JP2010239828A - Pull-in circuit - Google Patents

Pull-in circuit Download PDF

Info

Publication number
JP2010239828A
JP2010239828A JP2009087076A JP2009087076A JP2010239828A JP 2010239828 A JP2010239828 A JP 2010239828A JP 2009087076 A JP2009087076 A JP 2009087076A JP 2009087076 A JP2009087076 A JP 2009087076A JP 2010239828 A JP2010239828 A JP 2010239828A
Authority
JP
Japan
Prior art keywords
circuit
power
lead
inverter
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009087076A
Other languages
Japanese (ja)
Other versions
JP5171717B2 (en
Inventor
Hiroaki Sugihara
弘章 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2009087076A priority Critical patent/JP5171717B2/en
Publication of JP2010239828A publication Critical patent/JP2010239828A/en
Application granted granted Critical
Publication of JP5171717B2 publication Critical patent/JP5171717B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To link a DC distributed power supply inexpensively with a power system. <P>SOLUTION: In a pull-in circuit 2, a pole-side circuit 21 includes a pole transformer PT having a secondary side which is connected in series with a capacitor C and an inverter INV connected in parallel with each other. Power supply of 200 V is provided from the secondary side of the pole transformer PT connected with a power system. The inverter INV is a DC load to be linked with the power system, and the DC current from a DC power supply DP is converted into an AC current and linked with the power system. A premise-side circuit 22 includes a series connection of the DC power supply DP and a parallel connection of a reactor L, 100 V AC loads AL1 and AL2, and a 200 V AC load AL3. The DC power supply DP is a DC distributed power supply such as a photovoltaic power generator for home use. The reactor L is provided with an intermediate tap T, and is connected between the 100 V AC loads AL1 and AL2. The 100 V AC loads AL1 and AL2, and the 200 V AC load AL3 are AC loads of single-phase three-wire system. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、直流の分散型電源を電力系統に連系させるための引込み回路に関する。   The present invention relates to a lead-in circuit for connecting a DC distributed power source to a power system.

従来、直流の分散型電源を電力系統に連系させる際には、個々の分散型電源に自励式インバータを接続し、直流を交流に変換した上で同期連系させる。この方法を用いると、今後、多数の分散型電源が連系した場合には、単独運転検出、電圧調整、出力調整等が困難になることが予想される。この解決方法として、出力周波数の変動等により単独運転を検出する能動方式の単独運転検出装置や、電圧調整を行うSVC(Static Var Compensator)等の無効電力供給装置を用いる方法がある。特許文献1には、能動方式の単独運転検出装置の例が開示されている。   Conventionally, when connecting a DC distributed power source to a power system, a self-excited inverter is connected to each distributed power source, and DC is converted into AC and then synchronized. If this method is used, it is expected that isolated operation detection, voltage adjustment, output adjustment, etc. will become difficult when a large number of distributed power sources are connected in the future. As a solution to this problem, there is a method of using an active isolated operation detection device that detects an isolated operation based on output frequency fluctuation or the like, or a reactive power supply device such as an SVC (Static Var Compensator) that performs voltage adjustment. Patent Document 1 discloses an example of an active isolated operation detection device.

特開2007−295653号公報JP 2007-295653 A

しかしながら、分散型電源の普及が進んで大量に設置されるようになると、能動方式の単独運転検出装置を用いても検出感度や動作時間が不十分になるおそれがある。また、大量の分散型電源に対応してインバータや単独運転検出装置等の多数の機器が必要になるので、電力系統への連系にかかる需要家側のコストが高くなるおそれがある。そこで、インバータを柱上側に移動し、電力会社の管理下に置くことが考えられるが、その場合、需要家側→電力系統側は直流で、電力系統側→需要家側は交流で電力を送ることになるため、引込み線は直流及び交流の両方に対応すべく2本から4本に増えて導入や保守にかかるコストが増えるという問題が発生する。   However, when the distributed power source is widely used and installed in a large amount, there is a risk that the detection sensitivity and the operation time may become insufficient even if an active isolated operation detection device is used. In addition, since a large number of devices such as an inverter and an independent operation detection device are required in correspondence with a large amount of distributed power sources, there is a risk that the cost on the customer side for connection to the power system may increase. Therefore, it is conceivable to move the inverter to the upper side of the pole and place it under the control of the power company. In that case, the customer side → the power system side sends DC power, and the power system side → customer side sends power by AC. As a result, the number of lead-in wires increases from two to four in order to cope with both direct current and alternating current, resulting in a problem that the cost for introduction and maintenance increases.

本発明は、上記課題を鑑みてなされたものであり、その主たる目的は、電力系統に対して直流の分散型電源を安価に連系させることにある。   The present invention has been made in view of the above problems, and a main object thereof is to connect a DC distributed power source to a power system at low cost.

上記課題を解決するために、本発明は、引込み回路であって、電力系統側と、需要家側との間で電力の送受電を行う2本の引込み線と、柱上変圧器の2次側と、互いに並列に接続されたインバータ及びコンデンサとが前記電力系統側における前記2本の引込み線の間に直列に接続された柱上側回路と、直流の分散型電源と、互いに並列に接続された交流負荷及びリアクトルとが前記需要家側における前記2本の引込み線の間に直列に接続された宅内側回路と、を備えることを特徴とする。   In order to solve the above-mentioned problems, the present invention is a lead-in circuit, and includes two lead-in wires that transmit and receive power between the power system side and the customer side, and a secondary of the pole transformer. Side, an inverter and a capacitor connected in parallel with each other, a pole upper circuit connected in series between the two lead-in lines on the power system side, and a DC distributed power source are connected in parallel with each other And an in-house circuit in which the AC load and the reactor are connected in series between the two lead-in lines on the consumer side.

この構成によれば、分散型電源の直流を交流に変換し、電力系統に連系させるためのインバータを柱上側に設置することにより、電力会社が管理するようになるので、需要家によるインバータの購入や保守の負担を減らすことができる。また、インバータを柱上側に設置した上で、コンデンサ及びリアクトルの作用により引込み線を2本にするので、直流の分散型電源の連系にかかるコストを抑えることができる。これによれば、電力系統に対して直流の分散型電源を安価に連系させることができる。そして、電圧調整や出力調整の中心的役割を持つインバータが柱上側にあるため、系統全体を把握している電力会社がインバータを制御できるので、電圧調整や出力調整の対策を容易に行うことができる。   According to this configuration, the power company manages the inverter by converting the direct current of the distributed power source into the alternating current and connecting the inverter to the power system on the upper side of the pole. The burden of purchase and maintenance can be reduced. Further, since the inverter is installed on the upper side of the pillar and two lead wires are provided by the action of the capacitor and the reactor, the cost for interconnection of the DC distributed power source can be suppressed. According to this, it is possible to connect the DC distributed power source to the power system at low cost. And since the inverter with the central role of voltage adjustment and output adjustment is on the upper side of the pole, the power company that knows the whole system can control the inverter, so it is easy to take measures for voltage adjustment and output adjustment it can.

また、本発明は、引込み回路であって、2以上の前記宅内側回路と、1の前記柱上側回路とが接続されてなることを特徴とする。
この構成によれば、直流の分散型電源を有する各需要家は、柱上側のインバータを共有することができ、電力系統への連系にかかるコストをさらに抑えることができる。
Moreover, this invention is a drawing circuit, Comprising: Two or more said inner side circuits and one said pillar upper circuit are connected, It is characterized by the above-mentioned.
According to this configuration, each customer having a DC distributed power source can share the inverter on the pole upper side, and the cost for connection to the power system can be further suppressed.

また、本発明は、引込み回路であって、前記インバータが、電力系統から電源を供給される他励式インバータであることを特徴とする。
この構成によれば、他励式インバータは、電力系統が停電すると動作しない。これによれば、系統停電が発生した場合、他励式インバータは、直流電源からの充電を受けても動作しないので、単独運転を確実に防止することができ、安全性が向上する。そして、単独運転防止装置が不要なので、安価に構成することができる。
Further, the present invention is a lead-in circuit, wherein the inverter is a separately-excited inverter that is supplied with power from a power system.
According to this configuration, the separately excited inverter does not operate when the power system fails. According to this, when a system power failure occurs, the separately-excited inverter does not operate even when it is charged from a DC power supply, so that it is possible to reliably prevent an isolated operation and improve safety. And since an isolated operation prevention apparatus is unnecessary, it can comprise at low cost.

また、本発明は、引込み回路であって、前記インバータが、自励式インバータであることを特徴とする。
この構成によれば、自励式インバータは、動作に必要な電圧を内部で発生させる。これによれば、系統停電が長く続くときには、交流電源を柱上側回路から切り離すとともに、直流電源により自励式インバータを運転することにより、交流電源を代替する非常用電源として自励式インバータを使用することができる。
Further, the present invention is a drawing circuit, wherein the inverter is a self-excited inverter.
According to this configuration, the self-excited inverter internally generates a voltage necessary for operation. According to this, when a system power failure continues for a long time, the AC power source is disconnected from the upper circuit of the pole and the self-excited inverter is used as an emergency power source to replace the AC power source by operating the self-excited inverter with the DC power source. Can do.

また、本発明は、引込み回路であって、前記リアクトルが、中間タップを備えることを特徴とする。
この構成によれば、リアクトルの両端子及び中間タップを用いることにより、単相三線式の交流負荷を使用することができる。
Moreover, this invention is a drawing circuit, Comprising: The said reactor is provided with an intermediate | middle tap, It is characterized by the above-mentioned.
According to this configuration, a single-phase three-wire AC load can be used by using both terminals of the reactor and the intermediate tap.

その他、本願が開示する課題及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。   In addition, the problems disclosed by the present application and the solutions thereof will be clarified by the description of the embodiments and the drawings.

本発明によれば、電力系統に対して直流の分散型電源を安価に連系させることができる。   According to the present invention, it is possible to connect a DC distributed power source to a power system at low cost.

本発明の実施の形態に係る基本回路の構成と原理を示す図である。It is a figure which shows the structure and principle of a basic circuit which concern on embodiment of this invention. 本発明の実施の形態に係る引込み回路の構成を示す図である。It is a figure which shows the structure of the drawing circuit which concerns on embodiment of this invention. シミュレーション結果を示す図であり、(a)が電流の変化を示し、(b)が電圧の変化を示し、(c)が電力の変化を示す。It is a figure which shows a simulation result, (a) shows the change of an electric current, (b) shows the change of a voltage, (c) shows the change of electric power. 従来の引込み回路の構成を示す図である。It is a figure which shows the structure of the conventional drawing circuit.

以下、図面を参照しながら、本発明を実施するための形態を説明する。本発明の実施の形態に係る引込み回路においては、分散型電源の直流を交流に変換するインバータ(直流負荷)を柱上側(電力会社側)に設置するとともに、インバータにコンデンサを並列接続し、宅内側(需要家側)の交流負荷にリアクトルを並列接続する。これによれば、インバータを電力会社の管理とし、直流用ライン及び交流用ラインを1対(2本)の引込み線により共用できるので、電力系統に対する直流の分散型電源の連系に際して需要家の負担を減らすことができる。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the lead-in circuit according to the embodiment of the present invention, an inverter (DC load) that converts direct current of a distributed power source into alternating current is installed on the pole side (electric power company side), and a capacitor is connected in parallel to the inverter. Connect the reactor in parallel to the AC load on the inside (on the customer side). According to this, since the inverter is managed by the power company and the DC line and the AC line can be shared by a pair (two) of the lead-in lines, the customer's power is required when connecting the DC distributed power source to the power system. The burden can be reduced.

≪回路の基本構成と原理≫
図1は、本発明の実施の形態に係る基本回路の構成と原理を示す図である。基本回路1は、直流電源DPと、交流電源APと、互いに並列に接続されたコンデンサC及び直流負荷DLと、互いに並列に接続されたリアクトルL及び交流負荷ALとが直列に接続された閉ループになっている。並列接続の箇所における交流電流の経路を実線で示し、直流電流の経路を破線で示す。コンデンサCは、交流電流に対して低抵抗であり、直流電流に対して高抵抗である。一方、リアクトルLは、交流電流に対して高抵抗であり、直流電流に対して低抵抗である。従って、交流電流は、並列接続の箇所のうち、低抵抗のコンデンサCと、交流負荷ALとを通る。また、直流電流は、並列接続の箇所のうち、直流負荷DLと、低抵抗のリアクトルLとを通る。
≪Basic circuit configuration and principle≫
FIG. 1 is a diagram showing the configuration and principle of a basic circuit according to an embodiment of the present invention. The basic circuit 1 is a closed loop in which a DC power source DP, an AC power source AP, a capacitor C and a DC load DL connected in parallel with each other, and a reactor L and an AC load AL connected in parallel with each other are connected in series. It has become. The alternating current path at the parallel connection point is indicated by a solid line, and the direct current path is indicated by a broken line. The capacitor C has a low resistance to an alternating current and a high resistance to a direct current. On the other hand, the reactor L has a high resistance to an alternating current and a low resistance to a direct current. Therefore, the alternating current passes through the low-resistance capacitor C and the alternating load AL among the portions connected in parallel. Further, the DC current passes through the DC load DL and the low-resistance reactor L among the parallel connection points.

これによれば、基本回路1においてコンデンサCの容量値及びリアクトルLのリアクタンス値を適切に選ぶことにより、交流電源APからの交流電流を交流負荷ALに供給し、直流電源DPからの直流電流を直流負荷DLに供給することができる。   According to this, by appropriately selecting the capacitance value of the capacitor C and the reactance value of the reactor L in the basic circuit 1, the AC current from the AC power source AP is supplied to the AC load AL, and the DC current from the DC power source DP is changed. The DC load DL can be supplied.

≪引込み回路の構成と特徴≫
図2は、図1の回路を応用した柱上変圧器から一般需要家への引込み回路の構成を示す図である。引込み回路2は、図1の基本回路1において交流電源APを柱上変圧器PTの2次側とし、直流負荷DLをインバータINVとしたものであり、柱上側に設置される柱上側回路21と、需要家宅に設置される宅内側回路22とが接続されて構成される。詳細には、端子211と、端子221とが引込み線L1により接続され、端子212と、端子222とが引込み線L2により接続される。
≪Configuration and characteristics of lead-in circuit≫
FIG. 2 is a diagram showing a configuration of a drawing circuit from the pole transformer to the general consumer to which the circuit of FIG. 1 is applied. The lead-in circuit 2 is the basic circuit 1 of FIG. 1 in which the AC power source AP is the secondary side of the pole transformer PT and the DC load DL is the inverter INV. In addition, it is configured to be connected to an in-house circuit 22 installed in a customer's house. Specifically, the terminal 211 and the terminal 221 are connected by the lead-in line L1, and the terminal 212 and the terminal 222 are connected by the lead-in line L2.

柱上側回路21は、破線Xの上方に示され、柱上変圧器PTの2次側と、互いに並列に接続されたコンデンサC及びインバータINVとが端子211と、212との間に直列に接続されている。電力系統につながる柱上変圧器PTの2次側により、200Vの電源が提供される。インバータINVは、電力系統に連系する直流負荷であり、直流電源DPからの直流電流を交流電流に変換して、電力系統に連系させる。   The pole upper circuit 21 is shown above the broken line X, and the secondary side of the pole transformer PT and the capacitor C and the inverter INV connected in parallel to each other are connected in series between the terminals 211 and 212. Has been. The secondary side of the pole transformer PT connected to the power system provides a 200V power source. The inverter INV is a DC load linked to the power system, converts the DC current from the DC power source DP into an AC current, and links it to the power system.

一方、宅内側回路22は、破線Xの下方に示され、直流電源DPと、並列に接続されたリアクトルL、100V交流負荷AL1、AL2及び200V交流負荷AL3とが直列に接続されている。直流電源DPは、家庭用の太陽光発電装置(PV:Photo Voltaic)等の直流の分散型電源である。リアクトルLには、中間タップTが設けられ、100V交流負荷AL1と、AL2との間に接続される。100V交流負荷AL1、AL2及び200V交流負荷AL3は、単相三線式の交流負荷である。   On the other hand, the inside circuit 22 is shown below the broken line X, and a DC power source DP and a reactor L, 100V AC loads AL1, AL2, and 200V AC load AL3 connected in parallel are connected in series. The direct current power source DP is a direct current distributed power source such as a household photovoltaic power generation device (PV: Photo Voltaic). Reactor L is provided with an intermediate tap T and is connected between 100V AC loads AL1 and AL2. The 100V AC loads AL1, AL2 and the 200V AC load AL3 are single-phase, three-wire AC loads.

以上説明した引込み回路2によれば、需要家側(宅内側)から見たときの、直流電力の送電及び交流電力の受電(つまり、電力系統側(柱上側)から見たときの、交流電力の送電及び直流電力の受電)を2本の引込み線L1、L2で実現することができる。   According to the lead-in circuit 2 described above, transmission of DC power and reception of AC power when viewed from the customer side (inside the house) (that is, AC power viewed from the power system side (upper pole side)) Power transmission and DC power reception) can be realized by the two lead-in lines L1 and L2.

インバータINVは、直流電力の受電部分(直流負荷)として設けられ、交流系統に連系する。インバータINVを電力系統から電源供給を受けて動作する他励式とした場合、電力系統が停電すると動作しないため、系統停電によりインバータINVが単独運転状態になることは基本的に発生せず、単独運転防止装置が不要なので、安価に構成することができる。一方、インバータINVを自励式とした場合、動作に必要な電圧を内部で発生させるので、系統停電に備えて単独運転防止装置が必要となる。この場合に、系統停電が長引くときには、柱上変圧器PTを配電系統から切り離すとともに、直流電源DP(家庭用太陽光発電装置や電池等)によりインバータINVを運転することにより、交流電源APを代替する非常用電源として使用することができる。また、交流電源APの電圧を200Vとし、リアクトルLに中間タップを設けることにより、従来通りの単相三線式(200V/100V)の交流負荷への電力供給が可能である。   The inverter INV is provided as a power receiving part (DC load) of DC power and is linked to an AC system. If the inverter INV is a separately-excited type that operates by receiving power supply from the power system, it will not operate if the power system fails. Therefore, the inverter INV will not be in an independent operation state due to a system power failure. Since a prevention device is unnecessary, it can be constructed at low cost. On the other hand, when the inverter INV is a self-excited type, a voltage necessary for operation is generated internally, so that an isolated operation prevention device is required in preparation for a system power failure. In this case, when the system power failure is prolonged, the pole transformer PT is disconnected from the distribution system, and the inverter INV is operated by the DC power source DP (home photovoltaic power generation device, battery, etc.) to replace the AC power source AP. Can be used as an emergency power supply. In addition, by setting the voltage of the AC power supply AP to 200 V and providing an intermediate tap in the reactor L, it is possible to supply power to a conventional single-phase three-wire (200 V / 100 V) AC load.

1台の柱上変圧器PTから複数の一般需要家に引き込むためには、図2に示す1の柱上側回路21に対して2以上の宅内側回路22を並列に接続する。これによれば、各需要家宅は、交流電力の配電を受けるとともに、1以上の直流電源を保有する需要家は直流電力を送電でき、直流を交流に変換するインバータINVを共有化することができる。   In order to draw in a plurality of general consumers from one pole transformer PT, two or more home-side circuits 22 are connected in parallel to one pole upper circuit 21 shown in FIG. According to this, each consumer's house receives distribution of AC power, and a consumer having one or more DC power sources can transmit DC power and share an inverter INV that converts DC to AC. .

≪実施例≫
図3は、シミュレーション結果を示す図である。図3(a)が電流の変化を示し、図3(b)が電圧の変化を示し、図3(c)が電力の変化を示す。数値例として、交流電源APを200V、5kW、直流電源DPを100V、5kWとしてシミュレーションしたところ、コンデンサCの容量値=30mF、リアクトルLのリアクタンス値=300mH程度であれば、直流及び交流をほぼ分離できることを確認した。このとき、リアクトルLの皮相電力が10kVA程度、コンデンサCの皮相電力が2.5kVA程度となる。また、引込み線の電流の平均値は、直流電流となり、50A程度である。
<Example>
FIG. 3 is a diagram illustrating a simulation result. 3A shows a change in current, FIG. 3B shows a change in voltage, and FIG. 3C shows a change in power. As a numerical example, when the AC power supply AP is 200 V, 5 kW, and the DC power supply DP is 100 V, 5 kW, the capacitance value of the capacitor C is about 30 mF and the reactance value of the reactor L is about 300 mH. I confirmed that I can do it. At this time, the apparent power of reactor L is about 10 kVA, and the apparent power of capacitor C is about 2.5 kVA. Moreover, the average value of the lead-in current becomes a direct current, which is about 50A.

≪従来回路との比較≫
図4は、従来の引込み回路の構成を示す図である。従来の引込み回路3において、系統電源である交流電源APに、交流負荷部分と、直流電源部分とが並列に接続されている。交流負荷部分は、図2の宅内側の交流負荷と同じ構成である。直流電源部分は、インバータINV及び直流電源DPからなる。インバータINVが需要家宅に設置されている場合には、破線Yの上方が柱上側の回路になり、破線Yの下方が宅内側の回路になる。この場合、柱上側の回路と、宅内側の回路とを接続する引込み線は2本になる。次に、この構成を維持したままでインバータINVを電力会社が管理するようにした場合には、破線Zの上方が柱上側の回路になり、破線Zの下方が宅内側の回路になる。この場合、引込み線は4本になる。これに対して、図2の引込み回路2では、破線Xで示すように引込み線が2本になっており、従来の接続構成のままでインバータINVを柱上側に移動し、電力会社側の管理にするより安価に構成できる。
≪Comparison with conventional circuit≫
FIG. 4 is a diagram showing a configuration of a conventional lead-in circuit. In the conventional lead-in circuit 3, an AC load part and a DC power supply part are connected in parallel to an AC power supply AP that is a system power supply. The AC load portion has the same configuration as the AC load inside the house in FIG. The direct current power source portion is composed of an inverter INV and a direct current power source DP. When the inverter INV is installed in a customer's house, the upper side of the broken line Y is a circuit above the pillar, and the lower side of the broken line Y is a circuit inside the house. In this case, there are two lead-in lines connecting the circuit on the upper side of the pillar and the circuit on the inside of the house. Next, when the electric power company manages the inverter INV while maintaining this configuration, the circuit above the broken line Z is a circuit above the pillar, and the circuit below the broken line Z is a circuit inside the house. In this case, there are four lead-in lines. On the other hand, in the lead-in circuit 2 of FIG. 2, there are two lead-in lines as indicated by the broken line X, and the inverter INV is moved to the upper side of the pole while maintaining the conventional connection configuration, and the power company side manages it. It can be configured at a lower cost than

以上説明した本発明の実施の形態によれば、インバータINVを柱上側に設置することにより、電力会社が管理するようになるので、需要家によるインバータINVの購入や保守の負担を減らすことができる。また、インバータINVを柱上側に設置しても、コンデンサC及びリアクトルLの作用により引込み線を2本にするので、直流電源DPの連系にかかるコストを抑えることができる。これによれば、電力系統(低圧系統)に対して交流負荷AL及び直流電源DPの両方を安価に連系させることができる。そして、直流電源DPは、直流のまま電力系統に接続することができる。さらに、電圧調整や出力調整の中心的役割を持つインバータINVが柱上側にあるため、系統全体を把握している電力会社がインバータINVを制御できるので、電圧調整や出力調整の対策を容易に行うことができる。   According to the embodiment of the present invention described above, since the electric power company manages by installing the inverter INV on the pole upper side, it is possible to reduce the burden of purchasing and maintaining the inverter INV by the customer. . Moreover, even if the inverter INV is installed on the upper side of the column, the number of lead-in wires is two due to the action of the capacitor C and the reactor L, so that the cost for interconnection of the DC power source DP can be suppressed. According to this, both the AC load AL and the DC power source DP can be connected to the power system (low voltage system) at low cost. And DC power supply DP can be connected to an electric power grid with direct current. Furthermore, since the inverter INV having the central role of voltage adjustment and output adjustment is on the upper side of the pillar, the power company that grasps the entire system can control the inverter INV, so that measures for voltage adjustment and output adjustment can be easily performed. be able to.

以上によれば、太陽光発電装置等、一般家庭(需要家)が有する直流電源DPの連系について、需要家側のインバータINVの購入や保守等の負担を減らすことができる。また、電力会社側でインバータINVを設置して管理するためのコストについては、需要家に負担金等を設定する、又は、新たな電気料金メニューを設定することが考えられる。これによれば、需要家及び電力会社の両方の負担を抑止しながら、自然エネルギー導入の促進を図ることができる。   According to the above, it is possible to reduce the burden on the purchase and maintenance of the inverter INV on the consumer side for the interconnection of the DC power supply DP possessed by a general household (customer) such as a solar power generation device. Moreover, regarding the cost for installing and managing the inverter INV on the electric power company side, it is conceivable to set a contribution or the like for the consumer or to set a new electricity price menu. According to this, it is possible to promote the introduction of natural energy while suppressing the burden on both the consumer and the power company.

以上、本発明を実施するための形態について説明したが、上記実施の形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。   As mentioned above, although the form for implementing this invention was demonstrated, the said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and equivalents thereof are also included in the present invention.

1 基本回路
2 引込み回路
21 柱上側回路
22 宅内側回路
A1、A2 100V交流負荷
A3 200V交流負荷
AL 交流負荷
AP 交流電源
C コンデンサ
DL 直流負荷
DP 直流電源
INV インバータ
L リアクトル
L1、L2 引込み線
PT 柱上変圧器
T 中間タップ
DESCRIPTION OF SYMBOLS 1 Basic circuit 2 Lead-in circuit 21 Upper column circuit 22 Home side circuit A1, A2 100V AC load A3 200V AC load AL AC load AP AC power source C capacitor DL DC load DP DC power source INV Inverter L Reactor L1, L2 Lead-in wire PT On pole Transformer T Middle tap

Claims (5)

電力系統側と、需要家側との間で電力の送受電を行う2本の引込み線と、
柱上変圧器の2次側と、互いに並列に接続されたインバータ及びコンデンサとが前記電力系統側における前記2本の引込み線の間に直列に接続された柱上側回路と、
直流の分散型電源と、互いに並列に接続された交流負荷及びリアクトルとが前記需要家側における前記2本の引込み線の間に直列に接続された宅内側回路と、
を備えることを特徴とする引込み回路。
Two service lines for transmitting and receiving power between the power system side and the customer side;
A pole upper circuit in which a secondary side of the pole transformer and an inverter and a capacitor connected in parallel with each other are connected in series between the two lead-in lines on the power system side;
An in-home circuit in which a DC distributed power source and an AC load and a reactor connected in parallel with each other are connected in series between the two lead-in lines on the customer side,
A lead-in circuit comprising:
請求項1に記載の引込み回路であって、
2以上の前記宅内側回路と、1の前記柱上側回路とが接続されてなる
ことを特徴とする引込み回路。
The lead-in circuit according to claim 1,
Two or more of the inside circuit and one of the pole upper circuits are connected to each other.
請求項1又は請求項2に記載の引込み回路であって、
前記インバータは、電力系統から電源を供給される他励式インバータである
ことを特徴とする引込み回路。
A lead-in circuit according to claim 1 or claim 2,
The lead-in circuit, wherein the inverter is a separately-excited inverter supplied with power from an electric power system.
請求項1又は請求項2に記載の引込み回路であって、
前記インバータは、自励式インバータである
ことを特徴とする引込み回路。
A lead-in circuit according to claim 1 or claim 2,
The lead-in circuit, wherein the inverter is a self-excited inverter.
請求項1ないし請求項4のいずれか一項に記載の引込み回路であって、
前記リアクトルは、中間タップを備える
ことを特徴とする引込み回路。
A lead-in circuit according to any one of claims 1 to 4,
The reactor includes an intermediate tap.
JP2009087076A 2009-03-31 2009-03-31 Service circuit Expired - Fee Related JP5171717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009087076A JP5171717B2 (en) 2009-03-31 2009-03-31 Service circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087076A JP5171717B2 (en) 2009-03-31 2009-03-31 Service circuit

Publications (2)

Publication Number Publication Date
JP2010239828A true JP2010239828A (en) 2010-10-21
JP5171717B2 JP5171717B2 (en) 2013-03-27

Family

ID=43093661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087076A Expired - Fee Related JP5171717B2 (en) 2009-03-31 2009-03-31 Service circuit

Country Status (1)

Country Link
JP (1) JP5171717B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165925A (en) * 1983-03-09 1984-09-19 三菱電機株式会社 Transceiver for ac/dc multiplex transmission line network
JPH07245881A (en) * 1994-03-02 1995-09-19 Kansai Electric Power Co Inc:The System for linkage of demander-system to power-system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165925A (en) * 1983-03-09 1984-09-19 三菱電機株式会社 Transceiver for ac/dc multiplex transmission line network
JPH07245881A (en) * 1994-03-02 1995-09-19 Kansai Electric Power Co Inc:The System for linkage of demander-system to power-system

Also Published As

Publication number Publication date
JP5171717B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
Justo et al. AC-microgrids versus DC-microgrids with distributed energy resources: A review
AU2008254814B2 (en) Distributed inverter and intelligent gateway
US9711967B1 (en) Off grid backup inverter automatic transfer switch
US20180097450A1 (en) Hybrid high voltage direct current converter station and operation method therefor
CN202019314U (en) Solar energy photovoltaic three-phase micro-inverter and solar energy photovoltaic power generation system
Burkard et al. Hybrid transformers for power quality enhancements in distribution grids-comparison to alternative concepts
US20170063087A1 (en) Maximizing energy savings by utilizing conservation voltage reduction with adaptive voltage control and peak demand reduction at point of use
Perpinias et al. Optimum design of low‐voltage distributed photovoltaic systems oriented to enhanced fault ride through capability
US10523006B2 (en) Controller for an inverter
JP2014147278A (en) Power supply system and power storage type power supply device
Jahdi Renewable hybrids grid-connection using converter interferences
Ali et al. Comparative analysis of AC DC Microgrids for the Saudi Arabian distribution system
Kester et al. A smart MV/LV-station that improves power quality, reliability and substation load profile
JP5171717B2 (en) Service circuit
JP2011114930A (en) System-interconnected power generation system
CN111512532A (en) Converter for at least one converter module of three bridge branches, method for operating such a converter and use of such a converter
Shah et al. Step-by-step design of an LCL filter for three-phase grid interactive converter
TWI443927B (en) Cable system with phase switch apparatuses
KR101387686B1 (en) A low voltage generation equipments for lvrt test
JP5497216B1 (en) Distribution system control method and information processing apparatus
JP2013085411A (en) System interconnection power conditioner
He et al. Advanced Intelligent Micro Inverter Control in the Distributed Solar Generation System
Aditya et al. Power quality analysis, challenges and feasible solutions of 90 kWp grid-integrated PV system
EP3140903A1 (en) Configurable inverter apparatus, photovoltaic system comprising such an inverter apparatus
CN104578138A (en) Distributed photovoltaic grid-connected power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5171717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees