JP2010223948A - Method for local analysis of hydrogen in metal body - Google Patents

Method for local analysis of hydrogen in metal body Download PDF

Info

Publication number
JP2010223948A
JP2010223948A JP2010027438A JP2010027438A JP2010223948A JP 2010223948 A JP2010223948 A JP 2010223948A JP 2010027438 A JP2010027438 A JP 2010027438A JP 2010027438 A JP2010027438 A JP 2010027438A JP 2010223948 A JP2010223948 A JP 2010223948A
Authority
JP
Japan
Prior art keywords
hydrogen
metal body
measured
sample
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010027438A
Other languages
Japanese (ja)
Inventor
Takashi Iwata
多加志 岩田
Hajime Enami
一 榎並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Original Assignee
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Research Institute Inc filed Critical Kobelco Research Institute Inc
Priority to JP2010027438A priority Critical patent/JP2010223948A/en
Publication of JP2010223948A publication Critical patent/JP2010223948A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for local analysis of hydrogen in a metal body which enables correct local quantitative analysis of diffusible hydrogen contained in the metal body. <P>SOLUTION: The method is characterized by including a process as follows: laser beam 2g is intermittently irradiated under a predetermined condition in order to heat a certain area on surface of a sample 20 as the measuring metal body to melting point or less; APIMS10 is used to measure desorption speed of each hydrogen discharged from the certain area on surface of the sample 20 for the presence of laser beam 2g irradiation; and then quantity of the diffusible hydrogen contained in the certain area on surface of the sample 20 is calculated from the relationship among deviation of these measured hydrogen desorption speeds, deviation of the predefined discharge rate of hydrogen emitted from the certain area on surface of the sample 20, and quantity of the diffusible hydrogen. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、金属体中の水素の局所分析方法に関する。   The present invention relates to a method for local analysis of hydrogen in a metal body.

鉄鋼材等の金属体は、水素ガス環境、腐食環境あるいは酸洗・電気めっき等の表面処理工程にて相応する水素量を固溶吸収する。この吸収された金属体中の水素は、原子状水素として金属体中を拡散移動し、引張応力集中部などの局所に濃縮し、金属体の脆化割れの原因となることが知られている。また、こうした水素は常温状態でも金属体中を拡散移動することから拡散性水素とも呼称され、水素化物等の化合物形態として金属体中に安定的に存在する水素とは状態が異なる水素と理解されている。例えば、引張強さが1000MPa以上の高強度鋼材では、鋼材の水素脆化割れ(遅れ破壊)危険性は、0.1質量ppm程度の拡散性水素量にて生じることが知られている(非特許文献1参照)。   Metal bodies such as steel materials absorb a corresponding amount of hydrogen in a solid solution in a hydrogen gas environment, a corrosive environment, or a surface treatment process such as pickling or electroplating. It is known that this absorbed hydrogen in the metal body diffuses and moves in the metal body as atomic hydrogen, and concentrates locally in a tensile stress concentration part and the like, which causes embrittlement cracking of the metal body. . Such hydrogen is also referred to as diffusible hydrogen because it diffuses and moves in the metal body even at room temperature, and is understood to be a hydrogen whose state is different from hydrogen that is stably present in the metal body as a compound form such as hydride. ing. For example, in high-strength steel materials with a tensile strength of 1000 MPa or more, it is known that the risk of hydrogen embrittlement cracking (delayed fracture) of steel materials occurs at a diffusible hydrogen content of about 0.1 ppm by mass (non- Patent Document 1).

また、金属体中の拡散性水素量の分析方法としては、分析用試料を定温保持(45℃×72hあるいは150℃×6h)し、放出された水素ガス量をグリセリン置換法あるいはガスクロマトグラフ法にて定量する方法が規定されている(非特許文献2参照)。   In addition, as a method for analyzing the amount of diffusible hydrogen in the metal body, the sample for analysis is kept at a constant temperature (45 ° C. × 72 h or 150 ° C. × 6 h), and the released hydrogen gas amount is converted into a glycerin substitution method or a gas chromatographic method. The method of quantifying is defined (see Non-Patent Document 2).

また、金属体から放出される水素ガスの検出方法としては、上記の分析方法以外に測圧法、容量法なども知られる(非特許文献3参照)。   Further, as a method for detecting hydrogen gas released from a metal body, a pressure measurement method, a capacitance method, and the like are known in addition to the above analysis method (see Non-Patent Document 3).

さらに、近年では、規格化はされていなものの、採取した分析用試料を連続昇温し水素放出速度−温度図を求め、図から拡散性水素起因の放出ピークを判定し定量する方法(昇温分析法)が多用されており、拡散性水素分析の主流となっている(非特許文献4参照)。   Furthermore, in recent years, although not standardized, the collected analytical sample is continuously heated to obtain a hydrogen release rate-temperature diagram, and a method for determining and quantifying the release peak due to diffusible hydrogen from the diagram (temperature increase Analysis method) is widely used, and has become the mainstream of diffusible hydrogen analysis (see Non-Patent Document 4).

一方、金属体の水素脆化割れ現象を定量化する手法としては、金属体中の拡散性水素量と割れ限界の関係を実験室的に求め、割れ限界水素量を評価する方法が提案されている(非特許文献5参照)。   On the other hand, as a technique for quantifying the hydrogen embrittlement cracking phenomenon of metal bodies, a method has been proposed in which the relationship between the amount of diffusible hydrogen in a metal body and the crack limit is obtained in a laboratory and the crack limit hydrogen amount is evaluated. (See Non-Patent Document 5).

また、固体材料表面にレーザー光を照射して元素分析を実施する方法としては、レーザーアブレーション/ICP質量分析装置も知られている(非特許文献6参照)。   A laser ablation / ICP mass spectrometer is also known as a method for performing elemental analysis by irradiating a solid material surface with laser light (see Non-Patent Document 6).

また、レーザー照射にて試料のイオン化処理を行い、そのまま連続的に質量分析を実施する例もある(非特許文献7参照)。   In addition, there is an example in which the sample is ionized by laser irradiation and mass spectrometry is continuously performed as it is (see Non-Patent Document 7).

一方、金属体中の水素に着目して、レーザー光照射を利用する方法も複数提案されている。   On the other hand, a plurality of methods using laser light irradiation have been proposed focusing on hydrogen in a metal body.

例えば、レーザーの照射により試料の局所における構成元素を蒸発させ、水素のみ水素吸蔵合金にて補足、別途定量する方法が開示されている(特許文献1参照)。   For example, a method is disclosed in which constituent elements in a sample are evaporated by laser irradiation, and only hydrogen is supplemented with a hydrogen storage alloy and separately quantified (see Patent Document 1).

また、不活性ガス中にて金属体にレーザー光を照射し、放出ガスを質量分析計にて測定することにより、金属体中の水素含有量が高感度に定量化できるという技術が開示されている(特許文献2参照)。   In addition, a technique has been disclosed in which the hydrogen content in a metal body can be quantified with high sensitivity by irradiating the metal body with laser light in an inert gas and measuring the released gas with a mass spectrometer. (See Patent Document 2).

特開平4−204042号公報Japanese Patent Laid-Open No. 4-204042 特開2000−28580号公報JP 2000-28580 A

松山晋作著“遅れ破壊”日刊工業新聞社(1989)、p.70“Delayed Destruction” by Nissin Kogyo Shimbun (1989), p. 70 JIS Z 3118−1992“鋼溶接部の水素量測定方法”JIS Z 3118-1992 “Method for measuring hydrogen content in steel welds” JIS Z 2614−1990“金属材料の水素定量方法通則”JIS Z 2614-1990 “General Rules for Determination of Hydrogen in Metallic Materials” 日本金属学会セミナー資料“最新の水素の検出法と水素脆化防止法”、(1999)、p.15Materials of the Japan Institute of Metals “The latest hydrogen detection method and hydrogen embrittlement prevention method” (1999), p. 15 鈴木ら,鉄と鋼,vol.79,No.2(1993),p.97Suzuki et al., Iron and Steel, vol. 79, no. 2 (1993), p. 97 望月正“レーザーアブレーション”,ぶんせき,1994−4,(1994),p.256Mochizuki Tadashi “Laser Ablation”, Bunseki, 1994-4, (1994), p. 256 一宮信吾“レーザーイオン化”,ぶんせき,1994−2,(1994),p.88Shingo Ichinomiya “Laser Ionization”, Bunseki, 1994-2, (1994), p. 88

しかしながら、上記非特許文献2〜4に開示された各分析手法は、いずれも分析用試料全体を加熱し放出水素を定量する方法であり、試料中の局所・要所における水素量の違いを評価することはできず、分析用試料中平均の水素量を定量する技術に止まっているのが現状である。   However, each of the analysis methods disclosed in Non-Patent Documents 2 to 4 above is a method for quantifying the released hydrogen by heating the entire sample for analysis, and evaluates the difference in the amount of hydrogen at local and important points in the sample. However, the current situation is that the technology is not limited to the technique for quantifying the average amount of hydrogen in a sample for analysis.

また、上記非特許文献5に開示された水素分析は、前述した各分析手法と同様に分析用試料全体を加熱し放出水素を定量する方法であり、試料中平均の水素量しか定量できず、分析用試料中の局所に存在する割れ発生の起点近くにおける正確な拡散性水素の定量が不可能である。   In addition, the hydrogen analysis disclosed in Non-Patent Document 5 is a method of heating the entire analysis sample and quantifying the released hydrogen in the same manner as each analysis method described above, and can only quantify the average amount of hydrogen in the sample, It is impossible to accurately determine diffusible hydrogen near the starting point of local cracking in an analytical sample.

また、上記非特許文献6、7に開示された各分析手法は、高出力レーザーにて試料成分を蒸発させ、あるいはイオン化まで進め、成分(構成元素の)分析を実施する方法であるため、水素化物等の化合物形態として金属体中に安定的に存在する水素をも含めた全水素量の分析手法となり、金属体中に存在する拡散性水素の局所分析はできないという課題があった。   In addition, each analysis method disclosed in Non-Patent Documents 6 and 7 is a method for evaporating a sample component with a high-power laser or proceeding to ionization to perform component (constituent element) analysis. This is a technique for analyzing the total amount of hydrogen including hydrogen stably present in the metal body as a compound form such as a compound, and there is a problem that local analysis of diffusible hydrogen present in the metal body cannot be performed.

また、特許文献1に開示された分析手法は、水素化物等の化合物形態として金属体中に安定的に存在する水素をも含めた全水素量の分析手法となり、金属体中に存在する拡散性水素の局所分析には適用できないという課題があった。   In addition, the analysis method disclosed in Patent Document 1 is an analysis method for the total amount of hydrogen including hydrogen stably present in a metal body as a compound form such as a hydride, and has a diffusivity existing in the metal body. There was a problem that it could not be applied to the local analysis of hydrogen.

また、特許文献2に開示された分析手法は、レーザー光照射前後での試料の重量変化(減量)により、放出ガス量を定量するものである。従って、レーザー光照射による重量減(すなわち試料の部分的蒸発)を前提にしており、前記特許文献1に開示された分析手法と同様、あくまでも水素化物等の化合物形態として金属体中に安定的に存在する水素をも含めた全水素量を分析する手法であるため、金属体中の局所に存在する数重量ppm程度の拡散性水素を定量する分析には適用できないという課題があった。   In addition, the analysis method disclosed in Patent Document 2 quantifies the amount of released gas based on a change in weight (weight reduction) of a sample before and after laser light irradiation. Therefore, it is premised on weight reduction by laser light irradiation (that is, partial evaporation of the sample), and as in the analysis method disclosed in Patent Document 1, it is stable in the metal body as a compound form such as hydride. Since it is a technique for analyzing the total amount of hydrogen including the existing hydrogen, there is a problem that it cannot be applied to analysis for quantifying diffusible hydrogen of about several ppm by weight existing locally in a metal body.

以上のように、上記非特許文献2〜7および特許文献1、2に開示された各分析手法では、そのいずれにおいても金属体中に存在する拡散性水素の局所定量分析は不可能であった。特に、金属体中の割れ発生の起点のような局所には、拡散性水素が濃縮して偏在するが、この拡散性水素を正確に定量することも不可能であった。   As described above, in each of the analysis methods disclosed in Non-Patent Documents 2 to 7 and Patent Documents 1 and 2, local quantitative analysis of diffusible hydrogen existing in a metal body is impossible in any of them. . In particular, diffusible hydrogen is concentrated and unevenly distributed locally, such as the starting point of cracks in a metal body, but it has been impossible to accurately quantify this diffusible hydrogen.

本発明の目的は、金属体中に存在する拡散性水素の正確な局所定量分析が可能な金属体中の水素の局所分析方法を提供することにある。   An object of the present invention is to provide a method for local analysis of hydrogen in a metal body capable of accurate local quantitative analysis of diffusible hydrogen present in the metal body.

この目的を達成するために、本発明の請求項1に記載の発明は、
金属体中の水素の局所分析方法において、
(1)含有する拡散性水素量が既知な金属体の表面の所定箇所を融点以下に加熱するために、レーザー光を所定条件下で断続的に照射し、前記レーザー光の照射の有無における前記金属体の表面の所定箇所から放出される各拡散性水素ガス量の放出速度(以下、「水素放出速度」という)を測定し、これらの測定された水素放出速度の偏差と前記拡散性水素量との関係を予め求めておく工程と、
(2)被測定金属体の表面の所定箇所を融点以下に加熱するために、前記所定条件と同一の条件下でレーザー光を断続的に照射し、前記レーザー光の照射の有無における前記被測定金属体の表面の所定箇所から放出される各水素放出速度を測定し、これらの測定された水素放出速度の偏差と前記(1)で求められた水素放出速度の偏差と拡散性水素量との関係より、前記被測定金属体の表面の所定箇所に含有する拡散性水素量を求める工程と、
を有したことを特徴とする金属体中の水素の局所分析方法である。
In order to achieve this object, the invention according to claim 1 of the present invention provides:
In the local analysis method of hydrogen in a metal body,
(1) In order to heat a predetermined part of the surface of a metal body having a known amount of diffusible hydrogen to a melting point or lower, the laser light is intermittently irradiated under a predetermined condition, and the laser light is irradiated or not The discharge rate of each diffusible hydrogen gas released from a predetermined location on the surface of the metal body (hereinafter referred to as “hydrogen release rate”) is measured, and the deviation of the measured hydrogen release rate and the amount of diffusible hydrogen are measured. A process for obtaining a relationship with
(2) In order to heat a predetermined portion of the surface of the metal body to be measured to below the melting point, the laser light is intermittently irradiated under the same conditions as the predetermined conditions, and the measurement is performed with or without the laser light irradiation. Each hydrogen release rate released from a predetermined location on the surface of the metal body is measured, and the deviation of the measured hydrogen release rate, the deviation of the hydrogen release rate determined in the above (1), and the amount of diffusible hydrogen From the relationship, the step of obtaining the amount of diffusible hydrogen contained in a predetermined location on the surface of the metal body to be measured,
This is a method for local analysis of hydrogen in a metal body.

請求項2に記載の発明は、請求項1に記載の発明において、前記レーザー光の波長は、700nm以上であることを特徴とする。   The invention according to claim 2 is the invention according to claim 1, wherein the wavelength of the laser beam is 700 nm or more.

請求項3に記載の発明は、請求項1または2に記載の発明において、前記水素ガス量の検出には、ガスクロマトグラム分析計、質量分析計もしくは大気圧イオン化質量分析計を用いたことを特徴とする。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein a gas chromatogram analyzer, a mass spectrometer or an atmospheric pressure ionization mass spectrometer is used for the detection of the hydrogen gas amount. And

請求項4に記載の発明は、請求項1乃至3に記載の発明において、前記金属体の表面および前記被測定金属体の表面の各所定箇所の表面状態を観察する工程、若しくは、表面温度を測定する工程の内の少なくともいずれか一つを有したことを特徴とする。   According to a fourth aspect of the present invention, in the first to third aspects of the invention, the step of observing the surface state of each predetermined portion of the surface of the metal body and the surface of the metal body to be measured, or the surface temperature It has at least any one of the process to measure.

請求項5に記載の発明は、請求項4に記載の発明において、前記表面状態を観察する工程では、CCDカメラが用いられ、前記表面温度を測定する工程では、熱電対若しくは非接触温度計が用いられ、前記CCDカメラで観察した画像を表示し、前記熱電対で測定された温度情報若しくは前記非接触温度計で測定された温度情報の内のいずれか一つを表示するためにモニターが用いられたことを特徴とする。   The invention according to claim 5 is the invention according to claim 4, wherein a CCD camera is used in the step of observing the surface state, and a thermocouple or a non-contact thermometer is used in the step of measuring the surface temperature. Used to display an image observed by the CCD camera and to display either one of temperature information measured by the thermocouple or temperature information measured by the non-contact thermometer. It is characterized by that.

以上のように、本発明は、被測定金属体の表面の所定箇所を融点以下に加熱するために、所定条件下でレーザー光を断続的に照射し、前記レーザー光の照射の有無における前記被測定金属体の表面の所定箇所から放出される各水素放出速度を測定し、これらの測定された水素放出速度の偏差と予め求められた金属体の表面の所定箇所から放出される水素放出速度の偏差と拡散性水素量との関係より、前記被測定金属体の表面の所定箇所に含有する拡散性水素量を求める工程を有した金属体中の水素の局所分析方法であるため、水素化物等の化合物形態として被測定金属体中に安定的に存在する水素を放出させることなく、かつ、被測定金属体中に固溶し常温でも拡散移動可能な拡散性水素の正確な局所定量分析が可能である。   As described above, the present invention irradiates laser light intermittently under predetermined conditions in order to heat a predetermined portion of the surface of the metal body to be measured to below the melting point, and whether or not the laser light is irradiated. Each hydrogen release rate released from a predetermined location on the surface of the metal body is measured, and the deviation of these measured hydrogen release rates and the hydrogen release rate released from the predetermined location on the surface of the metal body are determined in advance. From the relationship between the deviation and the amount of diffusible hydrogen, it is a method for local analysis of hydrogen in a metal body having a step of obtaining the amount of diffusible hydrogen contained in a predetermined location on the surface of the metal body to be measured. Accurate local quantitative analysis of diffusible hydrogen that can be dissolved in the metal body to be measured and diffused at room temperature without releasing hydrogen that is stably present in the metal body to be measured It is.

本発明に係る金属体中の水素の局所分析方法の一実施形態で用いられるレーザー光照射装置の全体構成を説明するための斜視図である。It is a perspective view for demonstrating the whole structure of the laser beam irradiation apparatus used with one Embodiment of the local analysis method of the hydrogen in the metal body which concerns on this invention. 同レーザー光照射装置のレーザー光源用光学系を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the optical system for laser light sources of the laser beam irradiation apparatus. 同実施形態で用いられる大気圧イオン化質量分析計を説明するための概略模式図である。It is a schematic diagram for demonstrating the atmospheric pressure ionization mass spectrometer used in the embodiment. 同実施形態における事前に求められた局所水素分析結果と拡散性水素量との関係を説明する説明図である。It is explanatory drawing explaining the relationship between the local hydrogen analysis result calculated | required in advance and the amount of diffusible hydrogen in the same embodiment. 同実施形態におけるレーザー光照射前後の試料表面の状態を示す図面代用写真である。It is a drawing substitute photograph which shows the state of the sample surface before and behind laser beam irradiation in the same embodiment.

(本発明に係る金属体中の水素の局所分析方法について)
本発明に係る金属体中の水素の局所分析方法は、被測定金属体の表面の所定箇所を融点以下に加熱するために、所定条件下でレーザー光を断続的に照射し、前記レーザー光の照射の有無における前記被測定金属体の表面の所定箇所から放出される各水素放出速度を測定し、これらの測定された水素放出速度の偏差と予め求められた金属体の表面の所定箇所から放出される水素放出速度の偏差と拡散性水素量との関係より、前記被測定金属体の表面の所定箇所に含有する拡散性水素量を求める工程を有したことを特徴とする。
(Regarding the method for local analysis of hydrogen in a metal body according to the present invention)
In the method for local analysis of hydrogen in a metal body according to the present invention, in order to heat a predetermined portion of the surface of the metal body to be measured to a melting point or lower, laser light is intermittently irradiated under predetermined conditions, Each hydrogen release rate released from a predetermined location on the surface of the metal body to be measured with or without irradiation is measured, and the deviation of these measured hydrogen release rates and the release from the predetermined location on the surface of the metal body determined in advance are measured. The step of determining the amount of diffusible hydrogen contained in a predetermined location on the surface of the metal body to be measured from the relationship between the deviation of the hydrogen release rate and the amount of diffusible hydrogen.

以下に、上記構成に至った理由について詳述する。   Hereinafter, the reason for the above configuration will be described in detail.

本発明者らは、如何にしたら金属体中に存在する拡散性水素の正確な局所定量分析が可能か鋭意検討した結果、本発明につながる以下のような知見を得た。
(1)含有する拡散性水素量が既知な金属体表面上の微小面積(φ2mm)に、波長808nmの半導体レーザーを用いて所定パワーで照射することで、照射領域だけを融点以下に加熱することが可能であった。
(2)上記半導体レーザーを用いて融点以下の加熱を行うことで、水素化物等の化合物形態として金属体中に安定的に存在する水素は放出させることなく、かつ、金属体中に固溶し常温でも拡散移動可能な拡散性水素を放出させることができるばかりか、この拡散性水素の放出を加速させることが可能であった。
(3)上記半導体レーザーを用いてレーザー光を所定条件下で断続的に前記金属体表面上の微小面積に照射し、前記レーザー光の照射の有無における前記金属体表面上の微小面積から放出される各拡散性水素ガス量の放出速度(=水素放出速度)を測定し、これらの測定された水素放出速度の偏差と前記拡散性水素量との関係を調べた結果、明瞭な相関関係があることがわかった。
(4)したがって、被測定金属体表面上の前記同一の微小面積に上記半導体レーザーを用いてレーザー光を、前記所定条件と同一の条件下で断続的に照射し、前記レーザー光の照射の有無における前記被測定金属体表面上の前記同一の微小面積から放出される各水素放出速度を測定し、これらの測定された水素放出速度の偏差と上記(3)で求められた水素放出速度の偏差と拡散性水素量との関係より、前記被測定金属体上の前記同一の微小面積の箇所に含有する拡散性水素量を求めることができることを見出した。
The present inventors diligently studied how accurate local quantitative analysis of diffusible hydrogen existing in a metal body is possible, and as a result, obtained the following findings that lead to the present invention.
(1) Heating only the irradiated region below the melting point by irradiating a minute area (φ2 mm) on the surface of a metal body with a known amount of diffusible hydrogen with a predetermined power using a semiconductor laser with a wavelength of 808 nm Was possible.
(2) By heating below the melting point using the semiconductor laser, hydrogen that is stably present in the metal body as a compound form such as a hydride is not released, but is dissolved in the metal body. In addition to being able to release diffusible hydrogen that can diffusely move even at room temperature, it was possible to accelerate the release of this diffusible hydrogen.
(3) Laser light is intermittently irradiated onto the surface of the metal body under a predetermined condition using the semiconductor laser, and is emitted from the micro area on the surface of the metal body with or without irradiation with the laser light. As a result of measuring the release rate of each diffusible hydrogen gas amount (= hydrogen release rate) and examining the relationship between the deviation of the measured hydrogen release rate and the diffusible hydrogen amount, there is a clear correlation I understood it.
(4) Therefore, the same minute area on the surface of the metal body to be measured is irradiated with laser light intermittently using the semiconductor laser under the same condition as the predetermined condition, and whether or not the laser light is irradiated , Each hydrogen release rate released from the same small area on the surface of the metal body to be measured is measured, and the deviation of the measured hydrogen release rate and the deviation of the hydrogen release rate obtained in (3) above are measured. From the relationship between the amount of diffusible hydrogen and the amount of diffusible hydrogen, it has been found that the amount of diffusible hydrogen contained in the same small area on the metal body to be measured can be determined.

以下、本発明の一実施形態について、添付図面を参照しながら、本発明に係る金属体中の水素の局所分析方法で用いる装置、本発明の証左となる試験結果の順番に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of the present invention will be described in the order of an apparatus used in a method for local analysis of hydrogen in a metal body according to the present invention and a test result that proves the present invention, with reference to the accompanying drawings.

(本発明に係る金属体中の水素の局所分析方法で用いる装置)
図1は本発明に係る金属体中の水素の局所分析方法の一実施形態で用いられるレーザー光照射装置の全体構成を説明するための斜視図、図2は同レーザー光照射装置のレーザー光源用光学系を説明するための分解斜視図、図3は同実施形態で用いられる大気圧イオン化質量分析計を説明するための概略模式図である。
(Apparatus used in the method for local analysis of hydrogen in a metal body according to the present invention)
FIG. 1 is a perspective view for explaining an overall configuration of a laser beam irradiation apparatus used in an embodiment of a method for local analysis of hydrogen in a metal body according to the present invention, and FIG. 2 is for a laser light source of the laser beam irradiation apparatus. FIG. 3 is an exploded perspective view for explaining the optical system, and FIG. 3 is a schematic diagram for explaining the atmospheric pressure ionization mass spectrometer used in the embodiment.

図1において、1は可動ステージ、1aは可動ステージ1を構成する支持台、1bは支持台1a上に設けられた粗微動用のY軸ステージ、1cはY軸ステージ1b上に設けられた高さ調整用のZ軸ステージ、1dはZ軸ステージ1c上に設けられたレーザー光の照射角度調整用のゴニオステージ、1eはゴニオステージ1d上に設けられたレーザー光の照射位置確認用のX軸ステージである。また、このX軸ステージ1e上にはレーザー光照射ユニット2とCCDカメラ3が予め所定の位置関係になるようにセットされ、かつ、各々詳細位置を調整可能なように構成されている。   In FIG. 1, 1 is a movable stage, 1a is a support base constituting the movable stage 1, 1b is a Y-axis stage for coarse / fine movement provided on the support base 1a, and 1c is a height provided on the Y-axis stage 1b. Z axis stage for adjusting the height, 1d is a gonio stage for adjusting the irradiation angle of the laser beam provided on the Z axis stage 1c, and 1e is an X axis for confirming the irradiation position of the laser beam provided on the gonio stage 1d. It is a stage. On the X-axis stage 1e, the laser light irradiation unit 2 and the CCD camera 3 are set in advance so as to have a predetermined positional relationship, and each detailed position can be adjusted.

レーザー光照射ユニット2とCCDカメラ3は、制御装置4に接続され、さらにこの制御装置4はパソコン5に接続されている。また、パソコン5にはモニター6が接続されている。   The laser light irradiation unit 2 and the CCD camera 3 are connected to a control device 4, and this control device 4 is further connected to a personal computer 5. A monitor 6 is connected to the personal computer 5.

また、レーザー光照射ユニット2内に内蔵されるレーザー光源(図示せず)は、波長808nmの半導体レーザー(光出力:最大 1.2W)で、その半導体レーザーの発光点2a(図2参照)の形状は100μm×1μmである。   Further, a laser light source (not shown) built in the laser light irradiation unit 2 is a semiconductor laser having a wavelength of 808 nm (light output: 1.2 W at maximum), and the light emitting point 2a of the semiconductor laser (see FIG. 2). The shape is 100 μm × 1 μm.

図2において、発光点2aから出射されたレーザー光2gを、コリメータレンズ2b、シリンドリカルレンズ2c、2dとアクロマートレンズ2e、2fから構成された光学系に通すことにより、最終的にφ2mmの平行光が得られる。このφ2mmの平行光であるレーザー光2gが石英管10a内に配置された被測定金属体としての水素を含有した試料20(詳細は、後述する)表面の任意の局所位置に所定条件下で断続的に照射される(詳細は、後述する)ことにより、試料20の表面の任意の局所位置が常に融点以下に加熱され、水素化物等の化合物形態として試料20中に安定的に存在する水素は放出されず、試料20中に固溶し常温でも拡散移動可能な拡散性水素がガスとして放出されるように構成されている。また、レーザー光2gが照射される位置は、可動ステージ1により詳細に調整できるようになっている。また、レーザー光2gが照射される試料20表面の任意の局所位置およびその表面状態は、CCDカメラ3を通してモニター6上で確認することができるようになっている。   In FIG. 2, the laser light 2g emitted from the light emitting point 2a is passed through an optical system composed of a collimator lens 2b, cylindrical lenses 2c and 2d, and achromatic lenses 2e and 2f, so that finally a parallel light of φ2 mm is obtained. can get. The laser beam 2g, which is parallel light of φ2 mm, is intermittently interrupted at predetermined local positions on the surface of the sample 20 (details will be described later) containing hydrogen as a metal body to be measured disposed in the quartz tube 10a. Irradiation is performed (details will be described later), so that any local position on the surface of the sample 20 is always heated below the melting point, and hydrogen that is stably present in the sample 20 as a compound form such as hydride is The diffusible hydrogen that is not released but is dissolved in the sample 20 and can be diffused and moved at room temperature is released as a gas. Further, the position irradiated with the laser beam 2g can be adjusted in detail by the movable stage 1. Further, an arbitrary local position on the surface of the sample 20 irradiated with the laser beam 2g and its surface state can be confirmed on the monitor 6 through the CCD camera 3.

また、試料20表面の任意の局所位置へ照射するレーザー光2gの照射条件(上記所定条件)は、試料20の種類に応じた所定条件が規定されており(具体例は、後述する)、この規定された所定条件を満足させるためのプログラムがパソコン5内のメモリーに格納されている。したがって、パソコン5内のメモリーに格納されたプログラムに基づき制御装置4を介してレーザー光照射ユニット2内の半導体レーザーを制御することで、試料20の種類に応じて、その試料20の表面の任意の局所位置が常に融点以下に加熱できるようになっている。   In addition, the irradiation condition of the laser beam 2g for irradiating an arbitrary local position on the surface of the sample 20 (the predetermined condition) is defined as a predetermined condition according to the type of the sample 20 (a specific example will be described later). A program for satisfying the prescribed predetermined conditions is stored in a memory in the personal computer 5. Therefore, by controlling the semiconductor laser in the laser light irradiation unit 2 through the control device 4 based on the program stored in the memory in the personal computer 5, the surface of the sample 20 can be arbitrarily selected according to the type of the sample 20. The local position of can always be heated below the melting point.

図3において、10は大気圧イオン化質量分析計(APIMS:Atmospheric Pressure Ionization Mass Spectrometer)である。このAPIMS10は、キャリアーガスとしてのArガス中に混入した水素ガス量を高感度で検出できる特徴があり、試料20の局所からの放出される水素ガス量の定量に最も適していると考えられる。石英管10aには、キャリアーガス(Arガス)が流量1000mL(Lはリットルをあらわす)/minで流れている。10bは試料20の表面Aに上記所定条件下でレーザー光2gを断続的に照射した時に、試料20から放出された拡散性水素ガスがキャリアーガス(Arガス)に混ざった状態で供給され、イオン化させるための大気圧イオン化室である。このイオン化された拡散性水素を圧力10Paの低真空室10cを経由して圧力10−3Paの質量分析部としての高真空室10dで定量化されるように構成されている。10eは、高真空室10dを制御する制御装置である。上記APIMS10では、試料20から放出された拡散性水素ガスが混合された上記一定流量のキャリアーガス(Arガス)中から前記拡散性水素ガス成分を分析し、定量する。この分析定量された試料20から放出される拡散性水素ガス量(体積)の放出速度(水素放出速度)の次元は、mL/minである。また、この分析定量された拡散性水素ガス量(体積)は、室温、1気圧での定量値であるため、標準状態でのガス体積が22.4L/molの関係に基づき、試料20中に存在する拡散性水素の質量へ換算できる。したがって、基本的には試料20中に存在する拡散性水素の質量と前記水素放出速度との関係を予め求めておくことにより、APIMS10を用いて検出した試料20の水素放出速度から試料20中に存在する拡散性水素の質量を求めることが可能となる。より具体的な原理に関しては、後述する。 In FIG. 3, reference numeral 10 denotes an atmospheric pressure ionization mass spectrometer (APIMS: Atmospheric Pressure Ionization Mass Spectrometer). This APIMS 10 has a feature that it can detect with high sensitivity the amount of hydrogen gas mixed in Ar gas as a carrier gas, and is considered to be most suitable for quantifying the amount of hydrogen gas released from the local area of the sample 20. Carrier gas (Ar gas) flows through the quartz tube 10a at a flow rate of 1000 mL (L represents liter) / min. In 10b, when the surface A of the sample 20 is intermittently irradiated with the laser beam 2g under the predetermined condition, the diffusible hydrogen gas released from the sample 20 is supplied in a state of being mixed with the carrier gas (Ar gas) and ionized. This is an atmospheric pressure ionization chamber. This ionized diffusible hydrogen is quantified in a high vacuum chamber 10d as a mass analyzing unit having a pressure of 10 −3 Pa through a low vacuum chamber 10c having a pressure of 10 Pa. A control device 10e controls the high vacuum chamber 10d. In the APIMS 10, the diffusible hydrogen gas component is analyzed and quantified in the carrier gas (Ar gas) having the constant flow rate in which the diffusible hydrogen gas released from the sample 20 is mixed. The dimension of the release rate (hydrogen release rate) of the amount (volume) of diffusible hydrogen gas released from the analytically quantified sample 20 is mL / min. In addition, since the amount (volume) of diffusible hydrogen gas analyzed and quantified is a quantified value at room temperature and 1 atmosphere, the gas volume in the standard state is 22.4 L / mol based on the relationship of 22.4 L / mol. It can be converted to the mass of diffusible hydrogen present. Therefore, basically, the relationship between the mass of diffusible hydrogen present in the sample 20 and the hydrogen release rate is obtained in advance, so that the hydrogen release rate of the sample 20 detected using the APIMS 10 is detected in the sample 20. It is possible to determine the mass of diffusible hydrogen present. A more specific principle will be described later.

(事前に準備された金属体に含有する拡散性水素量について)
純度99.5質量%、長さ20mm×幅15mm×板厚1mmの鉄板を供試材として準備した。この鉄板表面をエメリー紙(#1000)にて乾式研磨した後、硫酸溶液中にて陰極電解による水素チャージ処理を実施し、供試材中に拡散性水素を含有させた。電解条件は以下のとおりである。
電解溶液:硫酸溶液(pH2〜3)、水素浸入促進のための触媒成分を適宜添加
電解電流:0.1〜10mA/cm
([鉄板]を陰極、[白金板]を陽極として水の電気分解反応により鉄板表面にて水素ガスを生成し、鉄板中に水素をチャージする)
電解時間:180分(室温)
(1mm厚の鉄板が、水素を平衡吸収するために十分な時間として設定した)
(About the amount of diffusible hydrogen contained in the metal body prepared in advance)
An iron plate having a purity of 99.5 mass%, a length of 20 mm, a width of 15 mm, and a plate thickness of 1 mm was prepared as a test material. After this iron plate surface was dry-polished with emery paper (# 1000), hydrogen charge treatment was carried out by cathodic electrolysis in a sulfuric acid solution, so that diffusible hydrogen was contained in the test material. The electrolysis conditions are as follows.
Electrolytic solution: sulfuric acid solution (pH 2-3), catalyst components for promoting hydrogen penetration are added as appropriate Electrolytic current: 0.1 to 10 mA / cm 2
(Using [Iron plate] as a cathode and [Platinum plate] as an anode, hydrogen gas is generated on the surface of the iron plate by water electrolysis, and hydrogen is charged into the iron plate)
Electrolysis time: 180 minutes (room temperature)
(A 1 mm thick iron plate was set as a sufficient time to absorb hydrogen in equilibrium)

上記水素チャージ処理後の供試材(分析直前まで液体窒素中で保管した)に対して、通常の昇温脱離水素ガス分析法にて供試材中の拡散性水素量を定量分析した、その結果を下記表1に示す。表1の中で、試料No.a〜eの各記号は、上記各電解条件(溶液組成、電流密度)を変えて準備した5水準に対応し、この5水準の試料No.a〜eについて測定した結果が表1の右欄に示されている。準備された試料No.a〜eに含有する拡散性水素量は、0.04〜1.79質量ppmの5水準である。また、表1に示す拡散性水素量は、前記供試材中に存在する拡散性水素の質量の前記供試材の質量に対する比率であり、質量ppmで表わされる。

Figure 2010223948


Quantitative analysis of the amount of diffusible hydrogen in the test material was performed by the usual temperature-programmed desorption hydrogen gas analysis method for the test material after hydrogen charge treatment (stored in liquid nitrogen until immediately before analysis). The results are shown in Table 1 below. In Table 1, sample no. Symbols a to e correspond to the five levels prepared by changing each of the above electrolysis conditions (solution composition, current density). The measurement results for a to e are shown in the right column of Table 1. Sample No. prepared The amount of diffusible hydrogen contained in a to e is 5 levels of 0.04 to 1.79 mass ppm. The amount of diffusible hydrogen shown in Table 1 is the ratio of the mass of diffusible hydrogen present in the test material to the mass of the test material, and is expressed in mass ppm.
Figure 2010223948


(金属体に含有する拡散性水素量とレーザー光の照射の有無における水素放出速度の偏差との関係について)
上記と同じ条件にて水素チャージ処理を実施した5水準の各試料No.a〜eについて、上述した装置と方法を用いて水素局所分析を実施した。波長808nmの半導体レーザーのレーザー光2gのビーム径はφ2mmで、その時の照射出力は156mWである。石英管10a内に試料No.a〜eを順番にセットし、Arキャリアーガス流量1000ml/分のもと、同一箇所(図3に示すA点)に300秒間隔でレーザー光2gを“ON:照射有り”、“OFF:照射無し”を繰り返した。その結果、試料No.a〜eから放出される各水素放出速度は、レーザー光2gの照射有/無に同期した変化を示した。このレーザー光2gの照射有/無での水素放出速度の偏差を算出し(この偏差を局所水素分析結果と称す)、各試料No.a〜e中の拡散性水素量との関係を求めた、その結果を図4に示す。図4において、縦軸は局所水素分析結果であり、横軸は昇温脱離水素ガス分析法にて求めた試料No.a〜e中の平均の拡散性水素量である。図4より、試料中に含有する拡散性水素量とレーザー光の照射の有無における水素放出速度の偏差(局所水素分析結果)との間には、明瞭な相関関係があることがわかる。これは、すなわち、本発明に係る金属体中の水素の局所分析方法を用いることにより、金属体中に存在する拡散性水素の正確な局所定量分析が可能であることの証左を示している。
(Relationship between the amount of diffusible hydrogen contained in the metal body and deviation of hydrogen release rate with and without laser light irradiation)
Each of the five levels of each sample No. 5 subjected to hydrogen charge treatment under the same conditions as above. About ae, the hydrogen local analysis was implemented using the apparatus and method which were mentioned above. The beam diameter of the laser beam 2g of the semiconductor laser having a wavelength of 808 nm is φ2 mm, and the irradiation output at that time is 156 mW. In the quartz tube 10a, the sample No. a to e are set in order, and an Ar carrier gas flow rate of 1000 ml / min, laser light 2g is “ON: Irradiation”, “OFF: Irradiation” at the same location (point A shown in FIG. 3) at intervals of 300 seconds. “None” was repeated. As a result, sample no. Each hydrogen release rate released from a to e showed a change synchronized with the presence / absence of irradiation with laser light 2g. The deviation of the hydrogen release rate with and without irradiation of 2 g of this laser beam was calculated (this deviation is referred to as the local hydrogen analysis result). FIG. 4 shows the results obtained for the relationship with the amount of diffusible hydrogen in a to e. In FIG. 4, the vertical axis represents the result of local hydrogen analysis, and the horizontal axis represents the sample No. obtained by the thermal desorption hydrogen gas analysis method. It is the average amount of diffusible hydrogen in a to e. FIG. 4 shows that there is a clear correlation between the amount of diffusible hydrogen contained in the sample and the deviation of the hydrogen release rate (local hydrogen analysis results) with and without laser light irradiation. This indicates that it is possible to perform accurate local quantitative analysis of diffusible hydrogen present in a metal body by using the method for local analysis of hydrogen in a metal body according to the present invention.

よって、水素が不均一な試料の要所にて分析評価を実施すれば、試料中の拡散性水素量の分布を正確に評価することが可能である。したがって、これまで懸案であった金属体の水素脆化割れ現象を定量化する手法、すなわち金属体中の拡散性水素量と割れ限界の関係を正確に評価する方法を提案するものでもある。   Therefore, if the analysis and evaluation are performed at the key points of the sample where the hydrogen is not uniform, it is possible to accurately evaluate the distribution of the amount of diffusible hydrogen in the sample. Therefore, a technique for quantifying the hydrogen embrittlement cracking phenomenon of a metal body, which has been a concern, that is, a method for accurately evaluating the relationship between the amount of diffusible hydrogen in the metal body and the crack limit is proposed.

また、レーザー光2gの照射前/後における上記試料の表面状態を観察した写真を図5に示す。図5において、写真上の丸印は、上記試料表面へレーザー光2gの照射した位置を示す。図5より、上記試料表面の研磨による筋模様はレーザー光2gの照射前/後にて、全く変化を示しておらず、本発明の要件(融点以下での加熱)を満たしていることがわかる。   Moreover, the photograph which observed the surface state of the said sample before / after irradiation of the laser beam 2g is shown in FIG. In FIG. 5, a circle on the photograph indicates a position where the laser beam 2g is irradiated on the sample surface. From FIG. 5, it can be seen that the streak pattern due to the polishing of the sample surface shows no change before / after the irradiation of the laser beam 2g and satisfies the requirements of the present invention (heating below the melting point).

なお、本実施形態においては、金属体として鉄板を例に説明したが、本発明の技術思想に鑑みると、上記鉄板以外の多くの金属体にも適応可能である。   In the present embodiment, the iron plate is described as an example of the metal body. However, in view of the technical idea of the present invention, the present invention can be applied to many metal bodies other than the iron plate.

また、本実施形態においては、レーザー光2gが照射される試料20表面の任意の局所位置およびその表面状態を、CCDカメラ3を通してモニター6上で確認する例に説明したが、必ずしもこれに限定されるものではない。例えば、試料20表面の温度を熱電対や非接触温度計で測定し、この熱電対で測定された温度情報若しくは非接触温度計で測定された温度情報の内のいずれか一つをモニター上に表示することで、試料20表面の温度が融点以下に加熱されているか精度良く管理することが可能となる。   In the present embodiment, an example in which an arbitrary local position on the surface of the sample 20 irradiated with the laser beam 2g and its surface state are confirmed on the monitor 6 through the CCD camera 3 has been described. However, the present invention is not necessarily limited to this. It is not something. For example, the temperature of the surface of the sample 20 is measured with a thermocouple or a non-contact thermometer, and either one of temperature information measured with the thermocouple or temperature information measured with a non-contact thermometer is displayed on the monitor. By displaying, it is possible to accurately control whether the temperature of the surface of the sample 20 is heated below the melting point.

また、本実施形態においては、レーザー光源として、波長808nmのものを採用した例について説明したが、必ずしもこれに限定されるものではなく、加熱効率が良好である点を考慮に入れると700nm以上のものを採用することができる。   In the present embodiment, an example in which a laser light source having a wavelength of 808 nm is employed has been described. However, the present invention is not necessarily limited to this, and taking into consideration that the heating efficiency is good, it is 700 nm or more. Things can be adopted.

また、本実施形態においては、水素ガス量の検出に大気圧イオン化質量分析計10(APIMS)を用いた例について説明したが、必ずしもこれに限定されるものではなく、ガスクロマトグラム分析計や質量分析計を用いることも可能である。   In the present embodiment, an example in which the atmospheric pressure ionization mass spectrometer 10 (APIMS) is used to detect the amount of hydrogen gas has been described. However, the present invention is not necessarily limited to this, and a gas chromatogram analyzer or a mass spectrometer is not necessarily limited thereto. It is also possible to use a meter.

また、本実施形態においては、本発明に係る金属体中の水素の局所分析方法に関して実験的手法も用いた例について説明したが、必ずしもこれに限定されるものではなく、レーザー光照射の際の試料局所における水素放出挙動を拡散係数等を考慮に入れモデル化し、シミュレーションにより局所水素分析結果(レーザー光照射した際の水素放出速度)から試料局所での拡散性水素量を判定する手法も考えられる。   Moreover, in this embodiment, although the example which used the experimental method also about the local analysis method of the hydrogen in the metal body which concerns on this invention was demonstrated, it is not necessarily limited to this and in the case of laser beam irradiation Modeling the hydrogen release behavior at the sample site in consideration of the diffusion coefficient, etc., and determining the amount of diffusible hydrogen at the sample site from the local hydrogen analysis result (hydrogen release rate when irradiated with laser light) by simulation .

1 可動ステージ
1a 支持台
1b Y軸ステージ
1c Z軸ステージ
1d ゴニオステージ
1e X軸ステージ
2 レーザー光照射ユニット
2a 発光点
2b コリメータレンズ
2c、2d シリンドリカルレンズ
2e、2f アクロマートレンズ
2g レーザー光
3 CCDカメラ
4、10e 制御装置
5 パソコン
6 モニター
10 大気圧イオン化質量分析計(APIMS)
10a 石英管
10b 大気圧イオン化室
10c 低真空室
10d 高真空室
20 試料
DESCRIPTION OF SYMBOLS 1 Movable stage 1a Support stand 1b Y-axis stage 1c Z-axis stage 1d Goniometer stage 1e X-axis stage 2 Laser beam irradiation unit 2a Light emitting point 2b Collimator lens 2c, 2d Cylindrical lens 2e, 2f Achromatic lens 2g Laser beam 3 CCD camera 4, 10e Control device 5 Personal computer 6 Monitor 10 Atmospheric pressure ionization mass spectrometer (APIMS)
10a quartz tube 10b atmospheric pressure ionization chamber 10c low vacuum chamber 10d high vacuum chamber 20 sample

Claims (5)

金属体中の水素の局所分析方法において、
(1)含有する拡散性水素量が既知な金属体の表面の所定箇所を融点以下に加熱するために、レーザー光を所定条件下で断続的に照射し、前記レーザー光の照射の有無における前記金属体の表面の所定箇所から放出される各拡散性水素ガス量の放出速度(以下、「水素放出速度」という)を測定し、これらの測定された水素放出速度の偏差と前記拡散性水素量との関係を予め求めておく工程と、
(2)被測定金属体の表面の所定箇所を融点以下に加熱するために、前記所定条件と同一の条件下でレーザー光を断続的に照射し、前記レーザー光の照射の有無における前記被測定金属体の表面の所定箇所から放出される各水素放出速度を測定し、これらの測定された水素放出速度の偏差と前記(1)で求められた水素放出速度の偏差と拡散性水素量との関係より、前記被測定金属体の表面の所定箇所に含有する拡散性水素量を求める工程と、
を有したことを特徴とする金属体中の水素の局所分析方法。
In the local analysis method of hydrogen in a metal body,
(1) In order to heat a predetermined part of the surface of a metal body having a known amount of diffusible hydrogen to a melting point or lower, the laser light is intermittently irradiated under a predetermined condition, and the laser light is irradiated or not The discharge rate of each diffusible hydrogen gas released from a predetermined location on the surface of the metal body (hereinafter referred to as “hydrogen release rate”) is measured, and the deviation of the measured hydrogen release rate and the amount of diffusible hydrogen are measured. A process for obtaining a relationship with
(2) In order to heat a predetermined portion of the surface of the metal body to be measured to below the melting point, the laser light is intermittently irradiated under the same conditions as the predetermined conditions, and the measurement is performed with or without the laser light irradiation. Each hydrogen release rate released from a predetermined location on the surface of the metal body is measured, and the deviation of the measured hydrogen release rate, the deviation of the hydrogen release rate determined in the above (1), and the amount of diffusible hydrogen From the relationship, the step of obtaining the amount of diffusible hydrogen contained in a predetermined location on the surface of the metal body to be measured,
A method for local analysis of hydrogen in a metal body, characterized by comprising:
前記レーザー光の波長は、700nm以上であることを特徴とする請求項1に記載の金属体中の水素の局所分析方法。   The method for local analysis of hydrogen in a metal body according to claim 1, wherein the wavelength of the laser beam is 700 nm or more. 前記水素ガス量の検出には、ガスクロマトグラム分析計、質量分析計もしくは大気圧イオン化質量分析計を用いたことを特徴とする請求項1または2に記載の金属体中の水素の局所分析方法。   The method for local analysis of hydrogen in a metal body according to claim 1 or 2, wherein a gas chromatogram analyzer, a mass spectrometer, or an atmospheric pressure ionization mass spectrometer is used for detecting the hydrogen gas amount. 前記金属体の表面および前記被測定金属体の表面の各所定箇所の表面状態を観察する工程、若しくは、表面温度を測定する工程の内の少なくともいずれか一つを有したことを特徴とする請求項1乃至3に記載の金属体中の水素の局所分析方法。   The method includes observing a surface state of each predetermined portion of the surface of the metal body and the surface of the metal body to be measured, or measuring at least one of a step of measuring a surface temperature. Item 4. A method for local analysis of hydrogen in a metal body according to Items 1 to 3. 前記表面状態を観察する工程では、CCDカメラが用いられ、前記表面温度を測定する工程では、熱電対若しくは非接触温度計が用いられ、前記CCDカメラで観察した画像を表示し、前記熱電対で測定された温度情報若しくは前記非接触温度計で測定された温度情報の内のいずれか一つを表示するためにモニターが用いられたことを特徴とする請求項4に記載の金属体中の水素の局所分析方法。   In the step of observing the surface state, a CCD camera is used, and in the step of measuring the surface temperature, a thermocouple or a non-contact thermometer is used, and an image observed with the CCD camera is displayed, and the thermocouple is used. 5. The hydrogen in a metal body according to claim 4, wherein a monitor is used to display either one of the measured temperature information or the temperature information measured by the non-contact thermometer. Local analysis method.
JP2010027438A 2009-02-24 2010-02-10 Method for local analysis of hydrogen in metal body Pending JP2010223948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027438A JP2010223948A (en) 2009-02-24 2010-02-10 Method for local analysis of hydrogen in metal body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009040995 2009-02-24
JP2010027438A JP2010223948A (en) 2009-02-24 2010-02-10 Method for local analysis of hydrogen in metal body

Publications (1)

Publication Number Publication Date
JP2010223948A true JP2010223948A (en) 2010-10-07

Family

ID=43041266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027438A Pending JP2010223948A (en) 2009-02-24 2010-02-10 Method for local analysis of hydrogen in metal body

Country Status (1)

Country Link
JP (1) JP2010223948A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140917A1 (en) * 2012-03-22 2013-09-26 株式会社日立ハイテクノロジーズ Liquid chromatographic analysis device and temperature control method for same
CN110196275A (en) * 2019-05-15 2019-09-03 中国科学院上海硅酸盐研究所 It is a kind of for the high temperature real-time sample pond of laser ablation system and its detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140917A1 (en) * 2012-03-22 2013-09-26 株式会社日立ハイテクノロジーズ Liquid chromatographic analysis device and temperature control method for same
CN110196275A (en) * 2019-05-15 2019-09-03 中国科学院上海硅酸盐研究所 It is a kind of for the high temperature real-time sample pond of laser ablation system and its detection method

Similar Documents

Publication Publication Date Title
Griesche et al. Three-dimensional imaging of hydrogen blister in iron with neutron tomography
Bae et al. Spreading a water droplet on the laser-patterned silicon wafer substrate for surface-enhanced laser-induced breakdown spectroscopy
US8319964B2 (en) Method and apparatus to laser ablation—laser induced breakdown spectroscopy
Cristoforetti et al. Investigation on the role of air in the dynamical evolution and thermodynamic state of a laser-induced aluminium plasma by spatial-and time-resolved spectroscopy
Takahashi et al. Calibration-free analysis of immersed brass alloys using long-ns-duration pulse laser-induced breakdown spectroscopy with and without correction for nonstoichiometric ablation
Lazic et al. Underwater sediment analyses by laser induced breakdown spectroscopy and calibration procedure for fluctuating plasma parameters
Zorba et al. Femtosecond laser induced breakdown spectroscopy of Cu at the micron/sub-micron scale
Pisonero et al. Capabilities of femtosecond laser ablation inductively coupled plasma mass spectrometry for depth profiling of thin metal coatings
Emara et al. Biological application of laser induced breakdown spectroscopy technique for determination of trace elements in hair
Hohreiter et al. Plasma− particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy
Mercadier et al. In-depth analysis of ITER-like samples composition using laser-induced breakdown spectroscopy
Boudhib et al. Compositional analysis of aerosols using calibration-free laser-induced breakdown spectroscopy
Gurovich et al. Evolution of structure and properties of VVER-1000 RPV steels under accelerated irradiation up to beyond design fluences
Salmi et al. Hydrogen determination in 22MnB5 steel grade by use of carrier gas hot extraction technique
Hubert et al. Measurement of the isotopic composition of uranium micrometer-size particles by femtosecond laser ablation-inductively coupled plasma mass spectrometry
Xiao et al. Surrogate measurement of chlorine concentration on steel surfaces by alkali element detection via laser-induced breakdown spectroscopy
Perevezentsev et al. Comparative study of the tritium distribution in metals
Hu et al. Atom probe study of radiation induced grain boundary segregation/depletion in a Fe-12% Cr alloy
Garlea et al. Novel use of a hand-held laser induced breakdown spectroscopy instrument to monitor hydride corrosion in uranium
Gray Ion and laser microprobes applied to the measurement of corrosion produced hydrogen on a microscopic scale
JP2010223948A (en) Method for local analysis of hydrogen in metal body
Li et al. Compositional depth profiles of the type 316 stainless steel undergone the corrosion in liquid lithium using laser-induced breakdown spectroscopy
Ararat-Ibarguen et al. Measurements of diffusion coefficients in solids by means of LIBS combined with direct sectioning
Kurniawan et al. Quantitative hydrogen analysis of zircaloy-4 using low-pressure laser plasma technique
Burger et al. Laser-produced uranium plasma characterization and Stark broadening measurements