JP2010222224A - Method for processing high homogeneous small diameter glass material and homogeneous small diameter glass material - Google Patents

Method for processing high homogeneous small diameter glass material and homogeneous small diameter glass material Download PDF

Info

Publication number
JP2010222224A
JP2010222224A JP2009074413A JP2009074413A JP2010222224A JP 2010222224 A JP2010222224 A JP 2010222224A JP 2009074413 A JP2009074413 A JP 2009074413A JP 2009074413 A JP2009074413 A JP 2009074413A JP 2010222224 A JP2010222224 A JP 2010222224A
Authority
JP
Japan
Prior art keywords
glass material
small diameter
quartz glass
temperature
diameter glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009074413A
Other languages
Japanese (ja)
Inventor
Taiichiro Yamashita
泰一郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009074413A priority Critical patent/JP2010222224A/en
Publication of JP2010222224A publication Critical patent/JP2010222224A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for processing a high homogeneous small diameter glass material, in which the high homogeneous small diameter glass material free from the occurrence of chipping or crack during processing is obtained by reducing the residue of thermal distortion. <P>SOLUTION: In the method for processing the high homogeneous small diameter glass material, a small diameter quartz glass preform 1 having &le;9 inch diameter is heated to make transparent and after that, is shaped by grinding-machining after cooled. In such a case, the quartz glass preform 1 is heated by a heater 12 using a zone melting furnace 11 while moving the quartz glass preform 1 so that the peak temperature of the zone melting furnace 11 is set to a temperature at which the glass structure in the quartz glass preform 1 is mitigated and the in-plane distribution of the virtual temperature is made uniform and after that, quickly cooled. By reducing the residue of the thermal distortion in this way, the high homogeneous small diameter glass material free from the occurrence of chipping or crack in machining is obtained. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、9インチ以下の小径石英ガラス母材を加熱して透明化した後に冷却させてから、研削加工により成形する高均質性小径硝材の加工方法及び高均質性小径硝材に関する。   The present invention relates to a processing method of a high-homogeneity small-diameter glass material and a high-homogeneity small-diameter glass material that are formed by grinding after cooling a glass substrate having a diameter of 9 inches or less that is made transparent by heating.

一般に、ガラスレンズを製造する工程においては、加熱軟化した光学レンズガラス素材を成形しながら冷却固化させる方法が主流である。この方法は、小型のデジタルカメラ等で要求される高性能で且つ安価なレンズに最適である。しかし、ガラス素材の冷却固化過程において、レンズ部分に生じる屈折率分布や歪み等が光学性能に及ぼす影響が懸念され始めている。   In general, in the process of manufacturing a glass lens, a method of cooling and solidifying a glass material that has been softened by heating while molding is the mainstream. This method is most suitable for a high-performance and inexpensive lens required for a small digital camera or the like. However, in the process of cooling and solidifying the glass material, there is a concern about the influence of the refractive index distribution and distortion generated in the lens portion on the optical performance.

通常、硝材である純石英の石英ガラス母材は、大型のガラス素材であるバルク材からレンズの形状に、研削などの加工により成形される。そのため、ガラス素材に応力歪み等が残留していると、加工中に欠けやひびが発生する原因となる。したがって、応力が残留していないガラス素材を使用することが重要である。しかし、一般的に入手できる石英材は、1500℃程度の高温で処理されるため、冷却過程での熱歪みの残留が避けられなかった。   Usually, a quartz glass base material of pure quartz that is a glass material is formed into a lens shape from a bulk material that is a large glass material by a process such as grinding. Therefore, if stress strain or the like remains in the glass material, it may cause chipping or cracking during processing. Therefore, it is important to use a glass material in which no stress remains. However, generally available quartz materials are processed at a high temperature of about 1500 ° C., and thus thermal strain remains in the cooling process.

熱歪みの発生及びその結果として悪化する屈折率の変動を抑えるためには、良好に均熱が保たれた炉内で一定時間保持して仮想温度を均一にして、応力歪みを除去した状態で構造に影響を与えない速度でゆっくりと冷却(徐冷)することが必要である。   In order to suppress the occurrence of thermal strain and the resulting change in refractive index, keep the temperature constant in a well-equipped furnace for a certain period of time to remove the stress strain. It is necessary to cool slowly (slow cooling) at a speed that does not affect the structure.

これは、仮想温度をある程度まで低下させることにより、冷却による構造緩和の発生を防ぐことができるからである。更に、徐冷については、特に大型材に関し、中心と外周の温度差による物理的な応力差に伴う構造の変動が、最終的に歪みとして残留してしまうことを極力防止することを目的としている。   This is because structural relaxation due to cooling can be prevented by lowering the fictive temperature to some extent. Furthermore, with regard to slow cooling, particularly for large materials, the purpose is to prevent as much as possible that structural fluctuations due to the difference in physical stress due to the temperature difference between the center and the periphery will eventually remain as strain. .

従来の硝材の冷却方法の一例として、熱歪みの発生及びその結果として悪化する屈折率の変動を抑えるために、アニールの冷却速度を毎時20℃から100℃に設定したものがある。また、アニール炉内の最高温度をアニールする硝材の歪み点温度以上で、アニール点温度以下に設定している。そして、最高温度保持時間を5分から1時間に設定している(例えば、特許文献1参照)。   As an example of a conventional glass material cooling method, there is a method in which the annealing cooling rate is set from 20 ° C. to 100 ° C. per hour in order to suppress the occurrence of thermal distortion and the resulting refractive index fluctuation. Further, the maximum temperature in the annealing furnace is set to be higher than the strain point temperature of the glass material to be annealed and lower than the annealing point temperature. And the maximum temperature holding time is set to 5 minutes to 1 hour (for example, refer patent document 1).

特開2003−40634号公報JP 2003-40634 A

しかしながら、上述したアニール方法では、高精度の光学性能が要求される光学ガラス素子を製造する上で、十分に熱歪みを除去することが難しく、加工時に割れが生じてしまい、欠けやひびが発生していた。
また、仮想温度を十分に低下させたとしても、特に冷却開始の段階での冷却による応力緩和を防止することは困難であり、応力歪みを完全に取り去って光学的に均質な材料を得ることは難しかった。
さらに、十分に仮想温度を低下させるためには、比較的長い時間、炉内に保持する必要があり、製造コストを低減する上で限界があった。
However, in the above-described annealing method, it is difficult to sufficiently remove the thermal strain in manufacturing an optical glass element that requires high-precision optical performance, and cracks are generated during processing, resulting in chipping and cracking. Was.
Even if the fictive temperature is lowered sufficiently, it is difficult to prevent stress relaxation due to cooling, particularly at the start of cooling, and it is impossible to completely remove stress strain and obtain an optically homogeneous material. was difficult.
Furthermore, in order to sufficiently lower the fictive temperature, it is necessary to keep it in the furnace for a relatively long time, which has a limit in reducing the manufacturing cost.

本発明の目的は、上述した事情に鑑みてなされたものであり、熱歪みの残留を減らして、加工時に欠けやひびを発生することがない高均質な硝材を得ることができる高均質性小径硝材の加工方法及び高均質性小径硝材を提供することにある。   The object of the present invention has been made in view of the above-mentioned circumstances, and is capable of obtaining a highly homogeneous glass material that can reduce a residual thermal strain and can obtain a highly homogeneous glass material that does not cause chipping or cracking during processing. The object is to provide a glass material processing method and a highly homogeneous small diameter glass material.

上記課題を解決することができる本発明に係る高均質性小径硝材の加工方法は、9インチ以下の小径石英ガラス母材を加熱して透明化した後に冷却させ、その後に研削加工により成形する高均質性小径硝材の加工方法であって、
帯域溶融炉を用いて前記石英ガラス母材を移動させながらヒータにより加熱し、前記帯域溶融炉のピークの温度を前記石英ガラス母材がガラス構造を緩和する温度とし、仮想温度の面内分布が均一な状態となるように加熱して、その後に急速に冷却することを特徴としている。
また、本発明に係る高均質性小径硝材は、前記加工方法によって製造されることを特徴としている。
The processing method of the high-homogeneity small-diameter glass material according to the present invention that can solve the above-mentioned problems is a high-temperature method in which a small-diameter quartz glass base material of 9 inches or less is heated and transparentized and then cooled, and then formed by grinding. A processing method for a homogeneous small diameter glass material,
The quartz glass base material is heated by a heater while being moved using a zone melting furnace, the peak temperature of the zone melting furnace is set to a temperature at which the quartz glass base material relaxes the glass structure, and the in-plane distribution of the virtual temperature is It is characterized by heating to a uniform state and then rapidly cooling.
In addition, the high-homogeneity small diameter glass material according to the present invention is manufactured by the processing method.

このような高均質性小径硝材の加工方法及び高均質性小径硝材によれば、均熱炉を用いずに、帯域溶融炉を用いて石英ガラス母材を移動させながらヒータにより加熱する。このとき、帯域溶融炉のピークの温度を石英ガラス母材がガラス構造を緩和する温度とし、仮想温度の面内分布が均一な状態となるように加熱して、その後に急速に冷却する。これにより、熱歪みの残留を減らして、加工時に欠けやひびを発生することがない高均質な小径硝材を得ることができる。   According to such a high homogeneity small-diameter glass material processing method and high-homogeneity small-diameter glass material, a quartz glass base material is moved by a heater while using a zone melting furnace without using a soaking furnace. At this time, the temperature at the peak of the zone melting furnace is set to a temperature at which the quartz glass base material relaxes the glass structure, and heating is performed so that the in-plane distribution of the fictive temperature is uniform, followed by rapid cooling. As a result, it is possible to obtain a highly uniform small-diameter glass material that reduces residual heat distortion and does not generate chips or cracks during processing.

本発明に係る高均質性小径硝材の加工方法及び高均質性小径硝材によれば、石英ガラス母材を加熱して透明化した後に冷却させ、その後に研削加工により成形する高均質性小径硝材の加工方法であって、熱歪みの残留を減らして、切削加工時に欠けやひびを発生することがない高品質な小径硝材を得ることができる。   According to the processing method and the high-homogeneity small-diameter glass material according to the present invention, the high-homogeneity small-diameter glass material is heated and transparentized after being cooled, and then molded by grinding. It is a processing method, and it is possible to obtain a high-quality small-diameter glass material that does not cause chipping or cracking during cutting by reducing residual thermal strain.

本発明の一実施形態に係る高均質性小径硝材の加工方法を適用した硝材加工装置の断面図である。It is sectional drawing of the glass material processing apparatus to which the processing method of the highly homogeneous small diameter glass material which concerns on one Embodiment of this invention is applied. 図1の硝材加工装置におけるヒートプロファイル図である。It is a heat profile figure in the glass material processing apparatus of FIG. 図1の高均質性小径硝材の加工方法に適用されるフローチャートである。It is a flowchart applied to the processing method of the highly homogeneous small diameter glass material of FIG. 本発明の一実施例を示す屈折率分布のグラフである。It is a graph of refractive index distribution which shows one Example of this invention. 本発明の一実施例を示す複屈折率分布のグラフである。It is a graph of birefringence distribution which shows one Example of this invention.

以下、図を参照して本発明の好適な実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1に示すように、本実施形態の硝材加工装置10は、ヒータ12を有する帯域溶融炉11を用いており、帯域溶融炉11内に石英ガラス母材1を挿入する。
石英ガラス母材1は、長さ寸法L1であって、9インチ程度の外径寸法D1を有する小径のガラス母材である。
As shown in FIG. 1, the glass material processing apparatus 10 of this embodiment uses a zone melting furnace 11 having a heater 12, and the quartz glass base material 1 is inserted into the zone melting furnace 11.
The quartz glass base material 1 is a small-diameter glass base material having a length dimension L1 and an outer diameter dimension D1 of about 9 inches.

帯域溶融炉11は、VADすすの焼結などに広く用いられる。帯域溶融炉11は、ヒートゾーンH(図2参照)で温度が高く、ヒートゾーンHを外れた部分では温度が低い。すなわち、均熱炉が炉体全体を一定温度に保つのに対し、帯域溶融炉は、ヒートゾーンが狭く、被加熱体の一部を加熱するものである。   The zone melting furnace 11 is widely used for VAD soot sintering and the like. The zone melting furnace 11 has a high temperature in the heat zone H (see FIG. 2), and the temperature is low in a portion outside the heat zone H. That is, the soaking furnace keeps the entire furnace body at a constant temperature, whereas the zone melting furnace has a narrow heat zone and heats a part of the object to be heated.

石英ガラス母材1は、その上部支持棒2を帯域溶融炉11に装備された把持装置13に把持されている。把持装置13はガイド14に結合されている。石英ガラス母材1は、ガイド14が移動することにより、ヒータ12に対して上方から下方へ向けて、或いはヒータ12に対して下方から上方へ向けて予め定められた速度で移動される。   The quartz glass base material 1 has its upper support rod 2 held by a holding device 13 provided in a zone melting furnace 11. The gripping device 13 is coupled to the guide 14. As the guide 14 moves, the quartz glass base material 1 is moved from the upper side to the lower side with respect to the heater 12 or from the lower side to the upper side with respect to the heater 12 at a predetermined speed.

次に、図2および図3を参照して、硝材加工装置10を用いた高均質性小径硝材の加工方法について説明する。   Next, with reference to FIG. 2 and FIG. 3, the processing method of the highly homogeneous small diameter glass material using the glass material processing apparatus 10 is demonstrated.

[成形工程]
図2に示すように、帯域溶融炉11は、ヒータ12の中心から上下に100mmをそれぞれ有する200mmのヒートゾーンHを設定している。帯域溶融炉11は、ヒートゾーンHで1200℃程度の炉温に設定される。
[Molding process]
As shown in FIG. 2, the zone melting furnace 11 sets a 200 mm heat zone H having 100 mm above and below from the center of the heater 12. The zone melting furnace 11 is set to a furnace temperature of about 1200 ° C. in the heat zone H.

帯域溶融炉11は、ガイド14を介して石英ガラス母材1がヒートゾーンHを通過する際の移動速度を10mm/分に設定している。即ち、石英ガラス母材1は、20分間かけてヒートゾーンHを通過する。
このとき、石英ガラス母材1は、ヒートゾーンHを通過する際に、ガラス構造が緩和されて仮想温度の面内分布が均一な状態となるように加熱される。
In the zone melting furnace 11, the moving speed when the quartz glass base material 1 passes through the heat zone H via the guide 14 is set to 10 mm / min. That is, the quartz glass base material 1 passes through the heat zone H over 20 minutes.
At this time, when passing through the heat zone H, the quartz glass base material 1 is heated so that the glass structure is relaxed and the in-plane distribution of the virtual temperature is uniform.

そして、帯域溶融炉11は、石英ガラス母材1がヒートゾーンHを通過した後も、10mm/分の移動速度で石英ガラス母材1を移動させる。このため、ヒートゾーンHを外れた後に急速な冷却が行われる。このとき、石英ガラス母材1は急速な冷却が行われることで、熱歪みの残留が減少することになる。   The zone melting furnace 11 moves the quartz glass preform 1 at a moving speed of 10 mm / min even after the quartz glass preform 1 passes through the heat zone H. For this reason, after leaving the heat zone H, rapid cooling is performed. At this time, the quartz glass base material 1 is rapidly cooled to reduce the residual thermal strain.

前述した方法で成形された石英ガラス母材1は、その後加工工程を経てレンズ形状などに加工される。以下にその加工工程について記載する。   The quartz glass base material 1 formed by the above-described method is processed into a lens shape or the like through a subsequent processing step. The processing steps are described below.

[加工工程]
図3に示すように、研磨プロセスフロー50を実行することで、上述した石英ガラス母材1からレンズ形状に切削・研削加工を行う。その後、研磨加工を行うことで高品質な光学レンズを得ることができる。
[Processing process]
As shown in FIG. 3, by performing the polishing process flow 50, the quartz glass base material 1 described above is cut and ground into a lens shape. Thereafter, a high quality optical lens can be obtained by polishing.

先ず、石英ガラス母材1を溶融してから、ディスク形状に切削加工が行われる(ステップ101〜102)。このとき、石英ガラス母材1は、熱歪みの残留がないために、切削される際に、欠けやひびを発生することなくディスク形状に切削される。   First, after the quartz glass base material 1 is melted, cutting into a disk shape is performed (steps 101 to 102). At this time, since there is no residual thermal strain, the quartz glass base material 1 is cut into a disk shape without being chipped or cracked.

次に、予め定められた温度および時間によるアニールが行われてから、ディスク形状に切削された石英ガラス母材1の上面を研削する。続いて、石英ガラス母材1の下面の研削を行い、洗浄を行う(ステップ103〜106)。このとき、石英ガラス母材1は、熱歪みの残留がないために、研削される際に、欠けやひびを発生することなく研削が行われる。   Next, after annealing is performed at a predetermined temperature and time, the upper surface of the quartz glass base material 1 cut into a disk shape is ground. Subsequently, the lower surface of the quartz glass base material 1 is ground and cleaned (steps 103 to 106). At this time, since the quartz glass base material 1 has no residual thermal strain, it is ground without being chipped or cracked.

次に、レンズ形状に研削された石英ガラス母材1は、両レンズ面を平滑化するために、第1面研磨・洗浄、第2面研磨・洗浄を行う(ステップ107〜110)。   Next, the quartz glass base material 1 ground into a lens shape is subjected to first surface polishing / cleaning and second surface polishing / cleaning in order to smooth both lens surfaces (steps 107 to 110).

最後に、研磨工程が完了した石英ガラス母材1は、屈折率の測定等のセンタリング処理を行ってから洗浄を行う。その後、両レンズ面をコーティング処理して仕上げる(ステップ111〜113)。   Finally, the quartz glass base material 1 that has been subjected to the polishing process is subjected to a centering process such as a refractive index measurement and then washed. Thereafter, both lens surfaces are coated and finished (steps 111 to 113).

以上説明したように、本発明の一実施形態に係る高均質性小径硝材の加工方法は、均熱炉を用いずに、帯域溶融炉11を用いて石英ガラス母材1を移動させながらヒータ12により加熱する。このとき、帯域溶融炉11のピークの温度を石英ガラス母材1がガラス構造を緩和する温度とし、仮想温度の面内分布が均一な状態となるように加熱して、その後に急速に冷却する。これにより、熱歪みの残留を減らして、加工時に欠けやひびを発生することがない高均質な小径硝材を得ることができる。   As described above, the processing method of the high-homogeneity small-diameter glass material according to one embodiment of the present invention does not use the soaking furnace, but moves the quartz glass base material 1 using the zone melting furnace 11 while heating the heater 12. To heat. At this time, the temperature of the peak of the zone melting furnace 11 is set to a temperature at which the quartz glass base material 1 relaxes the glass structure, and heating is performed so that the in-plane distribution of the fictive temperature is uniform, followed by rapid cooling. . As a result, it is possible to obtain a highly uniform small-diameter glass material that reduces residual heat distortion and does not generate chips or cracks during processing.

次に、本発明に係る高均質性小径硝材の加工方法の作用効果を確かめるために行った実施例及び比較例について説明する。なお、比較例としては、本発明とは異なる均熱炉を使用し、1300℃で加熱、その後冷却速度7.0℃/分で冷却して製造された小径硝材を用い、本発明により得られた小径硝材と比較した。   Next, examples and comparative examples performed for confirming the operational effects of the processing method of the highly homogeneous small diameter glass material according to the present invention will be described. In addition, as a comparative example, a soaking furnace different from the present invention is used, and a small-diameter glass material manufactured by heating at 1300 ° C. and then cooling at a cooling rate of 7.0 ° C./min is used. Compared with small diameter glass material.

[屈折率測定]
ガラスの光学的特性のうちの歪みの影響により変動する屈折率Δnの変動を調べた。結果を図4に示す。
[Refractive index measurement]
Of the optical characteristics of the glass, the variation of the refractive index Δn, which varies due to the influence of strain, was examined. The results are shown in FIG.

[複屈折率測定]
ガラスの光学的特性のうちの歪みの影響により変動する複屈折率の変動を調べた。結果を図5に示す。
[Birefringence measurement]
The variation of the birefringence which fluctuates due to the influence of strain among the optical properties of the glass was investigated. The results are shown in FIG.

図4及び図5より明らかなように、比較例は、屈折率Δnの変動値が12ppm以下であって、複屈折率の変動値が13nm/cm以下である。これに対して実施例は、屈折率Δnの変動値が0.4ppm以下であって、複屈折率の変動値が4nm/cm以下である。したがって、熱歪みの残留が大幅に減少していることがわかる。   As is apparent from FIGS. 4 and 5, in the comparative example, the variation value of the refractive index Δn is 12 ppm or less, and the variation value of the birefringence is 13 nm / cm or less. On the other hand, in the example, the variation value of the refractive index Δn is 0.4 ppm or less, and the variation value of the birefringence is 4 nm / cm or less. Therefore, it can be seen that the residual thermal strain is greatly reduced.

これは、帯域溶融炉11を用いて石英ガラス母材1を移動させながらヒータ12により加熱する部分において、帯域溶融炉11のピークの温度を石英ガラス母材1がガラス構造を緩和する温度とし、仮想温度の面内分布が均一な状態となるように加熱して、その後に急速に冷却したことに因ると考えられる。   This is the temperature at which the quartz glass base material 1 relaxes the glass structure at the peak temperature of the zone melting furnace 11 in the portion heated by the heater 12 while moving the quartz glass base material 1 using the zone melting furnace 11, This is considered to be due to heating so that the in-plane distribution of the fictive temperature is uniform and then rapidly cooling.

なお、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が自在である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所、等は本発明を達成できるものであれば任意であり、限定されない。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

1 石英ガラス母材
10 硝材加工装置
11 帯域溶融炉
12 ヒータ
50 研磨プロセスフロー
DESCRIPTION OF SYMBOLS 1 Quartz glass base material 10 Glass material processing apparatus 11 Zone melting furnace 12 Heater 50 Polishing process flow

Claims (2)

9インチ以下の小径石英ガラス母材を加熱して透明化した後に冷却させ、その後に研削加工により成形する高均質性小径硝材の加工方法であって、
帯域溶融炉を用いて前記石英ガラス母材を移動させながらヒータにより加熱し、前記帯域溶融炉のピークの温度を前記石英ガラス母材がガラス構造を緩和する温度とし、仮想温度の面内分布が均一な状態となるように加熱して、その後に急速に冷却することを特徴とする高均質性小径硝材の加工方法。
A method for processing a highly homogeneous small-diameter glass material in which a small-diameter quartz glass base material of 9 inches or less is heated and transparentized and then cooled, and then formed by grinding.
The quartz glass base material is heated by a heater while being moved using a zone melting furnace, the peak temperature of the zone melting furnace is set to a temperature at which the quartz glass base material relaxes the glass structure, and the in-plane distribution of the virtual temperature is A method for processing a high-homogeneity small-diameter glass material, which is heated to a uniform state and then rapidly cooled.
請求項1記載の加工方法により製造したことを特徴とする高均質性小径硝材。   A highly homogeneous small-diameter glass material produced by the processing method according to claim 1.
JP2009074413A 2009-03-25 2009-03-25 Method for processing high homogeneous small diameter glass material and homogeneous small diameter glass material Pending JP2010222224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009074413A JP2010222224A (en) 2009-03-25 2009-03-25 Method for processing high homogeneous small diameter glass material and homogeneous small diameter glass material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009074413A JP2010222224A (en) 2009-03-25 2009-03-25 Method for processing high homogeneous small diameter glass material and homogeneous small diameter glass material

Publications (1)

Publication Number Publication Date
JP2010222224A true JP2010222224A (en) 2010-10-07

Family

ID=43039829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009074413A Pending JP2010222224A (en) 2009-03-25 2009-03-25 Method for processing high homogeneous small diameter glass material and homogeneous small diameter glass material

Country Status (1)

Country Link
JP (1) JP2010222224A (en)

Similar Documents

Publication Publication Date Title
JP7139886B2 (en) Method for manufacturing glass substrate having holes, and glass laminate for annealing
WO2015022966A1 (en) Low scattering silica glass, and method for thermally treating silica glass
WO2015019989A1 (en) Photosensitive glass molded article and method for manufacturing same
JP6107701B2 (en) Method for heat treatment of synthetic quartz glass and method for producing synthetic quartz glass substrate
JP4462557B2 (en) Method for producing synthetic silica glass substrate for photomask, synthetic silica glass substrate for photomask by the method
JP2010070432A (en) Method for processing highly homogenous material
JP2009530217A (en) Production of large articles with synthetic vitreous silica
JP2006221166A (en) Polarizing glass and method for manufacturing polarizing glass
EP2351714B1 (en) Method for manufacturing optical fiber preform
JP2010222224A (en) Method for processing high homogeneous small diameter glass material and homogeneous small diameter glass material
JP5345352B2 (en) Manufacturing method of optical fiber preform
JPWO2010103869A1 (en) Manufacturing method of single crystal optical lens
JP5480568B2 (en) Glass product manufacturing method and glass product
JP4692500B2 (en) Method for producing optical glass element and method for fine adjustment of refractive index of glass molded article
JPH1171125A (en) Production of preform for optical fiber
JP2008110897A (en) Preform for precision press molding, and method of manufacturing optical element from the same
EP2497755B1 (en) Method of manufacturing fluorine-containing optical fiber base material
JP2011016675A (en) Method of manufacturing optical element
JP4498802B2 (en) Glass rod flame polishing method, optical fiber manufacturing method
JP2003040634A (en) Annealing method for optical glass element
JP2019043801A (en) Residual stress reduction method of glass substrate and residual stress reduction device of glass substrate
JP2011037657A (en) Method for manufacturing glass lens
JP2011011937A (en) Method for manufacturing optical element
JP2001039721A (en) Heat treatment of optical fiber preform
JP5758447B2 (en) Manufacturing method of optical fiber preform