JP2010232507A - Thermally conductive printed board, and method of manufacturing the same - Google Patents

Thermally conductive printed board, and method of manufacturing the same Download PDF

Info

Publication number
JP2010232507A
JP2010232507A JP2009079738A JP2009079738A JP2010232507A JP 2010232507 A JP2010232507 A JP 2010232507A JP 2009079738 A JP2009079738 A JP 2009079738A JP 2009079738 A JP2009079738 A JP 2009079738A JP 2010232507 A JP2010232507 A JP 2010232507A
Authority
JP
Japan
Prior art keywords
mass
graphite
heat
heat conductive
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009079738A
Other languages
Japanese (ja)
Inventor
Masao Sunahara
昌夫 砂原
Satoshi Kawanaka
聡 川中
Haruki Nitta
春樹 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2009079738A priority Critical patent/JP2010232507A/en
Publication of JP2010232507A publication Critical patent/JP2010232507A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a printed board which has high thermal conductivity so as to eliminate the need for a heat sink for cooling an electronic component, and to cool the electronic component with high efficiency by suppressing an increase in size of electronic equipment. <P>SOLUTION: In the thermally conductive printed board which has a graphite layer formed on one surface of a metal foil and further has an insulating material laminated on both surfaces of the laminate, the graphite layer is formed by coating the metal foil with a thermally conductive paint containing 50 to 95 mass% of expanded graphite and 5 to 50 mass% of thermosetting resin in a solid content, and drying the paint. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子部品や照明部品などの発熱体により発生する熱を基板中に効率的に拡散することが可能な熱伝導性プリント基板およびその製造方法に関するものである。   The present invention relates to a heat conductive printed board capable of efficiently diffusing heat generated by a heating element such as an electronic component or a lighting component into the substrate, and a method for manufacturing the same.

パワートランジスタやLED、CPU、MPU、レーザーダイオード等の発熱量の大きな電子部品やデバイス類は、使用時の通電によって高熱を発するため、電子機器の分野においては、これら電子部品の発熱に対する冷却方法が重要な技術の一つとなっている。電子部品の冷却方法としては、通常、熱伝導性に優れる材料からなる放熱板(ヒートシンク)やヒートパイプなどを電子部品の発熱面に取り付ける方法が一般的である(特許文献1)。他に、放熱フィンを冷却ファンにて空冷する方法やポンプで水を循環して水冷する方法もある(特許文献2)。   Electronic components and devices that generate a large amount of heat, such as power transistors, LEDs, CPUs, MPUs, and laser diodes, generate high heat when energized during use. In the field of electronic equipment, there is a cooling method for heat generation of these electronic components. It has become one of the important technologies. As a method for cooling an electronic component, a method of attaching a heat radiating plate (heat sink) or a heat pipe made of a material having excellent heat conductivity to a heat generating surface of the electronic component is generally used (Patent Document 1). In addition, there are a method in which the radiating fin is air-cooled with a cooling fan, and a method in which water is circulated with a pump and water-cooled (Patent Document 2).

また、基板の内部あるいは実装面と逆の面に面内方向に連続した銅や鉄、アルミ、ステンレスなどの金属板からなる層を設けたメタルコアまたはメタルベース基板を用いる方法がある(特許文献3)。この方法は金属板を絶縁層で積層し、さらに実装面には回路となる銅箔を張り合わせたものが一般的である。さらには、回路の上にハンダ層を介してヒートシンクを接着固定するような放熱方法も提案されている(特許文献4)。   Further, there is a method using a metal core or a metal base substrate in which a layer made of a metal plate such as copper, iron, aluminum, stainless steel or the like is provided on the inside of the substrate or the surface opposite to the mounting surface in the in-plane direction (Patent Document 3). ). In this method, a metal plate is generally laminated with an insulating layer, and a copper foil to be a circuit is laminated on the mounting surface. Furthermore, a heat dissipation method is proposed in which a heat sink is bonded and fixed on a circuit via a solder layer (Patent Document 4).

しかしながら、近年では電子機器の小型・軽量化を達成するべく、その薄形化および高密度実装化が急速に進められており、そのため、放熱板を実装するための十分なスペースを確保することができないという問題点があった。即ち、電子部品を適切に冷却するためには、ヒートシンクなどの放熱板を大きくする必要があり、その分、電子機器全体としての大型化を招く。その一方、ヒートシンクなどを小さく構成したのでは放熱効率が低下して、電子部品を効率的に冷却することができない。   However, in recent years, in order to achieve miniaturization and weight reduction of electronic devices, their thinning and high-density mounting have been promoted rapidly, so that it is possible to secure a sufficient space for mounting a heat sink. There was a problem that it was not possible. That is, in order to appropriately cool the electronic component, it is necessary to enlarge the heat sink such as a heat sink, and accordingly, the electronic device as a whole is increased in size. On the other hand, if the heat sink or the like is made small, the heat dissipation efficiency is lowered, and the electronic components cannot be efficiently cooled.

特許文献5では、電子部品の小型化を目的として、絶縁材部の内層に高い熱伝導性を有するカーボンシートが積層状に設けられた電子部品が示されている。カーボンシートの高い熱拡散を利用して基板自体に冷却性能を付与する方法であり、非常に有効であると考えられる。しかしながら、スルーホールとこのような導電性のカーボンシートが接触しているとショートするので、スルーホール周辺は導電性カーボンシートが存在しないようにしなければならない。また熱に弱い電子部品が散在する基板の内部にこのような熱伝導性のカーボンシートが存在すると他の発熱体からの熱を基板全体に均一に伝導させてしまい、熱に弱い電子部品の不具合を招く。このためそのような用途ではカーボンシートを予め型枠で打ち抜いたものを基板中に積層する工程が採用されているが、カーボンシート自体が高価であることに加え、カーボンシートが脆弱なため複雑な形状での打抜きが困難であり、また工程数も多く、結果的にこの方法によって製造された電子部品の価格が高くなってしまうという問題があった。さらにカーボンシートを用いると、カーボンの粉落ちによる絶縁不良などの問題もあった。   Patent Document 5 discloses an electronic component in which carbon sheets having high thermal conductivity are provided in a laminated form on the inner layer of an insulating material portion for the purpose of downsizing the electronic component. This is a method of imparting cooling performance to the substrate itself using the high thermal diffusion of the carbon sheet, and is considered to be very effective. However, since a short circuit occurs when the through hole and such a conductive carbon sheet are in contact with each other, it is necessary to prevent the conductive carbon sheet from existing around the through hole. In addition, if such a heat conductive carbon sheet is present inside the substrate where electronic components that are vulnerable to heat are scattered, heat from other heating elements is uniformly conducted to the entire substrate, resulting in defects in electronic components that are vulnerable to heat. Invite. For this reason, in such an application, a process of laminating a carbon sheet that has been punched in advance with a formwork is employed, but in addition to being expensive, the carbon sheet itself is expensive and complicated. There is a problem that punching in a shape is difficult and the number of processes is large, and as a result, the price of an electronic component manufactured by this method is increased. Further, when a carbon sheet is used, there are problems such as poor insulation due to carbon powder falling.

特許文献3に記載されるようなメタルコア、メタルベース基板は金属板を用いるため熱伝導性が高く、強度を有する。これらの基板では銅やアルミ、鉄、ステンレスなどの0.5〜1mm厚の金属板を基板内部に設け放熱性を高めている。カーボンシートと同様にこれらの板は導電性があるので予め型枠での打抜きやドリルでの穴あけ工程が必要である。しかしながらこれらの金属は硬いため、打抜きでは特殊な治具や機械が必要になったり、ドリルでの穴あけではドリル刃の消耗が激しいために頻繁に交換する必要があるなどの問題があり、得られた基板は非常に高価であった。   Since the metal core and the metal base substrate described in Patent Document 3 use a metal plate, they have high thermal conductivity and strength. In these substrates, a metal plate having a thickness of 0.5 to 1 mm such as copper, aluminum, iron, and stainless steel is provided inside the substrate to enhance heat dissipation. Like the carbon sheet, these plates are electrically conductive, so that punching with a mold or drilling with a drill is necessary in advance. However, since these metals are hard, there are problems such as the need for special tools and machines for punching, and the need for frequent replacement due to excessive consumption of the drill blade when drilling. The substrate was very expensive.

またこれらの金属は熱膨張係数が大きいため高温になると膨張してしまう。このためスルーホールでのメッキ部分との導通を避けるためには、高温時の膨張を見込んで大きな孔を金属板に開けておく必要があり、スルーホールの高密度化ができないといった問題があった。金属板の厚みが0.05〜0.3mmの金属箔を金属板の代わりに用いる場合は打抜きやドリルによる穴あけ工程は不要となり、薬液エッチングによるパターン形成が可能となるため上記の問題は解決するが、金属板の厚みが薄いので放熱性能が不十分などの問題があった。   Moreover, since these metals have a large thermal expansion coefficient, they expand at high temperatures. For this reason, in order to avoid conduction with the plated portion in the through hole, it is necessary to open a large hole in the metal plate in anticipation of expansion at a high temperature, and there is a problem that the density of the through hole cannot be increased. . When a metal foil having a thickness of 0.05 to 0.3 mm is used instead of the metal plate, punching and drilling steps are not necessary, and pattern formation by chemical etching is possible, thus solving the above problem. However, since the thickness of the metal plate is thin, there are problems such as insufficient heat dissipation performance.

本発明者らは、高い熱伝導性を持つ黒鉛を主成分とし、スクリーン印刷に適した熱伝導性塗料とそれを用いた電子部品を既に提案している(特願2008−287801号参照)。絶縁性基板の上に本塗料をスクリーン印刷し、乾燥後に熱硬化性絶縁プリプレグと積層し、加熱下で加圧して一体化する方法により、黒鉛の熱伝導層を基板内部に設けた熱伝導性プリント基板の作成が可能である。この塗料を用いることにより、金属板やカーボンシートの穴あけ加工やドリル加工が不要となり、複雑な形状の熱伝導層のパターン形成が容易に可能になった。   The inventors of the present invention have already proposed a heat conductive paint suitable for screen printing and an electronic component using the same based on graphite having high heat conductivity (see Japanese Patent Application No. 2008-287801). Thermal conductivity with a thermal conductive layer of graphite provided inside the substrate by screen printing this paint on an insulating substrate, laminating with a thermosetting insulating prepreg after drying, and applying pressure under heating to integrate. A printed circuit board can be created. By using this paint, drilling or drilling of a metal plate or carbon sheet is not required, and it is possible to easily form a pattern of a heat conductive layer having a complicated shape.

しかしながら、熱伝導性プリント基板としての性能を十分に発揮するためには、熱伝導層の厚みを大きくする必要があるのに対して、スクリーン印刷によって形成できる黒鉛層の厚みは、一体化後で200μm程度が限界であり、熱伝導性プリント基板としての性能を満足するためにはさらなる熱伝導性の向上が必要であった。   However, in order to fully demonstrate the performance as a heat conductive printed circuit board, it is necessary to increase the thickness of the heat conductive layer, whereas the thickness of the graphite layer that can be formed by screen printing is About 200 μm is the limit, and in order to satisfy the performance as a heat conductive printed circuit board, further improvement in heat conductivity is necessary.

特開平7−235781号公報JP 7-235781 A 特開2003−273300号公報JP 2003-273300 A 特開2006−308738号公報JP 2006-308738 A 特開2005−332840号公報JP 2005-332840 A 特開2007−073654号公報Japanese Patent Laid-Open No. 2007-073654

本発明は、上述した問題点を解決するためになされたものであり、高い熱伝導性を有し、穴あけ加工性が容易な熱伝導性プリント基板およびその製造方法を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a thermally conductive printed board having high thermal conductivity and easy drilling workability, and a method for manufacturing the same. .

本発明者らは、上記課題について鋭意検討した結果、特定の黒鉛を主成分として含有する塗料を、金属箔の上に塗工して乾燥したもの、または金属箔の上に該塗料を塗工して乾燥し、その上から新たな金属箔を重ねたものを得て、これらを両側から絶縁材料で挟み、加熱下で加圧して一体化させることにより得られるプリント基板が、優れた放熱特性を有することを見出し、本発明を完成するに至った。   As a result of intensive studies on the above problems, the present inventors have applied a paint containing a specific graphite as a main component on a metal foil and dried it, or applied the paint on a metal foil. The printed circuit board obtained by drying and then stacking new metal foils on top of it, sandwiching them with insulating materials from both sides, and pressurizing them under heating to integrate them has excellent heat dissipation characteristics As a result, the present invention has been completed.

すなわち、本発明の要旨は、下記の通りである。
(1)金属箔の片面に黒鉛層が形成され、この積層体の両面にさらに絶縁材料が積層された熱伝導性プリント基板であって、黒鉛層が、50〜95質量%の膨張黒鉛および5〜50質量%の熱硬化性樹脂を固形分中に含有する熱伝導性塗料を金属箔上に塗工し乾燥して形成されたものであることを特徴とする熱伝導性プリント基板。
(2)二つの金属箔の中間に黒鉛層が形成され、この積層体の両面にさらに絶縁材料が積層された熱伝導性プリント基板であって、黒鉛層が、50〜95質量%の膨張黒鉛および5〜50質量%の熱硬化性樹脂を固形分中に含有する熱伝導性塗料を金属箔上に塗工し乾燥して形成されたものであることを特徴とする熱伝導性プリント基板。
(3)黒鉛層の厚みが、10〜200μmである前記の(1)又は(2)の熱伝導性プリント基板。
(4)絶縁材料上に接着された金属箔に、50〜95質量%の膨張黒鉛および5〜50質量%の熱硬化性樹脂を固形分中に含有する熱伝導性塗料を塗工し乾燥して黒鉛層を形成し、次いで絶縁材料を積層した後、この積層体を温度100℃〜200℃で、2〜3MPaの加圧下で一体成形することを特徴とする前記の(1)又は(3)の熱伝導性プリント基板の製造方法。
(5)絶縁材料上に接着された金属箔に、50〜95質量%の膨張黒鉛および5〜50質量%の熱硬化性樹脂を固形分中に含有する熱伝導性塗料を塗工し乾燥して黒鉛層を形成し、その上に金属箔と絶縁材料を順に積層した後、この積層体を温度100℃〜200℃で、2〜3MPaの加圧下で一体成形することを特徴とする前記の(2)又は(3)の熱伝導性プリント基板の製造方法。
That is, the gist of the present invention is as follows.
(1) A thermally conductive printed circuit board in which a graphite layer is formed on one side of a metal foil, and an insulating material is further laminated on both sides of the laminate, wherein the graphite layer comprises 50 to 95% by mass of expanded graphite and 5 A heat conductive printed circuit board formed by coating a metal foil with a heat conductive paint containing -50% by mass of a thermosetting resin in a solid content and drying.
(2) A thermally conductive printed circuit board in which a graphite layer is formed between two metal foils, and an insulating material is further laminated on both sides of the laminate, and the graphite layer has an expanded graphite of 50 to 95% by mass. And a heat conductive printed circuit board formed by coating a metal foil with a heat conductive paint containing 5 to 50% by mass of a thermosetting resin in a solid content and drying.
(3) The thermally conductive printed board according to (1) or (2) above, wherein the graphite layer has a thickness of 10 to 200 μm.
(4) A metal foil adhered on an insulating material is coated with a thermally conductive coating containing 50 to 95% by mass of expanded graphite and 5 to 50% by mass of a thermosetting resin in a solid content, and then dried. After forming a graphite layer and then laminating an insulating material, the laminated body is integrally formed at a temperature of 100 ° C. to 200 ° C. under a pressure of 2 to 3 MPa. ) Manufacturing method of thermally conductive printed circuit board.
(5) A metal foil adhered on an insulating material is coated with a thermally conductive paint containing 50 to 95% by mass of expanded graphite and 5 to 50% by mass of a thermosetting resin, and dried. The graphite layer is formed and the metal foil and the insulating material are sequentially laminated thereon, and then the laminate is integrally formed at a temperature of 100 ° C. to 200 ° C. under a pressure of 2 to 3 MPa. (2) The manufacturing method of the heat conductive printed circuit board of (3).

本発明によれば、電子機器のプリント基板において、電子部品や照明部品などの発熱体の周辺の基板内部に、金属箔と黒鉛層という2種類の異なる物性を有する熱伝導性材料を一体化することにより、発熱体からの熱を奪いやすく、厚み方向にも面方向にも熱伝導性に優れ、穴あけ加工が容易な熱伝導性プリント基板を得ることができる。その結果、発熱体そのものの温度上昇を抑制するとともに、周囲の電子部品の温度上昇をも回避することができ、電子部品や電子機器の寿命を延ばすことが可能となる。   According to the present invention, in a printed circuit board of an electronic device, a heat conductive material having two different physical properties of a metal foil and a graphite layer is integrated in a substrate around a heating element such as an electronic component or a lighting component. Thus, it is possible to obtain a heat conductive printed board that can easily take heat from the heating element, has excellent heat conductivity in both the thickness direction and the surface direction, and can be easily punched. As a result, the temperature rise of the heating element itself can be suppressed, and the temperature rise of the surrounding electronic components can be avoided, and the life of the electronic components and electronic devices can be extended.

本発明において、前記の作用効果が奏される理由としては明らかではないが、黒鉛は比熱が大きく、熱拡散率も銅などの金属に比べて高い。このため、黒鉛は「発熱体からの熱を奪いやすく温度が上がりにくい性質」を有する熱伝導性物質といえる。圧縮された黒鉛層の面方向の熱伝導率は100〜300W/m・Kであるが、異方性を有するため厚み方向の熱伝導率は3〜10W/m・Kと銅に比べると小さい。しかし、熱拡散率は2.0〜3.0cm/sと大きいため、黒鉛層は「熱を厚み方向に伝えるのは遅いが、面方向に拡散させることは早い熱伝導性物質」といえる。 In the present invention, although the reason why the above-described effects are exhibited is not clear, graphite has a large specific heat and a high thermal diffusivity compared to metals such as copper. For this reason, graphite can be said to be a thermally conductive substance having the “characteristic that it easily takes heat from the heating element and does not easily rise in temperature”. The thermal conductivity in the plane direction of the compressed graphite layer is 100 to 300 W / m · K, but since it has anisotropy, the thermal conductivity in the thickness direction is 3 to 10 W / m · K, which is small compared to copper. . However, since the thermal diffusivity is as large as 2.0 to 3.0 cm 2 / s, the graphite layer can be said to be “a heat-conducting substance that is slow to conduct heat in the thickness direction but fast to diffuse in the plane direction”. .

一方、銅の熱拡散率は1.2cm/s、アルミの熱拡散率は1.0cm/sであり、黒鉛より劣るが、銅の熱伝導率は398W/m・K、アルミは237W/m・Kであり、等方性であるため、厚み方向の熱伝導率は黒鉛の面方向の熱伝導率と同等あるいは優れている。このような熱的性質の異なる2種類の材料を一体化させた熱伝導層を基板内部に設置することにより、優れた熱伝導性プリント基板が得られる。 On the other hand, the thermal diffusivity of copper is 1.2 cm 2 / s and the thermal diffusivity of aluminum is 1.0 cm 2 / s, which is inferior to graphite, but the thermal conductivity of copper is 398 W / m · K, and that of aluminum is 237 W. Since it is / m · K and isotropic, the thermal conductivity in the thickness direction is equal to or superior to the thermal conductivity in the surface direction of graphite. An excellent heat conductive printed circuit board can be obtained by installing a heat conductive layer in which two kinds of materials having different thermal properties are integrated in the substrate.

以下、本発明を詳述する。   The present invention is described in detail below.

本発明に用いられる熱伝導性塗料は、膨張黒鉛を主成分とする炭素材と熱硬化性樹脂を必須成分として含み、分散媒により分散されたている状態のものである。膨張黒鉛は、黒鉛を硝酸、硫酸等の化学薬品で処理し、これを1,000℃以上の高温で熱処理することで得られ、黒鉛の結晶格子の層間が膨張してフレーク状の粒子になったものである。平均粒子径が0.5〜200μmのものが好ましく、より好ましくは1〜100μmである。   The heat conductive paint used in the present invention is a material containing a carbon material mainly composed of expanded graphite and a thermosetting resin as essential components and dispersed in a dispersion medium. Expanded graphite is obtained by treating graphite with chemicals such as nitric acid and sulfuric acid, and heat-treating it at a high temperature of 1,000 ° C. or higher, and expands between layers of the graphite crystal lattice to form flaky particles. It is a thing. The average particle diameter is preferably 0.5 to 200 μm, more preferably 1 to 100 μm.

膨張黒鉛は、熱伝導性塗料の固形分中に50〜95質量%含まれることが必要であり、好ましくは、60〜90質量%、さらに好ましくは、75〜85質量%である。   The expanded graphite needs to be contained in the solid content of the heat conductive coating in an amount of 50 to 95% by mass, preferably 60 to 90% by mass, and more preferably 75 to 85% by mass.

炭素材としては、膨張黒鉛以外に、本発明の効果を損なわない範囲において、カーボンブラックや炭素繊維などが含まれていてもよい。   As a carbon material, carbon black, carbon fiber, etc. may be contained in the range which does not impair the effect of this invention other than expanded graphite.

カーボンブラックとしては、アセチレンブラック、オイルファーネスブラック、ケッチェンブラック、ランプブラック、チャンネルブラック、ガスブラック、サーマルブラック、プラズマブラックなどが挙げられ、アセチレンブラック、オイルファーネスブラック、ケッチェンブラックが挙げられる。   Examples of carbon black include acetylene black, oil furnace black, ketjen black, lamp black, channel black, gas black, thermal black, and plasma black, and examples thereof include acetylene black, oil furnace black, and ketjen black.

炭素繊維には、ピッチ系炭素繊維やPAN系炭素繊維が挙げられ、いわゆるカーボンナノチューブ、カーボンナノファイバーも含まれる。カーボンナノチューブとしては、炭素のチューブ構造が単一チューブであるシングル型、チューブ構造が二重のチューブであるダブル型、およびチューブ構造が三重以上となっているマルチ型構造を含み、さらに、チューブの一方の端が閉じて他方の端が開いているナノホーン型、一方の端の開口が他方の端の開口よりも大きいカップ型等の形態も含んでいる。   Examples of the carbon fiber include pitch-based carbon fiber and PAN-based carbon fiber, and so-called carbon nanotubes and carbon nanofibers are also included. The carbon nanotube includes a single type in which the tube structure of the carbon is a single tube, a double type in which the tube structure is a double tube, and a multi-type structure in which the tube structure is triple or more. Examples include a nanohorn type in which one end is closed and the other end is open, and a cup type in which the opening at one end is larger than the opening at the other end.

本発明に用いられる熱伝導性塗料に含まれる熱硬化性樹脂は、炭素材の結着材としての働きをするとともに、電子部品をハンダで実装する際の耐熱性の向上に寄与する。   The thermosetting resin contained in the thermally conductive coating used in the present invention serves as a binder for carbon materials and contributes to improvement in heat resistance when electronic components are mounted with solder.

本発明に用いられる熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、アルキド樹脂、アクリル樹脂、メラミン樹脂、キシレン樹脂、グアナミン樹脂、ジアリルフタレート樹脂、アリルエステル樹脂、フラン樹脂、イミド樹脂、ウレタン樹脂、ユリア樹脂およびこれらの共重合変性体からなる群より選ばれる1種、または2種類以上の組み合わせを用いることができる。なかでも、結着性と耐熱性の点から、フェノール樹脂、エポキシ樹脂、アクリル樹脂、メラミン樹脂、ウレタン樹脂が好ましく、エポキシ樹脂とウレタン樹脂がより好ましい。熱硬化性樹脂は、熱伝導性塗料として基材に塗布後に硬化させて使用することが好ましい。   As the thermosetting resin used in the present invention, phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, alkyd resin, acrylic resin, melamine resin, xylene resin, guanamine resin, diallyl phthalate resin, allyl ester resin, One type selected from the group consisting of a furan resin, an imide resin, a urethane resin, a urea resin, and a copolymer modified product thereof, or a combination of two or more types can be used. Especially, a phenol resin, an epoxy resin, an acrylic resin, a melamine resin, and a urethane resin are preferable from the point of binding property and heat resistance, and an epoxy resin and a urethane resin are more preferable. The thermosetting resin is preferably used after being applied to a substrate as a heat conductive paint.

熱硬化性樹脂は、熱伝導性塗料の固形分中に5〜50質量%含まれることが必要であり、好ましくは、5〜30質量%である。   The thermosetting resin needs to be contained in an amount of 5 to 50% by mass in the solid content of the heat conductive paint, and preferably 5 to 30% by mass.

本発明に用いられる熱伝導性塗料の分散媒は特に限定しない。環境負荷低減や作業員の安全性などを考慮した水、または水と水溶性有機溶媒との混合溶媒である水分散媒でもよいが、有機溶剤でもよい。有機溶剤としては、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアミド、テトラヒドロフラン、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルスルホルアミド、テトラメチル尿素、アセトン、メチルエチルケトン(MEK)、γ-ブチロラクトン、イソプロパノールが挙げられる。   The dispersion medium of the heat conductive paint used in the present invention is not particularly limited. Water in consideration of environmental load reduction and worker safety, or a water dispersion medium that is a mixed solvent of water and a water-soluble organic solvent may be used, but an organic solvent may also be used. Organic solvents include N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethyl sulfoxide, hexamethylsulfuramide, tetramethylurea, acetone, methyl ethyl ketone (MEK), γ- Examples include butyrolactone and isopropanol.

本発明に用いられる熱伝導性塗料が水を分散媒とする場合、熱伝導性塗料中の熱硬化性樹脂は、エマルション粒子とする必要がある。エマルション粒子を用いると炭素材を点結着することが可能になるため、同量の溶剤可溶型熱硬化性樹脂を用いた場合に比べて結着力が強くなる傾向があり、より少量の結着材で炭素材を結着することができる。したがって、結着材による熱伝達の阻害を抑制し、かつ得られる放熱層における炭素材の割合も高くできるため、より放熱効率が高まる。   When the heat conductive paint used in the present invention uses water as a dispersion medium, the thermosetting resin in the heat conductive paint needs to be emulsion particles. When emulsion particles are used, carbon materials can be point-bonded, so that the binding force tends to be stronger than when the same amount of solvent-soluble thermosetting resin is used, and a smaller amount of binder is used. A carbon material can be bound by a dressing. Therefore, since the inhibition of heat transfer by the binder can be suppressed and the ratio of the carbon material in the obtained heat dissipation layer can be increased, the heat dissipation efficiency is further increased.

本発明に用いられる熱伝導性塗料は、必要に応じて増粘剤を含んでいてもよい。そのような増粘剤としては、分散媒が水の場合、カルボシキメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、ポリウレタン、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、ガゼイン等を挙げることができ、好ましくはカルボシキメチルセルロースやポリビニルアルコールがよい。これらの増粘剤は、炭素材の各材料間の濡れ性を向上させる働きを有する。   The heat conductive paint used in the present invention may contain a thickener as necessary. Examples of such a thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, polyurethane, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein when the dispersion medium is water. Siquimethyl cellulose and polyvinyl alcohol are preferred. These thickeners have a function of improving the wettability between the carbon materials.

また、分散媒が有機溶媒の場合、増粘剤としては無機微粒子を用いることが好ましく、そのような無機微粒子としては、シリカ、酸化ケイ素、カオリン、アルミナ及びマイカ、硫酸バリウムなどが挙げられる。無機質微粒子の平均粒子径は、3nm〜10μmが好ましく、5nm〜8μmがより好ましい。上記各範囲の下限値は、組成物の粘度を低く抑えて未塗装個所が出来ないようにし、印刷作業性を向上する点で意義がある。上記各範囲の上限値は、パターン表面及び側面の平滑性や直線性を良好にして、繊細なパターンを得る点で意義がある。無機質微粒子の形状は、球状、鱗片状、板状、無定形の何れでもよいが、粘性を付与することが容易に可能な鱗片状、球状のものが好ましい。   When the dispersion medium is an organic solvent, it is preferable to use inorganic fine particles as the thickener. Examples of such inorganic fine particles include silica, silicon oxide, kaolin, alumina and mica, and barium sulfate. The average particle size of the inorganic fine particles is preferably 3 nm to 10 μm, and more preferably 5 nm to 8 μm. The lower limits of the above ranges are significant in that the viscosity of the composition is kept low so that no unpainted parts are formed, and the printing workability is improved. The upper limits of the above ranges are significant in that the smoothness and linearity of the pattern surface and side surfaces are improved to obtain a delicate pattern. The shape of the inorganic fine particles may be any of a spherical shape, a scale shape, a plate shape, and an amorphous shape, but a scale shape and a spherical shape that can easily impart viscosity are preferable.

本発明に用いられる熱伝導性塗料の製造方法としては、膨張黒鉛と熱硬化性樹脂とともに、必要に応じて増粘剤を配合し、これらを分散媒中で混合、分散すればよい。混合、分散の手段は特に限定されず、ホモジナイザー、ディゾルバー、プラネタリミキサー、ロールミル、ボールミル等の公知の混合装置を用いることができる。膨張黒鉛、熱硬化性樹脂および増粘剤の合計固形分比率は、熱伝導性塗料全体の5〜40質量%が好ましく、より好ましくは10〜30質量%である。   As a manufacturing method of the heat conductive paint used for this invention, a thickener may be mix | blended as needed with expanded graphite and a thermosetting resin, and what is necessary is just to mix and disperse these in a dispersion medium. The means for mixing and dispersing is not particularly limited, and a known mixing device such as a homogenizer, a dissolver, a planetary mixer, a roll mill, or a ball mill can be used. The total solid content ratio of the expanded graphite, the thermosetting resin, and the thickener is preferably 5 to 40% by mass, more preferably 10 to 30% by mass, based on the entire thermally conductive paint.

本発明に用いられる熱伝導性塗料の粘度は、BH型粘度計のNo.4ローターを用い6.0rpmで測定した25℃における粘度が40ポイズ〜1,000ポイズであることが必要であり、好ましくは100〜600ポイズである。また、BH型粘度計のNo.4ローターを用い0.6rpmおよび6.0rpmで測定した25℃における粘度の比であるチクソ比(=0.6rpmの粘度/6.0rpmの粘度)が1.0〜4.0となることが好ましい。   The viscosity of the heat conductive paint used in the present invention is the same as that of the BH viscometer. The viscosity at 25 ° C. measured at 6.0 rpm using 4 rotors is required to be 40 poise to 1,000 poise, preferably 100 to 600 poise. No. BH type viscometer. The thixo ratio (= viscosity of 0.6 rpm / viscosity of 6.0 rpm), which is the ratio of the viscosity at 25 ° C. measured at 0.6 rpm and 6.0 rpm using 4 rotors, is 1.0 to 4.0. preferable.

本発明に用いられる金属箔は、エッチングによるパターン形成が容易で、且つ絶縁材料との接着性が良好で、優れた熱伝導率を有する金属箔であれば特に限定しない。単一成分の金属箔のほか、合金箔等も包含される。例えば、アルミニウム、銅、鉄、チタン、スズ、これらを含む合金等が挙げられるが、熱伝導性が高い観点から銅箔であることが望ましい。銅合金箔としては鉄、モリブデン、スズ、亜鉛、ニッケルの少なくとも1種の金属成分を含むものが挙げられるが、特に限定されるものではない。金属箔の表面が物理的または化学的に粗化または平滑化されているものも含まれる。   The metal foil used in the present invention is not particularly limited as long as it is easy to form a pattern by etching, has good adhesion to an insulating material, and has excellent thermal conductivity. In addition to single component metal foils, alloy foils and the like are also included. For example, aluminum, copper, iron, titanium, tin, an alloy containing these, and the like can be mentioned. From the viewpoint of high thermal conductivity, a copper foil is desirable. Examples of the copper alloy foil include those containing at least one metal component of iron, molybdenum, tin, zinc, and nickel, but are not particularly limited. The surface of the metal foil is physically or chemically roughened or smoothed.

金属箔の厚みは、熱導電性およびエッチングの容易さから、10〜500μmとすることが好ましく、さらに好ましくは30〜200μmである。   The thickness of the metal foil is preferably 10 to 500 μm, more preferably 30 to 200 μm, from the viewpoint of thermal conductivity and easy etching.

本発明に用いられる絶縁材料としては、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、シリコン樹脂などが挙げられる。これらの樹脂の形状については特に制限しないが、シートやフィルム、不織布形状が好ましい。またガラスクロスに樹脂を含浸したようなシートであってもかまわない。   Examples of the insulating material used in the present invention include an epoxy resin, a phenol resin, a urethane resin, and a silicon resin. Although there is no restriction | limiting in particular about the shape of these resin, A sheet | seat, a film, and a nonwoven fabric shape are preferable. Further, a sheet in which a glass cloth is impregnated with a resin may be used.

本発明の熱伝導性プリント基板は、金属箔上に熱導電性塗料を塗工し乾燥することにより黒鉛層が形成され、その両面に絶縁材料が積層された構造を有しているものである。熱導電性塗料を塗工し乾燥することにより形成される黒鉛層の厚みは、10〜200μmが好ましく、より好ましくは20〜100μmである。黒鉛層が10μmより薄いと熱伝導性能が十分に発揮できず、一方、200μmより厚いとスクリーン印刷時の作業効率が悪く、黒鉛層の強度低下を誘発する。また、本発明の熱伝導性プリント基板は、金属箔上に黒鉛層が形成され、その黒鉛層の上に新たな金属箔が積層され、その両面に絶縁材料が積層された構造を有しているものも含むものである。この場合、2つの金属箔は、種類が同じものであっても、異なるものであっても構わない。   The heat conductive printed board of the present invention has a structure in which a graphite layer is formed by applying a heat conductive paint on a metal foil and drying, and an insulating material is laminated on both sides thereof. . As for the thickness of the graphite layer formed by apply | coating and drying a heat conductive coating material, 10-200 micrometers is preferable, More preferably, it is 20-100 micrometers. If the graphite layer is thinner than 10 μm, the heat conduction performance cannot be sufficiently exerted. On the other hand, if the graphite layer is thicker than 200 μm, the work efficiency at the time of screen printing is poor and the strength of the graphite layer is reduced. The heat conductive printed circuit board of the present invention has a structure in which a graphite layer is formed on a metal foil, a new metal foil is laminated on the graphite layer, and an insulating material is laminated on both sides thereof. It also includes what is. In this case, the two metal foils may be the same or different.

両側に積層される絶縁材料の厚みは、薄い方が発熱体からの熱を黒鉛層や金属箔に効率よく伝達するので好ましい。厚みは0.05〜0.2mmが好ましく、0.08〜0.15mmがさらに好ましい。   A thinner insulating material laminated on both sides is preferable because the heat from the heating element is efficiently transmitted to the graphite layer and the metal foil. The thickness is preferably 0.05 to 0.2 mm, and more preferably 0.08 to 0.15 mm.

次に、本発明の熱伝導性プリント基板の製造方法について説明する。   Next, the manufacturing method of the heat conductive printed circuit board of this invention is demonstrated.

まず、上記した熱伝導性塗料をスクリーン印刷法などによって所定のパターンで絶縁材料上に接着された金属箔の上に塗工した後、乾燥し金属箔上に黒鉛層を形成する。スクリーン印刷時に使用するスクリーンメッシュの目開きは20メッシュ〜150メッシュであることが好ましい。さらに30メッシュ〜70メッシュのスクリーンを使用することがより好ましい。20メッシュより粗いメッシュを使用すると、印刷時メッシュから塗料が垂れ、印刷性が損なわれる。一方150メッシュより精細なメッシュでは、印刷時に炭素材により目詰まりを起こしたり、塗布厚みが小さくなるなどの問題が生じる。   First, the above-described thermally conductive paint is applied on a metal foil adhered on an insulating material in a predetermined pattern by screen printing or the like, and then dried to form a graphite layer on the metal foil. The mesh of the screen mesh used at the time of screen printing is preferably 20 mesh to 150 mesh. Furthermore, it is more preferable to use a screen of 30 mesh to 70 mesh. When a mesh coarser than 20 mesh is used, the paint drips from the mesh during printing, and printability is impaired. On the other hand, when the mesh is finer than 150 mesh, there are problems such as clogging caused by the carbon material at the time of printing and a decrease in coating thickness.

乾燥方法としては、特に制限はないが、熱風乾燥、減圧乾燥、熱滅圧乾燥が挙げられる。電子部品を高温にさらさない理由から、熱滅圧乾燥が好ましい。   The drying method is not particularly limited, and examples include hot air drying, reduced pressure drying, and hot pressure drying. Hot vacuum drying is preferred because it does not expose electronic components to high temperatures.

絶縁材料上に接着された金属箔上に形成した黒鉛層の上に、必要に応じてさらに金属箔を積層してもよい。   If necessary, a metal foil may be further laminated on the graphite layer formed on the metal foil adhered on the insulating material.

本発明においては、上記のようにして得られたものの上にさらに絶縁材料を積層して、加熱下で加圧して一体化させることにより熱伝導性プリント基板を得ることができる。   In the present invention, a heat conductive printed circuit board can be obtained by further laminating an insulating material on the product obtained as described above and pressurizing and integrating them under heating.

加熱は、結着材である熱硬化性樹脂を硬化させて黒鉛粒子を結合して黒鉛層に強度を付与するだけでなく、黒鉛粒子と金属箔とを結合したり、黒鉛層又は金属箔と絶縁材料を接着して一体化するために必要である。加熱条件としては、最高到達温度は120〜220℃が好ましく、150〜200℃がさらに好ましい。   The heating not only hardens the thermosetting resin as a binder and bonds the graphite particles to give strength to the graphite layer, but also bonds the graphite particles and the metal foil, Necessary for bonding insulating materials together. As heating conditions, the maximum temperature reached is preferably 120 to 220 ° C, more preferably 150 to 200 ° C.

また、加圧は、膨張黒鉛を圧密化することにより粒子間の結合機会を高めて熱伝導率を向上させたり、黒鉛層と金属箔との接着強度、黒鉛層又は金属箔と絶縁材料との接着強度を高めるために必要である。加圧条件としては、プレス圧は1.5〜3・5MPaが好ましく、2〜3MPaがさらに好ましい。加圧により、溶融した絶縁材料がパターン形成された熱伝導層(金属箔と黒鉛層)の凹部に強制的に入り込み、絶縁層表面を平滑にし、その上での回路形成を容易にする。   In addition, the pressurization increases the bonding opportunity between the particles by consolidating the expanded graphite to improve the thermal conductivity, the adhesive strength between the graphite layer and the metal foil, the adhesion between the graphite layer or the metal foil and the insulating material. It is necessary to increase the adhesive strength. As pressurization conditions, the press pressure is preferably 1.5 to 3.5 MPa, and more preferably 2 to 3 MPa. By applying pressure, the molten insulating material is forced into the recesses of the patterned heat conductive layer (metal foil and graphite layer) to smooth the surface of the insulating layer and facilitate circuit formation thereon.

絶縁材料で両側から挟み、加熱下で加圧して一体化させるために用いる装置としては、真空加熱プレス機が好適に用いられる。   A vacuum heating press is suitably used as an apparatus that is sandwiched from both sides with an insulating material and used for pressurization and integration under heating.

得られた基板中における加熱加圧後の黒鉛層の厚みは、前述したように10〜200μmが好ましく、より好ましくは20〜100μmである。この厚み範囲となるようにスクリーン印刷条件を適宜組み合わせればよい。   As described above, the thickness of the graphite layer after heating and pressing in the obtained substrate is preferably 10 to 200 μm, more preferably 20 to 100 μm. What is necessary is just to combine screen printing conditions suitably so that it may become this thickness range.

以下、本発明を実施例により詳細に説明する。ただし、本発明は下記実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples.

なお、各種評価は以下の方法によって行った。   Various evaluations were performed by the following methods.

〔放熱性の評価〕
作製したプリント基板に1kΩの抵抗体を実装し、30Vの電圧を印可したときの抵抗体の温度を熱電対を用いて測定した。膨張黒鉛シートを用いて作製したプリント基板の場合、抵抗の温度は58℃であり、これと比べて温度上昇が+5%以内すなわち61℃以下であれば○、+10%以内すなわち64℃以下であれば△、+10%を超えると×とした。
[Evaluation of heat dissipation]
A resistor of 1 kΩ was mounted on the produced printed circuit board, and the temperature of the resistor when a voltage of 30 V was applied was measured using a thermocouple. In the case of a printed circuit board produced using an expanded graphite sheet, the resistance temperature is 58 ° C. If the temperature rise is within + 5%, that is, 61 ° C or less, it is ○, within + 10%, that is, 64 ° C or less. If Δ exceeds + 10%, it was evaluated as x.

〔結着性の評価〕
真空プレス後のコア材において、ガラスクロス−エポキシ板とプリプレグ間の黒鉛層で剥離が発生しないかを目視で観察し、真空プレス後にガラスクロス−エポキシ板とプリプレグ間で90°剥離試験を行った。試験はインテスコを用い、剥離スピード50mm/分で実施した。試験片は幅20mmとした。剥離強度が5N以上あったものを○、2N以上5N未満であったものを△、2N未満であったものを×と評価した。
[Evaluation of binding properties]
In the core material after vacuum pressing, whether or not peeling occurred in the graphite layer between the glass cloth-epoxy plate and the prepreg was visually observed, and a 90 ° peeling test was performed between the glass cloth-epoxy plate and the prepreg after the vacuum pressing. . The test was performed using an Intesco at a peeling speed of 50 mm / min. The test piece was 20 mm wide. The case where the peel strength was 5N or more was evaluated as ◯, the case where it was 2N or more and less than 5N, and the case where it was less than 2N were evaluated as ×.

〔ハンダ耐熱性の評価〕
真空プレス後のコア材において、280℃のハンダ層に20秒ディップして、コア材の外観に膨れや剥がれがないかを目視で観察し、観察後にガラスクロス−エポキシ板とプリプレグ間で結着性の評価と同条件で90°剥離試験を行った。剥離強度が5N以上あったものを○、2N以上5N未満であったものを△、2N未満であったものを×と評価した。
[Evaluation of solder heat resistance]
In the core material after vacuum pressing, dip on the solder layer at 280 ° C. for 20 seconds, and visually observe whether the core material is swelled or peeled off. After observation, binding between the glass cloth-epoxy plate and the prepreg 90 ° peel test was performed under the same conditions as the evaluation of the properties. The case where the peel strength was 5N or more was evaluated as ◯, the case where it was 2N or more and less than 5N, and the case where it was less than 2N were evaluated as ×.

〔粘度の測定〕
25℃浴中に熱伝導性塗料の入った容器を30分間浸漬した後、BH型粘度計のNo.4ローターを用いて6.0rpmにおける粘度を測定した(単位:ポイズ(P))。また、0.6rpmの粘度も測定し、この測定結果からチクソ比(=0.6rpmの粘度/6.0rpmの粘度)を算出した。
(Measurement of viscosity)
After immersing the container containing the heat conductive paint in a 25 ° C. bath for 30 minutes, the BH viscometer No. The viscosity at 6.0 rpm was measured using 4 rotors (unit: poise (P)). The viscosity at 0.6 rpm was also measured, and the thixo ratio (= viscosity at 0.6 rpm / viscosity at 6.0 rpm) was calculated from the measurement results.

〔黒鉛層の厚みの測定〕
真空プレス後のコア材をV溝板切断機で切り出し、その切片を研磨剤で琢磨し、断面を電子顕微鏡で観察することにより黒鉛層の厚みを測定した。
[Measurement of thickness of graphite layer]
The core material after the vacuum pressing was cut out with a V-groove cutting machine, the section was polished with an abrasive, and the thickness of the graphite layer was measured by observing the cross section with an electron microscope.

〔熱伝導性塗料の製造〕
熱伝導性塗料の原料として下記のものを用いた。
1.炭素材
(ア)膨張黒鉛CMX−20(日本黒鉛社製、平均粒径20μm)
(イ)膨張黒鉛CMX−40(日本黒鉛社製、平均粒径40μm)
(ウ)鱗状黒鉛CPB(日本黒鉛社製、平均粒径20μm)
[Manufacture of heat conductive paint]
The following materials were used as raw materials for the heat conductive paint.
1. Carbon material (a) Expanded graphite CMX-20 (manufactured by Nippon Graphite Co., Ltd., average particle size 20 μm)
(A) Expanded graphite CMX-40 (manufactured by Nippon Graphite Co., Ltd., average particle size 40 μm)
(U) Scale-like graphite CPB (manufactured by Nippon Graphite Co., Ltd., average particle size 20 μm)

2.結着材
(ア)エポキシ樹脂水性エマルションEM−0434AN(ADEKA社製、固形分濃度30質量%)
(イ)ウレタン樹脂水性エマルションHUX−522(ADEKA社製、固形分濃度30質量%)
(ウ)酸変性ポリオレフィン水性エマルションTC4010(ユニチカ社製、固形分濃度25質量%)
(エ)共重合ポリエステル水性エマルションKZA−3556(ユニチカ社製、固形分濃度30質量%)
(オ)溶剤溶解エポキシ樹脂EP−4900(ADEKA社製、NMP溶媒、固形分濃度50質量%)
2. Binder (A) Epoxy resin aqueous emulsion EM-0434AN (manufactured by ADEKA, solid content concentration 30% by mass)
(I) Urethane resin aqueous emulsion HUX-522 (manufactured by ADEKA, solid content concentration: 30% by mass)
(U) Acid-modified polyolefin aqueous emulsion TC4010 (manufactured by Unitika, solid content concentration 25% by mass)
(D) Copolyester aqueous emulsion KZA-3556 (manufactured by Unitika Ltd., solid content concentration 30% by mass)
(E) Solvent-dissolved epoxy resin EP-4900 (manufactured by ADEKA, NMP solvent, solid concentration 50% by mass)

3.増粘剤
(ア)カルボキシメチルセルロース(第一工業製薬社製、セロゲン)、以下、CMCと略す。
(イ)ポリビニルアルコール(日本酢ビ・ポバール社製、ZF−15H)、以下、PVAと略す。
(ウ)シリカ(日本アエロジル社製、アエロジルR8200)、以下、シリカと略す。
3. Thickener (a) Carboxymethylcellulose (Dell Daigaku Seiyaku Co., Ltd., cellogen), hereinafter abbreviated as CMC.
(I) Polyvinyl alcohol (Nippon Vinegar-Poval, ZF-15H), hereinafter abbreviated as PVA.
(C) Silica (Aerosil R8200 manufactured by Nippon Aerosil Co., Ltd.), hereinafter abbreviated as silica.

(熱伝導性塗料「A−1」の製造)
炭素材として膨張黒鉛「CMX−20」50g、結着材としてエポキシ樹脂水性エマルション「EM−0434AN」33g、増粘剤として「CMC」4質量%水溶液166gを、ホモジナイザー型分散機に仕込み、全固形分の濃度が18質量%となるように水を加えて混合し、熱伝導性塗料「A−1」を得た。
(Manufacture of thermal conductive paint “A-1”)
50 g of expanded graphite “CMX-20” as a carbon material, 33 g of an epoxy resin aqueous emulsion “EM-0434AN” as a binder, and 166 g of a 4% by mass aqueous solution of “CMC” as a thickener are charged into a homogenizer-type disperser and all solids Water was added and mixed so that the concentration of the minute became 18% by mass to obtain a heat conductive paint “A-1”.

(熱伝導性塗料「A−2」の製造)
炭素材として膨張黒鉛「CMX−20」50g、結着材としてエポキシ樹脂水性エマルション「EM−0434AN」33g、増粘剤として「PVA」4質量%水溶液166gをホモジナイザー型分散機に仕込み、全固形分の濃度が20質量%となるように水を加えて混合し、熱伝導性塗料「A−2」を得た。
(Manufacture of thermal conductive paint "A-2")
50 g of expanded graphite “CMX-20” as a carbon material, 33 g of an epoxy resin aqueous emulsion “EM-0434AN” as a binder, and 166 g of a 4% by mass aqueous solution of “PVA” as a thickener are charged into a homogenizer-type disperser to obtain a total solid content. Water was added and mixed so that the concentration of the resin became 20% by mass to obtain a heat conductive paint “A-2”.

(熱伝導性塗料「A−3」の製造)
炭素材として膨張黒鉛「CMX−40」50gを用いた以外は、「A−2」の製造と同様にして熱伝導性塗料「A−3」を得た。
(Manufacture of thermal conductive paint “A-3”)
A thermally conductive paint “A-3” was obtained in the same manner as in the production of “A-2” except that 50 g of expanded graphite “CMX-40” was used as the carbon material.

(熱伝導性塗料「A−4」の製造)
炭素材として膨張黒鉛「CMX−20」50g、結着材としてエポキシ樹脂水性エマルション「EM−0434AN」56gをホモジナイザー型分散機に仕込み、全固形分の濃度が21質量%となるように水を加えて混合し、熱伝導性塗料「A−4」を得た。
(Manufacture of thermal conductive paint "A-4")
Charge 50 g of expanded graphite “CMX-20” as a carbon material and 56 g of an epoxy resin aqueous emulsion “EM-0434AN” as a binder into a homogenizer-type disperser, and add water so that the total solid content is 21% by mass. To obtain a heat conductive paint “A-4”.

(熱伝導性塗料「A−5」の製造)
結着材としてエポキシ樹脂水性エマルション「EM−0434AN」110gを用いた以外は「A−4」の製造と同様にして熱伝導性塗料「A−5」を得た。
(Manufacture of thermal conductive paint "A-5")
A heat conductive paint “A-5” was obtained in the same manner as in the production of “A-4” except that 110 g of an epoxy resin aqueous emulsion “EM-0434AN” was used as a binder.

(熱伝導性塗料「A−6」の製造)
結着材としてウレタン樹脂水性エマルション「HUX−522」30gを用いた以外は「A−1」の製造と同様にして熱伝導性塗料「A−6」を得た。
(Manufacture of thermal conductive paint "A-6")
A heat conductive paint “A-6” was obtained in the same manner as in the production of “A-1” except that 30 g of urethane resin aqueous emulsion “HUX-522” was used as a binder.

(熱伝導性塗料「A−7」の製造)
炭素材として膨張黒鉛「CMX−20」50g、結着材としてエポキシ樹脂水性エマルション「EM−0434AN」133g、増粘剤として「CMC」の4質量%水溶液250gをホモジナイザー型分散機に仕込み、全固形分の濃度が22質量%となるように水を加えて混合し、熱伝導性塗料「A−7」を得た。
(Manufacture of thermal conductive paint "A-7")
50 g of expanded graphite “CMX-20” as a carbon material, 133 g of an epoxy resin aqueous emulsion “EM-0434AN” as a binder, and 250 g of a 4% by weight aqueous solution of “CMC” as a thickener are charged into a homogenizer-type disperser. Water was added and mixed so that the concentration of the minute became 22% by mass to obtain a heat conductive paint “A-7”.

(熱伝導性塗料「A−8」の製造)
炭素材として膨張黒鉛「CMX−20」50g、結着材としてエポキシ樹脂水性エマルション「EM−0434AN」83g、増粘剤として「CMC」の4質量%水溶液208gをホモジナイザー型分散機に仕込み、全固形分の濃度が21質量%となるように水を加えて混合し、熱伝導性塗料「A−8」を得た。
(Manufacture of thermal conductive paint "A-8")
50 g of expanded graphite “CMX-20” as a carbon material, 83 g of an epoxy resin aqueous emulsion “EM-0434AN” as a binder, and 208 g of a 4% by weight aqueous solution of “CMC” as a thickener are charged into a homogenizer-type disperser. Water was added and mixed so that the concentration of the minute became 21% by mass to obtain a heat conductive paint “A-8”.

(熱伝導性塗料「A−9」の製造)
炭素材として膨張黒鉛「CMX−20」50g、結着材としてエポキシ樹脂水性エマルション「EM−0434AN」9g、増粘剤として「CMC」の4質量%水溶液70gをホモジナイザー型分散機に仕込み、全固形分の濃度が19質量%となるように水を加えて混合し、熱伝導性塗料「A−9」を得た。
(Manufacture of thermal conductive paint "A-9")
50 g of expanded graphite “CMX-20” as a carbon material, 9 g of an epoxy resin aqueous emulsion “EM-0434AN” as a binder, and 70 g of a 4% by mass aqueous solution of “CMC” as a thickener are charged into a homogenizer type disperser Water was added and mixed so that the concentration of the minute would be 19% by mass to obtain a heat conductive paint “A-9”.

(熱伝導性塗料「A−10」の製造)
炭素材として膨張黒鉛「CMX−20」50g、結着材として溶剤溶解エポキシ樹脂「EP−4900」33g、増粘剤として「シリカ」7gをホモジナイザー型分散機に仕込み、全固形分の濃度が20質量%となるようにNMPを加えて混合し、熱伝導性塗料「A−10」を得た。
(Manufacture of thermal conductive paint "A-10")
50 g of expanded graphite “CMX-20” as a carbon material, 33 g of solvent-soluble epoxy resin “EP-4900” as a binder, and 7 g of “silica” as a thickener are charged into a homogenizer-type disperser, and the total solid content is 20 NMP was added and mixed so that it might become the mass%, and the heat conductive coating material "A-10" was obtained.

(熱伝導性塗料「A−11」の製造)
炭素材として鱗状黒鉛「CPB」を用いた以外は「A−1」の製造と同様にして熱伝導性塗料「A−11」を得た。
(Manufacture of thermal conductive paint “A-11”)
A thermally conductive paint “A-11” was obtained in the same manner as in the production of “A-1” except that scaly graphite “CPB” was used as the carbon material.

(熱伝導性塗料「A−12」の製造)
全固形分の濃度が5質量%となるように水を加えた以外は「A−1」の製造と同様にして熱伝導性塗料「A−12」を得た。
(Manufacture of thermal conductive paint "A-12")
A heat conductive paint “A-12” was obtained in the same manner as in the production of “A-1” except that water was added so that the total solid content was 5% by mass.

(熱伝導性塗料「A−13」の製造)
全固形分の濃度が40質量%となるように水を加えた以外は「A−1」の製造と同様にして熱伝導性塗料「A−13」を得た。
(Manufacture of thermal conductive paint "A-13")
A heat conductive paint “A-13” was obtained in the same manner as in the production of “A-1” except that water was added so that the total solid content was 40% by mass.

(熱伝導性塗料「A−14」の製造)
結着材として酸変性ポリオレフィン水性エマルション「TC4010」40gを用い、全固形分の濃度が20質量%となるように水を加えて混合した以外は「A−1」の製造と同様にして熱伝導性塗料「A−14」を得た。
(Manufacture of thermal conductive paint “A-14”)
Heat conduction as in the production of “A-1”, except that 40 g of acid-modified polyolefin aqueous emulsion “TC4010” was used as a binder, and water was added and mixed so that the total solid content would be 20% by mass. Paint "A-14" was obtained.

(熱伝導性塗料「A−15」の製造)
結着材として共重合ポリエステル水性エマルション「KZA−3556」33gを用い、全固形分の濃度が20質量%となるように水を加えて混合した以外は「A−1」の製造と同様にして熱伝導性塗料「A−15」を得た。
(Manufacture of heat conductive paint "A-15")
As in the production of “A-1”, 33 g of the copolymerized polyester aqueous emulsion “KZA-3556” was used as the binder, and water was added and mixed so that the total solid content would be 20% by mass. A thermally conductive paint “A-15” was obtained.

(熱伝導性塗料「A−16」の製造)
炭素材として膨張黒鉛「CMX−20」50g、結着材としてエポキシ樹脂水性エマルション「EM−0434AN」333g、増粘剤として「CMC」の6質量%水溶液277gをホモジナイザー型分散機に仕込み、全固形分の濃度が25質量%となるように水を加えて混合し、熱伝導性塗料「A−16」を得た。
(Manufacture of thermal conductive paint "A-16")
50 g of expanded graphite “CMX-20” as a carbon material, 333 g of an epoxy resin aqueous emulsion “EM-0434AN” as a binder, and 277 g of a 6% by mass aqueous solution of “CMC” as a thickener are charged into a homogenizer-type disperser. Water was added and mixed so that the concentration of the minute became 25% by mass to obtain a heat conductive paint “A-16”.

(熱伝導性塗料「A−17」の製造)
炭素材として膨張黒鉛「CMX−20」50g、結着材としてエポキシ樹脂水性エマルション「EM−0434AN」3gをホモジナイザー型分散機に仕込み、全固形分の濃度が18質量%となるように水を加えて混合し、熱伝導性塗料「A−17」を得た。
(Manufacture of thermal conductive paint “A-17”)
Charge 50 g of expanded graphite “CMX-20” as a carbon material and 3 g of an epoxy resin aqueous emulsion “EM-0434AN” as a binder into a homogenizer-type disperser, and add water so that the total solid content is 18% by mass. And mixed to obtain a heat conductive paint “A-17”.

(熱伝導性塗料「A−18」の製造)
結着材としてエポキシ樹脂水性エマルション「EM−0434AN」33g、増粘剤として「CMC」の10質量%水溶液400gを用いた以外は「A−7」の製造と同様にして熱伝導性塗料「A−18」を得た。
(Manufacture of heat conductive paint "A-18")
Thermally conductive paint “A” was prepared in the same manner as in “A-7” except that 33 g of epoxy resin aqueous emulsion “EM-0434AN” was used as the binder and 400 g of 10% by weight aqueous solution of “CMC” was used as the thickener. -18 "was obtained.

熱伝導性塗料「A−1」〜「A−18」の組成を表1に示す。   Table 1 shows the compositions of the thermally conductive coatings “A-1” to “A-18”.

(実施例1)
厚み38μmの銅箔がガラスクロス-エポキシ板に積層一体化されたFR−4銅張積層板の銅箔上に、スクリーン印刷により熱伝導性塗料「A−1」を印刷後、100℃で1時間真空乾燥し、得られた黒鉛層に、厚み0.2mmのガラスクロス−エポキシプリプレグ、厚み0.2mmの銅箔(回路形成用)、離型フィルムを順に積層し、真空度5torr、プレス圧2.5MPa、最高到達温度200℃で90分間真空プレスして熱伝導性プリント基板コア材を作製した。プレス後の圧縮された黒鉛層の厚みは40μmであった。
Example 1
A thermal conductive paint “A-1” is printed by screen printing on a copper foil of an FR-4 copper clad laminate in which a 38 μm thick copper foil is laminated and integrated on a glass cloth-epoxy plate. Vacuum drying for a period of time, a 0.2 mm thick glass cloth-epoxy prepreg, a 0.2 mm thick copper foil (for circuit formation), and a release film were laminated in this order on the resulting graphite layer, and the degree of vacuum was 5 torr. A heat conductive printed circuit board core material was produced by vacuum pressing at 2.5 MPa and a maximum temperature of 200 ° C. for 90 minutes. The thickness of the compressed graphite layer after pressing was 40 μm.

(実施例2)
プレス後の圧縮された黒鉛層の厚みを80μmとした以外は実施例1と同様にしてプリント基板を作製した。
(Example 2)
A printed circuit board was produced in the same manner as in Example 1 except that the thickness of the compressed graphite layer after pressing was 80 μm.

(実施例3〜10)
熱伝導性塗料「A−2」〜「A−10」を用いた以外は実施例1と同様にしてプリント基板を作製した。
(Examples 3 to 10)
A printed circuit board was produced in the same manner as in Example 1 except that the heat conductive paints “A-2” to “A-10” were used.

(比較例1)
熱伝導性塗料をスクリーン印刷することなく、プリプレグと銅箔、離型フィルムの3種を順に下から重ねて真空プレスした以外は実施例1と同様にしてプリント基板を作製した。
(Comparative Example 1)
A printed circuit board was produced in the same manner as in Example 1 except that the prepreg, the copper foil, and the release film were stacked in order from the bottom and vacuum-pressed without screen printing the heat conductive coating.

(比較例2)
熱伝導性塗料をガラスクロス−エポキシ板に塗布する代わりに、プリプレグ、膨張黒鉛シート(松下電器産業社製PGS 厚さ200μm)、プリプレグ、銅箔、離型フィルムの順に重ねて真空熱プレスしてコア材を作製する以外は実施例1と同様にプリント基板を作製した。
(Comparative Example 2)
Instead of applying the heat conductive paint to the glass cloth-epoxy plate, the prepreg, the expanded graphite sheet (PGS thickness made by Matsushita Electric Industrial Co., Ltd., 200 μm), the prepreg, the copper foil, and the release film are stacked in this order and vacuum heat pressed. A printed circuit board was produced in the same manner as in Example 1 except that the core material was produced.

(比較例3)
FR−4銅張積層板の銅箔をエッチングにより除去し、ガラスクロス-エポキシ面にスクリーン印刷を以外は実施例1と同様にしてプリント基板を作製した。
(Comparative Example 3)
The copper foil of the FR-4 copper-clad laminate was removed by etching, and a printed board was produced in the same manner as in Example 1 except that screen printing was performed on the glass cloth-epoxy surface.

(比較例4)
プレス後の圧縮された黒鉛層の厚みを200μmとした以外は比較例3と同様にしてプリント基板を作製した。
(Comparative Example 4)
A printed circuit board was produced in the same manner as in Comparative Example 3 except that the thickness of the compressed graphite layer after pressing was 200 μm.

(比較例5〜12)
熱伝導性塗料「A−11」〜「A−18」を用いた以外は実施例1と同様にしてプリント基板を作製した。
(Comparative Examples 5-12)
A printed circuit board was produced in the same manner as in Example 1 except that the heat conductive paints “A-11” to “A-18” were used.

(比較例13)
プレス温度を90℃とした以外は実施例1と同様にしてプリント基板を作製した。
(Comparative Example 13)
A printed circuit board was produced in the same manner as in Example 1 except that the pressing temperature was 90 ° C.

(比較例14)
プレス圧を1.5MPaとした以外は実施例1と同様にしてプリント基板を作製した。
(Comparative Example 14)
A printed circuit board was produced in the same manner as in Example 1 except that the pressing pressure was 1.5 MPa.

実施例1〜11および比較例1〜15における評価結果を表1に示す。   The evaluation results in Examples 1 to 11 and Comparative Examples 1 to 15 are shown in Table 1.

表1の結果から明らかなように、放熱性の評価において、実施例1〜11ではプリント基板が発生する熱を拡散および放熱しているため、黒鉛層を設けない比較例1に比べて明らかに温度上昇を抑制しており、その放熱性能は従来のカーボンシートを用いた比較例2と同等以上であった。   As is clear from the results in Table 1, in the heat dissipation evaluation, in Examples 1 to 11, the heat generated by the printed circuit board is diffused and dissipated, so that it is clear as compared with Comparative Example 1 in which no graphite layer is provided. The temperature rise was suppressed, and the heat dissipation performance was equal to or higher than that of Comparative Example 2 using a conventional carbon sheet.

さらに、放熱性に関して次のことが分かる。銅箔のない比較例3、4よりも銅箔上に黒鉛層を有する実施例1〜11の方が放熱性が高かった。炭素材として鱗状黒鉛を用いた比較例5よりも、膨張黒鉛を用いた実施例1〜11の方が放熱性が高かった。膨張黒鉛の比率が低い比較例10よりも膨張黒鉛の比率が高い実施例1〜11の方が放熱性が高かった。増粘剤の比率が高い比較例12よりも増粘剤の比率が低い実施例1〜11の方が放熱性が高かった。固形分濃度が低い比較例6よりも固形分濃度が高い実施例1〜11の方が放熱性が高かった。実施例1〜11よりも固形分濃度が高い比較例7は、塗料の粘度が高いため、スクリーン印刷できなかった。   Furthermore, the following can be understood with respect to heat dissipation. Examples 1-11 which have a graphite layer on copper foil had higher heat dissipation than Comparative Examples 3 and 4 without copper foil. The heat dissipation was higher in Examples 1 to 11 using expanded graphite than in Comparative Example 5 using scaly graphite as the carbon material. The heat dissipation was higher in Examples 1 to 11 in which the ratio of expanded graphite was higher than in Comparative Example 10 in which the ratio of expanded graphite was low. The heat dissipation was higher in Examples 1 to 11 where the ratio of the thickener was lower than that of Comparative Example 12 where the ratio of the thickener was high. Examples 1-11 with a higher solid content concentration than Comparative Example 6 with a lower solid content concentration had higher heat dissipation. Since Comparative Example 7 having a higher solid content concentration than Examples 1 to 11 had a high viscosity of the paint, screen printing could not be performed.

結着性およびハンダ耐熱性の評価においては次のことが分かる。熱硬化性樹脂エマルションを用いた実施例1〜11では結着性およびハンダ耐熱性ともに優れていた。一方、熱可塑性樹脂エマルションを用いた比較例8、9では耐熱性が劣っており、膨張黒鉛の比率が高い比較例11や増粘剤の比率が高い比較例12では結着性が劣っていた。   In the evaluation of binding property and solder heat resistance, the following can be seen. In Examples 1 to 11 using the thermosetting resin emulsion, both the binding property and the solder heat resistance were excellent. On the other hand, in Comparative Examples 8 and 9 using the thermoplastic resin emulsion, the heat resistance is inferior, and in Comparative Example 11 in which the ratio of expanded graphite is high and in Comparative Example 12 in which the ratio of thickener is high, the binding property is inferior. .

プレス温度やプレス圧力が低い比較例13、14では放熱特性、結着性、ハンダ耐熱性いずれにおいても実施例1〜11より劣っていた。   In Comparative Examples 13 and 14 where the pressing temperature and pressing pressure were low, the heat dissipation characteristics, binding properties, and solder heat resistance were all inferior to those of Examples 1 to 11.

Claims (5)

金属箔の片面に黒鉛層が形成され、この積層体の両面にさらに絶縁材料が積層された熱伝導性プリント基板であって、黒鉛層が、50〜95質量%の膨張黒鉛および5〜50質量%の熱硬化性樹脂を固形分中に含有する熱伝導性塗料を金属箔上に塗工し乾燥して形成されたものであることを特徴とする熱伝導性プリント基板。 A thermally conductive printed circuit board in which a graphite layer is formed on one side of a metal foil and an insulating material is further laminated on both sides of the laminate, wherein the graphite layer is 50 to 95% by mass of expanded graphite and 5 to 50% by mass. A heat conductive printed board characterized by being formed by coating a metal foil with a heat conductive paint containing% thermosetting resin in a solid content and drying it. 二つの金属箔の中間に黒鉛層が形成され、この積層体の両面にさらに絶縁材料が積層された熱伝導性プリント基板であって、黒鉛層が、50〜95質量%の膨張黒鉛および5〜50質量%の熱硬化性樹脂を固形分中に含有する熱伝導性塗料を金属箔上に塗工し乾燥して形成されたものであることを特徴とする熱伝導性プリント基板。 A thermally conductive printed circuit board in which a graphite layer is formed between two metal foils, and an insulating material is further laminated on both sides of the laminate, wherein the graphite layer comprises 50 to 95% by mass of expanded graphite and 5 to 5%. A heat conductive printed circuit board formed by coating a metal foil with a heat conductive paint containing 50% by mass of a thermosetting resin in a solid content and drying. 黒鉛層の厚みが、10〜200μmである請求項1又は2記載の熱伝導性プリント基板。 The thermally conductive printed board according to claim 1 or 2, wherein the graphite layer has a thickness of 10 to 200 µm. 絶縁材料上に接着された金属箔に、50〜95質量%の膨張黒鉛および5〜50質量%の熱硬化性樹脂を固形分中に含有する熱伝導性塗料を塗工し乾燥して黒鉛層を形成し、次いで絶縁材料を積層した後、この積層体を温度100℃〜200℃で、2〜3MPaの加圧下で一体成形することを特徴とする請求項1又は3記載の熱伝導性プリント基板の製造方法。 A metal foil adhered on an insulating material is coated with a thermally conductive paint containing 50 to 95% by mass of expanded graphite and 5 to 50% by mass of a thermosetting resin in a solid content, and then dried to form a graphite layer. 4. The heat conductive print according to claim 1 or 3, wherein the insulating material is laminated, and then the laminate is integrally formed at a temperature of 100 ° C. to 200 ° C. under a pressure of 2 to 3 MPa. A method for manufacturing a substrate. 絶縁材料上に接着された金属箔に、50〜95質量%の膨張黒鉛および5〜50質量%の熱硬化性樹脂を固形分中に含有する熱伝導性塗料を塗工し乾燥して黒鉛層を形成し、その上に金属箔と絶縁材料を順に積層した後、この積層体を温度100℃〜200℃で、2〜3MPaの加圧下で一体成形することを特徴とする請求項2又は3記載の熱伝導性プリント基板の製造方法。 A metal foil adhered on an insulating material is coated with a thermally conductive paint containing 50 to 95% by mass of expanded graphite and 5 to 50% by mass of a thermosetting resin in a solid content, and then dried to form a graphite layer. The metal foil and the insulating material are sequentially laminated thereon, and the laminate is integrally formed at a temperature of 100 ° C. to 200 ° C. under a pressure of 2 to 3 MPa. The manufacturing method of the heat conductive printed circuit board of description.
JP2009079738A 2009-03-27 2009-03-27 Thermally conductive printed board, and method of manufacturing the same Pending JP2010232507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009079738A JP2010232507A (en) 2009-03-27 2009-03-27 Thermally conductive printed board, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009079738A JP2010232507A (en) 2009-03-27 2009-03-27 Thermally conductive printed board, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010232507A true JP2010232507A (en) 2010-10-14

Family

ID=43048039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079738A Pending JP2010232507A (en) 2009-03-27 2009-03-27 Thermally conductive printed board, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010232507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175344A1 (en) * 2013-04-26 2014-10-30 Jnc株式会社 Aqueous coating material, heat-dissipating member, metallic part, and electronic device
CN112794716A (en) * 2020-12-31 2021-05-14 云南云天墨睿科技有限公司 Graphene membrane material with specified thickness and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175344A1 (en) * 2013-04-26 2014-10-30 Jnc株式会社 Aqueous coating material, heat-dissipating member, metallic part, and electronic device
JPWO2014175344A1 (en) * 2013-04-26 2017-02-23 Jnc株式会社 Water-based paint, heat dissipation member, metal parts, electronic equipment
CN112794716A (en) * 2020-12-31 2021-05-14 云南云天墨睿科技有限公司 Graphene membrane material with specified thickness and preparation method thereof

Similar Documents

Publication Publication Date Title
JP7053579B2 (en) Heat transfer member and heat dissipation structure including it
Sakamoto et al. Microstructural stability of Ag sinter joining in thermal cycling
JP6136104B2 (en) Heat dissipation member, electronic device and battery
JP4950994B2 (en) Thermally conductive adhesive
JP5080295B2 (en) Heat dissipating mounting board and manufacturing method thereof
KR102075337B1 (en) Heat dissipation plate, electronic device and battery
JP2019057731A (en) Electromagnetic wave-absorbing composition coating material
JP2008186590A (en) High heat and electric conductivity composition, conductive paste, and conductive adhesive
WO2017145957A1 (en) Thermally conductive sheet, production method therefor, and heat dissipation device
JP4938466B2 (en) Electronic mounting board, light reflective heat conductive coverlay film
TWI476572B (en) Heat radiation tape and manufacturing method thereof
JPWO2015072428A1 (en) heatsink
US20180134925A1 (en) High temperature resistant pressure sensitive adhesive with low thermal impedance
JP4893415B2 (en) Heat dissipation film
JP2012253167A (en) Thermally conductive insulation sheet, metal base substrate and circuit board
JP5516034B2 (en) Highly insulating heat conductive sheet and heat dissipation device using the same
TWI504327B (en) Manufacturing method of metal base substrate and electronic circuit board
JP2017107731A (en) Conductive sheet, method for producing the same, and semiconductor device and electronic component obtained by using the same
KR102367301B1 (en) Complex-thermal conducting sheet and manufacturing method thereof
KR20180116259A (en) LAMINATE AND METHOD FOR MANUFACTURING THE SAME, AND METHOD FOR MANUFACTURING SECONDARY SHEET
JP2010232507A (en) Thermally conductive printed board, and method of manufacturing the same
CN104396356A (en) Thermally conductive substrate article
CN113939167A (en) Graphite film with high heat conductivity in thickness direction and preparation method thereof
JP4853698B2 (en) Heat conduction sheet
JP2021182543A (en) Conductive composition, and member provided with sintered part including the conductive composition