JP2010235968A - Vacuum treatment apparatus - Google Patents

Vacuum treatment apparatus Download PDF

Info

Publication number
JP2010235968A
JP2010235968A JP2009082115A JP2009082115A JP2010235968A JP 2010235968 A JP2010235968 A JP 2010235968A JP 2009082115 A JP2009082115 A JP 2009082115A JP 2009082115 A JP2009082115 A JP 2009082115A JP 2010235968 A JP2010235968 A JP 2010235968A
Authority
JP
Japan
Prior art keywords
film
vacuum processing
vacuum
gas
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009082115A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tsuruoka
一侑 鶴岡
Yoshiro Ishii
芳朗 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009082115A priority Critical patent/JP2010235968A/en
Publication of JP2010235968A publication Critical patent/JP2010235968A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To suppress deformation or wrinkles of a film substrate caused by the heat generated during the film deposition on the film substrate by the magnetron type sputtering, or during the surface treatment of the film by a plasma processing means. <P>SOLUTION: A vacuum treatment apparatus is constituted so that, a film is fed out from a film feed-out means holding a rolled film in a vacuum container, the fed-out film is subjected to the vacuum treatment by a vacuum treatment means in a vacuum treatment means area via a guide roll for conveying films, and further wound by a film winding means via a guide roll for conveying films. The vacuum treatment apparatus has a film cooling mechanism capable of blowing gas cooled from a back side of a film surface which is subjected to the vacuum treatment of the film during the conveyance in the vacuum treatment means area, to a back side of the film substrate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

真空中でプラズマ処理、マグネトロンスパッタリング方式巻取式真空成膜処理等の真空処理を行う装置におけるフィルム基板への熱発生の影響を抑制するフィルム冷却機構を具備する真空処理装置に関する。 The present invention relates to a vacuum processing apparatus including a film cooling mechanism that suppresses the influence of heat generation on a film substrate in an apparatus that performs vacuum processing such as plasma processing and magnetron sputtering type winding vacuum film forming processing in vacuum.

従来、フィルム状基板に成膜する場合のフィルム基板の温度上昇を抑える方法として、特開平5−320881号公報(特許文献1)に開示されているように、真空容器内で、フィルム巻取手段101と、フィルム原反送り出し手段101とが、冷却ロール103の上方に設置され、フィルム原反送り出し手段101から送り出されたフィルムが、フィルム搬送用ロールを経て、冷却ロール103に沿って搬送され、この冷却ロールに沿って搬送される位置にあるフィルムに、冷却ロール103の下方に設置された蒸着ルツボから蒸発した金属が蒸着され、このようにして蒸着された蒸着フィルムが、フィルム搬送用ロールを経て、フィルム巻取手段102に巻き取られる(図1参照)、という方法が採られていた。 Conventionally, as a method for suppressing the temperature rise of a film substrate when forming a film on a film substrate, as disclosed in JP-A-5-320881 (Patent Document 1), film winding means in a vacuum vessel 101 and the film original fabric delivery means 101 are installed above the cooling roll 103, and the film delivered from the film original fabric delivery means 101 is conveyed along the cooling roll 103 via the film conveyance roll, The film that is transported along the cooling roll is vapor-deposited with the metal evaporated from the vapor deposition crucible installed below the cooling roll 103, and the vapor deposited film thus deposited becomes the film transport roll. Then, the method of winding up to the film winding means 102 (refer FIG. 1) was taken.

しかし、条件によっては成膜中の熱の輻射により冷却ロール上のフィルム状基板に皺が発生し製品の歩留まりを悪くするという問題があった。また、冷却ロールを含め多くのフィルム搬送用ロールを用いる必要があり成膜工程が複雑となるとともに、装置が大型化してしまい、巻取式真空成膜装置の設備技術が難しくなり、設備費用も高価になるという問題も生じていた。 However, depending on the conditions, there is a problem that wrinkles are generated on the film-like substrate on the cooling roll due to heat radiation during film formation, which deteriorates the product yield. In addition, it is necessary to use many rolls for film conveyance including cooling rolls, and the film formation process becomes complicated, the apparatus becomes large, and the equipment technology of the take-up vacuum film formation apparatus becomes difficult, and the equipment cost also increases. There was also a problem of being expensive.

また、冷却ロールを用いる方式では、フィルムのロール面に接触する面で傷の発生が問題になることもあった。 Moreover, in the system using a cooling roll, the occurrence of scratches may be a problem on the surface that contacts the roll surface of the film.

特開平5−320881号公報JP-A-5-320881

本発明は、マグネトロン方式のスパッタリングによるフィルム基板への成膜時や、プラズマ処理手段によるフィルム表面処理時に発生する熱によって、フィルム基板の変形や皺の発生を抑えることを目的とする。 An object of the present invention is to suppress deformation of a film substrate and generation of wrinkles by heat generated during film formation on a film substrate by magnetron sputtering or during film surface treatment by a plasma processing means.

本発明者等は、真空容器内で、ロール状フィルムを保持したフィルム送り出し手段からフィルムを送り出し、送り出されたフィルムが、フィルム搬送用ロールを経て、真空処理手段領域において真空処理手段により真空処理が行われ、さらにフィルム搬送用ロールを経て、フィルム巻取手段で巻き取る真空処理装置において、真空処理手段を用いて該フィルムの真空処理を行っているときに発生する熱の輻射によりフィルム状基板に皺が発生し製品の歩留まりを悪化させるという課題に着目し、真空容器内で真空処理中のフィルム冷却機構について試験を行ったところ、真空処理手段領域中を搬送中の該フィルムの真空処理を行うフィルム面の裏面側より冷却されたガスをフィルム基板裏面に吹き付けることができるフィルム冷却機構を用いることで解決できることを見出し、本発明に至った。 The present inventors send out the film from the film delivery means holding the roll film in the vacuum container, and the delivered film is subjected to vacuum processing by the vacuum processing means in the vacuum processing means region through the film transport roll. Furthermore, in a vacuum processing apparatus that is wound by a film winding means through a film conveying roll, the film-like substrate is irradiated with heat generated when the film is vacuum processed using the vacuum processing means. Focusing on the problem of wrinkles and worsening product yield, a film cooling mechanism during vacuum processing was tested in a vacuum vessel, and the film being transported in the vacuum processing means area was vacuum processed. Using a film cooling mechanism that can blow the gas cooled from the back side of the film surface to the back side of the film substrate It can be solved by, leading to the present invention.

すなわち、本発明の第1の発明は、真空容器内で、ロール状フィルムを保持したフィルム送り出し手段からフィルムを送り出し、送り出されたフィルムが、フィルム搬送用ロールを経て、真空処理手段領域において真空処理手段により真空処理が行われ、さらにフィルム搬送用ロールを経て、フィルム巻取手段で巻き取る真空処理装置において、
真空処理手段領域中を搬送中の該フィルムの真空処理を行うフィルム面の裏面側より冷却されたガスをフィルム基板裏面に吹き付けることができるフィルム冷却機構を具備していることを特徴とする真空処理装置を提供する。
That is, according to the first aspect of the present invention, a film is sent out from a film sending means holding a roll-shaped film in a vacuum container, and the sent-out film is subjected to a vacuum processing in a vacuum processing means region through a film transporting roll. In the vacuum processing apparatus in which the vacuum processing is performed by the means, and further, the film is wound by the film winding means through the roll for film conveyance.
A vacuum processing comprising a film cooling mechanism capable of spraying a gas cooled from the back side of the film surface for vacuum processing of the film being transported in the vacuum processing means region to the back side of the film substrate Providing equipment.

本発明の第2の発明は、フィルム冷却機構に、搬送中のフィルムに吹き付けるガスを冷却可能なガス冷却機構を具備していることを特徴とする第1の発明に記載の真空処理装置を提供する。 According to a second aspect of the present invention, there is provided the vacuum processing apparatus according to the first aspect, wherein the film cooling mechanism is provided with a gas cooling mechanism capable of cooling the gas sprayed onto the film being conveyed. To do.

本発明の第3の発明は、フィルムに吹き付けるガスに、真空処理手段により真空処理を行うときに用いるガスを混合することを特徴とする第1、2の発明のいずれかに記載の真空処理装置を提供する。 According to a third aspect of the present invention, there is provided the vacuum processing apparatus according to any one of the first and second aspects, wherein a gas used when vacuum processing is performed by a vacuum processing means is mixed with a gas blown onto the film. I will provide a.

本発明の第4の発明は、真空処理手段が、マグネトロン方式スパッタリング成膜手段であることを特徴とする第1〜3の発明のいずれかに記載の真空処理装置を提供する。 According to a fourth aspect of the present invention, there is provided the vacuum processing apparatus according to any one of the first to third aspects, wherein the vacuum processing means is a magnetron type sputtering film forming means.

本発明の第5の発明は、真空処理手段が、プラズマ電極を有するプラズマ処理手段であることを特徴とする第1〜3の発明のいずれかに記載の真空処理装置を提供する。 According to a fifth aspect of the present invention, there is provided the vacuum processing apparatus according to any one of the first to third aspects, wherein the vacuum processing means is a plasma processing means having a plasma electrode.

本発明の真空処理装置は、真空容器内で、ロール状フィルムを保持したフィルム送り出し手段からフィルムを送り出し、送り出されたフィルムが、フィルム搬送用ロールを経て、真空処理手段領域において真空処理手段により真空処理が行われ、さらにフィルム搬送用ロールを経て、フィルム巻取手段で巻き取る真空処理装置において、真空処理手段領域中を搬送中の該フィルムの真空処理を行うフィルム面の裏面側より冷却されたガスをフィルム基板裏面に吹き付けることができるフィルム冷却機構を具備しており、真空処理が行われる時に、該フィルムの裏面側より冷却することにより該フィルムの熱変を起こさずに成膜することができ、フィルム基板の変形や皺の発生を抑えることができる。 The vacuum processing apparatus of the present invention sends out a film from a film delivery means holding a roll film in a vacuum container, and the delivered film passes through a roll for film conveyance and is vacuumed by a vacuum treatment means in a vacuum treatment means region. In the vacuum processing apparatus in which the treatment is further performed and the film is taken up by the film take-up means through the roll for film conveyance, the film is cooled from the back side of the film surface that performs vacuum treatment of the film being conveyed in the vacuum treatment means region. It is equipped with a film cooling mechanism that can spray gas on the back side of the film substrate, and when vacuum processing is performed, it can be formed without causing thermal change of the film by cooling from the back side of the film. The deformation of the film substrate and the generation of wrinkles can be suppressed.

これにより、フィルム基板に皺が発生し製品の歩留まりを悪くするという問題を解決できるとともに、装置大型化や設備費用の高額化の問題も解消でき、工業的に優れている。 As a result, the problem that wrinkles occur on the film substrate and the yield of the product is deteriorated can be solved, and the problems of increasing the size of the apparatus and increasing the equipment cost can be solved, which is industrially excellent.

真空蒸着装置における、冷却ロールを用いてフィルム冷却する、フィルム冷却の従来例を示す。The conventional example of film cooling which cools a film using a cooling roll in a vacuum evaporation system is shown. 本発明のフィルム冷却機構を有した巻取式連続プラズマ処理手段を有する真空処理装置構造を示す。The structure of the vacuum processing apparatus which has a winding-type continuous plasma processing means with the film cooling mechanism of this invention is shown. 本発明の、フィルム冷却機構とプラズマ電極を複数個有した巻取式連続プラズマ処理手段を有する真空処理装置構造を示す。1 shows a vacuum processing apparatus structure having a film cooling mechanism and a winding type continuous plasma processing means having a plurality of plasma electrodes. 本発明の、フィルム冷却機構を有した巻取式連続マグネトロン方式のスパッタリング装置を有する真空処理装置構造を示す。1 shows a vacuum processing apparatus structure having a winding type continuous magnetron type sputtering apparatus having a film cooling mechanism of the present invention. 本発明の、フィルム冷却機構とスパッタリング源を複数個有した巻取式連続多層膜マグネトロン方式のスパッタリング装置を有する真空処理装置構造を示す。1 shows a vacuum processing apparatus structure having a winding type continuous multilayer magnetron type sputtering apparatus having a plurality of film cooling mechanisms and sputtering sources according to the present invention. 本発明の、フィルム冷却機構とスパッタリング源を4個有した巻取式連続両面成膜マグネトロン方式のスパッタリング装置を有する真空処理装置構造を示す。1 shows a vacuum processing apparatus structure having a winding type continuous double-sided film forming magnetron type sputtering apparatus having four film cooling mechanisms and four sputtering sources according to the present invention.

本発明の真空処理装置は、真空容器内で、ロール状フィルムを保持したフィルム送り出し手段からフィルムを送り出し、送り出されたフィルムが、フィルム搬送用ガイドロールを経て、真空処理手段領域において真空処理手段により真空処理が行われ、さらにフィルム搬送用ガイドロールを経て、フィルム巻取手段で巻き取る真空処理装置において、真空処理手段領域中を搬送中の該フィルムの真空処理を行うフィルム面の裏面側より冷却されたガスをフィルム基板裏面に吹き付けることができるフィルム冷却機構を具備していることを特徴としている。 The vacuum processing apparatus of the present invention feeds a film from a film feeding means holding a roll-shaped film in a vacuum container, and the fed film passes through a guide roll for film conveyance by a vacuum processing means in a vacuum processing means region. In the vacuum processing apparatus in which the vacuum processing is performed and the film is taken up by the film winding means through the film transport guide roll, the film is cooled from the back side of the film surface for vacuum processing of the film being transported in the vacuum processing means region. It is characterized by having a film cooling mechanism capable of spraying the formed gas onto the back surface of the film substrate.

また、フィルム冷却機構に、搬送中のフィルムに吹き付けるガスを冷却可能なガス冷却機構を具備していることを特徴としている。 In addition, the film cooling mechanism is provided with a gas cooling mechanism capable of cooling the gas blown onto the film being conveyed.

(1)プラズマ電極を有するプラズマ処理手段を有する真空処理装置
プラズマ電極でフィルムを連続搬送し表面処理する場合は、基板裏面に冷却したガス、例えば、ヘリウムガスを吹き付けることでフィルムの熱変形を抑制して処理することが可能となる。
(1) Vacuum processing apparatus having a plasma processing means having a plasma electrode When the film is continuously transported and processed by the plasma electrode, the film is prevented from thermal deformation by spraying a cooled gas, for example, helium gas, on the back surface of the substrate. Can be processed.

本発明のフィルム冷却機構を用いた表面処理を行う真空処理装置において、ガス種、プラズマ電源の種類、プラズマ電極構造、プラズマ処理条件を最適となるよう選択することにより、目的に合わせた処理を安定して行うことが出来る。 In vacuum processing equipment that performs surface treatment using the film cooling mechanism of the present invention, the gas type, the type of plasma power source, the plasma electrode structure, and the plasma processing conditions are selected to be optimized, thereby stabilizing the processing according to the purpose. Can be done.

本発明のプラズマ表面処理手段を有する真空処理装置とそれを用いたプラズマ処理方法について、図を用いて説明する。
図2は本発明の真空処理装置であり、プラズマ表面処理手段を有する真空処理装置であり、プラズマ電極1、フィルム搬送機構(例えば送出ロール2であるフィルム送出手段、例えば巻取ロール3であるフィルム巻取手段、およびガイドロール(フィルム搬送用ガイドロール)4)およびフィルム冷却機構7を具備している。
A vacuum processing apparatus having a plasma surface processing means of the present invention and a plasma processing method using the same will be described with reference to the drawings.
FIG. 2 shows a vacuum processing apparatus according to the present invention, which is a vacuum processing apparatus having a plasma surface processing means, and includes a plasma electrode 1 and a film transport mechanism (for example, a film delivery means that is a delivery roll 2, for example, a film that is a take-up roll 3). Winding means, a guide roll (film transport guide roll) 4) and a film cooling mechanism 7 are provided.

図2の真空処理装置を用いてプラズマ表面処理を実施する場合は、フィルム冷却機構7をフィルム裏面に最も近く、かつ、フィルムに接触しない位置に配置する。真空ポンプ12を用いて真空槽6内の空気を排気する。この状態でフィルム冷却機構7に液体窒素などの冷媒を冷媒導入口10より投入しフィルム冷却機構のガス導入口A8より真空槽内に冷却用ガスを供給する。さらにプラズマ処理に必要なガスとして、例えばヘリウムガスをガス導入口バルブB9から導入してプラズマ表面処理時のガス圧力を最適化するためにポンプ12の排気弁11の開度を調節してガス圧力を微調整する。その後、送出ロール2よりフィルムを送り出し巻取ロール3に巻き取る。送出ロールより供給されたフィルムはガイドロール4間で弛むことなく一定の張力で巻取ロール側に巻き取られる。 When the plasma surface treatment is performed using the vacuum processing apparatus of FIG. 2, the film cooling mechanism 7 is disposed closest to the film back surface and not in contact with the film. The air in the vacuum chamber 6 is exhausted using the vacuum pump 12. In this state, a refrigerant such as liquid nitrogen is introduced into the film cooling mechanism 7 from the refrigerant introduction port 10 and the cooling gas is supplied into the vacuum chamber from the gas introduction port A8 of the film cooling mechanism. Further, as a gas necessary for the plasma treatment, for example, helium gas is introduced from the gas inlet valve B9, and the gas pressure is adjusted by adjusting the opening degree of the exhaust valve 11 of the pump 12 in order to optimize the gas pressure during the plasma surface treatment. Tweak the. Thereafter, the film is sent out from the sending roll 2 and taken up on the take-up roll 3. The film supplied from the delivery roll is wound around the take-up roll side with a constant tension without loosening between the guide rolls 4.

プラズマ電源13によりプラズマ電極に電力を供給してプラズマ放電を起こさせてプラズマ表面処理を実施する。 Plasma surface treatment is performed by supplying power to the plasma electrode from the plasma power source 13 to cause plasma discharge.

プラズマ電極1の形状は特に制限は無いが、図2のようにフィルムを搬送しながら表面処理を実施する場合はフィルム巾に合わせて長方形が好ましい。本発明のプラズマ電源およびプラズマ電極には、直流(DC)、高周波(RF)、交流(MF)など各種の電源を用い、電極構造も表面処理が好適となるような電極構造を任意に選択される。またガス種についても、酸素、ヘリウム、アルゴン、窒素、水素、有機物など、さらにそれらの混合ガスを用いて、表面処理の目的に合わせて用いることが可能であり、表面改質により濡れ性の制御、表面洗浄、表面粗化などを行うことができる。 The shape of the plasma electrode 1 is not particularly limited, but when the surface treatment is carried out while transporting the film as shown in FIG. 2, a rectangular shape is preferable according to the film width. For the plasma power source and plasma electrode of the present invention, various power sources such as direct current (DC), high frequency (RF), and alternating current (MF) are used, and the electrode structure is arbitrarily selected so that surface treatment is suitable. The As for the gas species, oxygen, helium, argon, nitrogen, hydrogen, organic substances, etc., and their mixed gas can be used according to the purpose of surface treatment, and wettability can be controlled by surface modification. Surface cleaning, surface roughening, etc. can be performed.

また、本発明の真空処理装置が具備するフィルム冷却機構は、フィルムの搬送機構の違いに関わらず、巻取式プラズマ表面処理装置、バッチ式プラズマ表面処理装置、インライン方式プラズマ表面処理装置などのプラズマ表面処理装置に装着することができる。 In addition, the film cooling mechanism included in the vacuum processing apparatus of the present invention is a plasma such as a winding type plasma surface treatment apparatus, a batch type plasma surface treatment apparatus, an inline type plasma surface treatment apparatus, regardless of the difference in the film transport mechanism. It can be attached to a surface treatment apparatus.

また、本発明の真空処理装置が具備するフィルム冷却機構では、フィルム裏面に最も近づく冷却機構部材は黒化処理されていることが望ましい。これにより、フィルムと該ガス冷却機構部材面の間で効率良く熱交換することができるようになる。 In the film cooling mechanism included in the vacuum processing apparatus of the present invention, it is desirable that the cooling mechanism member closest to the film back surface is blackened. Thereby, heat exchange can be efficiently performed between the film and the gas cooling mechanism member surface.

(2)マグネトロン方式スパッタリング成膜手段を有する真空処理装置
マグネトロン方式のスパッタリング源でフィルムを連続搬送しスパッタリングする場合は、基板裏面に冷却したガス、例えば、アルゴンガスを吹き付けることでフィルムの熱変形を起こさずに成膜することが可能となる。
(2) Vacuum processing apparatus having magnetron type sputtering film forming means When a film is continuously transported and sputtered by a magnetron type sputtering source, the film is thermally deformed by spraying a cooled gas, for example, argon gas, on the back surface of the substrate. It is possible to form a film without causing it.

本発明のフィルム冷却機構を用いた真空処理装置において、ガス種、スパッタリング電源の種類、ターゲット材質、スパッタリング条件を最適となるような条件を選択することにより、目的に合わせた処理を安定して行うことが出来る。 In the vacuum processing apparatus using the film cooling mechanism of the present invention, the gas type, the type of the sputtering power source, the target material, and the conditions for optimizing the sputtering conditions are selected, thereby stably performing the processing according to the purpose. I can do it.

本発明のマグネトロン方式スパッタリング成膜手段を有する真空処理装置とそれを用いた薄膜形成法について、図を用いて説明する。図4は本発明の真空処理装置であり、マグネトロン方式スパッタリング成膜手段を有する真空処理装置であり、マグネトロンスパッタリング源21、フィルム搬送機構(送出ロール22、巻取ロール23、ガイドロール24)(すなわち、フィルム送出手段、フィルム巻取手段、フィルム搬送用ガイドロール)およびフィルム冷却機構27を具備している。 A vacuum processing apparatus having a magnetron sputtering film forming means of the present invention and a thin film forming method using the same will be described with reference to the drawings. FIG. 4 shows a vacuum processing apparatus of the present invention, which is a vacuum processing apparatus having a magnetron type sputtering film forming means, and includes a magnetron sputtering source 21, a film transport mechanism (feeding roll 22, winding roll 23, guide roll 24) (ie, , A film delivery means, a film take-up means, a film transport guide roll) and a film cooling mechanism 27.

図4の真空処理装置を用いてスパッタリング成膜を実施する場合は、フィルム冷却機構をフィルム裏面に最も近くかつフィルムに接触しない位置に配置する。真空ポンプ32を用いて真空容器26内の空気を排気する。この状態でフィルム冷却機構に液体窒素などの冷媒を冷媒導入口30より投入しフィルム冷却機構のガス導入口A28より真空容器内に冷却用ガスを供給する。さらにスパッタリングに必要なガスとして、例えばアルゴンガスをガス導入口バルブB29から導入してスパッタリング成膜時のガス圧力を最適化するためにポンプの排気バルブ31の開度を調節してガス圧力を微調整する。その後、送出ロール22よりフィルムを送り出し巻取ロール23に巻き取る。送出ロールより供給されたフィルムはガイドロール24間で弛むことなく一定の張力で巻取ロール側に巻き取られる。 When sputtering film formation is performed using the vacuum processing apparatus of FIG. 4, the film cooling mechanism is disposed at a position closest to the film back surface and not in contact with the film. The air in the vacuum vessel 26 is exhausted using the vacuum pump 32. In this state, a refrigerant such as liquid nitrogen is introduced into the film cooling mechanism from the refrigerant inlet 30 and the cooling gas is supplied into the vacuum container from the gas inlet A28 of the film cooling mechanism. Further, as a gas necessary for sputtering, for example, argon gas is introduced from the gas inlet valve B29 to adjust the opening of the exhaust valve 31 of the pump in order to optimize the gas pressure at the time of sputtering film formation, thereby reducing the gas pressure. adjust. Thereafter, the film is sent out from the sending roll 22 and taken up on the take-up roll 23. The film supplied from the delivery roll is wound around the take-up roll side with a constant tension without being loosened between the guide rolls 24.

上記搬送中に、スパッタリング電源33に電圧を印加してマグネトロン放電を発生させてスパッタリング成膜を実施する。 During the transfer, a sputtering film is formed by applying a voltage to the sputtering power source 33 to generate a magnetron discharge.

スパッタリング源(カソード)21の形状は特に制限は無いが、図4のようにフィルムを搬送しながら成膜する場合はフィルム巾に合わせて長方形が好ましく、このスパッタリング源21上に長方形ターゲットが設置される。本発明のスパッタリング電源には、直流(DC)、高周波(RF)、交流(MF)など各種の電源を用いることができる。また、スパッタリングターゲットには、金属、酸化物、窒化物、ホウ素化物、炭化物、有機物など各種材料を処理目的に合わせて用いることが可能であり、金属、酸化物、窒化物、ホウ素化物、炭化物、有機物などの薄膜を形成することが出来る。 The shape of the sputtering source (cathode) 21 is not particularly limited, but when forming a film while transporting a film as shown in FIG. 4, a rectangular shape is preferable according to the film width, and a rectangular target is installed on the sputtering source 21. The Various power sources such as direct current (DC), high frequency (RF), and alternating current (MF) can be used for the sputtering power source of the present invention. In addition, various materials such as metals, oxides, nitrides, borides, carbides, and organics can be used for the sputtering target in accordance with the processing purpose. Metals, oxides, nitrides, borides, carbides, Thin films such as organic substances can be formed.

また、本発明の真空処理装置が具備するフィルム冷却機構は、フィルムの搬送機構の違いに関わらず、巻取式スパッタリングリング装置、バッチ式スパッタリング装置、インライン方式スパッタリング装置などのスパッタリング装置に装着することができる。 In addition, the film cooling mechanism included in the vacuum processing apparatus of the present invention should be mounted on a sputtering apparatus such as a winding type sputtering ring apparatus, a batch type sputtering apparatus, or an inline type sputtering apparatus regardless of the difference in the film transport mechanism. Can do.

また、本発明の真空処理装置が具備するフィルム冷却機構27では、フィルム裏面に最も近づく冷却機構部材は黒化処理されていることが望ましい。これにより、フィルムと該ガス冷却機構部材面の間で効率良く熱交換することができるようになる。 In the film cooling mechanism 27 provided in the vacuum processing apparatus of the present invention, it is desirable that the cooling mechanism member closest to the film back surface is blackened. Thereby, heat exchange can be efficiently performed between the film and the gas cooling mechanism member surface.

本発明の他の実施態様として、図5に、フィルム冷却機構とスパッタリング源を2個有した巻取式連続多層膜マグネトロン方式のスパッタリング装置を有する真空処理装置構造を示す。 As another embodiment of the present invention, FIG. 5 shows a vacuum processing apparatus structure having a winding type continuous multilayer magnetron type sputtering apparatus having a film cooling mechanism and two sputtering sources.

また、本発明の他の実施態様として、図6に、巻取式スパッタリング装置に本発明のフィルム冷却機構を付属した、両面成膜用マグネトロンスパッタリング装置を示す。該巻取式スパッタリング装置は4式のスパッタリング源とフィルム冷却機構を交互に配置することにより片面2層、両面成膜をフィルムの一方向連続搬送のみで達成できる。このようにスパッタリング源とフィルム冷却機構を多数台装備することによって、複雑な搬送機構と冷却構造を必要とせず多層膜や厚い膜の処理が可能となる。 As another embodiment of the present invention, FIG. 6 shows a magnetron sputtering apparatus for double-sided film deposition in which the film cooling mechanism of the present invention is attached to a winding type sputtering apparatus. This winding type sputtering apparatus can achieve two-sided single-sided and double-sided film formation by only one-way continuous conveyance of the film by alternately arranging four types of sputtering sources and film cooling mechanisms. In this way, by providing a large number of sputtering sources and film cooling mechanisms, it is possible to process a multilayer film or a thick film without requiring a complicated transport mechanism and cooling structure.

以下に実施例を示し、具体的に本発明を説明するが、本発明は実施例に限定されることはない。
(実施例1)
図3に示した、巻取式プラズマ表面処理手段を具備する表面処理装置に、フィルム冷却機構とプラズマ電極を2台装着し、表面改質処理を行った。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.
Example 1
Two film cooling mechanisms and two plasma electrodes were mounted on the surface treatment apparatus provided with the winding type plasma surface treatment means shown in FIG.

まず真空槽を排気した後、ヘリウムガスをフィルム冷却機構のガス導入口バルブAを通して導入し、槽内を0.13Pa(1mmTorr)に保持した。さらに酸素ガスを、ガス導入口バルブBを通して導入し真空槽内を13Pa(100mmTorr)にした。圧力の変動や微細な調整は主排気バルブの開度調整により行った。 First, after evacuating the vacuum chamber, helium gas was introduced through the gas inlet valve A of the film cooling mechanism, and the interior of the chamber was maintained at 0.13 Pa (1 mm Torr). Further, oxygen gas was introduced through a gas inlet valve B to make the inside of the vacuum chamber 13 Pa (100 mm Torr). Pressure fluctuations and fine adjustments were made by adjusting the opening of the main exhaust valve.

送出ロール、巻取ロールに装着した25μm厚さ、524mm巾のポリイミドフィルムを毎分10mの速さで搬送しながら高周波電源よりそれぞれのプラズマ電極に5kWの電力を供給し、ポリイミドフィルム表面を表面改質した。その後、他の巻取式スパッタリング成膜装置を用いて、該ポリイミドフィルム上にCr薄膜とその上にCu薄膜を形成した。この積層膜は高い密着性を有していることが確認された。 While a polyimide film with a thickness of 25 μm and a width of 524 mm attached to a delivery roll and a take-up roll is conveyed at a speed of 10 m / min, 5 kW of power is supplied to each plasma electrode from a high-frequency power source, and the surface of the polyimide film is modified. Quality. Thereafter, using another winding type sputtering film forming apparatus, a Cr thin film and a Cu thin film were formed on the polyimide film. This laminated film was confirmed to have high adhesion.

本発明のフィルム冷却機構を有していない巻取方式のプラズマ表面処理装置に比べて、しわの発生を抑制した高品質のプラズマ表面処理を行えることが確認された。 It was confirmed that high quality plasma surface treatment with suppressed generation of wrinkles can be performed as compared with the winding type plasma surface treatment apparatus having no film cooling mechanism of the present invention.

(実施例2)
図6に示した巻取式スパッタリング装置に、フィルム冷却機構とスパッタリング源を4台装着し、片面の1台のカソードにはCr、残り1台にはCuのターゲットを装着しフィルム両面に成膜した。
(Example 2)
The film-type sputtering device shown in FIG. 6 is equipped with four film cooling mechanisms and sputtering sources, Cr is applied to one cathode on one side, and a Cu target is attached to the other, and film formation is performed on both sides of the film. did.

まず真空槽を排気した後、アルゴンガスをフィルム冷却機構のガス導入口バルブAを通して導入し、槽内を0.13Pa(1mmTorr)に保持した。さらにアルゴンガスを、ガス導入口バルブBを通して導入し真空槽内を0.4Pa(3mmTorr)にした。圧力の変動や微細な調整は主排気バルブの開度調整により行った。 First, after evacuating the vacuum chamber, argon gas was introduced through the gas inlet valve A of the film cooling mechanism, and the interior of the chamber was maintained at 0.13 Pa (1 mm Torr). Further, argon gas was introduced through a gas inlet valve B to make the inside of the vacuum chamber 0.4 Pa (3 mm Torr). Pressure fluctuations and fine adjustments were made by adjusting the opening of the main exhaust valve.

送出ロール、巻取ロールに装着した25μm厚さ、524mm巾のポリイミドフィルムを毎分2mの速さで搬送しながら直流電源よりCrスパッタリング源に10kW、Cu スパッタリング源に25kWの電力を供給し、両面にCrとCuの積層膜を形成した。 A 25 μm thick, 524 mm wide polyimide film attached to a delivery roll and a take-up roll is conveyed at a speed of 2 m / min while supplying 10 kW of power from a DC power source to a Cr sputtering source and 25 kW to a Cu sputtering source. A laminated film of Cr and Cu was formed.

これによって、20nmのCr薄膜と150nmのCu薄膜を1500mの長さのフィルム上に形成することができた。 As a result, a 20 nm Cr thin film and a 150 nm Cu thin film could be formed on a 1500 m long film.

本発明のフィルム冷却機構を有しない巻取式連続マグネトロン方式のスパッタリング装置では、高品質の両面多層膜の成膜は困難である。機械的にフィルムに接触すること無く薄いフィルム状基板を連続処理できる。 In the winding type continuous magnetron type sputtering apparatus having no film cooling mechanism of the present invention, it is difficult to form a high-quality double-sided multilayer film. Thin film substrates can be continuously processed without mechanically contacting the film.

1 プラズマ電極
2 送出ロール
3 巻取ロール
4 ガイドロール
5 フィルム
6 真空容器
7 フィルム冷却機構
8 ガス導入口バルブA
9 ガス導入口バルブB
10 冷媒導入口
11 主排気バルブ
12 真空ポンプ
13 プラズマ電源
21 マグネトロンスパッタリング源
22 送出ロール
23 巻取ロール
24 ガイドロール
25 フィルム
26 真空容器
27 フィルム冷却機構
28 ガス導入口バルブA
29 ガス導入口バルブB
30 冷媒導入口
31 主排気バルブ
32 真空ポンプ
33 スパッタリング電源
DESCRIPTION OF SYMBOLS 1 Plasma electrode 2 Delivery roll 3 Winding roll 4 Guide roll 5 Film 6 Vacuum container 7 Film cooling mechanism 8 Gas inlet valve A
9 Gas inlet valve B
DESCRIPTION OF SYMBOLS 10 Refrigerant inlet 11 Main exhaust valve 12 Vacuum pump 13 Plasma power supply 21 Magnetron sputtering source 22 Delivery roll 23 Winding roll 24 Guide roll 25 Film 26 Vacuum container 27 Film cooling mechanism 28 Gas inlet valve A
29 Gas inlet valve B
30 Refrigerant inlet 31 Main exhaust valve 32 Vacuum pump 33 Sputtering power supply

Claims (5)

真空容器内で、ロール状フィルムを保持したフィルム送出手段からフィルムを送り出し、送り出されたフィルムが、フィルム搬送用ガイドロールを経て、真空処理手段領域において真空処理手段により真空処理が行われ、さらにフィルム搬送用ガイドロールを経て、フィルム巻取手段で巻き取る真空処理装置において、
真空処理手段領域中を搬送中の該フィルムの真空処理を行うフィルム面の裏面側より冷却されたガスをフィルム基板裏面に吹き付けることができるフィルム冷却機構を具備していることを特徴とする真空処理装置。
In the vacuum vessel, the film is sent out from the film delivery means holding the roll-shaped film, and the delivered film is subjected to vacuum processing by the vacuum processing means in the vacuum processing means region through the film conveying guide roll, and further the film In a vacuum processing apparatus that winds with a film winding means through a conveying guide roll,
A vacuum processing comprising a film cooling mechanism capable of spraying a gas cooled from the back side of the film surface for vacuum processing of the film being transported in the vacuum processing means region to the back side of the film substrate apparatus.
フィルム冷却機構に、搬送中のフィルムに吹き付けるガスを冷却可能なガス冷却機構を具備していることを特徴とする請求項1記載の真空処理装置。 The vacuum processing apparatus according to claim 1, wherein the film cooling mechanism is provided with a gas cooling mechanism capable of cooling a gas blown onto the film being conveyed. フィルムに吹き付けるガスに、真空処理手段により真空処理を行うときに用いるガスを混合することを特徴とする請求項1、2のいずれかに記載の真空処理装置。 The vacuum processing apparatus according to claim 1, wherein a gas used when vacuum processing is performed by a vacuum processing unit is mixed with a gas sprayed onto the film. 真空処理手段が、マグネトロン方式スパッタリング成膜手段であることを特徴とする請求項1〜3のいずれかに記載の真空処理装置。 The vacuum processing apparatus according to claim 1, wherein the vacuum processing means is a magnetron type sputtering film forming means. 真空処理手段が、プラズマ電極を有するプラズマ処理手段であることを特徴とする請求項1〜3のいずれかに記載の真空処理装置。 The vacuum processing apparatus according to claim 1, wherein the vacuum processing means is a plasma processing means having a plasma electrode.
JP2009082115A 2009-03-30 2009-03-30 Vacuum treatment apparatus Pending JP2010235968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009082115A JP2010235968A (en) 2009-03-30 2009-03-30 Vacuum treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082115A JP2010235968A (en) 2009-03-30 2009-03-30 Vacuum treatment apparatus

Publications (1)

Publication Number Publication Date
JP2010235968A true JP2010235968A (en) 2010-10-21

Family

ID=43090574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082115A Pending JP2010235968A (en) 2009-03-30 2009-03-30 Vacuum treatment apparatus

Country Status (1)

Country Link
JP (1) JP2010235968A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101650753B1 (en) * 2015-03-30 2016-08-24 주식회사 선익시스템 Flexible Substrate Chemical Vapor Deposition System
CN109023252A (en) * 2018-10-22 2018-12-18 安徽省宁国市海伟电子有限公司 Metallized film machining production line system and its production method, metallized film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152262A (en) * 1987-10-07 1989-06-14 Thorn Emi Plc Method and apparatus for forming coating to web
JP2004315861A (en) * 2003-04-14 2004-11-11 Matsushita Electric Ind Co Ltd Thin film forming system and thin film forming method
JP2005054212A (en) * 2003-08-07 2005-03-03 Toray Ind Inc Method and apparatus for manufacturing base material with thin film deposited thereon
WO2009060597A1 (en) * 2007-11-06 2009-05-14 Panasonic Corporation Thin film forming apparatus and forming method for thin film
WO2009072242A1 (en) * 2007-12-05 2009-06-11 Panasonic Corporation Thin film forming apparatus and thin film forming method
WO2010067603A1 (en) * 2008-12-10 2010-06-17 パナソニック株式会社 Method for forming thin film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152262A (en) * 1987-10-07 1989-06-14 Thorn Emi Plc Method and apparatus for forming coating to web
JP2004315861A (en) * 2003-04-14 2004-11-11 Matsushita Electric Ind Co Ltd Thin film forming system and thin film forming method
JP2005054212A (en) * 2003-08-07 2005-03-03 Toray Ind Inc Method and apparatus for manufacturing base material with thin film deposited thereon
WO2009060597A1 (en) * 2007-11-06 2009-05-14 Panasonic Corporation Thin film forming apparatus and forming method for thin film
WO2009072242A1 (en) * 2007-12-05 2009-06-11 Panasonic Corporation Thin film forming apparatus and thin film forming method
WO2010067603A1 (en) * 2008-12-10 2010-06-17 パナソニック株式会社 Method for forming thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101650753B1 (en) * 2015-03-30 2016-08-24 주식회사 선익시스템 Flexible Substrate Chemical Vapor Deposition System
CN109023252A (en) * 2018-10-22 2018-12-18 安徽省宁国市海伟电子有限公司 Metallized film machining production line system and its production method, metallized film
CN109023252B (en) * 2018-10-22 2023-09-26 安徽省宁国市海伟电子有限公司 Metallized film processing production line system and production method thereof, and metallized film

Similar Documents

Publication Publication Date Title
JP6724967B2 (en) Vapor deposition equipment with pretreatment equipment using plasma
JP5665290B2 (en) Deposition equipment
JP4355032B2 (en) Thin film forming apparatus and thin film forming method
JP5486249B2 (en) Deposition method
JP2012052170A (en) Method of producing functional film
JP3990867B2 (en) Deposited film forming apparatus and deposited film forming method
JP5058396B1 (en) Thin film manufacturing method and manufacturing apparatus
JP2009209381A (en) Film-forming apparatus, gas barrier film, and method for producing gas barrier film
JP6416440B1 (en) Film forming method and take-up type film forming apparatus
JP5892056B2 (en) Long resin film cooling apparatus and cooling method, and long resin film surface treatment apparatus
JP4430165B2 (en) Vacuum thin film forming apparatus and vacuum thin film forming method
KR20110116210A (en) Film forming device, film forming method, and organic el element
JP2010235968A (en) Vacuum treatment apparatus
JP2008226689A (en) Forming device of transparent conductive film onto flexible substrate, mask member, and transparent conductive film resin substrate for organic electroluminescent element
JP7181587B2 (en) Plasma processing equipment
JP5484846B2 (en) Functional membrane manufacturing apparatus and manufacturing method
JP5310486B2 (en) Method for forming long heat-resistant resin film and apparatus for producing heat-resistant resin film with metal film
JP2010095735A (en) Film-forming apparatus, film-forming method and gas barrier film
JP2005320599A (en) Cathode-mounting structure, thin-film-forming apparatus using cathode-mounting structure, and thin-film-forming method
JP4613056B2 (en) Pressure gradient ion plating film forming apparatus and film forming method
JP2005281832A (en) Magnetron sputtering system and cathode used for the magnetron sputtering system
JP3865841B2 (en) Electron beam evaporation system
JP2009144252A (en) Reactive sputtering device and reactive sputtering method
JP2006190702A (en) Apparatus and method of manufacturing flexible printed substrate
TW202200811A (en) Temperature-controlled shield for an evaporation source, material deposition apparatus and method for depositing a material onto a substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130201