JP2010226401A - Apparatus for testing function of network equipment - Google Patents

Apparatus for testing function of network equipment Download PDF

Info

Publication number
JP2010226401A
JP2010226401A JP2009071091A JP2009071091A JP2010226401A JP 2010226401 A JP2010226401 A JP 2010226401A JP 2009071091 A JP2009071091 A JP 2009071091A JP 2009071091 A JP2009071091 A JP 2009071091A JP 2010226401 A JP2010226401 A JP 2010226401A
Authority
JP
Japan
Prior art keywords
unit
disconnection
test
bridges
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009071091A
Other languages
Japanese (ja)
Inventor
Norio Tsuchiya
紀雄 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2009071091A priority Critical patent/JP2010226401A/en
Publication of JP2010226401A publication Critical patent/JP2010226401A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Small-Scale Networks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To automate a test, to perform a test with objectivity and further to easily measure a time from failure occurrence to recovery. <P>SOLUTION: In an apparatus for testing a function of network equipment, a control section 21 performing overall control performs control of packet generation and control of disconnection simulation in accordance with set contents from a man-machine section 26. A time measuring section 22 measures performance of a redundant function by measuring a time, during which communication is disabled, at packet generating sections 23A, 23B. At least two packet generating sections 23A, 23B are included and by confirming communication therebetween, recovery of a transmission line to be tested is confirmed. For the recovery confirmation, outputs are connected to all bridges of the transmission line to be tested in one-to-one correspondence via an output selecting section 24 and the bridge to input a generated packet thereto is selected. A disconnection control section 25 cuts off/recovers connection of disconnection simulating sections prepared as many as the number of required connections between bridges, according to an instruction of the control section 21. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、IEEE802.3に規定されるイーサネット(登録商標)の冗長化方式を実装したハブなどを含むネットワーク機器の機能試験装置に関するものである。   The present invention relates to a function test apparatus for network equipment including a hub or the like that implements an Ethernet (registered trademark) redundancy system defined in IEEE 802.3.

イーサネットを冗長化する方法として、スパニングツリープロトコル(以下STPと称す)があり、IEEE802.1Dおよびその高速化方式としてのIEEE802.1Wに規定されている。   As a method for making Ethernet redundant, there is a spanning tree protocol (hereinafter referred to as STP), which is defined in IEEE 802.1D and IEEE 802.1W as a speed-up method thereof.

STPの実装および試験においては、上記の規格を基にソフトウェアの作り込みを行い試験対象機器に実装した上で試験を行なう手段が採られている。そして、試験においては、規格上および実運用上から想定される障害に完全に対応できることと、異なる製品間での相互接続性を確保することが重要な課題となる。   In the implementation and testing of STP, a means is adopted in which software is built based on the above-mentioned standard, and the test is performed after mounting on a test target device. In testing, it is important to be able to completely cope with failures assumed from the standards and actual operation, and to ensure the interoperability between different products.

特開2004−356854号公報JP 2004-356854 A

上記の背景技術においては、次のような2つの問題点がある。
1.試験の自動化が困難な点
これは、STPの規格上、構成可能なブリッジ数は最大7である。このため、全ブリッジ間を総メッシュ接続するには、21本の伝送路を必要とし、これら全てについて全組み合わせの回線断試験を行なう必要があるからである。
2.相互接続性を確保するための客観性に欠ける点
上記1項の困難な点に加え、一定の方法が確立しないまま試験を行なうと、例えば、相互接続性が確保できない試験対象機器の組み合わせがあると、その問題の再現方法が客観性に欠けることとなり、問題点の切り分けや対策後の確認等に支障を来たすことになる恐れがある。
The above background art has the following two problems.
1. It is difficult to automate the test. This is because the maximum number of bridges that can be configured is 7 according to the STP standard. For this reason, in order to connect all the bridges in a total mesh, 21 transmission lines are required, and it is necessary to perform all combinations of line disconnection tests for all of them.
2. Insufficient objectivity to ensure interconnectivity In addition to the difficult points in item 1 above, when a test is performed without establishing a certain method, for example, there are combinations of test target devices that cannot ensure interconnectivity. The method of reproducing the problem lacks objectivity, and there is a possibility that it may hinder the isolation of the problem and the confirmation after the countermeasure.

本発明は、上記の事情に鑑みてなされたもので、試験の自動化を実現可能とするとともに、客観性がある試験が可能となるようにし、しかも障害発生から復旧までの時間計測が容易に行なえるようにしたネットワーク機器の機能試験装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, makes it possible to automate the test, enable an objective test, and easily measure the time from the occurrence of a failure to recovery. It is an object of the present invention to provide a function testing apparatus for network devices.

上記の課題を達成するために、請求項1に係る発明は、ネットワークを構成する複数の試験対象ブリッジと、
各試験対象ブリッジ間を結ぶ伝送路に挿入され、必要なブリッジ間接続数分だけ用意された断線模擬部と、前記試験対象ブリッジのいずれかに入力され、断線模擬を行う間の疎通確認および性能測定を行うとともに、試験対象伝送路の復旧確認を行う試験用パケットを生成するパケット生成部と、パケット生成部で生成された試験用パケットが入力される試験対象ブリッジを選択する出力選択部と、前記パケット生成部において、疎通できない時間を計測し、冗長機能の性能を測定する時間計測部と、前記断線模擬部の接続の断/復帰を行う断線制御部を制御するとともに、時間計測部、出力選択部を制御する制御部とを備えたことを特徴とする。
In order to achieve the above object, the invention according to claim 1 includes a plurality of test target bridges constituting a network,
Insertion into the transmission line connecting each test target bridge, and the disconnection simulation unit prepared for the required number of connections between the bridges, and communication confirmation and performance during the disconnection simulation that is input to one of the test target bridges A packet generator that performs measurement and generates a test packet that performs recovery confirmation of the test target transmission path, an output selection unit that selects a test target bridge to which the test packet generated by the packet generator is input, The packet generation unit controls a time measurement unit that measures a time during which communication cannot be performed and measures the performance of a redundant function, and a disconnection control unit that disconnects / returns the connection of the disconnection simulation unit, and also includes a time measurement unit and an output And a control unit that controls the selection unit.

また、請求項2に係る発明は、請求項1において、前記制御部には、インタフェースを介して設定機能および設定保存機能、計測結果の標準フォーマット変換を行うマンマシン部が接続されていることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the control unit is connected to a setting function, a setting storage function, and a man-machine unit that performs standard format conversion of measurement results via an interface. Features.

本発明によれば、STP試験の場合、従来は困難であったフルメッシュにおける冗長機能試験の確認作業を自動化することが可能になり、これにより試験の自動化が実現できるようになる。また、本試験装置を基準として試験を行なうことにより、相互接続性を確認し得る上での再現試験などを容易に行なうことが可能になり、これにより客観性がある試験が可能になる。さらに、試験用パケット生成機能を有しているため、障害発生から復旧までの時間計測などの性能データを容易に収集することが可能になることから数値的計測が容易に行なえるなどの利点が得られる。   According to the present invention, in the case of the STP test, it is possible to automate the confirmation work of the redundant function test in the full mesh, which has been difficult in the past, and thus the test can be automated. In addition, by performing a test based on this test apparatus, it is possible to easily perform a reproducibility test or the like while confirming the interconnectivity, thereby enabling an objective test. In addition, because it has a test packet generation function, it is possible to easily collect performance data such as time measurement from failure occurrence to recovery, so there are advantages such as easy numerical measurement. can get.

図1は、ネットワーク機器の機能試験装置の実施例1を述べるための概念図である。FIG. 1 is a conceptual diagram for explaining a first embodiment of the network device function testing apparatus. 図2は、ネットワーク機器の機能試験装置の実施例1を示す構成図である。FIG. 2 is a configuration diagram illustrating the first embodiment of the network device function testing apparatus. 図3は、ファーストイーサネットを想定して構成した断線模擬部の構成図である。FIG. 3 is a configuration diagram of a disconnection simulation unit configured assuming Fast Ethernet. 図4は、ギガビットイーサネットを想定して構成した断線模擬部の構成図である。FIG. 4 is a configuration diagram of a disconnection simulation unit configured assuming Gigabit Ethernet.

以下本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施例1を述べるための概念図で、図1において、1〜4はネットワーク機器の試験対象ブリッジで、ここでは試験対象ブリッジ1〜4が、4つの場合を例に示したが、ブリッジの数は任意に設けても良い。   FIG. 1 is a conceptual diagram for explaining a first embodiment of the present invention. In FIG. 1, 1 to 4 are test target bridges of a network device. Here, four test target bridges 1 to 4 are shown as an example. However, the number of bridges may be arbitrarily set.

1〜56は断線模擬部で、この断線模擬部51〜56は、後述する断線制御部からの制御信号により自動制御されて、全パターンの断線が模擬される。試験用パケットAおよびBは、図1において、ブリッジ1と2に入力され、断線模擬を行う間の疎通確認および性能測定を行う。上記全パターンは、例えば、ブリッジ1と3の間を結ぶルートは直接あるいは他のブリッジ経由で存在する。図1ではルートは6つあり、この6つのルートにそれぞれ存在するスイッチの順列組み合わせで入切することにより、全てのルート組合せにおける冗長性が検証できる。 5 1 to 5 6 are disconnection simulation units, and the disconnection simulation units 5 1 to 5 6 are automatically controlled by a control signal from a disconnection control unit to be described later to simulate disconnection of all patterns. The test packets A and B are input to the bridges 1 and 2 in FIG. 1 to perform communication check and performance measurement during the disconnection simulation. In all the patterns, for example, the route connecting the bridges 1 and 3 exists directly or via another bridge. In FIG. 1, there are six routes, and redundancy in all route combinations can be verified by switching on and off with permutation combinations of switches respectively present in these six routes.

図2は、本発明の実施例1を示す構成図で、図2において、21は本試験装置の全体制御を行う制御部である。この制御部21は、マンマシン部26からの設定内容に従い、パケット生成の制御と断線模擬の制御を行う。   FIG. 2 is a block diagram showing the first embodiment of the present invention. In FIG. 2, reference numeral 21 denotes a control unit that performs overall control of the test apparatus. The control unit 21 performs packet generation control and disconnection simulation control in accordance with the setting contents from the man-machine unit 26.

例えば、パケット生成の制御は、時間計測などに用いる試験用パケットの構成および生成制御を行う。このように、試験用パケットは、パケット生成機能を有しているため、障害発生から復旧までの時間計測などの性能データを容易に収集することが可能になる。   For example, the packet generation control performs configuration and generation control of a test packet used for time measurement or the like. Thus, since the test packet has a packet generation function, it is possible to easily collect performance data such as time measurement from the occurrence of a failure to recovery.

これは、与えられた(ルート上のスイッチ(断線模擬部)を任意に入切して)経路の中から最適なものを選択してブリッジ間接続を維持するのが冗長化の目的で、ある状態で接続が維持されているときに、スイッチを任意に入切することにより新しい経路状態を作り上げ、再び接続が確保されるまでの性能を効率的に評価するのがこの実施例の目的である。   The purpose of redundancy is to maintain the inter-bridge connection by selecting the optimum route from the given route (by arbitrarily turning on / off a switch (disconnection simulator) on the route). The purpose of this embodiment is to create a new path state by arbitrarily turning on and off the switch when the connection is maintained in a state, and to efficiently evaluate the performance until the connection is secured again. .

通常通信は2点間で行うため、パケット生成部AおよびBを任意のブリッジに接続する。そして、パケット生成部A→パケット生成部B、パケット生成部A←パケット生成部B、パケット生成部A⇔パケット生成部Bの通信を行い、上記のような経路切替をしたときに通信が途切れる時間を後述の時間計測部にて計測することにより、性能=経路切替時間が測定可能になる。つまり、データ=経路切替時間ということになる。   Since normal communication is performed between two points, the packet generators A and B are connected to an arbitrary bridge. Then, when the packet generation unit A → the packet generation unit B, the packet generation unit A ← the packet generation unit B, the packet generation unit A⇔the packet generation unit B communicates, and the path is switched as described above, the communication is interrupted. Is measured by a time measuring unit to be described later, so that performance = path switching time can be measured. That is, data = path switching time.

また、断線模擬の制御は、図1に示す各ブリッジ間の伝送路に挿入される断線模擬部51〜56の制御と、断線設定内容に従って、一箇所断線、複数箇所断線、シーケンシャル断線等を模擬する。 Further, the disconnection simulation control is performed according to the control of the disconnection simulation units 5 1 to 5 6 inserted in the transmission paths between the bridges shown in FIG. 1 and the disconnection setting contents, such as one-point disconnection, multiple-point disconnection, sequential disconnection, etc. Simulate.

22は時間計測部で、この時間計測部22は、パケット生成部23A,23Bにおいて、疎通確認できない時間などを計測することにより、冗長機能の性能を測定するものである。   Reference numeral 22 denotes a time measurement unit. The time measurement unit 22 measures the performance of the redundant function by measuring a time during which communication cannot be confirmed in the packet generation units 23A and 23B.

パケット生成部23A,23Bは、最低2つ(図2においては、パケット生成A,B)を有し、その間での疎通確認を行うことにより、試験対象伝送路の復旧確認を行う。この復旧確認は、出力選択部24を介して試験対象伝送路の全ブリッジに出力を1対1に接続し、生成したパケットを入力するブリッジが選択される。   The packet generation units 23A and 23B have at least two (packet generation A and B in FIG. 2), and confirm the communication between them to confirm the restoration of the test target transmission path. In this restoration confirmation, the output is connected to all the bridges of the test target transmission line one-to-one via the output selection unit 24, and the bridge that inputs the generated packet is selected.

断線制御部25は、制御部21からの指示に従い必要なブリッジ間接続数分だけ用意した断線模擬部51,52・・・5nの接続の断/復帰の動作を行う。 The disconnection control unit 25 performs the disconnection / recovery operation of the disconnection simulation units 5 1 , 5 2, ... 5 n prepared for the necessary number of connections between the bridges according to the instruction from the control unit 21.

マンマシン部26は、制御部21のマンマシンインタフェースの機能を有し、設定機能および設定保存機能、計測結果の標準フォーマット変換などを行う。27はPC端末部で、このPC端末部27は制御用のソフトウェアまたは端末模擬ソフトウェアを介して本試験装置を制御するために設けられている。   The man-machine unit 26 has a man-machine interface function of the control unit 21, and performs a setting function, a setting storage function, a standard format conversion of measurement results, and the like. Reference numeral 27 denotes a PC terminal unit, and this PC terminal unit 27 is provided for controlling the test apparatus via control software or terminal simulation software.

図3は断線模擬部の構成図で、この断線模擬部はファーストイーサネットを想定して構成され、100BASE−TX用で4線のみを使用したものである。図3において、CON1,CON2はRJ−45コネクタ、SWは断線模擬部を構成するスイッチ群で、このスイッチ群SWは、イーサネットなどの高速信号を入切できる高周波タイプリレーまたはアナログスイッチから構成される。これらスイッチ群SWは断線制御信号により入り切りされる。なお、上記断線模擬部は、送信及び受信が単独で断線する場合もあるため、送受信系を個別に入切することができるように構成されている。   FIG. 3 is a configuration diagram of the disconnection simulation unit. This disconnection simulation unit is configured assuming Fast Ethernet, and uses only 4 lines for 100BASE-TX. In FIG. 3, CON1 and CON2 are RJ-45 connectors, SW is a switch group constituting a disconnection simulation section, and this switch group SW is constituted by a high-frequency type relay or analog switch capable of turning on and off a high-speed signal such as Ethernet. . These switch groups SW are turned on and off by a disconnection control signal. Note that the disconnection simulation unit may be configured so that transmission and reception systems can be individually turned on and off because transmission and reception may be disconnected independently.

図4は図3と同様に断線模擬部の構成図で、この断線模擬部は、ギガビットイーサネットを想定して構成されている点が図3と異なり、この図4の断線模擬部は、1000BASE−T用で8線全て使用したものである。この図4においても、図3と同様に、SWは断線模擬部を構成するスイッチ群、CON1,CON2はRJ−45コネクタであり、スイッチ群SWは、断線制御信号により制御される。   FIG. 4 is a block diagram of the disconnection simulation unit similar to FIG. 3, and this disconnection simulation unit is different from FIG. 3 in that it is configured assuming Gigabit Ethernet. The disconnection simulation unit of FIG. All 8 wires are used for T. Also in FIG. 4, as in FIG. 3, SW is a switch group constituting a disconnection simulation unit, CON1 and CON2 are RJ-45 connectors, and the switch group SW is controlled by a disconnection control signal.

1〜4…ブリッジ
1〜56…断線模擬部
21…制御部
22…時間計測部
23A、23B…パケット生成部
24…出力選択部
25…断線制御部
26…マンマシン部
27…PC端末
1-4 ... bridge 5 1 to 5 6 ... disconnection simulating unit 21 ... controller 22 ... time measuring portion 23A, 23B ... packet generating unit 24 ... output selection unit 25 ... disconnection control section 26 ... man-machine unit 27 ... PC terminal

Claims (2)

ネットワークを構成する複数の試験対象ブリッジと、
各試験対象ブリッジ間を結ぶ伝送路に挿入され、必要なブリッジ間接続数分だけ用意された断線模擬部と、
前記試験対象ブリッジのいずれかに入力され、断線模擬を行う間の疎通確認および性能測定を行うとともに、試験対象伝送路の復旧確認を行う試験用パケットを生成するパケット生成部と、
パケット生成部で生成された試験用パケットが入力される試験対象ブリッジを選択する出力選択部と、
前記パケット生成部において、疎通できない時間を計測し、冗長機能の性能を測定する時間計測部と、
前記断線模擬部の接続の断/復帰を行う断線制御部を制御するとともに、時間計測部、出力選択部を制御する制御部とを備えたことを特徴とするネットワーク機器の機能試験装置。
A plurality of bridges to be tested constituting a network;
A disconnection simulation part inserted in the transmission line connecting between the bridges to be tested and prepared for the required number of connections between bridges,
A packet generation unit that is input to any of the test target bridges and performs communication confirmation and performance measurement while performing a disconnection simulation, and generates a test packet for performing recovery confirmation of the test target transmission path;
An output selection unit for selecting a test target bridge to which the test packet generated by the packet generation unit is input;
In the packet generation unit, a time measurement unit that measures a time during which communication cannot be performed and measures the performance of a redundant function;
A network device function testing apparatus, comprising: a disconnection control unit that disconnects / returns the connection of the disconnection simulation unit; and a control unit that controls a time measurement unit and an output selection unit.
前記制御部には、インタフェースを介して設定機能および設定保存機能、計測結果の標準フォーマット変換を行うマンマシン部が接続されていることを特徴とする請求項1項記載のネットワーク機器の機能試験装置。   2. The function test apparatus for a network device according to claim 1, wherein the control unit is connected with a setting function, a setting saving function, and a man-machine unit for converting a standard format of measurement results through an interface. .
JP2009071091A 2009-03-24 2009-03-24 Apparatus for testing function of network equipment Pending JP2010226401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009071091A JP2010226401A (en) 2009-03-24 2009-03-24 Apparatus for testing function of network equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009071091A JP2010226401A (en) 2009-03-24 2009-03-24 Apparatus for testing function of network equipment

Publications (1)

Publication Number Publication Date
JP2010226401A true JP2010226401A (en) 2010-10-07

Family

ID=43043113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009071091A Pending JP2010226401A (en) 2009-03-24 2009-03-24 Apparatus for testing function of network equipment

Country Status (1)

Country Link
JP (1) JP2010226401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192763A (en) * 2013-03-27 2014-10-06 Fujitsu Ltd Equipment and method for testing transmission line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192763A (en) * 2013-03-27 2014-10-06 Fujitsu Ltd Equipment and method for testing transmission line

Similar Documents

Publication Publication Date Title
CN106444420B (en) A kind of locomotive semi-hardware type simulation test system and method
CN103235593B (en) A kind of blower fan master control hardware Auto-Test System and method of testing based on PLC
CN103200122B (en) A kind of software defined network is organized the processing method of table, system and controller
CN106556765A (en) The method of testing and RTDS emulators of distributed distribution automation system
US8380477B2 (en) System of testing engineered safety feature instruments
CN110046383B (en) Power system information physical hybrid simulation method based on event synchronization and screening
CN103457796B (en) The monitoring method of switch-spanning in a kind of intelligent substation
CN208721998U (en) Intelligent substation station level Acceptance Test System based on panorama emulation
CN110865277A (en) Feeder automation function testing device
JP2010109662A (en) Ring connection control circuit, ring switching hub, ring ethernet system, and ring connection control method
CN115576289A (en) Reconfigurable high-fidelity large-scale industrial internet simulation platform based on virtualization technology
Sidhu et al. IED modelling for IEC61850 based substation automation system performance simulation
CN109031005B (en) Distributed relay protection device testing method and relay protection tester
CN104267283A (en) Platform and method for testing process layer to spacer layer of digital substation
CN106656311A (en) Data link backup apparatus and method
CN102508053B (en) Area backup automatic switch testing system based on digital simulation technology
CN105991315A (en) Link protection method applied to SDN (software defined network), switching device and network controller
JP2010226401A (en) Apparatus for testing function of network equipment
CN113985829A (en) Distributed industrial control system of nuclear power station and virtual and physical switching control method thereof
CN101520660A (en) Simulation device and simulation method for monitoring sensor signals in general environment
Kleineberg et al. Redundancy enhancements for industrial ethernet ring protocols
HRP20231334T1 (en) Method for monitoring apparatus
CN104780551B (en) A kind of Signalling Transfer Point link state detection system and method
Bolanowski et al. Measure and compare the convergence time of network routing protocols
JP2008022379A (en) Artificial network switch testing device