JP2010229163A - Method for producing purified fluorine-containing polymer - Google Patents

Method for producing purified fluorine-containing polymer Download PDF

Info

Publication number
JP2010229163A
JP2010229163A JP2007192590A JP2007192590A JP2010229163A JP 2010229163 A JP2010229163 A JP 2010229163A JP 2007192590 A JP2007192590 A JP 2007192590A JP 2007192590 A JP2007192590 A JP 2007192590A JP 2010229163 A JP2010229163 A JP 2010229163A
Authority
JP
Japan
Prior art keywords
fluorine
polymerization
containing polymer
suspension
oxidation treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007192590A
Other languages
Japanese (ja)
Inventor
Shigehito Kosaka
重仁 匂坂
Yoshiki Marutani
由輝 丸谷
Tomohiro Kino
智裕 紀野
Hideya Saito
秀哉 斎藤
Tadahiro Yabu
忠洋 籔
Shigesuke Tano
恵祐 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007192590A priority Critical patent/JP2010229163A/en
Priority to PCT/JP2008/063181 priority patent/WO2009014138A1/en
Publication of JP2010229163A publication Critical patent/JP2010229163A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/06Oxidation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a purified fluorine-containing polymer, which is applicable to high-pressure polymerization using a large-sized polymerization vessel and is capable of obtaining a pellet or a molded article free from appearance defects such as coloration and foaming. <P>SOLUTION: The method for producing the purified fluorine-containing polymer includes oxidizing a fluorine-containing polymer obtained by suspension polymerization performed in the presence of a suspension stabilizer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、精製含フッ素ポリマーの製造方法に関する。 The present invention relates to a method for producing a purified fluorine-containing polymer.

含フッ素ポリマーの製造のために用いられている重合方法としては、乳化重合、懸濁重合、溶液重合、塊状重合などがある。懸濁重合では、重合槽の壁面や攪拌翼、撹拌軸、邪魔板等に生成ポリマーが付着するという問題があった。含フッ素ポリマーの懸濁重合においては、これまで、主に重合槽等にグラスライニング等の付着防止処理を施すことで、この問題を解決してきた。グラスライニングを施した重合槽を用いた場合、重合槽の大型化が困難なため1バッチあたりの収量も少なく、また、重合圧力にも制限があるため重合速度が小さいなど、生産効率を良くすることが困難であった。 Examples of the polymerization method used for producing the fluorine-containing polymer include emulsion polymerization, suspension polymerization, solution polymerization, and bulk polymerization. In the suspension polymerization, there is a problem that the produced polymer adheres to the wall surface of the polymerization tank, the stirring blade, the stirring shaft, the baffle plate, and the like. In suspension polymerization of a fluorine-containing polymer, this problem has been solved so far by mainly subjecting a polymerization tank or the like to adhesion prevention treatment such as glass lining. When a polymerization tank with glass lining is used, it is difficult to increase the size of the polymerization tank, so the yield per batch is small, and the polymerization pressure is limited, so the polymerization rate is low. It was difficult.

一方、懸濁重合における付着の問題に対する別の解決方法として、分散安定剤や懸濁安定剤(以下、両者をまとめて「懸濁安定剤」と記載)を使用することが提案されている(例えば、特許文献1、特許文献2参照。)。この場合、懸濁安定剤の添加により、生成ポリマーの付着を防止することはできるが、懸濁安定剤が生成ポリマーに残存するため、特に懸濁安定剤が炭化水素物である場合、溶融温度を高くせざるを得ない含フッ素ポリマーにとっては溶融成形時の着色や発泡を引き起こしてしまうという問題があった。 On the other hand, as another solution to the adhesion problem in suspension polymerization, it has been proposed to use a dispersion stabilizer or a suspension stabilizer (hereinafter, both are collectively referred to as “suspension stabilizer”) ( For example, see Patent Document 1 and Patent Document 2.) In this case, the addition of the suspension stabilizer can prevent adhesion of the produced polymer. However, since the suspension stabilizer remains in the produced polymer, the melting temperature particularly when the suspension stabilizer is a hydrocarbon. For the fluorine-containing polymer that has to be made high, there has been a problem of causing coloring and foaming during melt molding.

特開平7−18026号公報JP-A-7-18026 特開昭49−028675号公報JP 49-028675 A

本発明の目的は、上記現状に鑑み、大型の重合槽を用いた高圧重合が可能であって、着色、発泡等の外観異常のないペレット、または、成形品を得ることができる精製含フッ素ポリマーの製造方法を提供することにある。 An object of the present invention is to provide a purified fluorine-containing polymer capable of high-pressure polymerization using a large polymerization tank and capable of obtaining pellets or molded products having no appearance abnormality such as coloring and foaming in view of the above-described present situation. It is in providing the manufacturing method of.

本発明は、懸濁安定剤の存在下に行う懸濁重合によって得られる含フッ素ポリマーを酸化処理することを特徴とする精製含フッ素ポリマーの製造方法である。
以下に本発明について詳細に説明する。
The present invention is a method for producing a purified fluorine-containing polymer, characterized by oxidizing a fluorine-containing polymer obtained by suspension polymerization performed in the presence of a suspension stabilizer.
The present invention is described in detail below.

本発明は、懸濁安定剤の存在下に行う懸濁重合によって含フッ素ポリマーを製造するものであるので、重合槽壁面への生成ポリマーの付着を抑制することができ、グラスライニング等の付着防止処理を施した重合槽等を使用する必要が無い。従って、大型の重合槽を用いることができ、重合圧力を上げることができるため、生産性が大幅に向上し、コストを低減することができる。 Since the present invention produces a fluorine-containing polymer by suspension polymerization performed in the presence of a suspension stabilizer, it is possible to suppress adhesion of the produced polymer to the wall of the polymerization tank and to prevent adhesion of glass lining and the like. There is no need to use a treated polymerization tank or the like. Accordingly, a large polymerization tank can be used, and the polymerization pressure can be increased, so that productivity can be greatly improved and costs can be reduced.

本発明は、更に、懸濁重合によって得られる含フッ素ポリマーを酸化処理して精製含フッ素ポリマーを製造するものであるので、上記含フッ素ポリマー中に残存する炭化水素物を除去することができる。従って、懸濁重合時に懸濁安定剤を使用することにより生じる不利益を解消することができ、製造された精製含フッ素ポリマーを使用すれば、着色、発泡等の外観異常のないペレット、または、成形品を得ることができる。 In the present invention, since the purified fluorine-containing polymer is produced by oxidizing the fluorine-containing polymer obtained by suspension polymerization, hydrocarbons remaining in the fluorine-containing polymer can be removed. Therefore, the disadvantage caused by using a suspension stabilizer during suspension polymerization can be eliminated, and if the produced purified fluorine-containing polymer is used, pellets having no appearance abnormality such as coloring and foaming, or A molded product can be obtained.

上記炭化水素物としては、懸濁安定剤、後述する付着防止剤のみならず、未反応モノマー、低分子量の生成ポリマー等が挙げられる。 Examples of the hydrocarbons include not only suspension stabilizers and anti-adhesion agents described later, but also unreacted monomers, low molecular weight products, and the like.

上記懸濁重合の重合条件は、目的とする含フッ素ポリマーの種類、物性等に応じて適宜設定することができる。特に重合圧力は、従来の懸濁重合よりも高圧とすることができ、例えば、従来のグラスライニングを施した重合槽の実質的な上限圧力と言われている2.0MPaゲージ圧(以下MPaGと記載)を越える圧力の下でも何ら問題なく行うことができる。 The polymerization conditions for the suspension polymerization can be appropriately set according to the type and physical properties of the target fluorine-containing polymer. In particular, the polymerization pressure can be higher than that of conventional suspension polymerization. For example, a 2.0 MPa gauge pressure (hereinafter referred to as MPaG), which is said to be a substantial upper limit pressure of a conventional polymerization tank subjected to glass lining. It can be carried out without any problem even under pressure exceeding the description.

懸濁安定剤としては、大きく分けて、無機コロイド系のものと、炭化水素系重合物からなるものの2つがあるが、酸化によって効率よく系から除去でき、また、得られた含フッ素ポリマー内に金属を残留させない点で、炭化水素系重合物からなるものであることが好ましい。上記懸濁安定剤は、重合開始前に重合水に溶解させて使用することができる。上記炭化水素系重合物としては、ポリビニルアルコール、メチルセルロース、ヒドロキシプロピルセルロース、ポリビニルピロリドン、ポリアスパラギン酸等が挙げられ、なかでも、安全性、低コスト、実績の観点から、ポリビニルアルコール又はメチルセルロースが好ましい。 There are two types of suspension stabilizers: inorganic colloidal ones and hydrocarbon polymerized ones, which can be efficiently removed from the system by oxidation. It is preferable that it consists of a hydrocarbon type polymer by the point which does not leave a metal. The suspension stabilizer can be used by dissolving in polymerization water before the start of polymerization. Examples of the hydrocarbon polymer include polyvinyl alcohol, methyl cellulose, hydroxypropyl cellulose, polyvinyl pyrrolidone, polyaspartic acid, and the like. Among these, polyvinyl alcohol or methyl cellulose is preferable from the viewpoint of safety, low cost, and performance.

上記懸濁重合は、懸濁安定剤と共に付着防止剤の存在下に行うものであっても良い。上記付着防止剤は、生成ポリマーの重合槽壁面等への付着を防止するものであり、重合槽壁面、攪拌機等に塗布して使用することができる。上記付着防止剤としては、ナフトール類とアルデヒド化合物との縮合反応生成物及び無機コロイドの混合物、ヒドロキシメタンスルフィン酸ナトリウム塩とナフトール化合物とヒドロキシナフタリン系化合物との縮合生成物及び水溶性メトキシル基類との反応生成物、該反応性生物及びポリビニルアルコールの混合物、アルデヒド置換セルロースエーテルの混合物等、汎用樹脂の懸濁重合で用いられているもの、あるいは、市販されているものを問題なく用いる事ができる。 The suspension polymerization may be performed in the presence of an anti-adhesion agent together with a suspension stabilizer. The adhesion preventing agent prevents the produced polymer from adhering to the polymerization tank wall surface or the like, and can be used by being applied to the polymerization tank wall surface, a stirrer or the like. Examples of the anti-adhesion agent include condensation reaction products of naphthols and aldehyde compounds and mixtures of inorganic colloids, condensation products of hydroxymethanesulfinic acid sodium salt, naphthol compounds and hydroxynaphthalene compounds, and water-soluble methoxyl groups. Reaction products, mixtures of the reactive organism and polyvinyl alcohol, mixtures of aldehyde-substituted cellulose ethers, etc., used in suspension polymerization of general-purpose resins, or commercially available can be used without any problem. .

懸濁重合に使用する重合開始剤としては、一般的にラジカル重合に用いられる油溶性の各種有機過酸化物、あるいは、水溶性の過硫酸塩などを適宜用いることができるが、特に、パーオキシカーボネート、パーオキシエステルといった有機過酸化物、すなわち、ジ(クロロフルオロアシル)パーオキサイド、ジ(フルオロアシル)パーオキサイド、ジ(ω−ハイドロドデカフルオロヘプタノイル)パーオキサイド、ジ−n−プロピルパーオキシジカーボネート、ジ−i−プロピルパーオキシジカーボネート、t−ブチルパーオキシイソプロピルカーボネート、ビス(4−t−ブチルシクロへキシル)パーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、ジ−i−ブチリルパーオキサイド等を好適に用いることができる。なかでも、分解速度(半減期)、頻度因子、コストなどの点から炭化水素系の有機過酸化物である、ジ−i−プロピルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネートが好ましい。 As the polymerization initiator used for suspension polymerization, various oil-soluble organic peroxides generally used for radical polymerization or water-soluble persulfates can be appropriately used. Organic peroxides such as carbonates and peroxyesters, that is, di (chlorofluoroacyl) peroxide, di (fluoroacyl) peroxide, di (ω-hydrododecafluoroheptanoyl) peroxide, di-n-propylperoxy Dicarbonate, di-i-propyl peroxydicarbonate, t-butyl peroxyisopropyl carbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, di-i- Butylyl peroxide etc. can be used suitably That. Of these, hydrocarbon organic peroxides such as di-i-propyl peroxydicarbonate and di-n-propyl peroxydicarbonate are preferable from the viewpoint of decomposition rate (half-life), frequency factor, cost, and the like. .

上記含フッ素ポリマーとしては、テトラフルオロエチレン、ヘキサフルオロプロピレン、ビニリデンフルオライド、クロロトリフルオロエチレン、エチレン、パーフルオロアルキルビニルエーテル、パーフルオロ(1,1,5−トリハイドロ−1−ペンテン)、及び、パーフルオロブチルエチレンよりなる群から選択される少なくとも1種以上のモノマーからなるもの(ただし、エチレンのみからなるものは、含フッ素ポリマーではないので除かれる)が好ましく、溶融加工可能な含フッ素ポリマーがより好ましく、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体〔FEP〕、テトラフルオロエチレン/ヘキサフルオロプロピレン/パーフルオロアルキルビニルエーテル共重合体〔FEP〕、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体〔PFA〕、ポリ(クロロトリフルオロエチレン)〔PCTFE〕、テトラフルオロエチレン/クロロトリフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体〔CPT〕、テトラフルオロエチレン/エチレン/パーフルオロ(1,1,5−トリハイドロ−1−ペンテン)共重合体〔ETFE〕、テトラフルオロエチレン/エチレン/パーフルオロブチルエチレン重合体〔ETFE〕、テトラフルオロエチレン/エチレン/ヘキサフルオロプロピレン/パーフルオロ(1,1,5−トリハイドロ−1−ペンテン)共重合体〔EFEP〕、テトラフルオロエチレン/エチレン/ヘキサフルオロプロピレン/パーフルオロブチルエチレン共重合体〔EFEP〕、エチレン/クロロトリフルオロエチレン共重合体〔ECTFE〕、ポリ(ビニリデンフルオライド)〔PVdF〕、テトラフルオロエチレン/ビニリデンフルオライド共重合体〔VT〕、テトラフルオロエチレン/ヘキサフルオロプロピレン/ビニリデンフルオライド共重合体〔THV〕等が更に好ましい。これらのなかでも、C−H結合を含まず、酸化処理に対する耐性が高いパーハロポリマー、FEP、PFA、PCTFE、CPTが特に好ましい。 Examples of the fluoropolymer include tetrafluoroethylene, hexafluoropropylene, vinylidene fluoride, chlorotrifluoroethylene, ethylene, perfluoroalkyl vinyl ether, perfluoro (1,1,5-trihydro-1-pentene), and Those composed of at least one monomer selected from the group consisting of perfluorobutylethylene are preferable (however, those composed only of ethylene are excluded because they are not fluoropolymers). More preferably, tetrafluoroethylene / hexafluoropropylene copolymer [FEP], tetrafluoroethylene / hexafluoropropylene / perfluoroalkyl vinyl ether copolymer [FEP], tetrafluoroethylene / perf Oroalkyl vinyl ether copolymer [PFA], poly (chlorotrifluoroethylene) [PCTFE], tetrafluoroethylene / chlorotrifluoroethylene / perfluoroalkyl vinyl ether copolymer [CPT], tetrafluoroethylene / ethylene / perfluoro ( 1,1,5-trihydro-1-pentene) copolymer [ETFE], tetrafluoroethylene / ethylene / perfluorobutylethylene polymer [ETFE], tetrafluoroethylene / ethylene / hexafluoropropylene / perfluoro (1 , 1,5-trihydro-1-pentene) copolymer [EFEP], tetrafluoroethylene / ethylene / hexafluoropropylene / perfluorobutylethylene copolymer [EFEP], ethylene / chlorotrifluoro Tylene copolymer [ECTFE], poly (vinylidene fluoride) [PVdF], tetrafluoroethylene / vinylidene fluoride copolymer [VT], tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer [THV], etc. Is more preferable. Among these, perhalopolymers, FEP, PFA, PCTFE, and CPT that do not contain a C—H bond and have high resistance to oxidation treatment are particularly preferable.

上記酸化処理は、F、SF、IF、NF、PF、ClF、及び、ClFよりなる群から選択される少なくとも1種のフッ素系ガスを用いたフッ素化処理であってもよい。なかでも、生産の容易さなどの面からFが最も好ましい。上記フッ素化処理により、含フッ素ポリマー中の炭化水素物を除去することができ、溶融成形時の着色、発泡等の外観異常のない含フッ素ポリマーを得ることができる。更に、同時に末端の安定化もできるため、FEPの誘電正接の値を低減することができ、PFAの水へのフッ素イオンの溶出量を低減することができる。 The oxidation process, F 2, SF 4, IF 5, NF 3, PF 5, ClF, and even fluorination treatment using at least one fluorine-containing gas is selected from the group consisting of ClF 3 Good. Of these, F 2 is most preferable from the standpoint of ease of production. By the fluorination treatment, hydrocarbons in the fluorine-containing polymer can be removed, and a fluorine-containing polymer having no appearance abnormality such as coloring and foaming during melt molding can be obtained. Furthermore, since the terminal can be stabilized at the same time, the value of the dielectric loss tangent of FEP can be reduced, and the amount of fluorine ions eluted into the water of PFA can be reduced.

上記フッ素化処理は、懸濁重合により得られた含フッ素ポリマーをパウダー状、フレーク状、ペレット状にした後、上記フッ素系ガスと接触させることにより行うことができる。取扱い易さの点では、パウダー状よりもフレーク状、更には、ペレット状の方が好ましい。一方、上記フッ素化処理は、炭化水素物からなる不純物の除去効率が向上するという点で、懸濁重合により得られた含フッ素ポリマーをパウダー状のまま、あるいは、フレーク状でフッ素化処理することが好ましいが、その一方で、フッ素化処理されたパウダーもしくはフレークを溶融押出しによりペレット化すると、その過程で主鎖の断裂により不安定末端が発生してしまい、ペレット化後の物性や色調が若干劣化するため好ましくない。そのため、ペレット化する前にパウダー状又はフレーク状の含フッ素ポリマーをフッ素化処理しておき、フッ素化処理後の含フッ素ポリマーをペレット化した後、再度フッ素化処理することが好ましい。ただし、性能と生産効率およびコストとのバランスの点から、重合により得られたパウダー状、あるいは、フレーク状の含フッ素ポリマーを溶融押出しによりペレット化した後、フッ素化処理する事が実用的で好ましい。なお、含フッ素ポリマーは、フッ素化処理前に充分に乾燥しておくことが好ましい。 The fluorination treatment can be carried out by bringing the fluorine-containing polymer obtained by suspension polymerization into powder, flakes, or pellets, and then contacting with the fluorine-based gas. From the viewpoint of ease of handling, flakes and pellets are preferred over powders. On the other hand, in the above fluorination treatment, the fluorine-containing polymer obtained by suspension polymerization is fluorinated in the form of powder or flakes in that the removal efficiency of impurities made of hydrocarbons is improved. However, on the other hand, when powder or flakes subjected to fluorination treatment are pelletized by melt extrusion, unstable ends are generated due to the cleavage of the main chain in the process, and the physical properties and color tone after pelletization are slightly Since it deteriorates, it is not preferable. Therefore, it is preferable to fluorinate the powdered or flaked fluoropolymer before pelletization, pelletize the fluoropolymer after fluorination, and then fluorinate again. However, from the viewpoint of the balance between performance, production efficiency, and cost, it is practically preferable that the powder-like or flake-like fluoropolymer obtained by polymerization is pelletized by melt extrusion and then fluorinated. . In addition, it is preferable that the fluoropolymer is sufficiently dried before the fluorination treatment.

上記フッ素ガスは、Fと不活性ガスとの混合ガスであってもよい。この場合、フッ素は全体の1〜50容積%であることが好ましく、取扱いの際の安全性と反応性のバランスから、10〜25容積%がより好ましい。上記不活性ガスとしては特に限定されず、例えば、窒素、アルゴン、ヘリウム等が挙げられる。 The fluorine gas may be a mixed gas of F 2 and an inert gas. In this case, fluorine is preferably 1 to 50% by volume of the whole, and more preferably 10 to 25% by volume from the balance of safety and reactivity during handling. The inert gas is not particularly limited, and examples thereof include nitrogen, argon, helium and the like.

上記フッ素化処理は、連続式、バッチ式の何れもの操作も可能である。上記フッ素化処理は、含フッ素ポリマーの融点未満の温度で実施することが好ましく、通常、100〜250℃で行い、熱効率や設備の耐熱性の点から、130〜200℃の範囲で行う事がより好ましい。上記フッ素化処理は、通常、10〜24時間行えばよく、フッ素化処理時の圧力は、設備の耐食性なども考慮し、通常、大気圧程度であるが、圧力を上げることで、反応時間を短縮する事が可能となる。 The fluorination treatment can be performed continuously or batchwise. The fluorination treatment is preferably performed at a temperature lower than the melting point of the fluorine-containing polymer, and is usually performed at 100 to 250 ° C, and in the range of 130 to 200 ° C from the viewpoint of thermal efficiency and heat resistance of equipment. More preferred. The fluorination treatment is usually performed for 10 to 24 hours, and the pressure during the fluorination treatment is usually about atmospheric pressure in consideration of the corrosion resistance of the equipment, etc., but the reaction time can be increased by increasing the pressure. It can be shortened.

フッ素ガスの供給量は、フッ素化処理の温度、フッ素ガスとの接触時間、懸濁安定剤、付着防止剤の種類と量等によって異なるが、除去すべき懸濁安定剤、付着防止剤等と少なくとも等モル量であることが好ましく、拡散ロスや反応に寄与せず排気される量を考えると過剰量であることがより好ましく、例えば5倍モル量以上であっても良い。 The supply amount of the fluorine gas varies depending on the temperature of the fluorination treatment, the contact time with the fluorine gas, the type and amount of the suspension stabilizer, the adhesion preventing agent, etc., but the suspension stabilizer to be removed, the adhesion preventing agent, etc. The amount is preferably at least an equimolar amount, more preferably an excess amount considering the amount of exhaust without contributing to diffusion loss or reaction, and may be, for example, 5 times the molar amount or more.

上記酸化処理は、オゾンを用いたオゾン酸化処理であってもよい。上記オゾン酸化処理により、含フッ素ポリマー中の炭化水素物を除去することができ、溶融成形時に着色、発泡等の外観異常のない含フッ素ポリマーを得ることができる。 The oxidation treatment may be an ozone oxidation treatment using ozone. By the ozone oxidation treatment, hydrocarbons in the fluorine-containing polymer can be removed, and a fluorine-containing polymer having no appearance abnormality such as coloring and foaming at the time of melt molding can be obtained.

上記オゾン酸化処理は、懸濁重合により得られた含フッ素ポリマーをパウダー状、フレーク状、ペレット状にした後、オゾン含有ガスと接触させることにより行うことができる。しかし、反応速度を上げるために含フッ素ポリマー中にオゾン分子を充分拡散させることが好ましいという点から、パウダー状、フレーク状が特に好ましい。 The ozone oxidation treatment can be carried out by bringing the fluorine-containing polymer obtained by suspension polymerization into powder, flakes, or pellets, and then contacting with an ozone-containing gas. However, in order to increase the reaction rate, it is preferable to sufficiently diffuse ozone molecules in the fluorine-containing polymer, and thus powder and flake are particularly preferable.

オゾン含有ガスのオゾン以外の成分としては、空気、窒素、アルゴン、ヘリウム等の不活性ガスが挙げられる。オゾン含有ガスのオゾン濃度としては、安全性の観点から、30質量%以下であることが好ましい。 Examples of components other than ozone in the ozone-containing gas include inert gases such as air, nitrogen, argon, and helium. The ozone concentration of the ozone-containing gas is preferably 30% by mass or less from the viewpoint of safety.

上記オゾン酸化処理は、連続式、バッチ式の何れもの操作も可能である。上記オゾン酸化処理は、含フッ素ポリマーの融点未満の温度で実施することが好ましく、通常、30〜300℃、より好ましくは、100〜250℃で行う。上記オゾン酸化処理は、通常、4〜20時間、好ましくは8〜16時間行えばよく、フッ素化処理時の圧力は、通常、大気圧である。 The ozone oxidation treatment can be performed continuously or batchwise. The ozone oxidation treatment is preferably carried out at a temperature lower than the melting point of the fluorine-containing polymer, usually 30 to 300 ° C, more preferably 100 to 250 ° C. The ozone oxidation treatment is usually performed for 4 to 20 hours, preferably 8 to 16 hours, and the pressure during the fluorination treatment is usually atmospheric pressure.

オゾン含有ガスの供給量は、オゾン酸化処理の温度、オゾン含有ガスとの接触時間、懸濁安定剤、付着防止剤の種類と量等によって異なるが、除去すべき懸濁安定剤、付着防止剤等と少なくとも同モル量であることが好ましく、拡散ロスや反応に寄与せず排気される量を考えると過剰量であることがより好ましく、例えば5倍モル量以上であっても良い。 The supply amount of ozone-containing gas varies depending on the temperature of ozone oxidation treatment, the contact time with the ozone-containing gas, the type and amount of suspension stabilizer, anti-adhesion agent, etc., but the suspension stabilizer and anti-adhesion agent to be removed It is preferable that the amount is at least the same molar amount as the above, and an excessive amount is more preferable in consideration of the amount exhausted without contributing to diffusion loss or reaction, and may be, for example, 5 times the molar amount or more.

上記酸化処理は、酸素を含むガスを二軸押出機の混練ブロックに注入しながら押し出す酸化押出により行われるものであってもよい。上記酸化押出により、含フッ素ポリマー中の炭化水素物を除去することができ、溶融成形時の着色、発泡等の外観異常のない含フッ素ポリマーを得ることができる。 The oxidation treatment may be performed by oxidation extrusion that extrudes while oxygen-containing gas is injected into the kneading block of the twin-screw extruder. By the oxidative extrusion, hydrocarbons in the fluorine-containing polymer can be removed, and a fluorine-containing polymer having no appearance abnormality such as coloring and foaming during melt molding can be obtained.

上記酸化押出は、二軸押出機内の混練ブロックを設けた領域(酸化処理領域)において、酸素の存在下に含フッ素ポリマーを溶融混練することにより、含フッ素ポリマーを酸化させるものである。 In the oxidation extrusion, the fluorine-containing polymer is oxidized by melting and kneading the fluorine-containing polymer in the presence of oxygen in a region (oxidation region) provided with a kneading block in the twin-screw extruder.

酸化処理領域内の圧力は減圧状態であってもよいし、大気圧又は加圧状態であってもよい。酸化処理領域内を加圧状態とする場合は、その絶対圧力を0.2MPa以上、好ましくは0.3MPa以上とすることが好ましい。加圧することにより、供給する酸素の侵入が促進され、迅速な安定化処理が可能になる。圧力は二軸押出機に取り付けた圧力計により測定できる。上限はメルトシール部の状態や押出機の型式等によって異なるが、10MPa以下、好ましくは5MPa以下である。加圧は、例えば、酸素を含むガスを圧入することにより、あるいは酸素を含むガスを加熱してその自圧下に供給することにより行うことができる。 The pressure in the oxidation treatment region may be a reduced pressure state, an atmospheric pressure or a pressurized state. When the oxidation treatment region is in a pressurized state, the absolute pressure is preferably 0.2 MPa or more, and more preferably 0.3 MPa or more. By pressurizing, the penetration of supplied oxygen is promoted, and a rapid stabilization process is possible. The pressure can be measured by a pressure gauge attached to the twin screw extruder. The upper limit varies depending on the state of the melt seal part and the type of the extruder, but is 10 MPa or less, preferably 5 MPa or less. The pressurization can be performed, for example, by press-fitting a gas containing oxygen or by heating and supplying the gas containing oxygen under its own pressure.

酸化処理領域内における滞留時間は、好ましくは10分間以下、より好ましくは8分間以下である。滞留時間が長すぎると剪断により発生する熱を除くことが難しくなり、重合体を劣化させることがある。酸化処理領域の温度は、通常200〜450℃、好ましくは300〜400℃である。 The residence time in the oxidation treatment region is preferably 10 minutes or less, more preferably 8 minutes or less. If the residence time is too long, it is difficult to remove heat generated by shearing, and the polymer may be deteriorated. The temperature of the oxidation treatment region is usually 200 to 450 ° C, preferably 300 to 400 ° C.

酸素の存在量は、酸化処理領域の温度、酸化処理領域での滞留時間、押出機の型式、懸濁安定剤、付着防止剤の種類と量等によって異なるが、除去すべき懸濁安定剤、付着防止剤等と少なくとも同モル量、拡散ロスや反応に寄与せず排気される量を考えると過剰量、例えば5倍モル量以上であっても良い。 The amount of oxygen present varies depending on the temperature of the oxidation treatment region, the residence time in the oxidation treatment region, the type of extruder, the suspension stabilizer, the type and amount of the anti-adhesion agent, etc., but the suspension stabilizer to be removed, Considering at least the same molar amount as the anti-adhesive agent, etc., and the amount exhausted without contributing to diffusion loss or reaction, it may be an excessive amount, for example, a 5-fold molar amount or more.

酸素を含むガスは、酸素ガスを窒素ガスやアルゴンガスなどの不活性ガスで適切な濃度(例えば10〜30容量%)に希釈して供給してもよいが、空気をそのまま用いることが経済面から好ましい。 The oxygen-containing gas may be supplied by diluting the oxygen gas to an appropriate concentration (for example, 10 to 30% by volume) with an inert gas such as nitrogen gas or argon gas, but it is economical to use air as it is. To preferred.

上記酸化処理領域は、例えば、二軸押出機のニーディングディスクで構成された溶融ゾーン直後のスクリュー部分に設ければよい。そのほか溶融ゾーンを長く設定し、その後流部分を酸化処理領域とするなどという変形も可能である。 What is necessary is just to provide the said oxidation process area | region in the screw part immediately after the melting zone comprised with the kneading disc of the twin-screw extruder, for example. In addition, it is possible to make a modification such that the melting zone is set longer and the downstream portion is used as an oxidation treatment region.

上記酸化押出で生じたガス状物質、例えば、フッ化水素、炭酸ガス、分解により発生する少量のモノマー等を、酸化処理済みの含フッ素ポリマー内部から取り出し二軸押出機の外部に排出するため、絶対圧力が0.1MPa以下の状態に保持された脱気領域を酸化処理領域に引き続き二軸押出機内に設けることが好ましい。この脱気領域での絶対圧力は、含フッ素ポリマーの溶融状態や二軸押出機のスクリュー回転数等の運転条件により異なるが、排気ノズルに重合体が侵入しない程度の減圧が好ましい。 In order to take out gaseous substances generated by the above-mentioned oxidation extrusion, for example, hydrogen fluoride, carbon dioxide gas, a small amount of monomers generated by decomposition, etc. from the inside of the oxidized fluorine-containing polymer and discharge them to the outside of the twin-screw extruder, It is preferable to provide a deaeration region in which the absolute pressure is maintained at 0.1 MPa or less in the twin-screw extruder following the oxidation treatment region. The absolute pressure in this degassing region varies depending on the operating conditions such as the melting state of the fluorine-containing polymer and the screw rotation speed of the twin screw extruder, but is preferably reduced so that the polymer does not enter the exhaust nozzle.

上述した3つの方法による酸化処理は、それぞれ組み合わせて実施してもよい。例えば、酸化押出によってペレット化した含フッ素ポリマーをフッ素化することにより、含フッ素ポリマー中の炭化水素物の除去効率を向上させ、さらに、末端基安定の効果も狙うことができる。 The oxidation treatments by the three methods described above may be performed in combination. For example, by fluorinating a fluorine-containing polymer pelletized by oxidative extrusion, the removal efficiency of hydrocarbons in the fluorine-containing polymer can be improved, and the effect of stabilizing the end group can also be aimed at.

上記懸濁重合は、重合場がステンレススチールと接するような重合容器で行われるものであることが好ましい。本発明は、懸濁安定剤の存在下に懸濁重合によって含フッ素ポリマーを製造するものであるので、生成ポリマーが直接ステンレススチールと接触することとなっても、重合槽壁面への生成ポリマーの付着を抑制することができる。従って、グラスライニング等の付着防止処理を施した重合槽等を使用する必要がなく、重合場がステンレススチールと接するような重合容器を使用することができる。重合場がステンレススチールと接するような重合容器の使用より、重合容器自体の製造コストを低減でき、重合設備の大型化や高圧下での重合反応を実現することができる。 The suspension polymerization is preferably performed in a polymerization vessel in which the polymerization field is in contact with stainless steel. In the present invention, the fluoropolymer is produced by suspension polymerization in the presence of a suspension stabilizer. Therefore, even if the produced polymer comes into direct contact with stainless steel, Adhesion can be suppressed. Therefore, it is not necessary to use a polymerization tank or the like that has been subjected to adhesion prevention treatment such as glass lining, and a polymerization vessel in which the polymerization field is in contact with stainless steel can be used. By using a polymerization vessel in which the polymerization field is in contact with stainless steel, the production cost of the polymerization vessel itself can be reduced, and the polymerization equipment can be enlarged and the polymerization reaction under high pressure can be realized.

本発明の製造方法により製造される精製含フッ素ポリマーは、懸濁安定剤の存在下に懸濁重合して得られたものであるにもかかわらず、懸濁安定剤の残存量がほとんどない。従って、上記精製含フッ素ポリマーを溶融成形して得られる成形品に発泡や着色等の外観不良がなく、各種含フッ素ポリマー成形品用材料として極めて好適である。 Although the purified fluoropolymer produced by the production method of the present invention is obtained by suspension polymerization in the presence of a suspension stabilizer, there is almost no residual amount of suspension stabilizer. Therefore, the molded product obtained by melt-molding the purified fluorine-containing polymer has no appearance defects such as foaming and coloring, and is extremely suitable as a material for various fluorine-containing polymer molded products.

本発明の精製含フッ素ポリマーの製造方法は、グラスライニング等の付着防止処理を施した重合槽等を使用する必要がないため、大型の重合槽を用いることができ、高圧での重合が可能であるため、生産性が大幅に向上し、生産コストを低減することができる。本発明の精製含フッ素ポリマーの製造方法は、上記含フッ素ポリマー中に残存する炭化水素物を除去するものであるので、溶融成形時に着色、発泡等の外観異常のない精製含フッ素ポリマーを製造することができる。 The method for producing a purified fluoropolymer of the present invention does not require the use of a polymerization tank or the like that has been subjected to adhesion prevention treatment such as glass lining, so a large polymerization tank can be used and polymerization at high pressure is possible. Therefore, productivity can be significantly improved and production cost can be reduced. Since the method for producing a purified fluoropolymer of the present invention is to remove the hydrocarbons remaining in the fluoropolymer, a purified fluoropolymer free from abnormal appearance such as coloring and foaming during melt molding is produced. be able to.

以下に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited only to these examples.

合成例、実施例及び比較例で用いた評価方法、評価基準は以下の通りである。 The evaluation methods and evaluation criteria used in the synthesis examples, examples and comparative examples are as follows.

(ペレットの着色の程度)
安定剤、付着防止剤を用いない従来の重合方法による通常生産品のペレットの色を基準とし、ペレットの白色度を目視により以下の段階に従って評価した。
A:差がない
B:わずかにくすんで見える
C:わずかに黄色に見える
D:濃い茶褐色となっている
(Degree of coloring of pellet)
Based on the color of pellets of a normal product produced by a conventional polymerization method using no stabilizer or anti-adhesive agent, the whiteness of the pellets was visually evaluated according to the following steps.
A: No difference B: Slightly dull C: Slightly yellow D: Dark brown

(発泡の程度)
ペレットのメルトフローレート測定で得られるストランドにおいて、下端より10cmから20cmまでの10cm間の気泡の数により、以下の段階に従って評価した。
A:0〜3
B:4〜7
C:8以上
なお、メルトフローレートの測定は、内径0.376インチのシリンダーを備えたメルトインデクサーを372℃に保ち、サンプル7gを投入し、5分間の予熱後、49Nの荷重で直径0.0825インチ、長さ0.315インチのオリフィスから押出すことで行なった。
(Degree of foaming)
In the strand obtained by measuring the melt flow rate of the pellet, the number of bubbles between 10 cm and 10 cm from the lower end was evaluated according to the following steps.
A: 0-3
B: 4-7
C: 8 or more In addition, the melt flow rate was measured by maintaining a melt indexer equipped with a cylinder having an inner diameter of 0.376 inch at 372 ° C., adding 7 g of sample, and after preheating for 5 minutes, the diameter was 0 with a load of 49 N. This was done by extruding through an orifice of 0.0825 inch and length of 0.315 inch.

(誘電正接)
FEPの場合、用途に対応した重要な要求特性の一つが誘電正接の値に代表される電気特性である。この誘電正接の値を以下の方法によって測定した。
(Dielectric loss tangent)
In the case of FEP, one of the important required characteristics corresponding to the application is electrical characteristics represented by the value of dielectric loss tangent. The value of this dielectric loss tangent was measured by the following method.

ペレットより溶融成形した直径2mmの円柱を、関東電子応用開発社製6GHz用空洞共振器にセットし、アジレントテクノロジー社製ネットワークアナライザで測定した。測定結果は、ネットワークアナライザに接続されたPC上の関東電子応用開発社製解析ソフト「CPMA」で解析し、6GHzでの誘電正接(tanδ)を求めた。 A cylinder with a diameter of 2 mm melt-formed from the pellet was set in a 6 GHz cavity resonator manufactured by Kanto Electronics Application Development Co., Ltd. and measured with a network analyzer manufactured by Agilent Technologies. The measurement results were analyzed with analysis software “CPMA” manufactured by Kanto Electronics Application Development Co., Ltd. on a PC connected to a network analyzer, and a dielectric loss tangent (tan δ) at 6 GHz was obtained.

安定剤、付着防止剤を用いない従来の重合方法により通常生産されているFEPの誘電正接の値は、フッ素化前で8〜10×10−4程度、完全フッ素化(全ての不安定末端をフッ素化によって安定化)後で4×10−4程度となる。これらの値と比較して、以下の段階に従って評価した。
A:通常生産品の完全フッ素化品並み
B:通常生産品の未フッ素化品並み
C:通常生産品の未フッ素化品よりはるかに悪い
The value of the dielectric loss tangent of FEP that is usually produced by a conventional polymerization method that does not use a stabilizer or anti-adhesive agent is about 8 to 10 × 10 −4 before fluorination. a stabilizing) later 4 × 10 about -4 fluorination. Compared with these values, the evaluation was made according to the following steps.
A: Fully fluorinated product of normal product B: Normal fluorinated product of normal product C: Much worse than non-fluorinated product of normal product

(フッ素イオン溶出量)
PFAの場合、重要な要求特性の一つが水へのフッ素イオンの溶出の少なさである。これを、以下の方法によって求めた。
(Fluorine ion elution amount)
In the case of PFA, one of the important required characteristics is low elution of fluorine ions into water. This was determined by the following method.

ペレット25gを純水50gに浸漬し、加圧式滅菌機で120℃、1時間抽出処理を行った。その後、純水中のフッ素イオン量をイオンクロマトグラフィー(YOKOGAWA製1C7000式液体クロマトグラム)にて定量した。 25 g of pellets were immersed in 50 g of pure water, and extracted at 120 ° C. for 1 hour with a pressure sterilizer. Thereafter, the amount of fluorine ions in pure water was quantified by ion chromatography (1C7000 type liquid chromatogram manufactured by YOKOGAWA).

安定剤、付着防止剤を用いない従来の重合方法により通常生産されているPFAでは、フッ素化前で10〜20ppm、完全フッ素化後で1ppm以下となる。これらの値と比較して、以下の段階に従って評価した。
A:通常生産品の完全フッ素化品並み
B:通常生産品の未フッ素化品並み
C:通常生産品の未フッ素化品よりはるかに悪い
In PFA that is usually produced by a conventional polymerization method that does not use a stabilizer or an anti-adhesive agent, the amount is 10 to 20 ppm before fluorination and 1 ppm or less after complete fluorination. Compared with these values, the evaluation was made according to the following steps.
A: Fully fluorinated product of normal product B: Normal fluorinated product of normal product C: Much worse than non-fluorinated product of normal product

合成例1
内容量1336リットルのグラスライニングしていないジャケット付き撹拌式SUS製オートクレーブに、脱ミネラル、脱酸素した後、メチルセルロース(信越化学工業社製メトローズ(登録商標)SM−100)480ppmを溶解させた純水360リットルを仕込んだ。攪拌を開始し、内部空間を純窒素で充分置換した後、槽内を真空にし、ヘキサフルオロプロピレン(以下HFP)360kgを仕込んだ。引き続き、パーフルオロ(プロピルビニルエーテル)(以下PPVE)3.5kgを圧入し、槽内温度を反応温度の40℃にし、テトラフルオロエチレン(以下TFE)を1.27MPaGまで圧入した。ここに、開始剤としてジ−i−プロピルパーオキシジカーボネート(以下IPP)380gと分子量調節剤としてメタノール900gを圧入し重合を開始した。反応中、系内の圧力を一定に保持するようTFEとHFPの混合モノマー(混合比率 TFE:HFP=86:14モル)を逐次追加し、また同時に、混合モノマーの追加量に応じてPPVEを360gづつ10回に分けて追加圧入した。さらに、IPPの半減期が経過する毎に初期仕込量の半分の量を追加していった。21時間後、TFE、HFP、PPVEを計390kg仕込んだところで反応を終了し、モノマーをパージした。得られたポリマーを分離、洗浄、乾燥することにより白色粉末360kgを得た。
Synthesis example 1
Pure water in which 480 ppm of methylcellulose (Metros (registered trademark) SM-100, manufactured by Shin-Etsu Chemical Co., Ltd.) is dissolved in an agitation SUS autoclave with a jacket of 1336 liters that is not glass-lined and demineralized and deoxygenated. Charged 360 liters. Stirring was started, and the interior space was sufficiently replaced with pure nitrogen. Then, the inside of the tank was evacuated and charged with 360 kg of hexafluoropropylene (hereinafter referred to as HFP). Subsequently, 3.5 kg of perfluoro (propyl vinyl ether) (hereinafter referred to as PPVE) was injected, the temperature in the tank was adjusted to 40 ° C., and tetrafluoroethylene (hereinafter referred to as TFE) was injected to 1.27 MPaG. Here, 380 g of di-i-propyl peroxydicarbonate (hereinafter IPP) as an initiator and 900 g of methanol as a molecular weight regulator were injected to initiate polymerization. During the reaction, a mixed monomer of TFE and HFP (mixing ratio TFE: HFP = 86: 14 mol) was added sequentially so as to keep the pressure in the system constant, and at the same time, 360 g of PPVE was added according to the added amount of the mixed monomer. Additional press-fitting was divided into 10 times. Furthermore, every time the half-life of IPP elapses, half of the initial charge was added. After 21 hours, when a total of 390 kg of TFE, HFP, and PPVE were charged, the reaction was terminated and the monomer was purged. The obtained polymer was separated, washed and dried to obtain 360 kg of white powder.

合成例2
合成例1のIPPをジ−n−プロピルパーオキシジカーボネート(以下NPP)に変え、初期仕込量を190gとした他は合成例1と同様に重合反応を行い、反応時間30時間で360kgの白色粉末を得た。
Synthesis example 2
The polymerization reaction was conducted in the same manner as in Synthesis Example 1 except that the IPP of Synthesis Example 1 was changed to di-n-propyl peroxydicarbonate (hereinafter NPP) and the initial charge was 190 g. A powder was obtained.

合成例3
合成例1のIPPをジ(ω−ハイドロドデカフルオロヘプタノイル)パーオキサイド(以下DHP)に変え、初期仕込量を400gとし、槽内温度を30℃、槽内圧力を0.95MPaGとした他は合成例1と同様に重合反応を行い、反応時間21時間で360kgの白色粉末を得た。
Synthesis example 3
The IPP of Synthesis Example 1 was changed to di (ω-hydrododecafluoroheptanoyl) peroxide (hereinafter DHP), the initial charge was 400 g, the tank temperature was 30 ° C., and the tank pressure was 0.95 MPaG. A polymerization reaction was performed in the same manner as in Synthesis Example 1 to obtain 360 kg of white powder in a reaction time of 21 hours.

合成例4
合成例1のメチルセルロース480ppm水溶液をポリビニルアルコール(日本合成化学社製ゴーセノール(登録商標)KH−20)(以下PVA)4wt%に変えた他は合成例1と同様に重合反応を行い、反応時間21時間で360kgの白色粉末を得た。
Synthesis example 4
A polymerization reaction was carried out in the same manner as in Synthesis Example 1 except that the 480 ppm aqueous solution of methyl cellulose of Synthesis Example 1 was changed to 4 wt% of polyvinyl alcohol (Nippon Synthetic Chemical Co., Ltd. Gohsenol (registered trademark) KH-20) (hereinafter PVA). 360 kg of white powder was obtained over time.

合成例5
合成例1のメチルセルロースを用いない他は合成例1と同様に重合反応を行った。ただし、この場合、重合途中で重合槽内壁の気液界面、撹拌翼へのポリマーの付着がひどくなって続行が困難となったため、10時間で重合を中断し、モノマーをパージした。槽内に付着していないポリマーを分離、洗浄、乾燥することにより白色ポリマー80kgを得た。
Synthesis example 5
The polymerization reaction was carried out in the same manner as in Synthesis Example 1 except that methyl cellulose of Synthesis Example 1 was not used. However, in this case, since the adhesion of the polymer to the gas-liquid interface of the inner wall of the polymerization tank and the stirring blade became severe during the polymerization and it was difficult to continue, the polymerization was interrupted in 10 hours and the monomer was purged. The polymer not adhered in the tank was separated, washed and dried to obtain 80 kg of white polymer.

合成例6
内容量3.0リットルのグラスライニングしていないジャケット付き撹拌式SUS製オートクレーブに、脱ミネラル、脱酸素した後、PVA4wt%を溶解させた純水0.89リットルを仕込んだ。攪拌を開始し、内部空間を純窒素で充分置換した後、槽内を真空にし、パーフルオロシクロブタン700gを仕込んだ。引き続き、PPVE22gを圧入し、槽内温度を反応温度の35℃にし、TFEを0.57MPaGまで圧入した。ここに、開始剤としてNPP0.3gと分子量調節のためのメタノール12gを圧入し重合を開始した。反応中、系内の圧力を一定に保持するようTFEを逐次追加し、また同時に、TFEの追加量に応じてPPVEを1.8gづつ16回に分けて、追加圧入した。さらに、TFE315gを追加したところで、メタノール42gを追加圧入した。15時間後、TFEとPPVEを計654g仕込んだところで反応を終了し、モノマーをパージした。得られたポリマーを分離、洗浄、乾燥することにより白色粉末650gを得た。
Synthesis Example 6
After demineralization and deoxygenation, 0.89 liters of pure water in which 4% by weight of PVA was dissolved was charged into a stirred SUS autoclave with a jacket of 3.0 liters and not glass-lined. Stirring was started and the interior space was sufficiently substituted with pure nitrogen, and then the inside of the tank was evacuated and charged with 700 g of perfluorocyclobutane. Subsequently, 22 g of PPVE was injected, the temperature in the tank was set to 35 ° C. of the reaction temperature, and TFE was injected to 0.57 MPaG. Here, 0.3 g of NPP as an initiator and 12 g of methanol for molecular weight adjustment were injected to initiate polymerization. During the reaction, TFE was sequentially added so as to keep the pressure in the system constant, and at the same time, PPVE was divided into 16 times by 1.8 g in accordance with the added amount of TFE, and additional pressure injection was performed. Further, when 315 g of TFE was added, 42 g of methanol was additionally injected. After 15 hours, when the total of 654 g of TFE and PPVE was charged, the reaction was terminated and the monomer was purged. The obtained polymer was separated, washed and dried to obtain 650 g of a white powder.

合成例7
内容量3.0リットルのジャケット付き撹拌式SUS製オートクレーブを洗浄後、槽内壁および撹拌軸、撹拌翼に付着防止剤(アクゾノーベル社製NOXOL ETH)のエタノール10%溶液を噴霧し60℃で加熱乾燥させ、再度軽く水洗いしたオートクレーブを用いた他は、合成例6と同様にして、重合反応を行い、反応時間15時間で650kgの白色粉末を得た。
Synthesis example 7
After washing a jacketed stirring SUS autoclave with an internal volume of 3.0 liters, a 10% ethanol solution of an anti-adhesive agent (NOXOL ETH manufactured by Akzo Nobel) was sprayed on the inner wall, stirring shaft and stirring blade of the tank and heated at 60 ° C. A polymerization reaction was carried out in the same manner as in Synthesis Example 6 except that an autoclave that had been dried and lightly washed again was used, and a white powder of 650 kg was obtained in a reaction time of 15 hours.

実施例1
合成例1で得られたFEPパウダーをローラーコンパクターにかけ、フレーク状にした。このフレーク状FEPを200℃で、窒素にて25%に希釈されたフッ素ガスに6時間曝すことによりフッ素化した。これを軸径30mm、全長1630mmの真空ベントを有する二軸スクリュー型押出機にて、ペレット化した。得られたペレットを170℃、5時間乾燥後、200℃で、窒素にて25%に希釈されたフッ素ガスに15時間曝すことによりフッ素化した。
Example 1
The FEP powder obtained in Synthesis Example 1 was put on a roller compactor to form a flake. This flaky FEP was fluorinated at 200 ° C. by exposure to fluorine gas diluted to 25% with nitrogen for 6 hours. This was pelletized with a twin screw type extruder having a vacuum vent with a shaft diameter of 30 mm and a total length of 1630 mm. The obtained pellets were dried at 170 ° C. for 5 hours, and then fluorinated by exposure to fluorine gas diluted to 25% with nitrogen at 200 ° C. for 15 hours.

実施例2
合成例2で得られたFEPパウダーをローラーコンパクターにかけ、フレーク状にした。このフレーク状FEPを200℃で、窒素にて25%に希釈されたフッ素ガスに6時間曝すことによりフッ素化した。これを軸径30mm、全長1630mmの真空ベントを有する二軸スクリュー型押出機にて、ペレット化した。得られたペレットを170℃、5時間乾燥した。
Example 2
The FEP powder obtained in Synthesis Example 2 was put on a roller compactor to form a flake. This flaky FEP was fluorinated at 200 ° C. by exposure to fluorine gas diluted to 25% with nitrogen for 6 hours. This was pelletized with a twin screw type extruder having a vacuum vent with a shaft diameter of 30 mm and a total length of 1630 mm. The obtained pellets were dried at 170 ° C. for 5 hours.

実施例3
合成例3で得られたFEPパウダーを、軸径30mm、全長1630mmの真空ベントを有する二軸スクリュー型押出機にて、ペレット化した。得られたペレットを170℃、5時間乾燥後、200℃で、窒素にて25%に希釈されたフッ素ガスに20時間曝すことによりフッ素化した。
Example 3
The FEP powder obtained in Synthesis Example 3 was pelletized with a twin screw type extruder having a vacuum vent with a shaft diameter of 30 mm and a total length of 1630 mm. The obtained pellets were dried at 170 ° C. for 5 hours and then fluorinated at 200 ° C. by exposure to fluorine gas diluted to 25% with nitrogen for 20 hours.

実施例4
合成例6で得られたPFAパウダーをローラーコンパクターにかけ、フレーク状にした。このフレーク状PFAをNi製流通型反応機に仕込み、150℃で、0.15質量%のオゾン含有ガスを0.15NL/minの流量で反応機内を流通させ、12時間反応させた。このオゾン処理されたフレークを軸径30mm、全長1630mmの真空ベントを有する二軸スクリュー型押出機にて、ペレット化した。得られたペレットを170℃、5時間乾燥した。
Example 4
The PFA powder obtained in Synthesis Example 6 was put on a roller compactor to form a flake. This flaky PFA was charged into a Ni-type flow reactor, and at 150 ° C., 0.15 mass% ozone-containing gas was circulated through the reactor at a flow rate of 0.15 NL / min and reacted for 12 hours. The ozone-treated flakes were pelletized by a twin screw type extruder having a vacuum vent with a shaft diameter of 30 mm and a total length of 1630 mm. The obtained pellets were dried at 170 ° C. for 5 hours.

実施例5
合成例7で得られたPFAパウダーを、軸径30mm、全長1630mmの真空ベントを有する二軸スクリュー型押出機にて、ペレット化した。得られたペレットを170℃、5時間乾燥後、200℃で、窒素にて25%に希釈されたフッ素ガスに20時間曝すことによりフッ素化した。
Example 5
The PFA powder obtained in Synthesis Example 7 was pelletized with a twin-screw extruder having a vacuum vent with a shaft diameter of 30 mm and a total length of 1630 mm. The obtained pellets were dried at 170 ° C. for 5 hours and then fluorinated at 200 ° C. by exposure to fluorine gas diluted to 25% with nitrogen for 20 hours.

実施例6
合成例4で得られたFEPパウダーを、軸径30mm、全長1630mmの混練ブロック(酸化処理領域)を有する二軸スクリュー型押出機に、8kg/hrの速度で供給した。酸化処理領域の温度を360℃に設定し、FEPパウダーの供給口の下流側で空気(酸素濃度約21%)を絶対圧力で1.0MPa、10NL/minの流量で酸化処理領域へ供給した。加熱溶融時間などを含む全処理に要した時間は約4分であった。この酸化処理を伴う酸化押出によって得られたペレットを、170℃、5時間乾燥した。
Example 6
The FEP powder obtained in Synthesis Example 4 was supplied at a rate of 8 kg / hr to a twin screw extruder having a kneading block (oxidation treatment region) having a shaft diameter of 30 mm and a total length of 1630 mm. The temperature of the oxidation treatment region was set to 360 ° C., and air (oxygen concentration of about 21%) was supplied to the oxidation treatment region at an absolute pressure of 1.0 MPa and a flow rate of 10 NL / min on the downstream side of the FEP powder supply port. The time required for the entire treatment including the heating and melting time was about 4 minutes. The pellets obtained by oxidative extrusion with this oxidation treatment were dried at 170 ° C. for 5 hours.

実施例7
合成例1で得られたFEPパウダーを、実施例6と同一の条件で、酸化処理を伴う酸化押出でペレット化した。得られたペレットを、170℃、5時間乾燥した後、200℃で、窒素にて25%に希釈されたフッ素ガスに20時間曝すことによりフッ素化した。
Example 7
The FEP powder obtained in Synthesis Example 1 was pelletized by oxidation extrusion with oxidation treatment under the same conditions as in Example 6. The obtained pellets were dried at 170 ° C. for 5 hours, and then fluorinated at 200 ° C. by exposure to fluorine gas diluted to 25% with nitrogen for 20 hours.

比較例1
合成例5で得られたFEPパウダーを、軸径30mm、全長1630mmの真空ベントを有する二軸スクリュー型押出機にて、ペレット化した。得られたペレットを170℃、5時間乾燥した。
Comparative Example 1
The FEP powder obtained in Synthesis Example 5 was pelletized with a twin screw type extruder having a vacuum vent with a shaft diameter of 30 mm and a total length of 1630 mm. The obtained pellets were dried at 170 ° C. for 5 hours.

比較例2
合成例1で得られたFEPパウダーを、比較例1と同一の処理でペレットとした。
Comparative Example 2
The FEP powder obtained in Synthesis Example 1 was pelletized by the same treatment as in Comparative Example 1.

比較例3
合成例7で得られたFEPパウダーを、比較例1と同一の処理でペレットとした。
Comparative Example 3
The FEP powder obtained in Synthesis Example 7 was pelletized by the same treatment as in Comparative Example 1.

比較例4
合成例1得られたFEPパウダーに対し、実施例6の空気に代わり、純窒素を供給した以外は、実施例6と同一に処理し、ペレットとした。
Comparative Example 4
Synthesis Example 1 The FEP powder obtained was processed in the same manner as in Example 6 except that pure nitrogen was supplied instead of the air in Example 6 to obtain pellets.

合成例、実施例及び比較例の結果を表1に示す。 The results of Synthesis Examples, Examples and Comparative Examples are shown in Table 1.

Figure 2010229163
Figure 2010229163

本発明の製造方法は、各種成形品用材料としての含フッ素ポリマーの製造に好適に利用可能である。 The production method of the present invention can be suitably used for production of a fluorine-containing polymer as a material for various molded articles.

Claims (9)

懸濁安定剤の存在下に行う懸濁重合によって得られる含フッ素ポリマーを酸化処理することを特徴とする精製含フッ素ポリマーの製造方法。 A method for producing a purified fluorine-containing polymer, characterized by oxidizing a fluorine-containing polymer obtained by suspension polymerization performed in the presence of a suspension stabilizer. 酸化処理は、F、SF、IF、NF、PF、ClF、及び、ClFよりなる群から選択される少なくとも1種以上のフッ素系ガスを用いたフッ素化処理である請求項1記載の製造方法。 The oxidation treatment is a fluorination treatment using at least one fluorine-based gas selected from the group consisting of F 2 , SF 4 , IF 5 , NF 3 , PF 5 , ClF, and ClF 3. 1. The production method according to 1. フッ素系ガスは、Fと不活性ガスとの混合ガスである請求項2記載の製造方法。 The manufacturing method according to claim 2 , wherein the fluorine-based gas is a mixed gas of F 2 and an inert gas. 酸化処理は、オゾンを用いたオゾン酸化処理である請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the oxidation treatment is an ozone oxidation treatment using ozone. 酸化処理は、酸素を含むガスを二軸押出機の混練ブロックに注入しながら押し出す酸化押出により行われるものである請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the oxidation treatment is performed by oxidation extrusion in which a gas containing oxygen is extruded while being injected into a kneading block of a twin-screw extruder. 懸濁重合は、重合場がステンレススチールと接する重合容器で行われる請求項1、2、3、4又は5記載の製造方法。 The production method according to claim 1, 2, 3, 4 or 5, wherein the suspension polymerization is carried out in a polymerization vessel in which the polymerization field is in contact with stainless steel. 懸濁安定剤は、炭化水素系重合物からなるものである請求項1、2、3、4、5又は6記載の製造方法。 The production method according to claim 1, 2, 3, 4, 5 or 6, wherein the suspension stabilizer is composed of a hydrocarbon polymer. 炭化水素系重合物は、ポリビニルアルコール又はメチルセルロースである請求項7記載の製造方法。 The production method according to claim 7, wherein the hydrocarbon polymer is polyvinyl alcohol or methyl cellulose. 懸濁重合は、付着防止剤の存在下に行うものである請求項1、2、3、4、5、6、7又は8記載の製造方法。 The method according to claim 1, 2, 3, 4, 5, 6, 7 or 8, wherein the suspension polymerization is carried out in the presence of an adhesion inhibitor.
JP2007192590A 2007-07-24 2007-07-24 Method for producing purified fluorine-containing polymer Pending JP2010229163A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007192590A JP2010229163A (en) 2007-07-24 2007-07-24 Method for producing purified fluorine-containing polymer
PCT/JP2008/063181 WO2009014138A1 (en) 2007-07-24 2008-07-23 Method for producing purified fluorine-containing polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192590A JP2010229163A (en) 2007-07-24 2007-07-24 Method for producing purified fluorine-containing polymer

Publications (1)

Publication Number Publication Date
JP2010229163A true JP2010229163A (en) 2010-10-14

Family

ID=40281388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192590A Pending JP2010229163A (en) 2007-07-24 2007-07-24 Method for producing purified fluorine-containing polymer

Country Status (2)

Country Link
JP (1) JP2010229163A (en)
WO (1) WO2009014138A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130303718A1 (en) * 2012-05-09 2013-11-14 E I Du Pont De Nemours And Company Fluoropolymer Dispersion Treatment Employing Oxidizing Agent to Reduce Fluoropolymer Resin Discoloration
US20130303652A1 (en) * 2012-05-09 2013-11-14 E I Du Pont De Nemours And Company Fluoropolymer Dispersion Treatment Employing Light and Oxygen Source in Presence of Photocatalyst to Reduce Fluoropolymer Resin Discoloration
US20130303715A1 (en) * 2012-05-09 2013-11-14 E I Du Pont De Nemours And Company Fluoropolymer Resin Treatment Employing Heating and Oxygen Source to Reduce Discoloration
US20130303716A1 (en) * 2012-05-09 2013-11-14 E I Du Pont De Nemours And Company Drying Wet Fluoropolymer Resin and Exposing to Oxygen Source to Reduce Discoloration
US20130303710A1 (en) * 2012-05-09 2013-11-14 E I Du Pont De Nemours And Company Fluoropolymer Dispersion Treatment Employing Hydrogen Peroxide to Reduce Fluoropolymer Resin Discoloration
US20150141581A1 (en) * 2012-05-09 2015-05-21 E I Du Pont De Nemours And Company Fluoropolymer Resin Treatment Employing Oxidizing Agent to Reduce Discoloration
JP2015516024A (en) * 2012-05-09 2015-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Use of fluorinated polymer resin pretreatment and fluorination to reduce discoloration
US9175110B2 (en) 2012-05-09 2015-11-03 The Chemours Company Fc, Llc Fluoropolymer resin treatment employing melt extrusion and exposure to oxygen source to reduce discoloration
US9574027B2 (en) 2013-03-11 2017-02-21 The Chemours Company Fc, Llc Fluoropolymer resin treatment employing sorbent to reduce fluoropolymer resin discoloration
WO2023277139A1 (en) * 2021-06-30 2023-01-05 ダイキン工業株式会社 Method for producing fluoropolymer composition, and fluoropolymer composition
WO2023190960A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Fluorine-containing copolymer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130303709A1 (en) * 2012-05-09 2013-11-14 E I Du Pont De Nemours And Company Fluoropolymer Dispersion Treatment Employing High pH and Oxygen Source to Reduce Fluoropolymer Resin Discoloration
US8785516B2 (en) 2012-05-09 2014-07-22 E I Du Pont De Nemours And Company Fluoropolymer dispersion treatment employing ultraviolet light and oxygen source to reduce fluoropolymer resin discoloration
JP6922904B2 (en) * 2016-05-31 2021-08-18 Agc株式会社 Fluororesin manufacturing method
JP6614385B2 (en) * 2018-04-26 2019-12-04 ダイキン工業株式会社 Process for producing purified fluoropolymer
JP7208554B1 (en) 2021-07-13 2023-01-19 ダイキン工業株式会社 Method for producing fluoropolymer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279537A (en) * 1993-03-29 1994-10-04 Japan Synthetic Rubber Co Ltd Production of carboxylated fluoropolymer
JP3071342B2 (en) * 1993-07-01 2000-07-31 株式会社トクヤマ Fluorine-containing random copolymer
JPH1087746A (en) * 1996-09-11 1998-04-07 Asahi Glass Co Ltd Granulated tetrafluoroethylene copolymer and its production
JP4792612B2 (en) * 1998-11-04 2011-10-12 ダイキン工業株式会社 Method for stabilizing fluoropolymers
EP1054023A1 (en) * 1999-05-21 2000-11-22 Atofina Process for chemical modification of fluorinated polymers, electrodes for lithium-ion batteries, and coatings for metal substrates containing these modified polymers
JP2003313236A (en) * 2002-04-23 2003-11-06 Asahi Glass Co Ltd Method for fluorinating unstable terminal group of perhalopolyluoropolymer
JP4626234B2 (en) * 2004-04-09 2011-02-02 ダイキン工業株式会社 Tetrafluoroethylene copolymer and method for producing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130303718A1 (en) * 2012-05-09 2013-11-14 E I Du Pont De Nemours And Company Fluoropolymer Dispersion Treatment Employing Oxidizing Agent to Reduce Fluoropolymer Resin Discoloration
US20130303652A1 (en) * 2012-05-09 2013-11-14 E I Du Pont De Nemours And Company Fluoropolymer Dispersion Treatment Employing Light and Oxygen Source in Presence of Photocatalyst to Reduce Fluoropolymer Resin Discoloration
US20130303715A1 (en) * 2012-05-09 2013-11-14 E I Du Pont De Nemours And Company Fluoropolymer Resin Treatment Employing Heating and Oxygen Source to Reduce Discoloration
US20130303716A1 (en) * 2012-05-09 2013-11-14 E I Du Pont De Nemours And Company Drying Wet Fluoropolymer Resin and Exposing to Oxygen Source to Reduce Discoloration
US20130303717A1 (en) * 2012-05-09 2013-11-14 E I Du Pont De Nemours And Company Fluoropolymer Dispersion Treatment Employing Oxidizing Agent to Reduce Fluoropolymer Resin Discoloration
US20130303710A1 (en) * 2012-05-09 2013-11-14 E I Du Pont De Nemours And Company Fluoropolymer Dispersion Treatment Employing Hydrogen Peroxide to Reduce Fluoropolymer Resin Discoloration
US20150141581A1 (en) * 2012-05-09 2015-05-21 E I Du Pont De Nemours And Company Fluoropolymer Resin Treatment Employing Oxidizing Agent to Reduce Discoloration
JP2015516024A (en) * 2012-05-09 2015-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Use of fluorinated polymer resin pretreatment and fluorination to reduce discoloration
JP2015516025A (en) * 2012-05-09 2015-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Fluorinated polymer resin treatment using heating and oxygen source to reduce discoloration
JP2015516029A (en) * 2012-05-09 2015-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Fluorinated polymer resin treatment using an oxidant to reduce discoloration
US9175112B2 (en) 2012-05-09 2015-11-03 The Chemours Company Fc, Llc Drying wet fluoropolymer resin and exposing to oxygen source to reduce discoloration
US9175115B2 (en) 2012-05-09 2015-11-03 The Chemours Company Fc, Llc Fluoropolymer resin treatment employing heating and oxygen source to reduce discoloration
US9175110B2 (en) 2012-05-09 2015-11-03 The Chemours Company Fc, Llc Fluoropolymer resin treatment employing melt extrusion and exposure to oxygen source to reduce discoloration
US20150344592A1 (en) * 2012-05-09 2015-12-03 The Chemours Company Fc, Llc Fluoropolymer dispersion treatment employing oxidizing agent to reduce fluoropolymer resin discoloration
US9574027B2 (en) 2013-03-11 2017-02-21 The Chemours Company Fc, Llc Fluoropolymer resin treatment employing sorbent to reduce fluoropolymer resin discoloration
WO2023277139A1 (en) * 2021-06-30 2023-01-05 ダイキン工業株式会社 Method for producing fluoropolymer composition, and fluoropolymer composition
WO2023190960A1 (en) * 2022-03-30 2023-10-05 ダイキン工業株式会社 Fluorine-containing copolymer
JP2023153020A (en) * 2022-03-30 2023-10-17 ダイキン工業株式会社 Fluorine-containing copolymer
JP7473855B2 (en) 2022-03-30 2024-04-24 ダイキン工業株式会社 Fluorine-containing copolymer

Also Published As

Publication number Publication date
WO2009014138A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP2010229163A (en) Method for producing purified fluorine-containing polymer
JP4801353B2 (en) Reaction of fluoropolymer melt
US4743658A (en) Stable tetrafluoroethylene copolymers
JP4746536B2 (en) Melt-processable thermoplastic fluoropolymer with improved processing characteristics and process for its production
RU2441883C2 (en) Process for producing melt-moldable tetrafluoroethylene copolymer
CN101547945B (en) Ethylene/tetrafluoroethylene copolymer and method for producing the same
EP3080174B1 (en) Highly fluorinated elastomers
WO2000026260A1 (en) Method of stabilizing fluoropolymer
JP2006504844A (en) Emulsifier-free aqueous emulsion polymerization to produce copolymers of fluorinated olefins and hydrocarbon olefins
JPWO2009001894A1 (en) Polytetrafluoroethylene aqueous dispersion and process for producing the same
JP2004534118A (en) Aqueous emulsion polymerization in the presence of ether as chain transfer agent for producing fluoropolymer
EP2847241B1 (en) Employing pretreatment and fluorination of fluoropolymer resin to reduce discoloration
JP2018531316A (en) Composition comprising amorphous fluoropolymer and fluoroplastic particles and method for producing the same
JP2018531316A6 (en) Composition comprising amorphous fluoropolymer and fluoroplastic particles and method for producing the same
JP4618130B2 (en) Fluoropolymer production method and fluoropolymer product
JPH1067821A (en) Fluororubber, its manufacture and use, and manufacture of molding and/or coating of fluororubber
JP2003501498A (en) Fast-crosslinking fluoropolymer
RU2722315C2 (en) Fine powder of modified polytetrafluoroethylene and method of its production, and method of producing pipe or hose
US10975187B2 (en) Modified polytetrafluoroethylene fine powder and its manufacturing method, and electric wire and tube using it
JP2003082020A (en) Method for producing fluorine-containing polymer
EP2847240B1 (en) Fluoropolymer resin treatment employing melt extrusion and exposure to oxygen source to reduce discoloration
JP2002030111A (en) Method for producing chlorinated vinyl chloride resin