JP2010238611A - Breaker operation monitor - Google Patents

Breaker operation monitor Download PDF

Info

Publication number
JP2010238611A
JP2010238611A JP2009087071A JP2009087071A JP2010238611A JP 2010238611 A JP2010238611 A JP 2010238611A JP 2009087071 A JP2009087071 A JP 2009087071A JP 2009087071 A JP2009087071 A JP 2009087071A JP 2010238611 A JP2010238611 A JP 2010238611A
Authority
JP
Japan
Prior art keywords
current
circuit breaker
circuit
breakers
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009087071A
Other languages
Japanese (ja)
Other versions
JP4526588B1 (en
Inventor
Kenichiro Nunogami
健一郎 布上
Mitsuhiro Nonogami
満洋 野々上
Kazufumi Hashimoto
和文 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2009087071A priority Critical patent/JP4526588B1/en
Application granted granted Critical
Publication of JP4526588B1 publication Critical patent/JP4526588B1/en
Publication of JP2010238611A publication Critical patent/JP2010238611A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/18Systems supporting electrical power generation, transmission or distribution using switches, relays or circuit breakers, e.g. intelligent electronic devices [IED]

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a breaker operation monitor capable of measuring precisely a control current of a breaker inexpensively. <P>SOLUTION: This breaker operation monitor includes a processor for calculating a current flowing in one of the breakers, when the one of the plurality of breakers is broken, and a current generation circuit for outputting or absorbing, to/from an electric power source line, the first current varying at a time constant corresponding to a resistance value and a capacitance value of the apparatus in a node connected with the apparatus to the electric power source line, when a voltage level of the electric power source line varies, in an electric power station having the plurality of breakers, the apparatus, and an accumulator for an electric power source for controlling an operation of the plurality of breakers and the apparatus, via the electric power source line common to the plurality of breakers and the apparatus. The processor includes a first measuring section for measuring the first current, a second measuring section for measuring a second current flowing in an upstream of all the positions of the respective nodes connecting the plurality of breakers and the apparatus with the electric power source line, in the electric power source line, and a calculation section for calculating the current flowing in the one of the breakers, based on measured results measured by the first and second measuring sections. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、遮断器動作監視装置に関する。   The present invention relates to a circuit breaker operation monitoring device.

発電所、変電所等の電気所では、例えば、電気所の各種機器に異常な電流等が流れることを防ぐために、一般的に遮断器が設けられている。遮断器を切状態とするために遮断器に供給される制御電流の波形は、遮断器の構造等に基づいて定まる。したがって、例えば、遮断器の各部にグリス固着等がある場合に遮断器を切状態とすると、遮断器の各部の動作時間が長くなるため、遮断器の制御電流は所定の波形と異なる波形となる。このため、遮断器の制御電流を測定することにより、遮断器の状態を判定することが可能である。   In an electric station such as a power plant or a substation, for example, a circuit breaker is generally provided in order to prevent an abnormal current or the like from flowing through various devices in the electric station. The waveform of the control current supplied to the circuit breaker to turn the circuit breaker off is determined based on the structure of the circuit breaker. Therefore, for example, when the circuit breaker is turned off when there is grease sticking or the like in each part of the circuit breaker, the operation time of each part of the circuit breaker becomes longer, so the control current of the circuit breaker becomes a waveform different from the predetermined waveform. . For this reason, it is possible to determine the state of the circuit breaker by measuring the control current of the circuit breaker.

例えば、特許文献1では、複数の遮断器が設けられている電気所において、複数の遮断器に対する共通の電源の電流を一つの電流センサ等で測定することにより、夫々の遮断器の制御電流を測定する技術が開示されている。   For example, in Patent Document 1, in an electric station provided with a plurality of circuit breakers, the current of a common power source for the plurality of circuit breakers is measured by a single current sensor or the like, thereby controlling the control current of each circuit breaker. Techniques for measuring are disclosed.

特開昭61−198070号公報Japanese Patent Laid-Open No. 61-198070

前述のように、特許文献1では、共通の電源からの電流を測定することにより、複数の遮断器の夫々に電流センサ等を設けることなく、複数の遮断器の夫々に流れる制御電流を測定することが可能である。しかしながら、例えば、電源に遮断器以外のスイッチング電源をもったリレー盤等が接続されている場合、遮断器が遮断される際の電圧変動によりリレー盤等にも電流が流れることがある。このため、遮断器の制御電流はリレー盤等の影響を受けることとなり、電源からの電流を測定した場合では、遮断器の制御電流のみを精度良く測定することは難しい。一方、電源に複数の遮断器やリレー盤等が接続されている場合であっても、複数の遮断器の夫々に対して電流センサ等を設けることにより、精度良く遮断器の制御電流を測定することは可能である。しかしながら、複数の遮断器の夫々に対して電流センサを設けると、遮断器の数の増加にともない、コストも高くなるという問題が生じる。   As described above, in Patent Document 1, by measuring the current from a common power source, the control current flowing through each of the plurality of circuit breakers is measured without providing a current sensor or the like for each of the plurality of circuit breakers. It is possible. However, for example, when a relay panel or the like having a switching power supply other than the circuit breaker is connected to the power source, current may also flow through the relay panel or the like due to voltage fluctuation when the circuit breaker is interrupted. For this reason, the control current of the circuit breaker is affected by the relay panel or the like, and when measuring the current from the power source, it is difficult to accurately measure only the control current of the circuit breaker. On the other hand, even when a plurality of circuit breakers, relay boards, etc. are connected to the power supply, the control current of the circuit breaker is accurately measured by providing a current sensor or the like for each of the plurality of circuit breakers. It is possible. However, if a current sensor is provided for each of the plurality of circuit breakers, there is a problem that the cost increases as the number of circuit breakers increases.

本発明は上記課題を鑑みてなされたものであり、低コストで精度良く遮断器の制御電流を測定可能な遮断器動作監視装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a circuit breaker operation monitoring apparatus capable of measuring a control current of a circuit breaker with low cost and high accuracy.

上記目的を達成するため、本発明の一つの側面に係る遮断器動作監視装置は、複数の遮断器と、機器と、前記複数の遮断器及び前記機器の動作を制御するための電源を前記複数の遮断器及び前記機器に共通の電源線を介して供給する蓄電池と、を有する電気所において、前記複数の遮断器のうち何れか一の遮断器が遮断されるときに、前記一の遮断器に流れる電流を算出する処理装置と、前記電源線の電圧レベルが変化すると、前記機器が前記電源線に接続されるノードにおける前記機器の抵抗値と容量値とに応じた時定数で変化する第1電流を、前記電源線に出力し、または、前記電源線から吸い込む電流生成回路と、を備え、前記処理装置は、前記第1電流を測定する第1測定部と、前記電源線において、前記複数の遮断器及び前記機器が前記電源線に接続される夫々のノードの全ての位置より上流側に流れる第2電流を測定する第2測定部と、前記第1及び第2測定部の測定結果に基づいて、前記一の遮断器に流れる電流を算出する算出部と、を含むこととする。   In order to achieve the above object, a circuit breaker operation monitoring device according to one aspect of the present invention includes a plurality of circuit breakers, devices, and a plurality of power supplies for controlling the operations of the plurality of circuit breakers and the devices. And the storage battery that is supplied to the device through a common power line, and when one of the plurality of circuit breakers is interrupted, the one circuit breaker When the voltage level of the power supply line changes, and the processing device that calculates the current flowing through the power supply line, the device changes with a time constant corresponding to the resistance value and the capacitance value of the device at a node connected to the power supply line. A current generation circuit that outputs one current to the power supply line or draws it from the power supply line, and the processing device includes: a first measurement unit that measures the first current; and Multiple circuit breakers and said equipment Based on the measurement results of the first and second measurement units, a second measurement unit that measures the second current flowing upstream from all the positions of the respective nodes connected to the power supply line, and the one interruption And a calculation unit for calculating a current flowing through the container.

低コストで精度良く遮断器の制御電流を測定可能な遮断器動作監視装置を提供することができる。   It is possible to provide a circuit breaker operation monitoring apparatus capable of measuring the control current of the circuit breaker with high accuracy at low cost.

本発明の一実施形態である遮断器一括監視システムの構成を示した図である。It is the figure which showed the structure of the circuit breaker package monitoring system which is one Embodiment of this invention. 遮断器が切状態となる際の制御電流の波形の一例である。It is an example of the waveform of the control current when a circuit breaker will be in a cut-off state. 遮断器が切状態となる際の制御電流の波形の拡大図である。It is an enlarged view of the waveform of the control current when the circuit breaker is turned off. 処理装置84の構成を示す図である。3 is a diagram showing a configuration of a processing device 84. FIG. CPU102の機能ブロックを示す図である。It is a figure which shows the functional block of CPU102. RC直列回路80の時定数を調整する際の方法を説明するための図である。6 is a diagram for explaining a method for adjusting a time constant of an RC series circuit 80. FIG. RC直列回路80の時定数を調整する際の方法を説明するための図である。6 is a diagram for explaining a method for adjusting a time constant of an RC series circuit 80. FIG. 遮断器制御電流波形処理の一例を示すフローチャートである。It is a flowchart which shows an example of a circuit breaker control current waveform process. 遮断器23を切状態とする際の遮断器一括監視システムにおける主要な電流の波形を示す図である。It is a figure which shows the waveform of the main electric current in the circuit breaker package monitoring system at the time of making the circuit breaker 23 into a cut-off state.

本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。   At least the following matters will become apparent from the description of this specification and the accompanying drawings.

図1は、本発明の一実施形態である遮断器一括監視システムの構成を示した図である。遮断器一括監視システムは、制御所および電気所に配置された遠隔制御装置10と、電気所(発電所、変電所等)に配置された直流電源装置20、リレー盤21、22、遮断器23,24、遮断器動作一括監視装置25、電源線26、通信線30を含んで構成される。なお、電源線26が本発明の電源線に相当する。なお、例えば、本実施形態の電源線26等は、正側(P側)の電線と負側(N側)の電線とを含むが、便宜上、図1においては、1本の線で記載している。   FIG. 1 is a diagram showing a configuration of a circuit breaker batch monitoring system according to an embodiment of the present invention. The circuit breaker collective monitoring system includes a remote control device 10 disposed at a control station and an electric station, a DC power supply device 20 disposed at an electric station (power plant, substation, etc.), relay panels 21 and 22, and a circuit breaker 23. 24, the circuit breaker operation collective monitoring device 25, the power line 26, and the communication line 30. The power line 26 corresponds to the power line of the present invention. For example, the power supply line 26 and the like of the present embodiment include a positive side (P side) electric wire and a negative side (N side) electric wire. However, for convenience, in FIG. ing.

遠隔制御装置10は、通信線30を介して電気所の機器を制御する情報処理装置であり、制御所に設けられた親局の遠隔制御装置10aと、電気所に設けられた子局の遠隔制御装置10bとを含んで構成される。本実施形態では、利用者が遠隔制御装置10aの操作部(不図示)を操作することにより、遠隔制御装置10aは、操作結果に応じたデータを通信線30へ出力する。そして、遠隔制御装置10bは、遠隔制御装置10aからのデータを受信し、データに基づいて電気所の機器を制御する。   The remote control device 10 is an information processing device that controls equipment in an electric station via a communication line 30, and a remote control device 10a of a master station provided in the control station and a remote control of a slave station provided in the electric station. And a control device 10b. In the present embodiment, when the user operates an operation unit (not shown) of the remote control device 10a, the remote control device 10a outputs data corresponding to the operation result to the communication line 30. And the remote control apparatus 10b receives the data from the remote control apparatus 10a, and controls the apparatus of an electric station based on data.

直流電源装置20は、電気所における各種機器の動作を制御するための制御用電源と、遮断器を入動作させるための投入用電源とを生成する装置である。直流電源装置20は、整流器40、蓄電池41、配電用遮断器42〜44、直流母線45、及び端子A,Bを含んで構成される。   The DC power supply device 20 is a device that generates a control power source for controlling the operation of various devices in an electric station and a power supply for making a circuit breaker turn on. The DC power supply device 20 includes a rectifier 40, a storage battery 41, a power distribution breaker 42 to 44, a DC bus 45, and terminals A and B.

整流器40は、交流電源(不図示)から入力される交流電流を直流電流に変換し、配電用遮断器42と直流母線45とを介して蓄電池41を充電する。また、整流器40は、直流母線45に接続される負荷に直流電源を供給する。   The rectifier 40 converts an alternating current input from an alternating current power source (not shown) into a direct current, and charges the storage battery 41 via the distribution circuit breaker 42 and the direct current bus 45. The rectifier 40 supplies DC power to a load connected to the DC bus 45.

蓄電池41は、例えば、停電等で整流器40に交流電源が入力されない場合に、直流母線45に接続される負荷に直流電源を供給する電池である。   The storage battery 41 is a battery that supplies DC power to a load connected to the DC bus 45 when AC power is not input to the rectifier 40 due to, for example, a power failure.

配電用遮断器42〜44の夫々は、接続される負荷を過電流から保護するための遮断器である。配電用遮断器42は、整流器40の電源を直流母線45に配電する。配電用遮断器43は、直流母線45の電源を、各種機器を実際に動作させるための投入用電源として各種機器に配電する。具体的には、本実施形態の配電用遮断器43は、端子Aを介して遮断器23,24に投入用電源を配電する。配電用遮断器44は、直流母線45の電源を、各種機器の動作を制御するための制御用電源として各種機器に配電する。具体的には、本実施形態の配電用遮断器44は、端子Bを介してリレー盤21,22、遮断器23,24に制御用電源を配電する。   Each of the power distribution circuit breakers 42 to 44 is a circuit breaker for protecting a connected load from overcurrent. The distribution breaker 42 distributes the power supply of the rectifier 40 to the DC bus 45. The power distribution circuit breaker 43 distributes the power source of the DC bus 45 to various devices as a power source for making the various devices actually operate. Specifically, the power distribution breaker 43 according to the present embodiment distributes the input power to the circuit breakers 23 and 24 via the terminal A. The power distribution breaker 44 distributes the power source of the DC bus 45 to various devices as a control power source for controlling the operation of the various devices. Specifically, the power distribution breaker 44 according to the present embodiment distributes the control power to the relay panels 21 and 22 and the circuit breakers 23 and 24 via the terminal B.

リレー盤21は、送電線Aに流れる電流に基づいて、例えば遮断器23の動作を制御する機器である。リレー盤21は、スイッチング電源50、制御装置51を含んで構成される。スイッチング電源50は、電源線26を介して供給される制御用電源から、制御装置51を動作させるための電源を生成する回路である。制御装置51は、送電線Aに流れる電流を検出する変流器(不図示)からの出力等に基づいて、遮断器23の動作を制御する。制御装置51は、例えば、変流器の出力等を処理するCPU(不図示)と、CPUの処理結果に基づいて遮断器23を入状態、切状態とするリレー機器等(不図示)とを含んで構成される。なお、本実施形態のリレー盤21は、例えば電気所における他の遮断器や、断路器、変圧器等(不図示)の動作を制御することとしても良い。   The relay panel 21 is a device that controls the operation of the circuit breaker 23 based on the current flowing through the power transmission line A, for example. The relay panel 21 includes a switching power supply 50 and a control device 51. The switching power supply 50 is a circuit that generates a power supply for operating the control device 51 from a control power supply supplied via the power supply line 26. The control device 51 controls the operation of the circuit breaker 23 based on an output from a current transformer (not shown) that detects a current flowing through the transmission line A. The control device 51 includes, for example, a CPU (not shown) that processes the output of the current transformer, and a relay device (not shown) that turns the circuit breaker 23 on and off based on the processing result of the CPU. Consists of including. In addition, the relay panel 21 of this embodiment is good also as controlling the operation | movement of other circuit breakers in an electric station, a disconnector, a transformer, etc. (not shown), for example.

リレー盤22は、送電線Bに流れる電流等に基づいて、例えば遮断器24の動作を制御する機器である。なお、リレー盤22は、リレー盤21と同様の構成であり、リレー盤22は、スイッチング電源52、制御装置53を含んで構成される。なお、本実施形態のスイッチング電源50,52の夫々には、安定した電源を生成するためのバイパスコンデンサ等が、電源線26の正側の電線と、負側の電線との間に設けられている。なお、以下、本実施形態では、電源線26の正側の電線と負側の電線との間を、電源線26の極間と称する。このため、例えば、バイパスコンデンサとスイッチング電源の内部抵抗等を考慮すると、RC直列回路60が電源線26の極間に等価的に直列に接続されていることとなる。なお、本実施形態では、リレー盤21,22が電源線26に接続されるノードにおけるバイパスコンデンサ等のコンデンサを容量値Caのコンデンサ70とし、前述の配線等の抵抗を抵抗値Raの抵抗71とする。このため、リレー盤21,22に電源を供給する電源線26の電圧レベルが変化すると、容量値Ca、抵抗値Raに応じた時定数で変化する電流が電源線26に供給されることとなる。なお、前述のように、コンデンサ70、抵抗71は、スイッチング電源50,52に内蔵されているものであるが、図1においては便宜上、スイッチング電源50,52と別に記載している。   The relay panel 22 is a device that controls, for example, the operation of the circuit breaker 24 based on the current flowing through the power transmission line B and the like. The relay panel 22 has the same configuration as the relay panel 21, and the relay panel 22 includes a switching power supply 52 and a control device 53. Each of the switching power supplies 50 and 52 of the present embodiment is provided with a bypass capacitor or the like for generating a stable power supply between the positive electric wire and the negative electric wire of the power supply line 26. Yes. In the following, in the present embodiment, a space between the positive side electric wire and the negative side electric wire of the power supply line 26 is referred to as a gap between the power supply lines 26. For this reason, for example, considering the internal resistance of the bypass capacitor and the switching power supply, the RC series circuit 60 is equivalently connected in series between the poles of the power supply line 26. In the present embodiment, a capacitor such as a bypass capacitor at a node to which the relay panels 21 and 22 are connected to the power supply line 26 is a capacitor 70 having a capacitance value Ca, and a resistor such as the wiring is a resistor 71 having a resistance value Ra. To do. Therefore, when the voltage level of the power supply line 26 that supplies power to the relay panels 21 and 22 changes, a current that changes with a time constant according to the capacitance value Ca and the resistance value Ra is supplied to the power supply line 26. . As described above, the capacitor 70 and the resistor 71 are built in the switching power supplies 50 and 52, but are illustrated separately from the switching power supplies 50 and 52 in FIG. 1 for convenience.

遮断器23は、リレー盤21からの制御に基づいて、母線から送電線Aに流れる電流を遮断する。具体的には、送電線Aに流れる電流が所定よりも大きいことをリレー盤21が検出すると、遮断器23は切状態となる。また、遠隔制御装置10aから遮断器23の動作を指示する指示データが送信されると、遮断器23は、その指示データに基づき、入状態または切状態となる。   The circuit breaker 23 interrupts the current flowing from the bus to the power transmission line A based on the control from the relay panel 21. Specifically, when the relay panel 21 detects that the current flowing through the power transmission line A is larger than a predetermined value, the circuit breaker 23 is turned off. Moreover, when the instruction data instructing the operation of the circuit breaker 23 is transmitted from the remote control device 10a, the circuit breaker 23 is turned on or off based on the instruction data.

遮断器24は、遮断器23と同様に、リレー盤22からの制御に基づいて、母線から送電線Bに流れる電流を遮断する。具体的には、送電線Bに流れる電流が所定よりも大きいことをリレー盤22が検出すると、遮断器24は切状態となる。また、遠隔制御装置10aから遮断器24の動作を指示する指示データが送信されると、遮断器24は、その指示データに基づき、入状態または切状態となる。なお、本実施形態においては、グリス等の固着が無い正常な遮断器23,24の夫々を、切状態とするための制御電流の波形は、例えば、図2、3に示すような波形である。ここで、図2は、制御電流の全体の波形であり、図3は、制御電流の立ち上がりの拡大図である。本実施形態における制御電流の特徴としては、立ち上がり直後の例えば1msの時点では5Aを越えることはなく、立ち上がり後の例えば20ms後には0.5Aより大きくなる。また、制御電流が立ち上がると、例えば、図3の0ms〜5msの間に示すように、所定の時定数に応じて上昇する。また、この間において、1ms毎の制御電流の変化幅は徐々に小さくなる。   Similarly to the circuit breaker 23, the circuit breaker 24 blocks current flowing from the bus to the power transmission line B based on control from the relay panel 22. Specifically, when the relay panel 22 detects that the current flowing through the transmission line B is larger than a predetermined value, the circuit breaker 24 is turned off. Further, when instruction data for instructing the operation of the circuit breaker 24 is transmitted from the remote control device 10a, the circuit breaker 24 is turned on or off based on the instruction data. In the present embodiment, the waveform of the control current for turning off each of the normal circuit breakers 23 and 24 having no adhesion such as grease is a waveform as shown in FIGS. . 2 is an overall waveform of the control current, and FIG. 3 is an enlarged view of the rise of the control current. As a feature of the control current in the present embodiment, it does not exceed 5 A at, for example, 1 ms immediately after the rising, and becomes larger than 0.5 A at, for example, 20 ms after the rising. Further, when the control current rises, for example, as shown between 0 ms and 5 ms in FIG. 3, it rises according to a predetermined time constant. During this time, the change width of the control current every 1 ms gradually decreases.

遮断器動作一括監視装置25は、配電用遮断器43から供給される投入用電源、配電用遮断器44から供給される制御用電源、及び後述するパイロットコンデンサ70の夫々の電流を測定することにより、電気所における遮断器23,24の動作を監視する装置である。遮断器動作一括監視装置25は、RC直列回路80、変流器81〜83、及び処理装置84を含んで構成される。   The circuit breaker operation batch monitoring device 25 measures the currents of the input power supplied from the power distribution circuit breaker 43, the control power supplied from the power distribution circuit breaker 44, and the pilot capacitor 70 described later. This is a device for monitoring the operation of the circuit breakers 23 and 24 in an electric station. The circuit breaker operation batch monitoring device 25 includes an RC series circuit 80, current transformers 81 to 83, and a processing device 84.

RC直列回路80(電流生成回路)は、電源線26の電圧レベルが変化した際に、電源線26からリレー盤21,22に流入される電流、またはリレー盤21,22から電源線26に流出する電流と同様に変化する電流を生成するための回路である。RC直列回路80は、電源線26とグランドGNDとの間に接続されるパイロットコンデンサ90と、抵抗91とを含み、RC直列回路60の時定数と同じ時定数を有する回路である。なお、本実施形態におけるパイロットコンデンサ90の容量値Cp及び抵抗91の抵抗値Rpは、例えば実験的に求められる値であり、詳細は後述する。また、本実施形態のパイロットコンデンサ90の一端は、変流器82設置点よりも直流母線45側に接続されている。   The RC series circuit 80 (current generation circuit) flows out of the power supply line 26 from the power supply line 26 to the relay panels 21 and 22 or flows out of the relay boards 21 and 22 to the power supply line 26 when the voltage level of the power supply line 26 changes. This is a circuit for generating a current that changes in the same manner as the current to be generated. The RC series circuit 80 includes a pilot capacitor 90 connected between the power supply line 26 and the ground GND, and a resistor 91, and has the same time constant as that of the RC series circuit 60. Note that the capacitance value Cp of the pilot capacitor 90 and the resistance value Rp of the resistor 91 in this embodiment are values obtained experimentally, for example, and will be described in detail later. In addition, one end of the pilot capacitor 90 of the present embodiment is connected to the DC bus 45 side from the current transformer 82 installation point.

変流器81は、配電用遮断器43から供給される投入用電源の電流を、端子Aに流れる電流として測定する。変流器82(第2測定部)は、制御用電源に流れる電流を、端子Bに流れる電流として測定する。変流器83(第1測定部)は、パイロットコンデンサ90に流れる電流を測定する。   The current transformer 81 measures the current of the input power supplied from the distribution circuit breaker 43 as the current flowing through the terminal A. The current transformer 82 (second measurement unit) measures the current flowing through the control power supply as the current flowing through the terminal B. The current transformer 83 (first measurement unit) measures the current flowing through the pilot capacitor 90.

処理装置84は、変流器81〜83からの測定結果に基づいて、遮断器の動作を監視する装置である。処理装置84は、図4に示すように、ADC(AD変換器)100、記憶装置101、CPU102、入力装置103、表示装置104を含み、夫々がバスを介して通信可能に接続される。   The processing device 84 is a device that monitors the operation of the circuit breaker based on the measurement results from the current transformers 81 to 83. As shown in FIG. 4, the processing device 84 includes an ADC (AD converter) 100, a storage device 101, a CPU 102, an input device 103, and a display device 104, each of which is communicably connected via a bus.

ADC100は、変流器81〜83で測定された電流値をデジタルデータに変換し、CPU102の図示しないRAM(Random Access Memory)格納する。
記憶装置101は、例えばメモリ、記憶媒体等からなる記憶領域であり、CPU102が実行するプログラム、その他各種データを記憶する。
The ADC 100 converts the current value measured by the current transformers 81 to 83 into digital data, and stores it in a RAM (Random Access Memory) (not shown) of the CPU 102.
The storage device 101 is a storage area including, for example, a memory, a storage medium, and the like, and stores programs executed by the CPU 102 and other various data.

CPU102は、記憶装置101に記憶されるプログラムを実行することにより、図6に示すような処理部110と、算出部111とを実現する。処理部110は、処理装置84を統括制御するとともに、各種処理を実行する。また、算出部111は、変流器81〜83で測定された電流に基づいて、遮断器23,24の制御電流を算出する。   The CPU 102 implements a processing unit 110 and a calculation unit 111 as illustrated in FIG. 6 by executing a program stored in the storage device 101. The processing unit 110 performs overall control of the processing device 84 and executes various processes. Moreover, the calculation part 111 calculates the control current of the circuit breakers 23 and 24 based on the electric current measured by the current transformers 81-83.

入力装置103は、キーボード、マウス、タッチパネル等である。表示装置104は、液晶ディスプレイ等であり、例えば、電気所に配置された複数の遮断器の動作監視結果等の表示を行う。   The input device 103 is a keyboard, a mouse, a touch panel, or the like. The display device 104 is a liquid crystal display or the like, and displays, for example, operation monitoring results of a plurality of circuit breakers arranged at an electric station.

<<RC直列回路80のパイロットコンデンサ90、抵抗91の値について>>
ここで、RC直列回路60,80の夫々の時定数を一致させるための具体的な方法について図6を参照しつつ説明する。なお、本実施形態のパスコンデンサ等の容量は、遮断器23,24が電源線26に接続されるノードにおける容量より十分大きいため、図6においては、遮断器23,24の影響は無いものとする。まず、電気所において、電源線26の極間に、例えば電子負荷120を接続する。そして、電子負荷120の状態が、例えば、オープンからショートとなるように過渡的に変化させる。蓄電池41には、内部抵抗121があるため、電子負荷120の状態がオープンからショートとなると、電源線26の電圧レベルは、ステップ状に変化することとなる。このため、過渡的には、図6は図7に示した回路図で表現されることとなる。したがって、実際の電気所においては、電子負荷120の状態が、オープンからショートへと変化した際の、リレー盤21,22と電源線26とが接続されるノードの合計の電流Iaと,パイロットコンデンサ90の電流Ip電流とを測定し、両者が同じ時定数で変化するよう、例えば抵抗91の値を変化させる。この結果、RC直列回路60,80の夫々の時定数を一致させることができる。
<< Regarding Values of Pilot Capacitor 90 and Resistor 91 of RC Series Circuit 80 >>
Here, a specific method for matching the time constants of the RC series circuits 60 and 80 will be described with reference to FIG. In addition, since the capacity | capacitance of the pass capacitor etc. of this embodiment is sufficiently larger than the capacity | capacitance in the node where the circuit breakers 23 and 24 are connected to the power supply line 26, in FIG. To do. First, for example, an electronic load 120 is connected between the poles of the power supply line 26 at an electric station. Then, the state of the electronic load 120 is changed transiently so as to change from open to short, for example. Since the storage battery 41 has the internal resistance 121, when the state of the electronic load 120 changes from open to short, the voltage level of the power supply line 26 changes in a step shape. Therefore, in a transient manner, FIG. 6 is represented by the circuit diagram shown in FIG. Therefore, in an actual electric station, when the state of the electronic load 120 changes from open to short, the total current Ia at the node to which the relay panels 21 and 22 and the power line 26 are connected, and the pilot capacitor 90 current Ip current is measured, and the value of the resistor 91 is changed, for example, so that both change with the same time constant. As a result, the time constants of the RC series circuits 60 and 80 can be matched.

本実施形態における電流Ia、Ipの関係は、例えばRC直列回路60、80の過渡応答を計算することにより把握可能である。ここで、電源線26のステップ電圧をEとし、ラプラス変換と、複素数sとを用いてRC直列回路60に流れる電流Ia(s)を算出する。前述のステップ電圧Eは、V(s)=E/sとなり、コンデンサ70は1/(s・Ca)となり、抵抗71はRaとなる。このため、
V(s)=E/s=Ia(s)×(1/(s・Ca)+Ra)・・・(1)
となる。
また、式(1)からIa(s)は、
Ia(s)=E/Ra(1/(s+1/Ca・Ra))・・・(2)
となり、電流Iaの時間変化であるIa(t)は、
Ia(t)=E/Ra×exp((−1/Ca・Ra)×t)・・・(3)
となる。
同様に、電源線26のステップ電圧をEとした場合の電流Ip(t)は、
Ip(t)=E/Rp×exp((−1/Cp・Rp)×t)・・・(4)
となる。
したがって、Ia(t)、Ip(t)の夫々の電流の時間変化を同じにすべく、Ca・RaとCp・Rpとが同じ値に設定されている場合、Iaと、Ipとの間には、
Ia=(Rp/Ra)×Ip・・・(5)
の関係がある。
また、図1における制御用電源の端子Bに流れる電流をI1、定常的に端子Bを流れる電流をI1’、遮断器23、24のうち例えば遮断器23が切状態となる際に遮断器23に流れる制御電流をItとすると、電流I1、I1’、It、Iaとの間には、下記のような関係が成立する。
It=I1+Ia−I1’・・・(6)
したがって、式(6)のIaに式(5)を代入すると、遮断器23の電流Itは、
It=I1+(Rp/Ra)×Ip−I1’・・・(7)
となる。
The relationship between the currents Ia and Ip in this embodiment can be grasped by calculating the transient response of the RC series circuits 60 and 80, for example. Here, assuming that the step voltage of the power supply line 26 is E, the current Ia (s) flowing through the RC series circuit 60 is calculated using Laplace transform and the complex number s. The aforementioned step voltage E becomes V (s) = E / s, the capacitor 70 becomes 1 / (s · Ca), and the resistor 71 becomes Ra. For this reason,
V (s) = E / s = Ia (s) × (1 / (s · Ca) + Ra) (1)
It becomes.
Also, from the formulas (1) to Ia (s),
Ia (s) = E / Ra (1 / (s + 1 / Ca · Ra)) (2)
Ia (t), which is the time change of the current Ia, is
Ia (t) = E / Ra × exp ((− 1 / Ca · Ra) × t) (3)
It becomes.
Similarly, the current Ip (t) when the step voltage of the power supply line 26 is E is
Ip (t) = E / Rp × exp ((− 1 / Cp · Rp) × t) (4)
It becomes.
Therefore, when Ca · Ra and Cp · Rp are set to the same value in order to make the time changes of the currents of Ia (t) and Ip (t) the same, they are between Ia and Ip. Is
Ia = (Rp / Ra) × Ip (5)
There is a relationship.
In addition, the current flowing through the terminal B of the control power source in FIG. Assuming that the control current flowing through is It, the following relationship is established among the currents I1, I1 ′, It, and Ia.
It = I1 + Ia−I1 ′ (6)
Therefore, when the equation (5) is substituted into Ia of the equation (6), the current It of the circuit breaker 23 is
It = I1 + (Rp / Ra) × Ip−I1 ′ (7)
It becomes.

このように、本実施形態では、例えば、電流Ia、Ipの夫々の変化が同じとなるよう、前述の時定数を一致させた場合、リレー盤21,22からの電流Iaを測定せず電流Ipを測定することにより、遮断器23の制御電流を算出することが可能となる。つまり、本実施形態では、遮断器23の制御電流を直接測定することなく、パイロットコンデンサ90の電流及び端子Bに流れる電流を測定することにより遮断器23の制御電流を算出できる。なお、ここでは、遮断器23の制御電流を例に説明したが、例えば、遮断器23でなく、遮断器24の制御電流であっても同様に式(7)から算出できる。   Thus, in the present embodiment, for example, when the above-described time constants are matched so that the changes in the currents Ia and Ip are the same, the current Ip from the relay boards 21 and 22 is not measured and the current Ip is measured. It is possible to calculate the control current of the circuit breaker 23 by measuring. That is, in this embodiment, the control current of the circuit breaker 23 can be calculated by measuring the current of the pilot capacitor 90 and the current flowing through the terminal B without directly measuring the control current of the circuit breaker 23. Here, the control current of the circuit breaker 23 has been described as an example, but, for example, the control current of the circuit breaker 24 instead of the circuit breaker 23 can be similarly calculated from the equation (7).

<<遮断器制御電流波形処理>>
ここで、例えば、遮断器23の状態を把握するために、遠隔制御装置10が遮断器23を切状態とした場合の遮断器動作一括監視装置25の動作を説明する。なお、ここでは、RC直列回路80の時定数は、RC直列回路60の時定数と一致するよう、パイロットコンデンサ90と、抵抗91とは調整されていることとする。さらに、RC直列回路80の時定数と、RC直列回路60の時定数とが一致している際の、抵抗91の抵抗値Rpは、抵抗71の抵抗値Raの45倍であることとする。このため、前述の式(7)から、電流Itと電流I1、I1’、Ipとの間には、
It=I1+45×Ip−I1’・・・(8)
の関係が成立することとなる。また、ここでは、端子Aに流れる投入電流を電流I2とする。
<< Circuit breaker control current waveform processing >>
Here, for example, in order to grasp the state of the circuit breaker 23, the operation of the circuit breaker operation collective monitoring device 25 when the remote control device 10 turns the circuit breaker 23 off will be described. Here, it is assumed that pilot capacitor 90 and resistor 91 are adjusted so that the time constant of RC series circuit 80 matches the time constant of RC series circuit 60. Further, it is assumed that the resistance value Rp of the resistor 91 when the time constant of the RC series circuit 80 and the time constant of the RC series circuit 60 coincide with each other is 45 times the resistance value Ra of the resistor 71. Therefore, from the above equation (7), between the current It and the currents I1, I1 ′, Ip,
It = I1 + 45 × Ip−I1 ′ (8)
This relationship is established. Here, the input current flowing through the terminal A is defined as a current I2.

図8は、遮断器動作一括監視装置25が遮断器23の制御電流の波形を処理する際のフローチャートである。また、図9は、遮断器23を切状態とする際の遮断器一括監視システムの主要な電流の波形を示す図である。   FIG. 8 is a flowchart when the circuit breaker operation batch monitoring device 25 processes the waveform of the control current of the circuit breaker 23. Moreover, FIG. 9 is a figure which shows the waveform of the main electric current of the circuit breaker package monitoring system at the time of making the circuit breaker 23 into a cut-off state.

まず、遮断器動作一括監視装置25におけるCPU122の処理部110は、ADC100によりデジタルデータに変換された電流I1,I2を監視する(S100)。そして、図9の時刻t0に、遠隔制御装置10aは、遮断器23を切状態とするための指示データを遠隔制御装置10bに送信する。前述の指示データに基づいて、時刻t1に遮断器23は切動作を開始する。このため、時刻t1となると、遮断器23を切状態とするための制御電流が、端子Bから流れることとなる。なお、遮断器23を切状態とするための制御電流は、定常的に流れる負荷電流に加算されるため、電流I1は増加する。そして、処理部110は、時刻t1において、電流I1が急変すると(S101:YES)、電流I1、I2、Ipの夫々のデータを記録する(S102)。なお、電流I1、I2、Ipの夫々のデータは、例えば、CPU122のRAM(不図示)に格納される。一方、処理部110は、電流I1、I2が急変しない場合(S101:NO)、電流の監視(S100)を継続する。そして、算出部111は、電流I1と、電流Ipと、It+I1’=I1+45×Ipである式(8)と、を用いることにより、まず遮断器23の電流Itに制御用電源の端子Bに定常的に流れる電流I1’が加算された電流を算出する。なお、以下、本実施形態では、電流Itに制御用電源の端子Bに定常的に流れる電流I1’を負荷電流I1’と称する。そして、算出部111は、この電流(It+I1’)から、定常的に流れる負荷電流I1’を減算することにより、遮断器23の制御電流である電流Itを算出する(S102)。このように、電流I1と、電流Ipと、式(8)と、を用いることにより、本実施形態では、電流Iaの影響をうけることなく、正確に遮断器の制御電流を算出することが可能となる。なお、図9の最下欄の電流Iyは、電流I1から、定常的に流れる負荷電流I1’のみを減算し、電流Iaの影響を考慮せず遮断器23の制御電流を求めた結果である。このように、端子Bに流れる電流I1のみから算出された電流Iyは、電流Itと大きくことなっている。このため、例えば電流Iyを用いて遮断器23の状態を把握することは難しい。   First, the processing unit 110 of the CPU 122 in the circuit breaker operation batch monitoring device 25 monitors the currents I1 and I2 converted into digital data by the ADC 100 (S100). Then, at time t0 in FIG. 9, the remote control device 10a transmits instruction data for turning off the circuit breaker 23 to the remote control device 10b. Based on the above-described instruction data, the circuit breaker 23 starts the cutting operation at time t1. For this reason, at time t1, a control current for turning off the circuit breaker 23 flows from the terminal B. The control current for turning off the circuit breaker 23 is added to the load current that flows constantly, so that the current I1 increases. Then, when the current I1 changes suddenly at time t1 (S101: YES), the processing unit 110 records the data of the currents I1, I2, and Ip (S102). Each data of the currents I1, I2, and Ip is stored in a RAM (not shown) of the CPU 122, for example. On the other hand, when the currents I1 and I2 do not change suddenly (S101: NO), the processing unit 110 continues to monitor the current (S100). Then, the calculation unit 111 uses the current I1, the current Ip, and the equation (8) where It + I1 ′ = I1 + 45 × Ip, so that the current It of the circuit breaker 23 is first supplied to the terminal B of the control power source. The current obtained by adding the current I1 ′ that flows in a normal manner is calculated. Hereinafter, in the present embodiment, the current I1 'that constantly flows to the terminal B of the control power supply as the current It is referred to as a load current I1'. Then, the calculation unit 111 calculates the current It, which is the control current of the circuit breaker 23, by subtracting the load current I1 'that flows constantly from this current (It + I1') (S102). As described above, by using the current I1, the current Ip, and the equation (8), in this embodiment, it is possible to accurately calculate the control current of the circuit breaker without being affected by the current Ia. It becomes. The current Iy in the lowermost column of FIG. 9 is a result of subtracting only the load current I1 ′ that flows constantly from the current I1, and obtaining the control current of the circuit breaker 23 without considering the influence of the current Ia. . Thus, the current Iy calculated from only the current I1 flowing through the terminal B is greatly different from the current It. For this reason, it is difficult to grasp the state of the circuit breaker 23 using the current Iy, for example.

なお、算出された電流Itは、処理S101の電流I1の急変に基づいて取得された波形であるが、処理部110は、ノイズや、電源線26に接続された他の機器に流れる電流を取得している場合がある。このような問題を防ぐべく、本実施形態の処理部110は、RAMに記憶した電流Itを、前述の図2、3に示したような遮断器の制御電流の波形が有する幾つかの特徴と比較する。具体的には、処理部110は、まず、前述の時刻t1から20msにおける電流Itが、例えば0.5A以上であるか否かを調べる(S104)。そして、電流Itが0.5A以上である場合、電流Itが突入電流であるか否かを調べる(S106)。一方、電流Itが0.5A未満の場合(S104:NO)、処理部110は、操作電流を示す電流I2が所定以上か否かを判定する。なお、本実施形態では、遮断器23が動作すると、遮断器23を実際に動作させるための操作電流は所定以上となるよう、所定の値が設定されている。このため、電流I2が所定未満の場合(S105:NO)、遮断器23は動作していないため、処理部110は再び電流I1、I2の監視を続ける(S100)。電流I2が所定以上の場合(S105:YES)、電流Itが突入電流であるか否かを調べる(S106)。そして、例えば、前述の時刻t1から1ms後の電流Itが5A未満であると、処理部110は、突入電流無し(S106:YES)とし、電流Itの立ち上がり波形を調べるステップS107へ処理を進める。一方、5A以上であると、突入電流有りとし(S106:NO)、処理部110は、再び電流I1、I2の監視を続ける(S100)。そして、処理部110は、時刻t1から〜時刻t1の5ms後までの間の電流Itにおいて、1ms毎の電流Itの変化が徐所に小さくなっている場合(S107:YES)、すなわち、電流Itが時定数を有して上昇している場合、記憶装置121に電流Itを記録する(S108)。また、本実施形態では、前述の処理108において、処理部110は、電流Itとともに、電流I1も同様に記録する(S108)。一方、1ms毎の電流Itの変化が徐所に小さくなっていない場合(S107:NO)、すなわち、電流Itが時定数を有して上昇しない場合、処理部110は、再び電流I1、I2の監視を続ける(S100)。そして、記憶装置121に記録された電流Itの波形を、表示装置104等で利用者が確認することにより、利用者は、遮断器23の状態を把握できる。なお、本実施形態では、遮断器23が切状態となる際の制御電流を算出したが、遮断器24の場合も同様である。   Note that the calculated current It is a waveform acquired based on the sudden change of the current I1 in step S101, but the processing unit 110 acquires noise and current flowing in other devices connected to the power line 26. May have. In order to prevent such a problem, the processing unit 110 of the present embodiment has several characteristics that the current It stored in the RAM has the waveform of the control current of the circuit breaker as shown in FIGS. Compare. Specifically, the processing unit 110 first checks whether or not the current It from the above-described time t1 to 20 ms is, for example, 0.5 A or more (S104). If the current It is 0.5 A or more, it is checked whether the current It is an inrush current (S106). On the other hand, when the current It is less than 0.5 A (S104: NO), the processing unit 110 determines whether or not the current I2 indicating the operation current is greater than or equal to a predetermined value. In the present embodiment, when the circuit breaker 23 is operated, a predetermined value is set so that an operation current for actually operating the circuit breaker 23 becomes equal to or greater than a predetermined value. For this reason, when the current I2 is less than the predetermined value (S105: NO), since the circuit breaker 23 is not operating, the processing unit 110 continues to monitor the currents I1 and I2 again (S100). If the current I2 is greater than or equal to a predetermined value (S105: YES), it is checked whether or not the current It is an inrush current (S106). For example, if the current It after 1 ms from the above-described time t1 is less than 5 A, the processing unit 110 determines that there is no inrush current (S106: YES), and advances the process to step S107 for examining the rising waveform of the current It. On the other hand, if it is 5 A or more, it is determined that there is an inrush current (S106: NO), and the processing unit 110 continues to monitor the currents I1 and I2 again (S100). Then, the processing unit 110 determines that the change in the current It every 1 ms is gradually reduced in the current It from time t1 to 5 ms after the time t1 (S107: YES), that is, the current It. Is rising with a time constant, the current It is recorded in the storage device 121 (S108). In the present embodiment, in the processing 108 described above, the processing unit 110 records the current I1 as well as the current It (S108). On the other hand, when the change in the current It every 1 ms is not gradually reduced (S107: NO), that is, when the current It does not increase with a time constant, the processing unit 110 again sets the currents I1 and I2. Monitoring is continued (S100). The user can grasp the state of the circuit breaker 23 by confirming the waveform of the current It recorded in the storage device 121 with the display device 104 or the like. In the present embodiment, the control current when the circuit breaker 23 is turned off is calculated, but the same applies to the case of the circuit breaker 24.

以上に説明した構成からなる本実施形態の遮断器動作一括監視装置25は、リレー盤21,22が電源線26に接続されているノードのコンデンサ70の容量値Caと、抵抗71の抵抗値Raとに応じた時定数のRC直列回路80を備えている。このため、処理装置84は、RC直列回路80の電流Ipを変流器83で測定することにより、リレー盤21、22と電源線26との間でやりとりされる電流の影響を考慮することが可能となる。したがって、処理装置84は、電源線26にコンデンサを含むリレー盤等が接続されている場合であっても、精度良く遮断器の制御電流を算出できる。さらに、処理装置84は、リレー盤21,22、遮断器23,24が電源線26に接続される夫々のノードの全ての位置より上流側に設けられた変流器82で測定される電流I1と、変流器83で測定される電流Ipとに基づいて、電気所における複数の遮断器のうち何れか一つの制御電流を算出できるため、複数の遮断器の夫々に対して変流器等を設ける場合と比較すると、低コストで遮断器の動作を監視できる。   The circuit breaker operation collective monitoring device 25 according to the present embodiment having the above-described configuration is configured such that the capacitance value Ca of the capacitor 70 at the node where the relay panels 21 and 22 are connected to the power line 26 and the resistance value Ra of the resistor 71. RC series circuit 80 having a time constant corresponding to the above is provided. For this reason, the processing device 84 considers the influence of the current exchanged between the relay boards 21 and 22 and the power supply line 26 by measuring the current Ip of the RC series circuit 80 with the current transformer 83. It becomes possible. Therefore, the processing device 84 can accurately calculate the control current of the circuit breaker even when a relay panel including a capacitor is connected to the power line 26. Further, the processing device 84 has a current I1 measured by a current transformer 82 provided upstream from all positions of the respective nodes where the relay panels 21, 22 and the circuit breakers 23, 24 are connected to the power line 26. And the current Ip measured by the current transformer 83, the control current of any one of the plurality of circuit breakers at the electric station can be calculated. Therefore, a current transformer or the like for each of the plurality of circuit breakers Compared with the case of providing the circuit breaker, the operation of the circuit breaker can be monitored at a low cost.

また、本実施形態のRC直列回路80は、コンデンサ70の容量値Ca及び抵抗71の抵抗値Raに応じた時定数を有するようなパイロットコンデンサ90と抵抗91とを含んで構成される。このため、本実施形態では、簡単な回路構成により、容量値Ca及び抵抗値Raに応じた時定数の電流Ipを生成することが可能である。   The RC series circuit 80 according to the present embodiment includes a pilot capacitor 90 and a resistor 91 having a time constant corresponding to the capacitance value Ca of the capacitor 70 and the resistance value Ra of the resistor 71. Therefore, in the present embodiment, it is possible to generate the current Ip having a time constant corresponding to the capacitance value Ca and the resistance value Ra with a simple circuit configuration.

また、本実施形態では、コンデンサ70の容量値Ca及び抵抗71の抵抗値Raの積であるCa・Raと、パイロットコンデンサ90の容量値Cp及び抵抗91の抵抗値Rpの積であるCp・Rpとが、同じとなるよう、抵抗Rpが調整されている。このため、本実施形態では電流Ia、電流Ipは電源線26の電圧変動に対して、同じように変化する。したがって、処理装置84は、電流Ipの値に基づいて、容易に電流Iaの値を算出することが可能である。   Further, in the present embodiment, Cp · Rp which is the product of Ca · Ra which is the product of the capacitance value Ca of the capacitor 70 and the resistance value Ra of the resistor 71 and the capacitance value Cp of the pilot capacitor 90 and the resistance value Rp of the resistor 91. Are adjusted to be the same as each other. For this reason, in this embodiment, the current Ia and the current Ip change in the same way with respect to the voltage fluctuation of the power supply line 26. Therefore, the processing device 84 can easily calculate the value of the current Ia based on the value of the current Ip.

また、本実施形態では、電流Iaと電流Ipとの間には、Ia=(Rp/Ra)×Ipの関係がある。また、遮断器の電流Itは、It=I1+(Rp/Ra)×Ipである。このため、本実施形態では、変流器82で測定される電流I1と、変流器83で測定される電流Ipとに基づいて正確に遮断器の電流Itを算出することが可能である。   In the present embodiment, there is a relationship of Ia = (Rp / Ra) × Ip between the current Ia and the current Ip. Further, the current It of the circuit breaker is It = I1 + (Rp / Ra) × Ip. For this reason, in this embodiment, it is possible to calculate the breaker current It accurately based on the current I1 measured by the current transformer 82 and the current Ip measured by the current transformer 83.

なお、上記実施例は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。   In addition, the said Example is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.

例えば、電源線26にリレー盤21、22以外のコンデンサを含む他の機器が接続されている場合であっても、本実施形態では直列回路80の時定数を実験的に調整するため、本実施形態と同様の効果を得ることが可能である。   For example, even when another device including a capacitor other than the relay panels 21 and 22 is connected to the power line 26, in this embodiment, the time constant of the series circuit 80 is experimentally adjusted. It is possible to obtain the same effect as the form.

また、パイロットコンデンサ90が電源線26に接続されていれば、電流Ipの変化は電流Iaの変化と同様となる。このため、パイロットコンデンサ90が接続される位置は、本実施形態で接続されている位置に限られるものでは無い。   If pilot capacitor 90 is connected to power supply line 26, the change in current Ip is the same as the change in current Ia. For this reason, the position where the pilot capacitor 90 is connected is not limited to the position connected in the present embodiment.

10 遠隔制御装置
20 直流電源装置
21,22 リレー盤
23,24 遮断器
25 遮断器動作一括監視装置
26 電源線
30 通信線
40 整流器
41 蓄電池
42〜44 配電用遮断器
50,52 スイッチング電源
51,53 制御装置
60,80 RC直列回路
70,90 コンデンサ
71,91 抵抗
81〜83 変流器
84 処理装置
100 ADC(ADコンバータ)
101 記憶装置
102 CPU
103 入力装置
104 表示装置
110 処理部
111 算出部
120 電子負荷
121 内部抵抗
DESCRIPTION OF SYMBOLS 10 Remote control device 20 DC power supply device 21, 22 Relay panel 23, 24 Circuit breaker 25 Circuit breaker operation collective monitoring device 26 Power supply line 30 Communication line 40 Rectifier 41 Storage battery 42-44 Distribution circuit breaker 50, 52 Switching power supply 51, 53 Control device 60, 80 RC series circuit 70, 90 Capacitor 71, 91 Resistance 81-83 Current transformer 84 Processing device 100 ADC (AD converter)
101 storage device 102 CPU
DESCRIPTION OF SYMBOLS 103 Input device 104 Display apparatus 110 Processing part 111 Calculation part 120 Electronic load 121 Internal resistance

上記目的を達成するため、本発明の一つの側面に係る遮断器動作監視装置は、複数の遮断器と、前記複数の遮断器の動作を制御するための電源を前記複数の遮断器に共通の電源線を介して前記複数の遮断器に供給する蓄電池と、前記電源線に接続され、前記複数の遮断器及び前記蓄電池とは異なる機器と、を有する電気所において、前記複数の遮断器のうち何れか一の遮断器が遮断されるときに、前記電源線から前記一の遮断器に流れる制御電流を算出する処理装置と、前記電源線の電圧レベルが変化すると、前記機器が前記電源線に接続されるノードにおける前記機器の抵抗値と容量値とに応じた時定数で変化する第1電流を、前記電源線に出力し、または、前記電源線から吸い込む電流生成回路と、を備え、前記処理装置は、前記第1電流を測定する第1測定部と、前記電源線において、前記複数の遮断器及び前記機器が前記電源線に接続される夫々のノードの全ての位置より上流側に流れる第2電流を測定する第2測定部と、前記第1及び第2測定部の測定結果に基づいて、前記一の遮断器に流れる前記制御電流を算出する算出部と、を含むこととする。 To achieve the above object, a circuit breaker operation monitoring apparatus according to one aspect of the present invention, common to the plurality of circuit breakers, the power to control the operation of the previous SL plurality of circuit breakers to the plurality of circuit breakers A storage battery that is supplied to the plurality of circuit breakers via a power line , and an electric station that is connected to the power line and is different from the plurality of circuit breakers and the storage battery . A processing device for calculating a control current flowing from the power supply line to the one circuit breaker when any one of the circuit breakers is cut off, and when the voltage level of the power supply line is changed, the device is connected to the power supply line. A current generation circuit that outputs a first current that changes with a time constant according to a resistance value and a capacitance value of the device at a node connected to the power supply line, or sucks from the power supply line, The processing apparatus includes the first power supply. And a second measuring unit configured to measure a second current that flows upstream from all positions of each of the nodes to which the plurality of circuit breakers and the device are connected to the power line in the power line. A measurement unit and a calculation unit that calculates the control current flowing through the one circuit breaker based on the measurement results of the first and second measurement units are included.

上記目的を達成するため、本発明の一つの側面に係る遮断器動作監視装置は、
複数の遮断器と、複数の遮断器の動作を制御するための電源を複数の遮断器に共通の電源線を介して複数の遮断器に供給する蓄電池と、電源線に接続され、複数の遮断器及び蓄電池とは異なる機器と、を有する電気所において、複数の遮断器のうち何れか一の遮断器が遮断されるときに、電源線から一の遮断器に流れる制御電流の電流値を算出する処理装置と、電源線の電圧レベルが変化すると、機器が電源線に接続されるノードにおける機器の抵抗値と容量値とに応じた時定数で変化する第1電流を、電源線に出力し、または、電源線から吸い込む、機器とは異なる電流生成回路と、を備え、処理装置は、第1電流を測定する第1測定部と、電源線において、複数の遮断器及び機器が電源線に接続される夫々のノードの全ての位置より上流側に流れる第2電流を測定する第2測定部と、第1電流に応じた電流の電流値と第2電流の電流値とを加算することにより、一の遮断器に流れる制御電流の電流値を算出する算出部と、を含むこととする。
In order to achieve the above object, a circuit breaker operation monitoring device according to one aspect of the present invention includes:
A plurality of circuit breakers, a storage battery that supplies power for controlling the operation of the plurality of circuit breakers to the plurality of circuit breakers via a common power line, and a plurality of circuit breakers connected to the power line Calculates the current value of the control current flowing from the power supply line to one of the circuit breakers when any one of the circuit breakers is cut off at an electric station having a device different from the battery and storage battery When the voltage level of the processing device and the power supply line changes, a first current that changes with a time constant according to the resistance value and the capacitance value of the equipment at a node where the equipment is connected to the power supply line is output to the power supply line. Or a current generation circuit different from the device that sucks in from the power line, and the processing device includes a first measurement unit that measures the first current and a plurality of circuit breakers and devices connected to the power line. Upstream from all positions of each connected node A second measuring unit for measuring a second current flowing through, by adding the current value of the current corresponding to the first current and the current value of the second current, the current value of the control current flowing in one circuit breaker A calculation unit for calculating.

Claims (4)

複数の遮断器と、機器と、前記複数の遮断器及び前記機器の動作を制御するための電源を前記複数の遮断器及び前記機器に共通の電源線を介して供給する蓄電池と、を有する電気所において、前記複数の遮断器のうち何れか一の遮断器が遮断されるときに、前記一の遮断器に流れる電流を算出する処理装置と、
前記電源線の電圧レベルが変化すると、前記機器が前記電源線に接続されるノードにおける前記機器の抵抗値と容量値とに応じた時定数で変化する第1電流を、前記電源線に出力し、または、前記電源線から吸い込む電流生成回路と、
を備え、
前記処理装置は、
前記第1電流を測定する第1測定部と、
前記電源線において、前記複数の遮断器及び前記機器が前記電源線に接続される夫々のノードの全ての位置より上流側に流れる第2電流を測定する第2測定部と、
前記第1及び第2測定部の測定結果に基づいて、前記一の遮断器に流れる電流を算出する算出部と、
を含むこと、
を特徴とする遮断器動作監視装置。
An electric circuit comprising: a plurality of circuit breakers; a device; and a storage battery that supplies power to control the operations of the plurality of circuit breakers and the devices to the plurality of circuit breakers and the devices via a common power line. At this point, when any one of the plurality of circuit breakers is interrupted, a processing device that calculates a current flowing through the one circuit breaker;
When the voltage level of the power supply line changes, a first current that changes with a time constant according to a resistance value and a capacitance value of the device at a node connected to the power supply line is output to the power supply line. Or a current generation circuit that draws in from the power line, and
With
The processor is
A first measuring unit for measuring the first current;
A second measuring unit for measuring a second current flowing upstream from all positions of the respective nodes where the plurality of circuit breakers and the device are connected to the power line in the power line;
Based on the measurement results of the first and second measurement units, a calculation unit that calculates the current flowing through the one circuit breaker;
Including,
A circuit breaker operation monitoring device.
請求項1に記載の遮断器動作監視装置であって、
前記電流生成回路は、
前記時定数を有するような抵抗値の抵抗と容量値のコンデンサとが直列に接続されたRC直列回路であること、
を特徴とする遮断器動作監視装置。
The circuit breaker operation monitoring device according to claim 1,
The current generation circuit includes:
An RC series circuit in which a resistor having a resistance value having a time constant and a capacitor having a capacitance value are connected in series;
A circuit breaker operation monitoring device.
請求項2に記載の遮断器動作監視装置であって、
前記時定数は、
前記前記機器の抵抗値と容量値との積自体であること、
を特徴とする遮断器動作監視装置。
The circuit breaker operation monitoring device according to claim 2,
The time constant is
The product itself of the resistance value and the capacitance value of the device,
A circuit breaker operation monitoring device.
請求項3に記載の遮断器動作監視装置であって、
前記算出部は、
前記第1電流値に対し、前記抵抗の抵抗値と前記機器の抵抗値との比に応じた値を乗算して、前記第2電流に加算することにより前記一の遮断器に流れる電流を算出すること、
を特徴とする遮断器動作監視装置。
The circuit breaker operation monitoring device according to claim 3,
The calculation unit includes:
Multiplying the first current value by a value corresponding to the ratio between the resistance value of the resistor and the resistance value of the device, and adding the second current to calculate the current flowing through the one circuit breaker. To do,
A circuit breaker operation monitoring device.
JP2009087071A 2009-03-31 2009-03-31 Circuit breaker operation monitoring device Active JP4526588B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009087071A JP4526588B1 (en) 2009-03-31 2009-03-31 Circuit breaker operation monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087071A JP4526588B1 (en) 2009-03-31 2009-03-31 Circuit breaker operation monitoring device

Publications (2)

Publication Number Publication Date
JP4526588B1 JP4526588B1 (en) 2010-08-18
JP2010238611A true JP2010238611A (en) 2010-10-21

Family

ID=42767857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087071A Active JP4526588B1 (en) 2009-03-31 2009-03-31 Circuit breaker operation monitoring device

Country Status (1)

Country Link
JP (1) JP4526588B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130141A (en) * 2010-12-14 2012-07-05 Chugoku Electric Power Co Inc:The Monitoring device
JP2013019872A (en) * 2011-07-14 2013-01-31 Chugoku Electric Power Co Inc:The Breaker operation monitoring device
JP2013021767A (en) * 2011-07-07 2013-01-31 Chugoku Electric Power Co Inc:The Control device and circuit breaker operation monitoring device
JP2013088214A (en) * 2011-10-17 2013-05-13 Chugoku Electric Power Co Inc:The Control circuit checking apparatus and control circuit checking method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611984B2 (en) * 1978-04-14 1986-01-21 Mitsubishi Electric Corp
JPS61198070A (en) * 1985-02-28 1986-09-02 Fuji Electric Co Ltd Control current monitor device for circuit breaker
JPS6430127A (en) * 1987-07-24 1989-02-01 Toshiba Corp Switching device operation time measuring system
JPH01281630A (en) * 1988-05-06 1989-11-13 Fuji Electric Co Ltd Interrupter state inspection device
JPH06267365A (en) * 1993-03-16 1994-09-22 Hitachi Ltd Preventive maintenance device for circuit breaker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611984B2 (en) * 1978-04-14 1986-01-21 Mitsubishi Electric Corp
JPS61198070A (en) * 1985-02-28 1986-09-02 Fuji Electric Co Ltd Control current monitor device for circuit breaker
JPS6430127A (en) * 1987-07-24 1989-02-01 Toshiba Corp Switching device operation time measuring system
JPH01281630A (en) * 1988-05-06 1989-11-13 Fuji Electric Co Ltd Interrupter state inspection device
JPH06267365A (en) * 1993-03-16 1994-09-22 Hitachi Ltd Preventive maintenance device for circuit breaker

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130141A (en) * 2010-12-14 2012-07-05 Chugoku Electric Power Co Inc:The Monitoring device
JP2013021767A (en) * 2011-07-07 2013-01-31 Chugoku Electric Power Co Inc:The Control device and circuit breaker operation monitoring device
JP2013019872A (en) * 2011-07-14 2013-01-31 Chugoku Electric Power Co Inc:The Breaker operation monitoring device
JP2013088214A (en) * 2011-10-17 2013-05-13 Chugoku Electric Power Co Inc:The Control circuit checking apparatus and control circuit checking method

Also Published As

Publication number Publication date
JP4526588B1 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
ES2568250T3 (en) Optimized protection coordination of electronic trip circuit breaker by monitoring the availability of short-circuit current
KR100669157B1 (en) Digital distribution switchboard controller
US9748762B2 (en) Method and apparatus for the protection of DC distribution systems
JP4526588B1 (en) Circuit breaker operation monitoring device
US20100217546A1 (en) Methods and Apparatuses for Detecting Faults in Electrical Power Systems
JP4937401B1 (en) Electronic device and method for calculating input power value of power supply module in the same device
JP6016978B2 (en) Method and apparatus for monitoring power consumption of electrical equipment
CN102171904A (en) Overload relay
JP2022524264A (en) Methods and equipment for monitoring insulation between DC buses and protective grounding
US11563433B2 (en) Direct current circuit switch
CN104903734A (en) Insulation monitoring device
EP2130277B1 (en) Circuit and method for compensating capacitive earth currents in networks
JP2014039375A (en) Monitoring device, monitoring system, and program
JP2008203116A (en) Electrical quantity integrating device
JP6215520B2 (en) Power usage management system
JP2011171178A (en) Circuit breaker monitoring device, and throw-in detection method of circuit breaker monitoring device
KR101705965B1 (en) A protection relay with dual display device
JP5349546B2 (en) Control device, circuit breaker operation monitoring device
JP7072984B2 (en) Switch life diagnostic device
US20200176968A1 (en) Power distribution unit with aggregate current control
KR100653284B1 (en) Digital uninterruptible power supply system for three phases
JP5241891B2 (en) Circuit breaker operation monitoring device
US11740265B1 (en) Signal conditioning circuit
CN102246402B (en) Power circuit
RU2463693C2 (en) Standalone self-powered numerically controlled relay

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4526588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250