en) * 2015-01-05 2016-07-11 三星電子株式会社Samsung Electronics Co.,Ltd. Refrigeration cycle device
WO2021244077A1 (en) * 2020-06-05 2021-12-09 青岛海尔电冰箱有限公司 Control method for refrigerator, and refrigerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250378A (en) * 2005-03-08 2006-09-21 Hoshizaki Electric Co Ltd Cooling storage
JP2006343078A (en) * 2005-06-10 2006-12-21 Toshiba Corp Refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250378A (en) * 2005-03-08 2006-09-21 Hoshizaki Electric Co Ltd Cooling storage
JP2006343078A (en) * 2005-06-10 2006-12-21 Toshiba Corp Refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175365A (en) * 2013-04-23 2013-06-26 合肥美的荣事达电冰箱有限公司 Refrigerator
JP2015072091A (en) * 2013-10-03 2015-04-16 三菱電機株式会社 Refrigerating device
JP2016125774A (en) * 2015-01-05 2016-07-11 三星電子株式会社Samsung Electronics Co.,Ltd. Refrigeration cycle device
WO2021244077A1 (en) * 2020-06-05 2021-12-09 青岛海尔电冰箱有限公司 Control method for refrigerator, and refrigerator

Also Published As

Publication number Publication date
JP5402176B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
WO2017179500A1 (en) Refrigerator and cooling system
CN113007831B (en) Three-pipe multi-online hot water system and control method thereof
CN100371662C (en) Refrigerator
JP2015025563A (en) Air conditioner
JP5402176B2 (en) refrigerator
JP2000018796A (en) Vapor condensation preventing unit for refrigerator
JP2005016874A (en) Freezing and refrigerating unit and refrigerator
JP6872689B2 (en) refrigerator
JP2005106454A (en) Refrigerator
JP6101926B2 (en) refrigerator
JP3826998B2 (en) Stirling refrigeration system and Stirling refrigerator
JP4654539B2 (en) refrigerator
JP2007309585A (en) Refrigerating device
JP4608790B2 (en) refrigerator
JP2011117685A (en) Freezer-refrigerator
JP2006214614A (en) Refrigerator and its control method
JP2004324902A (en) Freezing refrigerator
JP2012241949A (en) Refrigerator
JP2004333092A (en) Freezer/refrigerator
KR100377618B1 (en) Refrigerator with Phase change material
JP2010249444A (en) Freezer-refrigerator
JP5165358B2 (en) Refrigeration equipment
JP6543811B2 (en) refrigerator
KR200443270Y1 (en) Dual compressor in show case
JP5228661B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

LAPS Cancellation because of no payment of annual fees