JP2010242808A - Manufacturing method for coaxial composite gear for gear transmission - Google Patents

Manufacturing method for coaxial composite gear for gear transmission Download PDF

Info

Publication number
JP2010242808A
JP2010242808A JP2009090242A JP2009090242A JP2010242808A JP 2010242808 A JP2010242808 A JP 2010242808A JP 2009090242 A JP2009090242 A JP 2009090242A JP 2009090242 A JP2009090242 A JP 2009090242A JP 2010242808 A JP2010242808 A JP 2010242808A
Authority
JP
Japan
Prior art keywords
gear
gears
transmission
manufacturing
operating characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009090242A
Other languages
Japanese (ja)
Inventor
Morihiro Matsumoto
守弘 松本
Naoki Moriguchi
直樹 森口
Akinori Morohashi
昭徳 諸橋
Onori Okamoto
大典 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009090242A priority Critical patent/JP2010242808A/en
Publication of JP2010242808A publication Critical patent/JP2010242808A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent poor performance, noise or vibration from occurring by a manufacturing error of relative difference or phase difference in tooth profiles of first and second gears, in an coaxial composite gear transmission by a gear in which at least two gears are so coaxially superposed that a first gear is excellent in first operating characteristic compared with a second gear, and the second gear is excellent in a second operating characteristic compared with the first gear. <P>SOLUTION: The first and second gears are coaxially retained. After the teeth corresponding to the first and second gears are processed at the same time with a phase difference of 0, a predetermined phase difference is assigned to the gap between gears through plastic torsion deformation, or the teeth corresponding to the first and second gears are processed at the same time while a raw material undergoes elastic torsion deformation by the predetermined phase difference. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、互いに噛み合わされた駆動側歯車と被駆動側歯車の少なくとも一方が少なくとも2つの歯車を同軸に重ね合わせた同軸複合歯車である歯車伝動装置の製造方法に係る。   The present invention relates to a method of manufacturing a gear transmission in which at least one of a driving side gear and a driven side gear meshed with each other is a coaxial compound gear in which at least two gears are coaxially overlapped.

互いに噛み合わされた駆動側歯車より被駆動側歯車へ回転力を伝達する歯車伝動装置に於いて、噛合いのバックラッシュの開閉により生ずる打音に起因する騒音を抑制すべく、駆動側歯車と被駆動側歯車の少なくとも一方にバックラッシュの開閉を抑えるように位相が主歯車に対し僅かにずらされるか、歯幅が主歯車より僅かに大きくされた補助歯車を、主歯車に同軸に重ね合わせることが従来より知られている。またそのように歯幅が主歯車より僅かに大きくされた補助歯車を特に環状歯車とし、主歯車のボス部の周りに弾性体の環を介して半径方向に偏倚可能に遊嵌することが下記の特許文献1に記載されている。   In a gear transmission that transmits a rotational force from a driving gear engaged with each other to a driven gear, the driving gear and the driven gear are suppressed in order to suppress noise caused by the hitting sound generated by opening and closing of the meshing backlash. An auxiliary gear whose phase is slightly shifted from the main gear or whose tooth width is slightly larger than that of the main gear is superimposed on the main gear coaxially with at least one of the drive side gears so as to prevent backlash opening and closing. Is conventionally known. Further, the auxiliary gear whose tooth width is slightly larger than that of the main gear is particularly an annular gear, and it can be loosely fitted around the boss portion of the main gear via an elastic ring so as to be biased in the radial direction. Patent Document 1 of Japanese Patent Application Laid-Open No. H11-228707.

特開2008-75856JP2008-75856

一方、下記の特許文献2には、上記の如くバックラッシュの開閉を抑えるよう互いに位相をずらせて同軸に複合された2つの歯車を、部品点数の削減のために、一体成形することが記載されている。更に、下記の特許文献3には、互いに位相をずらせて同軸に複合された状態に一体成形される2つの歯車のうちの主歯車の部分をポリオキシエチレン等の高剛性の硬質樹脂により形成し、補助歯車の部分をポリウレタン等の低剛性の軟質樹脂により形成することが記載されている。   On the other hand, in Patent Document 2 below, it is described that two gears that are coaxially compounded so as to be out of phase with each other so as to suppress backlash opening and closing as described above are integrally formed to reduce the number of parts. ing. Further, in Patent Document 3 below, the main gear portion of two gears that are integrally molded in a state of being coaxially shifted with respect to each other is formed of a highly rigid hard resin such as polyoxyethylene. In addition, it is described that the auxiliary gear portion is formed of a low-rigidity soft resin such as polyurethane.

特開2004-108436JP2004-108436 特開2002-181162JP 2002-181162 A

歯車の歯は、互いに噛み合う歯車の間に伝達される回転の等速性を保つ必要があることから、互いに噛み合う歯の歯面の間には噛合いの進行に伴って滑りが生じる。また歯車の歯は、互いに噛み合う歯車のそれぞれの一つの歯どうしの接触が離れないうちに、それぞれの歯車の次の一つの歯どうしの接触が始まるように、互いに噛み合う歯の接触は一部重複して生ずるように歯形が設計されている。歯面の間に生ずる滑り接触は摩擦損失をもたらすので、かかる摩擦損失を減らし、歯車間の回転力の伝達効率を高める上からは、歯の接触の重複の度合はできるだけ低く抑えられるのが好ましい。しかし、歯車伝動装置の許容伝達トルクを高める観点からは、歯の接触の重複の度合はできるだけ高くされるのが好ましい。従って、歯車伝動装置に於いては、許容伝達トルクと伝達効率とは相互に背反する作動特性である。しかし、特に車輌用歯車伝動装置の如く作動負荷が大きく変動する装置に於いては、許容伝達トルクと伝達効率の間の優先順位は、装置の作動負荷の大小に応じて互いに反転することが考えられるので、歯車伝動装置の全作動域についてみれば、作動域に応じて許容伝達トルクと伝達効率の間の優先順位を入れ替えることにより、歯車伝動装置の総合的性能を更に向上させることができると考えられる。   Since the gear teeth need to maintain the constant speed of rotation transmitted between the meshing gears, slippage occurs between the tooth surfaces of the meshing gears as the meshing progresses. In addition, the teeth of the gear teeth are partially overlapped so that the contact of the next tooth of each gear starts before the contact of the respective teeth of the gears meshing with each other begins to separate. The tooth profile is designed to occur as a result. Since the sliding contact between the tooth surfaces causes friction loss, the degree of overlapping tooth contact is preferably kept as low as possible in order to reduce the friction loss and increase the transmission efficiency of the rotational force between the gears. . However, from the viewpoint of increasing the allowable transmission torque of the gear transmission, it is preferable that the degree of overlapping tooth contact is as high as possible. Therefore, in the gear transmission, the allowable transmission torque and the transmission efficiency are operating characteristics that are opposite to each other. However, particularly in a device such as a vehicle gear transmission in which the operating load varies greatly, the priority order between the allowable transmission torque and the transmission efficiency may be reversed depending on the size of the operating load of the device. Therefore, when looking at the entire operating range of the gear transmission, the overall performance of the gear transmission can be further improved by switching the priority between the allowable transmission torque and the transmission efficiency according to the operating range. Conceivable.

また歯車伝動装置にとっては、その作動に於ける静粛性も一つの重要な作動特性となる。機械装置の騒音や振動には種々の周波数のものがあり、また周囲の構造物との共振も影響するので、静粛性と許容伝達トルク或いは伝達効率の間に、常に定まった同調或いは背反の関係はないが、個々の歯車伝動装置についてみれば、特に車輌用歯車伝動装置の如く広い作動域にわたって作動状態が変化する場合には、歯車伝動装置の総合的性能を更に高めることができるような、作動状態の変化に応じた静粛性と許容伝達トルク或いは伝達効率の間の同調或いは背反の関係が見出せる可能性がある。   For gear transmissions, quietness in operation is also an important operational characteristic. There are various frequencies of noise and vibration of mechanical devices, and resonance with surrounding structures also affects, so there is always a constant tuning or contradictory relationship between quietness and allowable transmission torque or transmission efficiency. However, when looking at individual gear transmissions, the overall performance of the gear transmissions can be further enhanced, especially when the operating state changes over a wide operating range, such as vehicle gear transmissions. There is a possibility that a relationship between the quietness and the allowable transmission torque or the transmission efficiency according to the change of the operating state can be found.

上記の事項に着目し、特に車輌の駆動系に於ける歯車伝動装置の如く、その作動域が大きく変動する場合を念頭に於いて、歯車伝動装置の許容伝達トルク、伝達効率、静粛性等に基づく総合的作動特性を広い作動域に対して向上させるべく、互いに噛み合わされた駆動側歯車より被駆動側歯車へ回転力を伝達する歯車伝動装置として、駆動側歯車と被駆動側歯車の少なくとも一方を第一および第二の少なくとも2つの歯車を同軸に重ね合わせた歯車とし、第一の歯車は第二の歯車に比して第一の作動特性に於いて優れており、第二の歯車は第一の歯車に比して第二の作動特性に於いて優れており、第一の作動特性が第二の作動特性に優先する作動時と第二の作動特性が第一の作動特性に優先する作動時とで第一および第二の歯車の回転力伝達に関与する度合を相対的に変更することが考えられ、このことが本件出願人と同一の出願人の出願に係る「作動特性優先順位により歯車を切り換える歯車伝動装置」と題する特願2009−51769に於いて特許請求されている。   Paying attention to the above items, especially in the case where the operating range fluctuates greatly, such as a gear transmission in a vehicle drive system, the allowable transmission torque, transmission efficiency, quietness, etc. of the gear transmission In order to improve the overall operating characteristics based on a wide operating range, at least one of the driving side gear and the driven side gear is used as a gear transmission that transmits the rotational force from the meshing driving side gear to the driven side gear. Is a gear in which at least two first and second gears are coaxially overlapped, and the first gear is superior in the first operating characteristic to the second gear, and the second gear is Superior in second operating characteristics compared to the first gear, with the first operating characteristic prior to the second operating characteristic and the second operating characteristic prior to the first operating characteristic. Rotational force transmission of the first and second gears during operation It is conceivable to change the degree of involvement relatively, and this is related to Japanese Patent Application No. 2009-51769 entitled “Gear transmission device that switches gears according to priority of operation characteristics” according to the application of the same applicant as the present applicant. Claims.

上記の如く、第一の歯車は第二の歯車に比して第一の作動特性に於いて優れ、第二の歯車は第一の歯車に比して第二の作動特性に於いて優れているということは、第一と第二の歯車とで、歯形に相対的な違いがあることを意味するが、このための歯形の相対的な違いは、寸法的には微差であるため、そのように歯形に相対的な微差がある第一と第二の歯車の回転力伝達に関与する度合の相対的変更を歯車伝動装置の作動中に伝達トルクの変化等に応じて滑らかに起こさせるには、第一と第二の歯車の対応する歯の歯形の相対的差異が高精度に仕上げられていることが要求される。さもないときは、第一と第二の歯車の回転力伝達に関与する度合の相対的変更が設計通りには起こらず、また第一および第二の歯車の歯が噛合い相手方歯車の歯に接触し始め或はその接触が終了する時点に生ずるばらつきにより、唸りのような騒音や振動が生ずる虞れがある。   As described above, the first gear is superior in the first operating characteristics compared to the second gear, and the second gear is superior in the second operating characteristics compared to the first gear. This means that there is a relative difference in the tooth profile between the first and second gears, but the relative difference in the tooth profile for this is a dimensional difference. Thus, the relative change in the degree involved in the transmission of the rotational force of the first and second gears, which have a relative difference in the tooth profile, occurs smoothly in response to changes in the transmission torque during operation of the gear transmission. In order to achieve this, it is required that the relative difference between the tooth shapes of the corresponding teeth of the first and second gears be finished with high accuracy. Otherwise, the relative change in the degree of transmission involved in the torque transmission of the first and second gears will not occur as designed, and the teeth of the first and second gears will change to the teeth of the mating counterpart gear. There is a possibility that noise and vibration such as harshness may occur due to variations occurring at the time when contact starts or ends.

そこで、上記の如き特異な歯車伝動装置に特異な事情により生ずる虞れのある性能不良や騒音、振動の発生を抑制することができるように歯車伝動装置用同軸複合歯車を制動する方法の一つとして、上記の如き第一および第二の歯車の素材を同軸に保持し、第一および第二の歯車の対応する歯を同時に加工する歯車製造法方が、本件出願人と同一の出願人の出願に係る「歯車伝動装置用同軸複合歯車の製造法方」と題する特願2009−55398に於いて特許請求されている。   Therefore, one of the methods for braking the coaxial compound gear for a gear transmission so as to suppress the occurrence of poor performance, noise, and vibration that may occur due to circumstances peculiar to the unique gear transmission as described above. As described above, a gear manufacturing method in which the materials of the first and second gears as described above are held coaxially and the corresponding teeth of the first and second gears are processed simultaneously is the same as that of the applicant of the present application. This is claimed in Japanese Patent Application No. 2009-55398 entitled “Method of Manufacturing Coaxial Compound Gear for Gear Transmission”.

本発明は、上記の如き特異な歯車伝動装置用同軸複合歯車を性能不良や騒音、振動の発生を抑制することができるように製造する他の方法を提案することを課題としている。   This invention makes it a subject to propose the other method of manufacturing the coaxial compound gear for unique gear transmissions as mentioned above so that generation | occurrence | production of a performance defect, a noise, and a vibration can be suppressed.

上記の課題を解決するものとして、本発明は、互いに噛み合わされた駆動側歯車と被駆動側歯車の少なくとも一方は第一および第二の少なくとも2つの歯車を同軸に重ね合わせた歯車であり、前記第一の歯車は前記第二の歯車に比して第一の作動特性に於いて優れており、前記第二の歯車は前記第一の歯車に比して第二の作動特性に於いて優れており、前記第一の作動特性が前記第二の作動特性に優先する作動時と前記第二の作動特性が前記第一の作動特性に優先する作動時とで前記第一および第二の歯車の回転力伝達に関与する度合が相対的に変更されるようになっている歯車伝動装置の前記第一および第二の歯車を製造する方法にして、互いに一体となっている前記第一の歯車と前記第二の歯車とを同軸に保持し、前記第一および第二の歯車の対応する歯を同時に加工し、その後で前記第一および第二の歯車を中心軸線の周りに相対的に捩って両者間に塑性捩じり変形による所定の位相差を付与することを特徴とする歯車製造方法を提案するものである。   In order to solve the above-described problems, the present invention provides a gear in which at least one of a driving side gear and a driven side gear meshed with each other is a superposition of at least two first and second gears coaxially, The first gear is superior in the first operating characteristic as compared to the second gear, and the second gear is superior in the second operating characteristic as compared to the first gear. The first and second gears when the first operating characteristic is prioritized over the second operating characteristic and when the second operating characteristic is prioritized over the first operating characteristic. The first gear integrated with each other in the method of manufacturing the first and second gears of the gear transmission in which the degree involved in the transmission of the rotational force is relatively changed And the second gear are held coaxially, and the first and second gears Machining the corresponding teeth of the car at the same time, and then twisting the first and second gears relatively around the central axis to give a predetermined phase difference between them by plastic torsional deformation A gear manufacturing method is proposed.

また上記と同根の技術思想により上記の課題を解決するものとして、本発明は、互いに噛み合わされた駆動側歯車と被駆動側歯車の少なくとも一方は第一および第二の少なくとも2つの歯車を同軸に重ね合わせた歯車であり、前記第一の歯車は前記第二の歯車に比して第一の作動特性に於いて優れており、前記第二の歯車は前記第一の歯車に比して第二の作動特性に於いて優れており、前記第一の作動特性が前記第二の作動特性に優先する作動時と前記第二の作動特性が前記第一の作動特性に優先する作動時とで前記第一および第二の歯車の回転力伝達に関与する度合が相対的に変更されるようになっている歯車伝動装置の前記第一および第二の歯車を製造する方法にして、互いに一体となっている前記第一の歯車と前記第二の歯車とを弾性捩じり変形の範囲内にて中心軸線の周りに相対的に捩じって保持し、前記第一および第二の歯車の対応する歯を同時に加工し、その後で前記第一および第二の歯車の相対的弾性捩じり変形を解放して両者間に所定の位相差を付与することを特徴とする歯車製造方法を提案するものである。   In order to solve the above problems by the technical idea of the same root as above, at least one of the driving side gear and the driven side gear meshed with each other has at least two first and second gears coaxially. The first gear is superior in the first operating characteristic as compared to the second gear, and the second gear is the first gear compared to the first gear. The first operating characteristic is superior to the second operating characteristic and the second operating characteristic is prior to the first operating characteristic. A method of manufacturing the first and second gears of the gear transmission in which the degrees involved in the transmission of the rotational force of the first and second gears are relatively changed. The first gear and the second gear are made elastic Torsionally hold around a central axis within the range of torsional deformation and simultaneously machine the corresponding teeth of the first and second gears, after which the first and second gears The present invention proposes a gear manufacturing method in which the relative elastic torsional deformation is released to give a predetermined phase difference between the two.

前記第一および第二の歯車は一体の素材よりなっていてよい。   The first and second gears may be made of an integral material.

或いはまた、前記第一の歯車は第一の素材よりなり、前記第二の歯車は第二の素材よりなり、前記第一および第二の素材は第三の素材により互いに結合されてもよい。   Alternatively, the first gear may be made of a first material, the second gear may be made of a second material, and the first and second materials may be coupled to each other by a third material.

前記一体の素材または前記第三の素材は前記第一の歯車と前記第二の歯車の間に両者間の中心軸線周りの弾性捩じりを許容する連結部を形成するよう加工されてよい。   The integral material or the third material may be processed to form a connecting portion that allows elastic torsion around the central axis between the first gear and the second gear.

前記連結部は前記第一および第二の歯車と同心の環状に加工されてよい。   The connecting portion may be processed into an annular shape concentric with the first and second gears.

前記環状の連結部にはその環に沿って隔置された複数個の孔が開けられてよい。   A plurality of holes spaced along the ring may be formed in the annular connecting portion.

上記の如く、互いに噛み合わされた駆動側歯車と被駆動側歯車の少なくとも一方は第一および第二の少なくとも2つの歯車を同軸に重ね合わせた歯車であり、前記第一の歯車は前記第二の歯車に比して第一の作動特性に於いて優れており、前記第二の歯車は前記第一の歯車に比して第二の作動特性に於いて優れており、前記第一の作動特性が前記第二の作動特性に優先する作動時と前記第二の作動特性が前記第一の作動特性に優先する作動時とで前記第一および第二の歯車の回転力伝達に関与する度合が相対的に変更されるようになっている歯車伝動装置の前記第一および第二の歯車の製造に当たって、互いに一体となっている前記第一の歯車と前記第二の歯車とを同軸に保持し、前記第一および第二の歯車の対応する歯を同時に加工し、その後で前記第一および第二の歯車を中心軸線の周りに相対的に捩って両者間に塑性捩じり変形による所定の位相差を付与するか、或いは、互いに一体となっている前記第一の歯車と前記第二の歯車とを弾性捩じり変形の範囲内にて中心軸線の周りに相対的に捩じって保持し、前記第一および第二の歯車の対応する歯を同時に加工し、その後で前記第一および第二の歯車の相対的弾性捩じり変形を解放して両者間に所定の位相差を付与すれば、第一および第二の歯車の互いに対応する歯はそれらの間の位相差を0にした状態で歯形が仕上げられるので、第一および第二の歯車の対応する歯の歯形の相対的仕上がり精度を高めることがより容易に達成され、且つ第一および第二の歯車の互いに対応する歯の間に付与される位相差も歯車の全周にわたって高度に均一となる。   As described above, at least one of the driving side gear and the driven side gear meshed with each other is a gear in which at least two first and second gears are coaxially overlapped, and the first gear is the second gear. The first operating characteristic is superior to the gear, the second gear is superior to the first gear in the second operating characteristic, and the first operating characteristic is superior to the first gear. Is involved in the rotational force transmission of the first and second gears when the operation has priority over the second operation characteristic and when the second operation characteristic has priority over the first operation characteristic. In manufacturing the first and second gears of the gear transmission that is relatively changed, the first gear and the second gear that are integrated with each other are held coaxially. Machining the corresponding teeth of the first and second gears simultaneously, Later, the first and second gears are relatively twisted around the central axis to give a predetermined phase difference between them by plastic torsional deformation, or the first and second gears are integrated with each other. One gear and the second gear are relatively twisted and held around the central axis within the range of elastic torsional deformation, and the corresponding teeth of the first and second gears are simultaneously held. If the first and second gears are processed and then the relative elastic torsional deformation of the first and second gears is released to give a predetermined phase difference therebetween, the corresponding teeth of the first and second gears are Since the tooth profile is finished with the phase difference between them being zero, it is more easily achieved to increase the relative finishing accuracy of the corresponding tooth profile of the first and second gears, and The phase difference applied between the corresponding teeth of the second gear is also changed over the entire circumference of the gear. A highly uniform me.

前記第一および第二の歯車が一体の素材よりなっていれば、第一の歯車の素材と第二の歯車の素材を同軸に保持することは当初から自ずと達成される。   If the first and second gears are made of an integral material, the first gear material and the second gear material can be naturally held from the beginning.

前記第一の歯車は第一の素材よりなり、前記第二の歯車は第二の素材よりなり、前記第一および第二の素材が第三の素材により互いに結合されれば、歯形の仕上げに際して第一の歯車の素材および第二の歯車の素材を同軸に保持することが容易に達成される。   When the first gear is made of a first material, the second gear is made of a second material, and the first and second materials are joined together by a third material, the tooth profile is finished. It is easily achieved to keep the material of the first gear and the material of the second gear coaxial.

前記一体の素材または前記第三の素材が前記第一の歯車と前記第二の歯車の間に両者間の中心軸線周りの弾性捩じりを許容する連結部を形成するよう加工されれば、伝達トルクの大小に応じて第一およぶ第二の歯車が回転力伝達に関与する度合を相対的に変更することを、伝達トルクの増減に応じて自動的に行わせることができると共に、第一および第二の歯車を中心軸線の周りに相対的に捩って両者間に塑性捩じり変形による所定の位相差を付与し、或は第一の歯車の素材および第二の歯車の素材を弾性捩じり変形の範囲内にて中心軸線の周りに相対的に捩じって保持し、第一および第二の歯車の対応する歯を同時に加工し、その後で第一および第二の歯車の相対的弾性捩じり変形を解放して両者間に所定の位相差を付与する要領にて、第一および第二の歯車の対応する歯の間に相対的歯形差と位相差を付与することをより高精度に達成することがより容易となる。   If the integral material or the third material is processed so as to form a connecting portion that allows elastic torsion around the central axis between the first gear and the second gear, According to the magnitude of the transmission torque, the first and second gears can be automatically changed in accordance with the increase or decrease of the transmission torque, and the degree to which the first and second gears are involved in the rotational force transmission can be automatically changed. The second gear is relatively twisted around the central axis to give a predetermined phase difference between the two by plastic torsional deformation, or the first gear material and the second gear material are Torsionally hold around the central axis within the range of elastic torsional deformation and simultaneously machine the corresponding teeth of the first and second gears, then the first and second gears In order to release the relative elastic torsional deformation of the two and give a predetermined phase difference between the two, And it is easier to achieve the second gear of the corresponding relative tooth difference between the teeth and the high accuracy of imparting retardation.

この場合、前記連結部が前記第一および第二の歯車と同心の環状に加工されれば、第一と第二の歯車の間の中心軸線周りの弾性捩じりの捩じり角をより大きい値まで許容することができ、かかる第一および第二の歯車を用いた歯車伝動装置の設計可能範囲が広がり、また弾性捩じり範囲を越えて塑性捩じり変形を起こさせた場合の塑性捩じり変形の安定性を高めることができる。更に、前記環状の連結部にその環に沿って隔置された複数個の孔が開けられれば、その孔の寸法、形状、個数等により第一と第二の歯車の間の中心軸線周りの弾性変形のばね定数を調節することができ、伝達トルクの大小に応じて第一および第二の歯車が回転力伝達に関与する度合を相対的に変更することができると共に、塑性捩じり変形を起こさせる場合により広い設計の自由度が得られる。   In this case, if the connecting portion is processed into an annular shape concentric with the first and second gears, the twist angle of the elastic torsion around the central axis between the first and second gears is increased. A large value can be tolerated, and the design range of the gear transmission using such first and second gears is widened, and when plastic torsional deformation is caused beyond the elastic torsional range. The stability of plastic torsional deformation can be increased. Furthermore, if a plurality of holes spaced along the ring are formed in the annular connecting portion, the size, shape, number, etc. of the holes around the central axis between the first and second gears The spring constant of elastic deformation can be adjusted, and the degree to which the first and second gears are involved in rotational force transmission can be changed relative to the magnitude of the transmission torque, and plastic torsional deformation A wider degree of design freedom is obtained when causing

本発明を車輌の駆動系に於ける歯車伝動装置に適用した一つの実施の形態を駆動側歯車と被駆動側歯車の歯の噛合い部について示す概略図である。この場合、第一の作動特性は許容伝達トルクであり、第二の作動特性は伝達効率であって、図示の状態は伝達トルクが比較的低い作動状態にあり、第二の作動特性である伝達効率が第一の作動特性である許容伝達トルクより優先される作動状態にある。It is the schematic which shows one embodiment which applied this invention to the gear transmission in the drive system of a vehicle about the meshing part of the tooth | gear of a drive side gear and a driven side gear. In this case, the first operation characteristic is the allowable transmission torque, the second operation characteristic is the transmission efficiency, and the illustrated state is an operation state in which the transmission torque is relatively low, and the second operation characteristic is transmission. Efficiency is in an operating state in which priority is given to the allowable transmission torque which is the first operating characteristic. 図1に示す歯車伝達装置に於いて、駆動側歯車より被駆動側歯車に伝達されるトルクが増大し、第一の作動特性である許容伝達トルクが第二の作動特性である伝達効率より優先される作動状態になったときの駆動側歯車と被駆動側歯車の歯の噛合い部を示す概略図である。In the gear transmission device shown in FIG. 1, the torque transmitted from the driving gear to the driven gear increases, and the allowable transmission torque as the first operating characteristic takes precedence over the transmission efficiency as the second operating characteristic. It is the schematic which shows the meshing part of the tooth | gear of a drive side gear and a driven side gear when it will be in the operation state made. 第一および第二の歯車が一体の素材よりなる同軸複合歯車が噛合いの相手方歯車と噛み合わされている車歯車伝達装置の一例を示す一部縦断面による概略図である。It is the schematic by the partial longitudinal cross-section which shows an example of the vehicle gear transmission apparatus with which the coaxial compound gear which consists of a raw material with which the 1st and 2nd gear is integral is meshed | engaged with the other gear. 第一の歯車は第一の素材よりなり、第二の歯車は第二の素材よりなり、第一および第二の素材が第三の素材により互いに結合されている同軸複合歯車の一例を素材の結合の前後の状態について示す概略断面図である。The first gear is made of the first material, the second gear is made of the second material, and an example of the coaxial compound gear in which the first and second materials are coupled to each other by the third material It is a schematic sectional drawing shown about the state before and behind coupling | bonding. 図3に示す如く第一および第二の歯車が一体の素材よりなる同軸複合歯車を例にとって本発明による歯車伝動装置用同軸複合歯車の製造方法の第一の実施の形態を示す歯車の概略側面図である。As shown in FIG. 3, a schematic side view of a gear showing a first embodiment of a method of manufacturing a coaxial compound gear for a gear transmission according to the present invention, taking a coaxial compound gear made of a material in which the first and second gears are integrated as an example. FIG. 図3に示す如く第一および第二の歯車が一体の素材よりなる同軸複合歯車を例にとって本発明による歯車伝動装置用同軸複合歯車の製造方法の第二の実施の形態を示す歯車の概略側面図である。FIG. 3 is a schematic side view of a gear showing a second embodiment of a method of manufacturing a coaxial composite gear for a gear transmission according to the present invention, taking as an example a coaxial composite gear made of an integral material of the first and second gears. FIG.

図1に於いて、10は駆動側歯車であり、12は被駆動側歯車であって、駆動側歯車10が矢印Aの方向に回転することにより被駆動側歯車12が図示の如き歯の噛合い部を経て矢印Bの方向に駆動されるようになっている。図示の例では、駆動側歯車10が同軸に重ね合わされた2つの歯車10Aと10Bよりなっている。図示の状態は、伝達トルクが比較的低い状態であり、図示の例では、歯車10Aの歯10A−1、10A−2等の方が歯車10Bの歯10B−1、10B−2等より噛合いの進み側に偏倚していて、歯10A−1、10A−2等のみが歯車12の歯12−1、12−2等と接触している。   In FIG. 1, 10 is a driving side gear, 12 is a driven side gear, and when the driving side gear 10 rotates in the direction of arrow A, the driven side gear 12 meshes with teeth as shown. It is driven in the direction of arrow B through the main part. In the illustrated example, the drive side gear 10 is composed of two gears 10A and 10B that are coaxially overlapped. In the illustrated state, the transmission torque is relatively low. In the illustrated example, the teeth 10A-1, 10A-2, etc. of the gear 10A are engaged with the teeth 10B-1, 10B-2, etc. of the gear 10B. Only the teeth 10A-1, 10A-2, etc. are in contact with the teeth 12-1, 12-2, etc. of the gear 12.

歯車10Aの歯10A−1、10A−2等と歯車12の歯12−1、12−2等との接触は、常時少なくとも1組が接触し、それに加えて歯車10または12が1回転する360度中の或る割合の回転角αの間だけ2組の歯の同時接触が生ずる。ここでα/360を「噛合いの重複率」と呼ぶことにすれば、歯10Aと歯12の噛合いの重複率は1以上であって1に比較的近い或る値とされている。これは歯10Aと歯12の歯形の相対的設計により定まる。   The contact between the teeth 10A-1, 10A-2 and the like of the gear 10A and the teeth 12-1, 12-2 and the like of the gear 12 is always at least one set in contact with each other, and in addition, the gear 10 or 12 rotates 360 times. Simultaneous contact of the two sets of teeth occurs only during a percentage of the rotation angle α. Here, if α / 360 is referred to as “meshing overlap ratio”, the tooth duplication ratio of the teeth 10A and the teeth 12 is 1 or more and is a certain value relatively close to 1. This is determined by the relative design of the tooth profile of the tooth 10A and the tooth 12.

図2は、図1に示す状態より伝達トルクが増大し、歯車12の歯12−1、12−2等に対し歯車10Bの歯10B−1、10B−2等が接触するようになった状態を示す。歯車10Bの歯10B−1、10B−2等の歯形はその湾曲度が歯車10Aの歯10A−1、10A−2等の湾曲度より小さく、歯10B−1、10B−2等と歯12−1、12−2等の間に生ずる接触の重複の度合は、歯10A−1、10A−2等と歯12−1、12−2等の間に生ずる接触の重複の度合より大きく、即ち、歯10Bと歯12の噛合いの重複率は、歯10Aと歯12の噛合いの重複率より大きくされている。これもまた歯10Bと歯12の歯形の相対的設計により定まる。   FIG. 2 shows a state in which the transmission torque increases from the state shown in FIG. 1 and the teeth 10B-1, 10B-2, etc. of the gear 10B come into contact with the teeth 12-1, 12-2, etc. of the gear 12. Indicates. The tooth forms of the teeth 10B-1, 10B-2, etc. of the gear 10B are less curved than the teeth 10A-1, 10A-2, etc. of the gear 10A, and the teeth 10B-1, 10B-2, etc. and the teeth 12- 1, 12-2 etc., the degree of contact overlap occurring between teeth 10A-1, 10A-2, etc. and teeth 12-1, 12-2 etc. is greater, ie, The overlapping rate of engagement between the teeth 10B and the teeth 12 is larger than the overlapping rate of engagement between the teeth 10A and the teeth 12. This is also determined by the relative design of the tooth profile of the tooth 10B and the tooth 12.

従って、駆動側歯車から被駆動側歯車への回転力の伝達が、図1に示す如く歯車10Aと歯車12の噛合いにより行われているときと、図2に示す如く歯車10Aおよび10Bと歯車12の噛合いにより行われているときとを比較すれば、図1に示す作動状態は図2に示す作動状態に比して、伝達効率に於いては優れているが、許容伝達トルクに於いては劣っており、図2に示す作動状態は図1に示す作動状態に比して、伝達効率に於いては劣るが、許容伝達トルクに於いては優れている。   Accordingly, when the transmission of the rotational force from the driving side gear to the driven side gear is performed by meshing of the gear 10A and the gear 12 as shown in FIG. 1, and when the gears 10A and 10B and the gear are shown in FIG. 1 is compared with the operation state shown in FIG. 2, the operation state shown in FIG. 1 is superior in the transmission efficiency to the operation state shown in FIG. 2 is inferior, and the operating state shown in FIG. 2 is inferior in transmission efficiency to the operating state shown in FIG. 1, but excellent in allowable transmission torque.

図3は、図1および図2について上に説明した如く、歯車12との噛合いに於ける重複率が異なる歯車10Aと10Bとが一体の素材より形成され、且つ駆動側歯車10より被駆動側歯車12への回転力伝達に歯車10Bが関与する度合を、歯車10Aが関与する度合に対比して、伝達トルクの増大に応じて相対的に増大させることを、歯車10Aと10Bの間に形成された連結部10Cの弾性捩じりにより自動的に行わせる歯車伝動装置の一つの実施の形態を示す一部縦断面による概略図である。図3に於いて、図1および2に示す部分に対応する部分は図1および2に於けると同じ符号により示されている。尚、図示の例では、被駆動側歯車12は、全体としては一つの歯車であるが、環状溝14により仕切られて、歯車10Aと噛合う歯車部12Aと、歯車10Bと噛合う歯車部12Bとに分けられている。   3, as described above with reference to FIGS. 1 and 2, the gears 10 </ b> A and 10 </ b> B having different overlapping ratios in meshing with the gear 12 are formed of a single material and driven by the driving side gear 10. Between the gears 10A and 10B, the degree to which the gear 10B is involved in the transmission of the rotational force to the side gear 12 is relatively increased in accordance with the increase in the transmission torque as compared with the degree to which the gear 10A is involved. It is the schematic by the partial longitudinal cross-section which shows one embodiment of the gear transmission automatically performed by the elastic twist of the formed connection part 10C. In FIG. 3, parts corresponding to those shown in FIGS. 1 and 2 are denoted by the same reference numerals as in FIGS. In the illustrated example, the driven-side gear 12 is a single gear as a whole, but is partitioned by the annular groove 14 and the gear portion 12A meshed with the gear 10A and the gear portion 12B meshed with the gear 10B. It is divided into and.

この場合、歯車10Aと10Bとは一体の素材よりなっており、図には示されていない歯切り機械により歯車10Aと10Bの対応する歯は、以下に図5および6について説明される過程のいずれかを経て、同時に加工される。歯車10は全体として環状であり、歯車10Bの部分にてのみインナスプライン16により回転軸18のアウタスプライン20に嵌合し、歯車10Aの部分および連結部10Cは回転軸16の周りに遊嵌されている。連結部10Cの部分は歯車10Aと10Bと同心の環状であり、且つその環に沿って隔置された複数個の孔22が開けられている。連結部10Cが捩じられていない状態にて、歯車10Aは歯車10Bに対し噛合い位相の進み側に偏倚しており、歯車10Aは連結部10Cを介して回転力伝達に関与するようになっている。かかる構成によれば、伝達トルクが低い間は、歯車10Bに対し噛合い位相の進み側に偏倚した状態にある歯車10Aのみにより歯車12が駆動され、伝達トルクの増大に応じて連結部10Cが弾性的に捩じれ、それに応じて歯車10Bに対する歯車10Aの噛合い位相の進みが減少し、伝達トルクの増大に応じて歯車10Bを回転力伝達により大きく関与させる制御を、連結部10Cの弾性捩じれ作用によって自動的に行わせることができる。この場合、伝達トルクが所定値以下では歯車10Bは歯車12に接触せず、歯車10Bの回転力伝達に関与する度合が零であれば、伝達トルクが所定値以下の低い状態であって、許容伝達トルクの大きさには問題がなく、伝達効率の方を最大限に優先させた方が好ましい作動時に、歯車10Aと歯車10Bの回転力伝達に関与する配分の度合を100%歯車10Aの側に偏倚させることができる。   In this case, the gears 10A and 10B are made of a single piece of material, and the corresponding teeth of the gears 10A and 10B are processed in the process described below with reference to FIGS. It is processed at the same time through either. The gear 10 is annular as a whole, and is fitted to the outer spline 20 of the rotating shaft 18 by the inner spline 16 only at the gear 10B portion, and the gear 10A portion and the connecting portion 10C are loosely fitted around the rotating shaft 16. ing. The connecting portion 10C has an annular shape concentric with the gears 10A and 10B, and has a plurality of holes 22 spaced along the rings. In a state where the connecting portion 10C is not twisted, the gear 10A is biased toward the advance side of the meshing phase with respect to the gear 10B, and the gear 10A is involved in torque transmission via the connecting portion 10C. ing. According to such a configuration, while the transmission torque is low, the gear 12 is driven only by the gear 10A that is biased toward the gear phase advance side with respect to the gear 10B. The elastic twisting action of the connecting portion 10C causes the control to cause the gear 10B to be greatly involved in the transmission of the rotational force according to the increase in the transmission torque as the meshing phase of the gear 10A with respect to the gear 10B decreases. Can be done automatically. In this case, if the transmission torque is less than a predetermined value, the gear 10B does not contact the gear 12, and if the degree of involvement in the transmission of the rotational force of the gear 10B is zero, the transmission torque is in a low state below the predetermined value. There is no problem with the magnitude of the transmission torque, and it is preferable to give priority to the transmission efficiency as much as possible. Can be biased.

上記の通り、歯車12は環状溝14により歯車部12Aと歯車部12Bと分かれているが、歯車としては一つの歯車であり、その各歯は環状溝14を跨いで一つの歯として加工されてよい。一方、歯車10Aと歯車10Bとは、図1および2について説明した通り、互いに異なる歯形のものであるが、その間の差異は両歯形の間の相対的な差異であり、且つ寸法的には微差である。そこで、図3に示す如く歯車10Aと歯車10Bが一体の素材よりなり、歯車10Aと歯車10Bとがその間に所定の相対的に異なる歯形を呈し且つその間に、以下に図5および6について説明される過程のいずれかを経て所定の噛合い位相差を呈するように、同時に加工されれば、図1および2について説明した如き歯車12に対する歯車10Aと歯車10Bの噛合いの差を高精度に実現する同軸複合歯車10を得ることができる。   As described above, the gear 12 is divided into the gear portion 12A and the gear portion 12B by the annular groove 14, but the gear is one gear, and each tooth is processed as one tooth across the annular groove 14. Good. On the other hand, the gear 10A and the gear 10B have different tooth shapes as described with reference to FIGS. 1 and 2, but the difference between them is a relative difference between the two tooth shapes and is small in dimension. It is a difference. Therefore, as shown in FIG. 3, the gear 10A and the gear 10B are made of an integral material, and the gear 10A and the gear 10B have a predetermined relatively different tooth profile therebetween, and in the meantime, FIGS. 5 and 6 will be described below. If processed simultaneously so as to exhibit a predetermined meshing phase difference through any of the processes described above, the meshing difference between the gear 10A and the gear 10B with respect to the gear 12 as described with reference to FIGS. 1 and 2 is realized with high accuracy. Thus, the coaxial compound gear 10 can be obtained.

図4は、図1および図2について上に説明した如く、歯車12との噛合いに於ける重複率が異なる歯車10Aと10Bが、それぞれ第一および第二の素材よりなり、それら第一および第二の素材が第三の素材により互いに結合された形態にて構成され、且つ駆動側歯車10より被駆動側歯車12への回転力伝達に歯車10Bが関与する度合を、歯車10Aが関与する度合に対比して、伝達トルクの増大に応じて相対的に増大させることを、歯車10Aと10Bの間に形成された連結部10Cの弾性捩じりにより自動的に行わせる歯車伝動装置の一つの実施の形態を、素材の結合の前後の状態について示す概略縦断面図である。図4に於いても、図1および2に示す部分に対応する部分は図1および2に於けると同じ符号により示されている。   In FIG. 4, as explained above with reference to FIGS. 1 and 2, the gears 10A and 10B having different overlapping ratios with the gear 12 are made of the first and second materials, respectively. The gear 10A is involved in the degree to which the gear 10B is involved in the rotational force transmission from the driving side gear 10 to the driven side gear 12 in the form in which the second material is coupled to each other by the third material. In contrast to the degree, a gear transmission device that automatically increases the transmission torque in response to an increase in transmission torque by elastic twisting of the connecting portion 10C formed between the gears 10A and 10B. It is a schematic longitudinal cross-sectional view which shows one embodiment about the state before and behind the coupling | bonding of a raw material. 4, parts corresponding to those shown in FIGS. 1 and 2 are denoted by the same reference numerals as in FIGS.

この場合、歯車10Aおよび歯車10Bはそれぞれ個別の素材よりなるが、歯車10Aおよび歯車10Bはそれぞれに設けられたインナスプライン24および26にて連結部材28のアウタスプライン30および32に嵌合されることにより、連結部材28を介して互いに一体となるよう連結されている。連結部材28は、アウタスプライン32にて歯車10Bと連結された部分にてのみインナスプライン34により回転軸36のアウタスプライン38に嵌合し、連結部材28の中間部40およびアウタスプライン30にて歯車10Aと連結された部分は、回転軸36の周りに遊嵌されている。連結部材28の中間部40は歯車10Aと10Bと同心となる環状であり、且つその環に沿って隔置された複数個の孔42が開けられている。   In this case, the gear 10A and the gear 10B are made of separate materials, but the gear 10A and the gear 10B are fitted to the outer splines 30 and 32 of the connecting member 28 by the inner splines 24 and 26 provided respectively. Thus, they are connected to each other via the connecting member 28. The connecting member 28 is fitted to the outer spline 38 of the rotating shaft 36 by the inner spline 34 only at the portion connected to the gear 10 </ b> B by the outer spline 32, and the gear at the intermediate portion 40 of the connecting member 28 and the outer spline 30. The portion connected to 10 </ b> A is loosely fitted around the rotation shaft 36. The intermediate portion 40 of the connecting member 28 has an annular shape that is concentric with the gears 10A and 10B, and a plurality of holes 42 that are spaced along the ring are formed.

この場合にも、連結部材28が捩じられていない状態にて、歯車10Aは歯車10Bに対し噛合い位相の進み側に偏倚しており、歯車10Aは連結部材28の中間部40を介して回転力伝達に関与するようになっている。かかる構成によっても、伝達トルクが低い間は、歯車10Bに対し噛合い位相の進み側に偏倚した状態にある歯車10Aのみにより歯車12が駆動され、伝達トルクの増大に応じて連結部材28の中間部40が弾性的に捩じられ、それに応じて歯車10Bに対する歯車10Aの噛合い位相の進みが減少し、伝達トルクの増大に応じて歯車10Bを回転力伝達により大きく関与させる制御を、連結部材28の中間部40の弾性捩じれ作用によって自動的に行わせることができる。またこの場合にも、伝達トルクが所定値以下では歯車10Bは歯車12に接触せず、歯車10Bの回転力伝達に関与する度合が零であれば、伝達トルクが所定値以下の低い状態であって、許容伝達トルクの大きさには問題がなく、伝達効率の方を最大限に優先させた方が好ましい作動時に、歯車10Aと歯車10Bの回転力伝達に関与する配分の度合を100%歯車10Aの側に偏倚させることができる。   Also in this case, in a state where the connecting member 28 is not twisted, the gear 10A is biased toward the advancing phase of the meshing phase with respect to the gear 10B, and the gear 10A passes through the intermediate portion 40 of the connecting member 28. Involved in rotational force transmission. Even with this configuration, while the transmission torque is low, the gear 12 is driven only by the gear 10A that is biased toward the gear phase advance side with respect to the gear 10B, and the intermediate portion of the connecting member 28 is increased according to the increase in the transmission torque. The coupling member is controlled so that the portion 40 is elastically twisted, and the advance of the meshing phase of the gear 10A with respect to the gear 10B is reduced accordingly, and the gear 10B is greatly involved in the transmission of rotational force as the transmission torque increases. 28 can be automatically performed by the elastic twisting action of the intermediate portion 40. Also in this case, the gear 10B does not come into contact with the gear 12 when the transmission torque is equal to or less than a predetermined value, and if the degree of involvement in transmission of the rotational force of the gear 10B is zero, the transmission torque is in a low state below the predetermined value. Thus, there is no problem with the magnitude of the allowable transmission torque, and it is preferable to give priority to the transmission efficiency as much as possible. During operation, the degree of distribution involved in the transmission of the rotational force between the gears 10A and 10B is 100%. It can be biased to the 10A side.

図4に示す実施の形態に於いても、歯車10Aと歯車10Bとは、図1および2について説明した通り、互いに異なる歯形のものであるが、その間の差異は両者間の相対的な差異であり、且つ寸法的には微差である。そこで、図4に示す如く、歯車10Aと10Bがそれぞれ第一および第二の素材よりなり、これら第一および第二の素材が別素材よりなる連結部材28により互いに結合される場合には、例えば図4の左半分に示す如く、歯車10Aおよび10Bと連結部材28とを個別に準備するに当たって、歯車10Aおよび10Bの歯は仕上げ歯切り切削のための削り代が残された荒削りとしておき、この段階で歯車10Aと10Bとを連結部材28にて一体に結合し、その上で、歯車10Aと歯車10Bとがその間に所定の相対的に異なる歯形を所定の噛合いを呈し且つその間に、以下に図5および6について説明される過程のいずれかを経て所定の位相差を呈するように、同時に仕上げ加工されれば、図1および2について説明した如き歯車12に対する歯車10Aと歯車10Bの噛合いの差を高精度に実現する同軸複合歯車10を得ることができる。   Also in the embodiment shown in FIG. 4, the gear 10A and the gear 10B have different tooth shapes as described with reference to FIGS. 1 and 2, but the difference between them is a relative difference between the two. There is a slight difference in size. Therefore, as shown in FIG. 4, when the gears 10A and 10B are made of the first and second materials, respectively, and these first and second materials are connected to each other by the connecting member 28 made of another material, for example, As shown in the left half of FIG. 4, in preparing the gears 10A and 10B and the connecting member 28 individually, the teeth of the gears 10A and 10B are roughed with a cutting allowance for finishing gear cutting. In the stage, the gears 10A and 10B are integrally coupled by the connecting member 28, and the gear 10A and the gear 10B have a predetermined relative tooth shape between them and a predetermined mesh between them, 5 and 6, if finished at the same time so as to exhibit a predetermined phase difference, the gear 12 as described with reference to FIGS. Difference in meshing of the gears 10A and gear 10B which can be obtained a coaxial compound gear 10 to achieve a high accuracy.

以下に、図5を参照して、図3に示す如く第一および第二の歯車が一体の素材よりなる同軸複合歯車を例にとり、歯車10Aと歯車10Bとを、それらが相対的に異なる歯形を呈し、且つその間に所定の位相差を呈するように、同時に仕上げ加工する要領を、その第一の実施の形態について説明する。   In the following, referring to FIG. 5, taking a coaxial compound gear in which the first and second gears are made of an integral material as shown in FIG. 3, the gear 10A and the gear 10B are separated from each other in their tooth shapes. The first embodiment will be described with respect to the point of finishing simultaneously so as to exhibit a predetermined phase difference therebetween.

図5の(A)は、歯車10Aと歯車10Bとが、それぞれの対応する歯の歯形の間の相対的相違の精度が向上するように、一体の素材に同時に加工されている複合歯車を示す。但し、この複合歯車は、それぞれの対応する歯の歯形間により高い精度にて相対的な相違を達成する加工がより容易に行えるよう、歯車10Aと歯車10Bの間に必要とされる所定の位相差をなくした状態にて仕上げられている。これより複合歯車は、中心軸線の周りに、図の(B)に示す如く、歯車10Aと歯車10Bとがその間に所定の位相差を生ずる方向に相対的に捩られる。その捩じりの度合は、捩り作用が解放されたとき歯車10Aと歯車10Bの間に残留する塑性捩じり変形により歯車10Aと歯車10Bの間に所定の位相差が付与される度合とされる。歯車10Aと歯車10Bの間に残留する捩じりを塑性的に生じさせるためには、歯車10Aと歯車10Bの間に付与する捩じりを弾性的捩じり変形の限度を越えて大きくするだけでなく、熱処理等の任意の塑性化手段が講じられてよい。   FIG. 5A shows a compound gear in which gears 10A and 10B are simultaneously machined into a single piece of material so that the accuracy of the relative differences between their corresponding tooth profiles is improved. . However, this compound gear has a predetermined position required between the gear 10A and the gear 10B so that it can be more easily processed to achieve a relative difference between the tooth shapes of the corresponding teeth. Finished with no phase difference. Thus, the compound gear is relatively twisted around the central axis in the direction in which the gear 10A and the gear 10B generate a predetermined phase difference therebetween, as shown in FIG. The degree of twisting is such that a predetermined phase difference is imparted between the gear 10A and the gear 10B due to the plastic torsional deformation remaining between the gear 10A and the gear 10B when the twisting action is released. The In order to plastically generate the torsion remaining between the gear 10A and the gear 10B, the torsion applied between the gear 10A and the gear 10B is increased beyond the limit of elastic torsional deformation. In addition, any plasticizing means such as heat treatment may be taken.

図6は、同じく、図3に示す如く第一および第二の歯車が一体の素材よりなる同軸複合歯車を例にとり、歯車10Aと歯車10Bとを、それらが相対的に異なる歯形を呈し、且つその間に所定の位相差を呈するように、同時に仕上げ加工する要領を、その第二の実施の形態について示す図5と同様の図である。   FIG. 6 similarly shows an example of a coaxial composite gear in which the first and second gears are made of an integral material as shown in FIG. 3, and the gear 10A and the gear 10B have different tooth shapes, and It is the same figure as FIG. 5 which shows the point which finishes simultaneously so that a predetermined | prescribed phase difference may be exhibited about the 2nd embodiment.

この場合、歯車10Aと歯車10Bの歯形が粗仕上げされた段階で、素材は適当な捩じり機能付きの任意の素材保持機により、図6の(A)に示す如く、歯車10Aと歯車10Bとの間に所定の位相差が生じるよう素材の弾性捩じれ変形の範囲で相対的に捩られ、その捩れ状態を保持したままで、互いに整列状態にある歯車10Aと歯車10Bの対応する歯形が、それぞれの間に所定の相対的歯形差を高精度に達成するよう同時に加工される。そして歯車10Aと歯車10Bの歯形が仕上げられた後、素材保持機により掛けられていた弾性捩れが解放されれば、歯車10Aと歯車10Bの間の弾性捩じれ変形が元に戻り、歯車10Aと歯車10Bの間には、図6の(B)に示す如く所定の位相差が付与される。   In this case, at the stage where the tooth shapes of the gears 10A and 10B are roughly finished, the material is processed by an arbitrary material holding machine having an appropriate twisting function as shown in FIG. The corresponding tooth shapes of the gear 10A and the gear 10B that are relatively twisted within the range of elastic torsional deformation of the material so as to produce a predetermined phase difference between them and in an aligned state while maintaining the twisted state, They are simultaneously machined to achieve a predetermined relative tooth profile difference between them with high accuracy. Then, after the tooth shapes of the gear 10A and the gear 10B are finished, if the elastic torsion applied by the material holding machine is released, the elastic torsional deformation between the gear 10A and the gear 10B is restored, and the gear 10A and the gear 10B are restored. A predetermined phase difference is given between 10B as shown in FIG.

図5および6について説明した加工要領は、図4に示す如く歯車10Aと10Bとが連結部材28により連結されている構造の複合歯車である場合にも同様に実施できることは明らかであろう。   It will be apparent that the processing procedure described with reference to FIGS. 5 and 6 can be similarly implemented even when the gears 10A and 10B are compound gears having a structure in which the gears 10A and 10B are connected by the connecting member 28 as shown in FIG.

以上に於いては本発明をいくつかの実施の形態について詳細に説明したが、本発明がこれらの実施の形態にのみ限られるものではなく、本発明の範囲内にて他の種々の実施の形態が可能であることは当業者にとって明らかであろう。例えば、歯車10Aおよび10Bの連結部材28との結合は焼き嵌め或は溶接によって行われていてもよく、また図3の連結部10C或は図4の連結部材中間部40の長さやそこに開けられた孔22や42の形状や数については他に種々の実施例が可能である。また本発明は3ないしそれ以上の数の歯車が同様の複合目的のために同軸に複合される歯車に適用されてもよい。   Although the present invention has been described in detail with respect to several embodiments, the present invention is not limited to these embodiments, and various other embodiments are within the scope of the present invention. It will be apparent to those skilled in the art that the configuration is possible. For example, the coupling of the gears 10A and 10B to the connecting member 28 may be performed by shrink fitting or welding, and the length of the connecting portion 10C in FIG. 3 or the connecting member intermediate portion 40 in FIG. Various other embodiments of the shape and number of the formed holes 22 and 42 are possible. The present invention may also be applied to gears in which three or more gears are coaxially compounded for similar compound purposes.

10,10A,10B…駆動側歯車、12,12A,12B…被駆動側歯車、14…環状溝、16…インナスプライン、18…回転軸、20…アウタスプライン、22…孔、24,26…インナスプライン、28…連結部材、30,32…アウタスプライン、34…インナスプライン、36…回転軸、38…アウタスプライン、40…中間部、42…42   DESCRIPTION OF SYMBOLS 10, 10A, 10B ... Drive side gear, 12, 12A, 12B ... Driven side gear, 14 ... Annular groove, 16 ... Inner spline, 18 ... Rotating shaft, 20 ... Outer spline, 22 ... Hole, 24, 26 ... Inner Spline, 28 ... connecting member, 30 and 32 ... outer spline, 34 ... inner spline, 36 ... rotating shaft, 38 ... outer spline, 40 ... intermediate part, 42 ... 42

Claims (8)

互いに噛み合わされた駆動側歯車と被駆動側歯車の少なくとも一方は第一および第二の少なくとも2つの歯車を同軸に重ね合わせた歯車であり、前記第一の歯車は前記第二の歯車に比して第一の作動特性に於いて優れており、前記第二の歯車は前記第一の歯車に比して第二の作動特性に於いて優れており、前記第一の作動特性が前記第二の作動特性に優先する作動時と前記第二の作動特性が前記第一の作動特性に優先する作動時とで前記第一および第二の歯車の回転力伝達に関与する度合が相対的に変更されるようになっている歯車伝動装置の前記第一および第二の歯車を製造する方法にして、互いに一体となっている前記第一の歯車と前記第二の歯車とを同軸に保持し、前記第一および第二の歯車の対応する歯を同時に加工し、その後で前記第一および第二の歯車を中心軸線の周りに相対的に捩って両者間に塑性捩じり変形による所定の位相差を付与することを特徴とする歯車製造方法。   At least one of the driving side gear and the driven side gear meshed with each other is a gear in which at least two first and second gears are coaxially overlapped, and the first gear is compared with the second gear. The second gear is superior in the second operating characteristic to the first gear, and the first operating characteristic is the second operating characteristic. The degree of involvement in the transmission of the rotational force of the first and second gears is relatively changed between when the operation has priority over the first operation characteristic and when the second operation characteristic has priority over the first operation characteristic. In the method of manufacturing the first and second gears of the gear transmission, the first gear and the second gear integrated with each other are held coaxially, Machining the corresponding teeth of the first and second gears at the same time, then the front Gear manufacturing method characterized by imparting a predetermined phase difference due to plastic twisting deformation therebetween by twisting relatively around the first and second gear a central axis. 互いに噛み合わされた駆動側歯車と被駆動側歯車の少なくとも一方は第一および第二の少なくとも2つの歯車を同軸に重ね合わせた歯車であり、前記第一の歯車は前記第二の歯車に比して第一の作動特性に於いて優れており、前記第二の歯車は前記第一の歯車に比して第二の作動特性に於いて優れており、前記第一の作動特性が前記第二の作動特性に優先する作動時と前記第二の作動特性が前記第一の作動特性に優先する作動時とで前記第一および第二の歯車の回転力伝達に関与する度合が相対的に変更されるようになっている歯車伝動装置の前記第一および第二の歯車を製造する方法にして、互いに一体となっている前記第一の歯車と前記第二の歯車とを弾性捩じり変形の範囲内にて中心軸線の周りに相対的に捩じって保持し、前記第一および第二の歯車の対応する歯を同時に加工し、その後で前記第一および第二の歯車の相対的弾性捩じり変形を解放して両者間に所定の位相差を付与することを特徴とする歯車製造方法。   At least one of the driving side gear and the driven side gear meshed with each other is a gear in which at least two first and second gears are coaxially overlapped, and the first gear is compared with the second gear. The second gear is superior in the second operating characteristic to the first gear, and the first operating characteristic is the second operating characteristic. The degree of involvement in the transmission of the rotational force of the first and second gears is relatively changed between when the operation has priority over the first operation characteristic and when the second operation characteristic has priority over the first operation characteristic. An elastic torsional deformation of the first gear and the second gear integrated with each other in a method of manufacturing the first and second gears of the gear transmission Within the range of the first axis, and relatively twisted and held around the central axis. The corresponding teeth of the second gear and the second gear are processed simultaneously, and then the relative elastic torsional deformation of the first and second gears is released to give a predetermined phase difference therebetween. Gear manufacturing method. 前記第一および第二の歯車は一体の素材よりなっていることを特徴とする請求項1または2に記載の歯車製造方法。   The gear manufacturing method according to claim 1 or 2, wherein the first and second gears are made of an integral material. 前記第一の歯車は第一の素材よりなり、前記第二の歯車は第二の素材よりなり、前記第一および第二の素材は第三の素材により互いに結合されることを特徴とする請求項1または2に記載の歯車製造方法。   The first gear is made of a first material, the second gear is made of a second material, and the first and second materials are coupled to each other by a third material. Item 3. A gear manufacturing method according to Item 1 or 2. 前記一体の素材は前記第一の歯車と前記第二の歯車の間に両者間の中心軸線周りの弾性捩じりを許容する連結部を形成するよう加工されることを特徴とする請求項3に記載の歯車製造方法。   4. The unitary material is processed so as to form a connecting portion that allows elastic torsion around a central axis between the first gear and the second gear between the first gear and the second gear. The gear manufacturing method as described in 2. above. 前記第三の素材は前記第一の歯車と前記第二の歯車の間に両者間の中心軸線周りの弾性捩じりを許容する連結部を形成するよう加工されることを特徴とする請求項4に記載の歯車製造方法。   The third material is processed so as to form a connecting portion between the first gear and the second gear which allows elastic torsion around a central axis between the first gear and the second gear. 4. The gear manufacturing method according to 4. 前記連結部は前記第一および第二の歯車と同心の環状に加工されることを特徴とする請求項5または6に記載の歯車製造方法。   The gear manufacturing method according to claim 5 or 6, wherein the connecting portion is processed into an annular shape concentric with the first and second gears. 前記環状の連結部にはその環に沿って隔置された複数個の孔が開けられることを特徴とする請求項5または6に記載の歯車製造方法。   The gear manufacturing method according to claim 5 or 6, wherein a plurality of holes spaced along the ring are formed in the annular connecting portion.
JP2009090242A 2009-04-02 2009-04-02 Manufacturing method for coaxial composite gear for gear transmission Pending JP2010242808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009090242A JP2010242808A (en) 2009-04-02 2009-04-02 Manufacturing method for coaxial composite gear for gear transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090242A JP2010242808A (en) 2009-04-02 2009-04-02 Manufacturing method for coaxial composite gear for gear transmission

Publications (1)

Publication Number Publication Date
JP2010242808A true JP2010242808A (en) 2010-10-28

Family

ID=43096025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090242A Pending JP2010242808A (en) 2009-04-02 2009-04-02 Manufacturing method for coaxial composite gear for gear transmission

Country Status (1)

Country Link
JP (1) JP2010242808A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204618A (en) * 2012-03-05 2014-12-10 卡特彼勒公司 Scissors gear assembly
KR101544958B1 (en) * 2014-02-18 2015-08-21 소연실 Gear and gear set
CN111486194A (en) * 2019-01-28 2020-08-04 亿迈齿轮两合股份公司 Gear of gear transmission device, gear pair and transmission device with gear pair
CN113404842A (en) * 2021-05-11 2021-09-17 重庆大学 High-order tuning method capable of achieving near-zero fluctuation of gear time-varying meshing stiffness

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204618A (en) * 2012-03-05 2014-12-10 卡特彼勒公司 Scissors gear assembly
CN104204618B (en) * 2012-03-05 2017-02-01 卡特彼勒公司 Scissors gear assembly
KR101544958B1 (en) * 2014-02-18 2015-08-21 소연실 Gear and gear set
CN111486194A (en) * 2019-01-28 2020-08-04 亿迈齿轮两合股份公司 Gear of gear transmission device, gear pair and transmission device with gear pair
CN111486194B (en) * 2019-01-28 2024-01-30 亿迈齿轮两合股份公司 Gear of gear transmission device, gear pair and transmission device with gear pair
CN113404842A (en) * 2021-05-11 2021-09-17 重庆大学 High-order tuning method capable of achieving near-zero fluctuation of gear time-varying meshing stiffness

Similar Documents

Publication Publication Date Title
JP4948479B2 (en) Compound wave gear reducer
US20170321790A1 (en) Flex spline actuator
US7748287B2 (en) Dual clutch transmission apparatus
US20170067512A1 (en) Power transmission device for vehicle
JP6485543B2 (en) Torque transmission joint and worm reducer
JP6372875B2 (en) Friction ring, synchronization device, and vehicle gear transmission
WO2017026536A1 (en) Transmission and vehicle
JP2010242808A (en) Manufacturing method for coaxial composite gear for gear transmission
JP2009248728A (en) Control method in hybrid power device
JP4476051B2 (en) Method for manufacturing rigid internal gear of wave gear device
JP4909129B2 (en) GEAR GEAR, GEAR GEAR MANUFACTURING METHOD, AND GEARED MOTOR
JP5131054B2 (en) Elastic shaft coupling and electric power steering device
JP2010209981A (en) Manufacturing method of coaxial compound gear for gear transmission device
JP2017082919A5 (en)
WO2020095782A1 (en) Power transmission shaft and manufacturing method therefor
JP2004125000A (en) Shaft and its manufacturing method
JP2014173633A (en) Synchronization device
JP2019100409A (en) Power transmission mechanism
JP2007154984A (en) Power transmission mechanism
ITBO20120699A1 (en) INDUSTRIAL BRUSH OR FOR HOBBIES AND METHOD TO REALIZE IT.
US20190195289A1 (en) Dog clutch
JP4254153B2 (en) Gear mechanism
US8443952B2 (en) Transmission
KR101283187B1 (en) Gear Structure for Transmission
JP2001280366A (en) Gear shift mechanism