JP2010232247A - 電磁波抑制材料 - Google Patents

電磁波抑制材料 Download PDF

Info

Publication number
JP2010232247A
JP2010232247A JP2009075581A JP2009075581A JP2010232247A JP 2010232247 A JP2010232247 A JP 2010232247A JP 2009075581 A JP2009075581 A JP 2009075581A JP 2009075581 A JP2009075581 A JP 2009075581A JP 2010232247 A JP2010232247 A JP 2010232247A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
carbon powder
powder
wave control
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009075581A
Other languages
English (en)
Inventor
Norihiro Yoshikawa
宣弘 吉川
Ichiro Nakamura
一郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009075581A priority Critical patent/JP2010232247A/ja
Publication of JP2010232247A publication Critical patent/JP2010232247A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

【課題】高い電磁波抑制効果が得られる電磁波抑制材料を得る。
【解決手段】樹脂からなるマトリックス2中にカーボン粉末3を分散させた複合材料からなる電磁波抑制材料1において、上記カーボン粉末3を電気絶縁性の被覆材料4によって被覆した状態とする。カーボン粉末3が被覆材料4で被覆されると、カーボン粉末3同士が直接接触することがなくなり、そのため、カーボン粉末3の含有率を高くしても、電磁波抑制材料1を構成する複合材料には導電性が発現しないようにすることができる。よって、この電磁波抑制材料1によれば、非導電性を維持した状態で、すなわち電界が形成される状態で誘電率を高くすることができ、その結果、高い電磁波抑制効果を得ることができる。上記被覆材料4は、たとえば20W・m−1・K−1以上の熱伝導率というように、比較的高い熱伝導性を備えることが好ましい。
【選択図】図1

Description

この発明は、電磁波抑制材料に関するもので、特に、樹脂からなるマトリックス中にカーボン粉末を分散させた複合材料からなる電磁波抑制材料に関するものである。
電磁波抑制のために、たとえばフェライトセラミックスが使用されている。しかし、フェライトセラミックスの場合、周波域が高くなるのに伴い、透磁率が減少するため、高周波域での電磁波抑制効果は小さい。このことは、Snoekの限界周波数の存在により説明されている。
そこで、高周波域で電磁波抑制を効果的に行なうために、磁性材料と樹脂とからなる複合材料がたとえば特開2002‐324863号公報(特許文献1)および特開2007‐258432号公報(特許文献2)において開示され、また、誘電体材料と樹脂とからなる複合材料がたとえば特開2004‐253640号公報(特許文献3)において開示され、さらに、導電材料(カーボン)と樹脂とからなる複合材料がたとえば特開2003‐124011号公報(特許文献4)において開示されている。
しかしながら、上記特許文献1ないし4に記載の技術には、それぞれ解決されるべき課題がある。
まず、上記特許文献2に記載の磁性材料と樹脂とからなる複合材料において、磁性材料として球状の粉末を用いた場合、渦電流により粒界に発生する反磁性の影響により透磁率が低下するという問題がある。他方、特許文献1には、渦電流の影響を低減するため、扁平状の磁性材料粉末をシートの面方向に配向させる技術が開示されている。しかし、特許文献1に記載の複合材料の場合、上記のように配向させるための手段を講じる必要があり、複合材料の形成方法が煩雑となる。また、扁平状の粉末の配向の方向により、電磁波抑制の効果に指向性が生じるという問題もある。さらに、特許文献1および2に記載の複合材料のように、磁性材料を用いる場合、磁性材料の比重が大きい(フェライトで5程度、金属粉末で7程度)ため、複合材料の比重も4前後と大きくなり、この複合材料を電磁波抑制材料として用いられる機器の軽量化を阻害するという問題にも遭遇する。
次に、特許文献3は、より具体的には、ACu12(A:アルカリ土類金属またはアルカリ土類金属の混合体。B:Ti、Zr、Hf、Feまたはこれらの混合体。)で表わされる組成を有する誘電体材料粉末と樹脂とからなる複合材料を開示している。このような誘電体材料粉末と樹脂とからなる複合材料において、電磁波抑制を効果的に行なうためには、複合材料の誘電率を高くする必要がある。このためには、複合材料中のPVC(Pigment Volume Concentration:複合材料中での粉末の体積分率)を高くする必要があるが、PVCを高くするに従って、複合材料の可撓性ないしは柔軟性が低下し、また、複合材料の比重も高くなる。
次に、特許文献4には、前述のように、導電材料(カーボン)と樹脂とからなる複合材料が開示されているが、このような導電材料と樹脂とからなる複合材料においても、複合材料の誘電率を高くするためには複合材料中のPVCを高くする必要がある。ただし、PVCを高くするにつれて、導電材料としてのカーボン同士がより接触しやすくなる。そのため、電界が形成されず、電磁波抑制効果が低下するという問題に遭遇する。特許文献4では、少量のカーボンの添加であっても誘電率を高くし得る技術として、カーボンナノチューブを利用することが開示されている。しかしながら、カーボンナノチューブは通常のカーボン粉末に比べ高価であるという欠点を有している。また、カーボンナノチューブを用いると、その配向の方向により電磁波抑制の効果に指向性が生じるという問題も有している。
特開2002‐324863号公報 特開2007‐258432号公報 特開2004‐253640号公報 特開2003‐124011号公報
そこで、この発明の目的は、上述したような問題を解決し得る電磁波抑制材料を提供しようとすることである。
この発明は、樹脂からなるマトリックス中にカーボン粉末を分散させた複合材料からなる電磁波抑制材料に向けられるものであって、上述した技術的課題を解決するため、カーボン粉末が電気絶縁性の被覆材料によって被覆されていることを特徴としている。
上記被覆材料は、たとえば20W・m−1・K−1以上の熱伝導率というように、比較的高い熱伝導性を備えることが好ましい。
また、カーボン粉末は球形粉末であることが好ましい。
また、この発明に係る電磁波抑制材料において、樹脂が30〜50容量%を占め、被覆材料で被覆されたカーボン粉末が50〜70容量%を占めることが好ましい。
この発明に係る電磁波抑制材料によれば、カーボン粉末が電気絶縁性の被覆材料で被覆されるので、カーボン粉末同士が直接接触することがなくなる。そのため、カーボン粉末の含有率を高くしても、電磁波抑制材料を構成する複合材料には導電性が発現しないようにすることができる。したがって、この発明に係る電磁波抑制材料によれば、非導電性を維持した状態で、すなわち電界が形成される状態で誘電率を高くすることができ、その結果、高い電磁波抑制効果を得ることができる。
また、この発明に係る電磁波抑制材料によれば、カーボン粉末の比重が2程度であるので、複合材料としての比重を小さくすることができる。そのため、この電磁波抑制材料を用いる機器の軽量化を図ることができる。
この発明において、被覆材料として、比較的高い熱伝導性を備えるものを用いると、電磁波抑制材料の放熱性を向上させることができる。よって、電磁波抑制効果により発生した熱を効率的に放出することができる。
この発明において、カーボン粉末として球形粉末を用いると、電磁波抑制材料が電磁波抑制効果に関して指向性を持たないようにすることができる。したがって、電磁波抑制材料をたとえば板状に成形する場合、その成形方法についての自由度が高い。また、樹脂の硬化前の段階で、電磁波抑制材料を塗料のようにして問題なく用いることができる。
この発明に係る電磁波抑制材料を拡大して図解的に示す図である。
電磁波吸収の原理は、入射した電磁波エネルギーのほとんどを電磁波抑制体(「電磁波吸収体」と言うこともある。)の内部で熱エネルギーに変換するというものである。このため、電磁波抑制体では、前方へ反射するエネルギーと後方へ透過するエネルギーとの双方を小さくすることができる。熱エネルギーへの変換のメカニズムは、主に「導電損失」、「誘電損失」および「磁性損失」の3種に分類され、また、このときの単位体積あたりの電磁波吸収エネルギーPは、以下の式(1)で表わされる。
P=1/2・fμ″|H|+1/2・fε″|E|+1/2・σ|E| …(1)
ここで、P:電磁波吸収エネルギー、E:電界、H:磁界、f:周波数、σ:導電率である。
電場がある程度以上の速さで変化する場合、誘電率は、定数にはならず、電場の周波数の関数である誘電関数として示される。誘電関数には電気伝導やバンド間遷移による損失が発生するため、一般に、以下の式(2)に示すような複素関数となる。
ε*=ε′+iε″ …(2)
ここで、ε*は複素誘電率と呼ばれ、ε′は複素誘電率の実数部、ε″はその虚数部である。
磁性体においても同様に、磁場がある程度以上の速さで変化する場合、透磁率は、複素関数となり、次式(3)で示される。
μ*=μ′+iμ″ …(3)
ここで、μ*は複素透磁率と呼ばれ、μ′は複素透磁率の実数部、μ″はその虚数部である。
上記式(2)および(3)において、実数部と虚数部の比、すなわち、tanδ=ε′/ε″(tanδ=μ′/μ″)は、誘電損失(磁気損失)と呼ばれる。
この発明に係る電磁波抑制材料は、上述した誘電損失に基づいて、電磁波を熱エネルギーに変えて、電磁波を抑制しようとするものである。より具体的には、1〜5GHz帯域で電子機器から発生する不要電磁波を誘電損失を利用して抑制し、このような電磁波による弊害を防ごうとするものである。
図1に示すように、この発明に係る電磁波抑制材料1は、樹脂からなるマトリックス2中にカーボン粉末3を分散させた複合材料からなるものであって、カーボン粉末3は電気絶縁性の被覆材料4によって被覆されていることを特徴としている。
上記マトリックス2を構成する樹脂としては、たとえばエポキシ樹脂、シリコーン樹脂などを用いることができる。
また、炭素粉末3としては、たとえば、平均粒径が6.0μm程度の球状黒鉛粉末を有利に用いることができる。このように、球状の炭素粉末3を用いることにより、薄片状やカーボンナノチューブなどの非球状の炭素粉末を用いた場合に遭遇し得る炭素粉末の配向の方向により電磁波抑制の効果に指向性が生じるといった問題を回避することができる。
電気絶縁性の被覆材料4としては、たとえば体積抵抗率が10Ω・cm以上の材料を用いることができる。また、被覆材料4は比較的高い熱伝導性を備えることが好ましい。このような被覆材料4として好適な熱伝導性材料としては、たとえば、窒化ホウ素、水酸化アルミニウム、窒化アルミニウム、アルミナなどがある。参考のため、たとえばアルミナは、体積抵抗率が1015Ω・cm、熱伝導率が20W・m−1・K−1であり、窒化アルミニウムは、体積抵抗率が1014Ω・cm、熱伝導率が90W・m−1・K−1であり、窒化ホウ素は、体積抵抗率が1016Ω・cm、熱伝導率が40W・m−1・K−1である。
カーボン粉末3の各粒子の表面を電気絶縁性の被覆材料4で被覆した状態を得るための方法として、たとえば機械的被覆法、ゾルゲル反応による被覆法などがある。なお、機械的被覆法とは、被覆される材料(ここではカーボン粉末)と被覆する材料(たとえばアルミナ粉末)とを混合し、これらに強い機械的エネルギーを与えてメカノケミカル的な反応を起こし、表面被覆する方法である。
電磁波抑制材料におけるマトリックス2を構成する樹脂の含有量は30〜50容量%であることが好ましい。当該含有量が30容量%未満では、成形が困難であり、可撓性ないしは柔軟性のある電磁波抑制材料が得られない。他方、含有量が50容量%を超えると、誘電率が小さくなりすぎ、電磁波抑制効果が不十分となる。
電磁波抑制材料における被覆材料4で被覆したカーボン粉末3の含有量は50〜70容量%であることが好ましい。当該含有量が70容量%を超えると、成形が困難であり、可撓性ないしは柔軟性のある電磁波抑制材料が得られない。他方、含有量が50容量%未満では、誘電率が小さくなりすぎ、電磁波抑制効果が不十分となる。
また、被覆材料4は、カーボン粉末3の表面積の50%以上を被覆することが好ましい。被覆率が50%未満では、カーボン粉末同士が接触しやすくなり、電磁波抑制材料1が導電性を発現するようになることがあるからである。
[実験例]
次に、この発明による効果を確認するために実施した実験例について説明する。
カーボン粉末100重量部に対し、アルミナ粉末を10重量部配合し、機械的被覆法により、カーボン粉末の表面にアルミナ粉末を被覆した。上記の配合比率の場合、理論上、カーボン粉末の表面積の50%をアルミナ粉末が被覆することになる。なお、この実験例では、上記カーボン粉末として、平均粒径が6.0μmの球状黒鉛粉末を用い、また、アルミナ粉末として、平均粒径が0.2μmのアルミナ粉末を用いた。
なお、比較例となる試料の作製のため、上記のカーボン粉末およびアルミナ粉末の各々について、これらを互いに配合しない状態のままのものも残した。
次に、上記のアルミナ粉末で被覆したカーボン粉末、カーボン粉末単独、およびアルミナ粉末とエポキシ樹脂との単なる混合の各々に対して、表1に示す重量比率で、エポキシ樹脂およびアミン硬化剤を加え、プラネタリーミキサで混合し、電磁波抑制材料ペーストを得た。なお、この実験例では、エポキシ樹脂として、ポリエチレングリコールジグリシジルエーテル型のエポキシ樹脂を用いた。
Figure 2010232247
表1において、「PVC」は、複合材料中でのフィラー(ここでは、「アルミナ粉末で被覆したカーボン粉末」、「カーボン粉末」、または「カーボン粉末およびアルミナ粉末」)の体積分率のことである。PVC[%]の算出式は以下の式(4)のとおりである。
PVC=(フィラーの体積)/(複合材料の体積)×100
=(フィラーの体積)/{(フィラーの体積)+(樹脂の体積)}×100 …(4)
フィラーの体積は、フィラーの重量をフィラーの密度で除することによって算出される。同様に、樹脂の体積は、樹脂の重量を樹脂の密度で除することによって算出される。
次に、前述のように混合して得られた電磁波抑制材料ペーストを、減圧脱泡した後、ドクターブレード法にてシート成形を行なった。その後、温度90℃および1時間の条件で熱処理を行ない、エポキシ樹脂とアミン硬化剤の硬化反応を進行させ、各試料に係る電磁波抑制材料シートを作製した。
このようにして得られた各試料に係る電磁波抑制材料について、1.1GHzおよび3.8GHzでの誘電率(ε′およびε″)を、Sパラメータ法により評価した。また、電磁波抑制材料の熱伝導率をレーザーフラッシュ法にて測定した。さらに、電磁波抑制材料を所定の寸法にカットし、その寸法と重量とを測定することによって、比重を算出した。
これらの結果が表2に示されている。なお、表2には、表1に示した「PVC」が再び示されている。
Figure 2010232247
表1および表2において、試料7〜10は、この発明の範囲外の比較例である。
この発明の範囲内にある試料1〜6のように、アルミナ粉末で被覆したカーボン粉末を用いた場合、PVCが高いほど、誘電率(ε′およびε″)が高くなった。
これに対し、試料7〜9のように、アルミナ粉末の被覆処理を行なわなかったカーボン粉末を用いた場合、高PVC領域では誘電率の測定ができなかった。同様に、試料10のように、アルミナ粉末とカーボン粉末とを単に混合しただけの場合、誘電率の測定ができなかった。これらは、複合材料中でカーボン粉末同士が接触して導電性が発現したためであると考えられる。
以上のことから、電気絶縁性のアルミナ粉末で被覆したカーボン粉末を用いることにより、高PVC化を問題なく図ることができ、それによって、高誘電率化を有利に図ることができることがわかる。
また、熱伝導率について、この発明の範囲内にある試料1〜6と比較例としての試料7〜9とを比較すれば、アルミナ粉末で被覆したカーボン粉末は、アルミナ粉末の被覆処理を行なわなかったカーボン粉末に比べ、複合材料の熱伝導率を高めるのに寄与していることがわかった。これはアルミナが比較的高い熱伝導性を備えるためであり、このアルミナの比較的高い熱伝導性が、複合材料の熱伝導率を高めたものと考えることができる。なお、このアルミナの熱伝導率向上の効果は、アルミナ粉末とカーボン粉末とを単に混合しただけの試料10においても見られた。
また、この実験例において作製した試料1〜10は、いずれも、フィラーの主材料として、比重が小さいカーボン粉末を用いているため、複合材料の比重を2以下とすることができた。たとえば、電磁波抑制に用いられるセラミックスや、金属粉末と樹脂との複合材料の場合には、その比重は概ね3以上であるが、このような比重より小さい比重を、上記試料1〜10によれば、実現できることが確認できた。
1 電磁波抑制材料
2 マトリックス
3 カーボン粉末
4 被覆材料

Claims (5)

  1. 樹脂からなるマトリックス中にカーボン粉末を分散させた複合材料からなるものであって、前記カーボン粉末は電気絶縁性の被覆材料によって被覆されている、電磁波抑制材料。
  2. 前記被覆材料は比較的高い熱伝導性を備える、請求項1に記載の電磁波抑制材料。
  3. 前記被覆材料は20W・m−1・K−1以上の熱伝導率を有する、請求項2に記載の電磁波抑制材料。
  4. 前記カーボン粉末は球形粉末である、請求項1ないし3のいずれかに記載の電磁波抑制材料。
  5. 前記樹脂が30〜50容量%を占め、前記被覆材料で被覆された前記カーボン粉末が50〜70容量%を占める、請求項1ないし4のいずれかに記載の電磁波抑制材料。
JP2009075581A 2009-03-26 2009-03-26 電磁波抑制材料 Pending JP2010232247A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009075581A JP2010232247A (ja) 2009-03-26 2009-03-26 電磁波抑制材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009075581A JP2010232247A (ja) 2009-03-26 2009-03-26 電磁波抑制材料

Publications (1)

Publication Number Publication Date
JP2010232247A true JP2010232247A (ja) 2010-10-14

Family

ID=43047838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009075581A Pending JP2010232247A (ja) 2009-03-26 2009-03-26 電磁波抑制材料

Country Status (1)

Country Link
JP (1) JP2010232247A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159374A (ja) * 2011-01-31 2012-08-23 Iwate Industrial Research Center 圧力センサ素子
KR20170053931A (ko) * 2015-11-09 2017-05-17 주식회사 엘지화학 유전특성이 개선된 탄소복합소재 및 이의 유전율 제어 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321185A (ja) * 1996-05-31 1997-12-12 Tokai Rubber Ind Ltd 熱伝導性高分子シートの製法
JP2003347787A (ja) * 2002-05-23 2003-12-05 Shin Etsu Chem Co Ltd 電磁波吸収性組成物
JP2004336028A (ja) * 2003-04-18 2004-11-25 Nitta Ind Corp 電磁波吸収材料
JP2005011878A (ja) * 2003-06-17 2005-01-13 Inoac Corp 電磁波吸収体
JP2009017142A (ja) * 2007-07-03 2009-01-22 Mitsubishi Gas Chem Co Inc 誘電特性を用いたノイズ抑制材料およびノイズ抑制フィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321185A (ja) * 1996-05-31 1997-12-12 Tokai Rubber Ind Ltd 熱伝導性高分子シートの製法
JP2003347787A (ja) * 2002-05-23 2003-12-05 Shin Etsu Chem Co Ltd 電磁波吸収性組成物
JP2004336028A (ja) * 2003-04-18 2004-11-25 Nitta Ind Corp 電磁波吸収材料
JP2005011878A (ja) * 2003-06-17 2005-01-13 Inoac Corp 電磁波吸収体
JP2009017142A (ja) * 2007-07-03 2009-01-22 Mitsubishi Gas Chem Co Inc 誘電特性を用いたノイズ抑制材料およびノイズ抑制フィルム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159374A (ja) * 2011-01-31 2012-08-23 Iwate Industrial Research Center 圧力センサ素子
KR20170053931A (ko) * 2015-11-09 2017-05-17 주식회사 엘지화학 유전특성이 개선된 탄소복합소재 및 이의 유전율 제어 방법
KR102065651B1 (ko) * 2015-11-09 2020-01-13 주식회사 엘지화학 유전특성이 개선된 탄소복합소재 및 이의 유전율 제어 방법

Similar Documents

Publication Publication Date Title
Barani et al. Multifunctional graphene composites for electromagnetic shielding and thermal management at elevated temperatures
JP7069314B2 (ja) 塊状窒化ホウ素粒子、窒化ホウ素粉末、窒化ホウ素粉末の製造方法、樹脂組成物、及び放熱部材
CN111511679B (zh) 六方氮化硼粉末及其生产方法和使用其的组合物和散热材料
JP6351585B2 (ja) 樹脂含浸窒化ホウ素焼結体およびその用途
JP5453477B2 (ja) 樹脂混合用複合フィラー
JP6704271B2 (ja) 六方晶窒化ホウ素の一次粒子凝集体、樹脂組成物及びその用途
KR20150127614A (ko) 질화 붕소 분말 및 이를 함유하는 수지 조성물
Rengaswamy et al. Electromagnetic interference (EMI) shielding performance of lightweight metal decorated carbon nanostructures dispersed in flexible polyvinylidene fluoride films
Wang et al. Enhanced microwave absorption performance of lightweight absorber based on reduced graphene oxide and Ag-coated hollow glass spheres/epoxy composite
JP2012238819A (ja) 熱伝導性シート、絶縁シートおよび放熱部材
Nouri-Borujerdi et al. Thermal and electrical conductivity of a graphene-based hybrid filler epoxy composite
WO2020175377A1 (ja) 窒化ホウ素凝集粉末、放熱シート及び半導体デバイス
Jing et al. Flexible polyurethane@ Ti3C2Tx/silver nanowires composite films with cocontinuous segregated structures for superior electromagnetic interference shielding and Joule heating
JP4746803B2 (ja) 熱伝導性電磁波シールドシート
Bheema et al. Synergistic influence of barium hexaferrite nanoparticles for enhancing the EMI shielding performance of GNP/epoxy nanocomposites
TW201422674A (zh) 聚苯胺複合材料及其製造方法
Wang et al. High electromagnetic interference shielding effectiveness in MgO composites reinforced by aligned graphene platelets
JP2010232247A (ja) 電磁波抑制材料
KR102090492B1 (ko) 마이크로파 가열용 도전성 수지 조성물
Singh et al. Conducting multiphase magnetic nanocomposites for microwave shielding application
Jusoh et al. Electromagnetic shielding effectiveness of gypsum-magnetite composite at X-band frequency
JP2014239236A (ja) 熱伝導性シート
JP2016124908A (ja) 樹脂成形体
JP2007084704A (ja) 樹脂組成物とこれを用いた回路基板およびパッケージ
Yang et al. Enhancing electromagnetic wave absorption performance through construction of three-dimensional multilayered SiCw/Y3Si2C2/Ni0. 5Zn0. 5Fe2O4 composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Effective date: 20130322

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20130326

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730