JP2010219283A - Method for manufacturing calibration block and charged particle beam lithography system - Google Patents

Method for manufacturing calibration block and charged particle beam lithography system Download PDF

Info

Publication number
JP2010219283A
JP2010219283A JP2009064197A JP2009064197A JP2010219283A JP 2010219283 A JP2010219283 A JP 2010219283A JP 2009064197 A JP2009064197 A JP 2009064197A JP 2009064197 A JP2009064197 A JP 2009064197A JP 2010219283 A JP2010219283 A JP 2010219283A
Authority
JP
Japan
Prior art keywords
stage
height
calibration block
block
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009064197A
Other languages
Japanese (ja)
Other versions
JP2010219283A5 (en
JP5635240B2 (en
Inventor
Satoshi Yasuda
聡 安田
Yoshiro Yamanaka
吉郎 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2009064197A priority Critical patent/JP5635240B2/en
Publication of JP2010219283A publication Critical patent/JP2010219283A/en
Publication of JP2010219283A5 publication Critical patent/JP2010219283A5/en
Application granted granted Critical
Publication of JP5635240B2 publication Critical patent/JP5635240B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a calibration block capable of suppressing the generation of an eddy current and securing the advanced smoothness of a reference reflecting surface, wherein the calibration block is provided on a stage so as to calibrate a height measuring instrument for measuring the height of a sample by allowing a light beam to enter and reflect on a surface of the sample mounted on the stage, and has the reference reflecting surface reflecting the light beam from the height measuring instrument on the upper surface thereof. <P>SOLUTION: A block body 102 of the calibration block is formed of a non-conductive material. On the upper surface of the block body 102, a metal coat with a coating thickness of 10-100 μm is laminated, and the surface of the coat 103 is finished into a reference reflecting surface 101 by machining. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ステージ上に載置された試料の表面に光線を入反射させて試料の高さを測定する高さ測定器の校正のためにステージ上に設けられる校正ブロックの製造方法及びこの製造方法で製造される校正ブロックを用いた荷電粒子ビーム描画装置に関する。   The present invention relates to a method for manufacturing a calibration block provided on a stage for the calibration of a height measuring device that measures the height of a sample by making light rays incident on and reflected from the surface of the sample placed on the stage, and the manufacturing thereof. The present invention relates to a charged particle beam drawing apparatus using a calibration block manufactured by the method.

荷電粒子ビーム描画装置は、試料を載置するステージと、ビーム照射手段とを備え、ステージ上に載置された試料にビーム照射手段により荷電粒子ビームを照射して所定のパターンを描画するように構成されている。ここで、試料の高さが変化すると、ビーム照射手段に設けられた偏向器により偏向される荷電粒子ビームの試料に対する照射位置が変化する。そのため、ステージ上に載置された試料の表面に光線を入反射させて試料の高さを測定する高さ測定器を設け、高さ測定器による高さ測定値に応じて荷電粒子ビームの偏向角度を補正している。   The charged particle beam drawing apparatus includes a stage on which a sample is placed and beam irradiation means, and draws a predetermined pattern by irradiating the sample placed on the stage with a charged particle beam by the beam irradiation means. It is configured. Here, when the height of the sample changes, the irradiation position on the sample of the charged particle beam deflected by the deflector provided in the beam irradiation means changes. For this reason, a height measuring device is provided to measure the height of the sample by reflecting the light beam on the surface of the sample placed on the stage, and the charged particle beam is deflected according to the height measured by the height measuring device. The angle is corrected.

また、従来、ステージ上に、高さ測定器の校正のための校正ブロックを設け、校正ブロックの上面の基準反射面に高さ測定器からの光線を入反射させて、高さ測定器による測定高さと基準反射面の高さとの関係に基づいて、高さ測定器の校正を行なうようにしたものも知られている(例えば、特許文献1参照。)。この校正ブロックは金属製であり、その上面を表面粗さRaが0.01程度になるように機械加工して基準反射面としている。   Conventionally, a calibration block for calibration of the height measuring instrument has been provided on the stage, and the light from the height measuring instrument is incident on and reflected from the reference reflecting surface on the upper surface of the calibration block. There is also known one that calibrates the height measuring device based on the relationship between the height and the height of the reference reflecting surface (for example, see Patent Document 1). This calibration block is made of metal, and the upper surface thereof is machined so that the surface roughness Ra is about 0.01 to form a reference reflecting surface.

ところで、描画中に、ビーム照射手段に設けた偏向器や対物レンズの磁場の一部がステージ上に漏れ、ステージの移動に伴い漏洩磁場中で校正ブロックが移動して、金属製の校正ブロックに渦電流が発生することがある。そして、渦電流による磁場の影響で荷電粒子ビームの照射位置に誤差を生じ、描画精度が低下してしまう。   By the way, during drawing, part of the magnetic field of the deflector and objective lens provided in the beam irradiation means leaks onto the stage, and the calibration block moves in the leakage magnetic field as the stage moves, resulting in a metal calibration block. Eddy currents may be generated. Then, an error occurs in the irradiation position of the charged particle beam due to the influence of the magnetic field due to the eddy current, and the drawing accuracy is lowered.

そこで、従来、校正ブロックのブロック本体を非導電性材料であるセラミックスで形成し、ブロック本体の上面を機械加工で平滑に仕上げた後、ブロック本体の上面に厚さ0.5μm程度の金メッキから成る薄膜を積層し、薄膜の表面を基準反射面とした校正ブロックも知られている。然し、セラミックス製のブロック本体の上面を平滑に機械加工しても、その表面粗さRaは0.05程度にしかならず、その上に積層した薄膜の表面粗さも同程度になってしまう。その結果、高さ測定器による測定高さにばらつきを生じ、高さ測定器の校正ミスを生じやすくなる。   Therefore, conventionally, the block body of the calibration block is formed of ceramics which is a non-conductive material, the upper surface of the block body is smoothed by machining, and then the upper surface of the block body is made of gold plating with a thickness of about 0.5 μm. There is also known a calibration block in which thin films are stacked and the surface of the thin film is used as a reference reflecting surface. However, even if the upper surface of the ceramic block body is machined smoothly, the surface roughness Ra is only about 0.05, and the surface roughness of the thin film laminated thereon is also about the same. As a result, the height measured by the height measuring device varies, and a calibration error of the height measuring device is likely to occur.

特開平6−3115号公報JP-A-6-3115

本発明は、以上の点に鑑み、渦電流の発生を抑制できると共に基準反射面の高度の平滑性を確保できるようにした校正ブロックの製造方法及びこの製造方法で製造される校正ブロックを用いた荷電粒子ビーム描画装置を提供することをその課題としている。   In view of the above, the present invention uses a calibration block manufacturing method capable of suppressing the generation of eddy currents and ensuring a high degree of smoothness of the reference reflecting surface, and a calibration block manufactured by this manufacturing method. An object of the present invention is to provide a charged particle beam drawing apparatus.

上記課題を解決するために、本発明の第1の態様は、ステージ上に載置された試料の表面に光線を入反射させて試料の高さを測定する高さ測定器の校正のために、ステージ上に設けられる、上面に高さ測定器からの光線を反射する基準反射面を有する校正ブロックの製造方法であって、校正ブロックのブロック本体を非導電性材料で形成し、ブロック本体の上面に金属製の被膜を積層し、被膜の表面を機械加工で前記基準反射面に仕上げることを特徴とする。   In order to solve the above-described problem, the first aspect of the present invention is for calibration of a height measuring instrument that measures the height of a sample by causing light rays to enter and reflect the surface of the sample placed on the stage. A method of manufacturing a calibration block provided on a stage and having a reference reflecting surface for reflecting a light beam from a height measuring device on an upper surface, wherein the block body of the calibration block is formed of a non-conductive material, A metal film is laminated on the upper surface, and the surface of the film is finished to the reference reflecting surface by machining.

本発明の第1の態様において、前記被膜の機械加工前の膜厚は10〜100μm程度であることが望ましい。   1st aspect of this invention WHEREIN: It is desirable for the film thickness before the machining of the said film to be about 10-100 micrometers.

また、本発明の第1の態様においては、前記ブロック本体の下面に第2の被膜を積層し、前記被膜の機械加工後に、前記基準反射面の高さが所定高さになるように第2の被膜を機械加工することが望ましい。   In the first aspect of the present invention, the second coating is laminated on the lower surface of the block main body, and the second reflecting surface is set to a predetermined height after machining the coating. It is desirable to machine the coating.

更に、本発明の第1の態様において、前記ブロック本体を形成する非導電性材料は、非磁性体又は磁化曲線がヒステリシスを持たない磁性体であることが望ましい。   Furthermore, in the first aspect of the present invention, it is desirable that the non-conductive material forming the block body is a non-magnetic material or a magnetic material whose magnetization curve has no hysteresis.

また、本発明の第2の態様は、試料を載置するステージと、ビーム照射手段とを備え、ステージ上に載置された試料にビーム照射手段により荷電粒子ビームを照射して所定のパターンを描画する荷電粒子ビーム描画装置であって、ステージ上に載置された試料の表面に光線を入反射させて試料の高さを測定する光学式高さ測定器と、この高さ測定器の校正のために、ステージ上に固設した校正ブロックとを備えるものにおいて、前記校正ブロックとして、本発明の第1の態様の製造方法で製造された校正ブロックを用いることを特徴とする。   The second aspect of the present invention includes a stage on which a sample is placed, and beam irradiation means, and the sample placed on the stage is irradiated with a charged particle beam by the beam irradiation means to form a predetermined pattern. A charged particle beam drawing apparatus for drawing, an optical height measuring device that measures the height of a sample by making light rays incident on the surface of the sample placed on the stage, and calibration of the height measuring device For this purpose, a calibration block fixed on a stage is used, and the calibration block manufactured by the manufacturing method according to the first aspect of the present invention is used as the calibration block.

本発明によれば、漏洩磁場中で校正ブロックが移動しても、ブロック本体は非導電性材料で形成されるため、渦電流の発生が抑制され、描画精度を確保できる。また、金属製の被膜を機械加工することで、基準反射面の高度の平滑性を確保でき、高さ測定器による測定高さにばらつきを生じず、高さ測定器の校正ミスを防止できる。   According to the present invention, even if the calibration block moves in a leakage magnetic field, the block body is formed of a non-conductive material, so that generation of eddy currents is suppressed and drawing accuracy can be ensured. Further, by machining the metal coating, it is possible to ensure a high degree of smoothness of the reference reflecting surface, to prevent variations in the measurement height by the height measuring instrument, and to prevent a calibration error of the height measuring instrument.

本発明の実施形態の描画装置である電子ビーム描画装置の構成を示す概念図。The conceptual diagram which shows the structure of the electron beam drawing apparatus which is the drawing apparatus of embodiment of this invention. 本発明の実施形態の校正ブロックの製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of the calibration block of embodiment of this invention. 本発明の他の実施形態の校正ブロックの製造方法を示す説明図。Explanatory drawing which shows the manufacturing method of the calibration block of other embodiment of this invention.

図1は本発明の荷電粒子ビーム描画装置の一例である電子ビーム描画装置を示している。電子ビーム描画装置は、描画室1と、描画室1の天井部に立設したビーム照射手段たる電子鏡筒2とを備えている。描画室1には、互いに直交するX方向及びY方向に移動自在なステージ3が設けられており、ステージ3上に試料Wが載置される。試料Wは、例えば、ガラス基板上にクロム膜等の遮光膜とレジスト膜とが積層されたマスクである。   FIG. 1 shows an electron beam drawing apparatus which is an example of a charged particle beam drawing apparatus of the present invention. The electron beam drawing apparatus includes a drawing chamber 1 and an electron column 2 that is a beam irradiation means standing on the ceiling of the drawing chamber 1. The drawing chamber 1 is provided with a stage 3 that is movable in the X and Y directions orthogonal to each other, and a sample W is placed on the stage 3. The sample W is, for example, a mask in which a light shielding film such as a chromium film and a resist film are stacked on a glass substrate.

電子鏡筒2は、電子銃21、対物レンズ22−1を含む各種レンズ22、ブランキング用偏向器23、ビーム成形用偏向器24、ビーム走査用の副偏向器25、ビーム走査用の主偏向器26、ブランキング用アパーチャ27及びビーム成形用アパーチャ28を有する。ビーム成形用偏向器24とビーム成形用アパーチャ28は、ビーム形状を可変制御する役割を果たす。   The electron column 2 includes an electron gun 21, various lenses 22 including an objective lens 22-1, a blanking deflector 23, a beam shaping deflector 24, a beam scanning sub deflector 25, and a beam scanning main deflection. And a blanking aperture 27 and a beam shaping aperture 28. The beam shaping deflector 24 and the beam shaping aperture 28 serve to variably control the beam shape.

電子鏡筒2は照射制御部4により制御され、ステージ3はステージ制御部5により制御される。そして、これら照射制御部4及びステージ制御部5は全体制御部6で統括制御される。全体制御部6には、第1メモリ7と第2メモリ7とが接続されている。第1メモリ7にはパターンデータが記憶されている。全体制御部6は、パターンデータに基づいて描画すべき図形の形状、位置を規定する描画データを作成し、これを第2メモリ7に記憶させる。 The electron column 2 is controlled by the irradiation controller 4, and the stage 3 is controlled by the stage controller 5. The irradiation control unit 4 and the stage control unit 5 are comprehensively controlled by the overall control unit 6. The overall control unit 6, the first memory 71 and a 2 second memory 7 is connected. The first memory 71 pattern data is stored. The overall control unit 6, the shape of the graphic to be drawn based on the pattern data, to create the drawing data defining the position, and stores it in 2 second memory 7.

また、電子ビーム描画装置は、ステージ3のX方向及びY方向の位置を測定するステージ位置測定器8と、ステージ3に載置された試料Wの高さを測定する高さ測定器9とを備えている。ステージ位置測定器8は、ステージ3に固定したステージミラー3aへのレーザー光の入反射でステージ3の位置を測定するレーザー測長計で構成されている。   Further, the electron beam drawing apparatus includes a stage position measuring device 8 that measures the position of the stage 3 in the X direction and the Y direction, and a height measuring device 9 that measures the height of the sample W placed on the stage 3. I have. The stage position measuring device 8 is composed of a laser length meter that measures the position of the stage 3 by incident / reflected laser light on a stage mirror 3 a fixed to the stage 3.

高さ測定器9は、レーザー光を試料Wの表面に斜め上方から収束して照射する投光部9aと、試料Wからの反射光を受光して反射光の位置を検出する受光部9bと、反射光の位置から試料Wの高さを算出する高さ算出部9cとで構成されている。高さ測定器9で測定された試料Wの高さデータは全体制御部6に入力される。そして、全体制御部6は、試料Wの高さの正規高さからのずれ量に応じて、描画精度を維持するのに必要な電子ビームの偏向角や焦点範囲を算出し、描画データを補正する。   The height measuring device 9 includes a light projecting unit 9a that converges and irradiates laser light on the surface of the sample W obliquely from above, and a light receiving unit 9b that receives the reflected light from the sample W and detects the position of the reflected light. The height calculation unit 9c calculates the height of the sample W from the position of the reflected light. The height data of the sample W measured by the height measuring device 9 is input to the overall control unit 6. Then, the overall control unit 6 calculates the deflection angle and focus range of the electron beam necessary to maintain the drawing accuracy according to the deviation amount of the height of the sample W from the normal height, and corrects the drawing data. To do.

試料Wへのパターンの描画に際しては、全体制御部6からステージ制御部5に動作指令が出され、ステージ3が移動される。また、照射制御部4では、全体制御部6から入力される描画データに基づき、ステージ位置測定器8で測定したステージ3の位置を確認しつつ、電子鏡筒2内の電子ビームの成形制御、偏向制御を行って、試料Wの所要の位置に電子ビームを照射する。   When drawing a pattern on the sample W, an operation command is issued from the overall control unit 6 to the stage control unit 5, and the stage 3 is moved. Further, the irradiation control unit 4 controls the shaping of the electron beam in the electron column 2 while confirming the position of the stage 3 measured by the stage position measuring device 8 based on the drawing data input from the overall control unit 6. Deflection control is performed to irradiate a desired position of the sample W with an electron beam.

ここで、ステージ3上には、高さ測定器9の校正のための校正ブロック10が設けられている。校正ブロック10は、図2(b)に示す如く、上面に高さ測定器9の投光部9aからのレーザー光を反射する基準反射面101を有する。基準反射面101には、階段状に複数の段が付けられている。そして、ステージ3を移動調整して、基準反射面101の各段に高さ測定器9の投光部9aからのレーザー光を入反射させ、受光部9bで検出される反射光の位置に基づいて高さ算出部9cにより算出される測定高さと基準反射面101の各段の高さとを比較して、測定高さの誤差が補正されるように高さ測定器9の校正を行う。   Here, a calibration block 10 for calibrating the height measuring device 9 is provided on the stage 3. As shown in FIG. 2B, the calibration block 10 has a reference reflecting surface 101 that reflects the laser light from the light projecting portion 9a of the height measuring device 9 on the upper surface. The reference reflecting surface 101 has a plurality of steps in a staircase pattern. Then, the stage 3 is moved and adjusted so that the laser light from the light projecting unit 9a of the height measuring device 9 enters and reflects each stage of the reference reflecting surface 101, and based on the position of the reflected light detected by the light receiving unit 9b. The height measuring unit 9c is compared with the height of each step of the reference reflecting surface 101, and the height measuring device 9 is calibrated so that the measurement height error is corrected.

ところで、描画中に、電子鏡筒2の下部に設けた主偏向器26や対物レンズ22−1で発生する磁場の一部がステージ3上に漏れ、ステージ3の移動に伴い漏洩磁場中で校正ブロック10が移動することがある。そして、校正ブロック10が金属製であると、校正ブロック10に渦電流が発生し、渦電流による磁場の影響で電子ビームの照射位置に誤差を生じ、描画精度が低下してしまう。   By the way, during drawing, a part of the magnetic field generated by the main deflector 26 and the objective lens 22-1 provided in the lower part of the electron lens barrel 2 leaks onto the stage 3, and is calibrated in the leaked magnetic field as the stage 3 moves. The block 10 may move. If the calibration block 10 is made of metal, an eddy current is generated in the calibration block 10, and an error occurs in the irradiation position of the electron beam due to the influence of the magnetic field due to the eddy current, resulting in a reduction in drawing accuracy.

そこで、本実施形態では、校正ブロック10を以下のように製造している。即ち、校正ブロック10のブロック本体102を非導電性材料で形成し、ブロック本体102の上面に、図2(a)に示す如く、メッキやスプレー等で金属製の被膜103を積層する。その後、図2(b)に示す如く、被膜103の表面を機械加工で基準反射面101に仕上げている。尚、ブロック本体102の下部にはフランジ部102aが一体成形されており、フランジ部102aに形成した取付孔102bにおいて校正ブロック10をステージ3にボルト止めするようにしている。   Therefore, in the present embodiment, the calibration block 10 is manufactured as follows. That is, the block main body 102 of the calibration block 10 is formed of a non-conductive material, and a metal film 103 is laminated on the upper surface of the block main body 102 by plating or spraying as shown in FIG. Thereafter, as shown in FIG. 2B, the surface of the coating 103 is finished to a reference reflecting surface 101 by machining. A flange portion 102a is integrally formed at the lower portion of the block main body 102, and the calibration block 10 is bolted to the stage 3 in an attachment hole 102b formed in the flange portion 102a.

ブロック本体102を形成する非導電性材料としては、炭化ケイ素、アルミナ、ジルコニア等のセラミックス、石英、ガラス、Si等を挙げることができる。また、漏洩磁場中でブロック本体102が磁化されないよう、ブロック本体102の形成材料は非磁性体であることが望ましい。尚、セラミックスの多くは非磁性体とされているが、厳密には若干磁化する磁性体である。ここで、校正ブロック10に及ぶ漏洩磁場の強さはステージ3の移動に伴い変化するが、この磁場の強さは予め調べることができる。そして、ブロック本体102の形成材料が磁性体であっても、磁化曲線がヒステリシスを持たない磁性体であれば、予め調べた磁場の強さに応じてブロック本体102の磁化の強さを一義的に求めることができ、ブロック本体102の磁化による描画精度への影響を補正できる。従って、ブロック本体102の形成材料は、磁化曲線がヒステリシスを持たない磁性体であってもよい。   Examples of the nonconductive material forming the block body 102 include ceramics such as silicon carbide, alumina, zirconia, quartz, glass, Si, and the like. Further, it is desirable that the material forming the block body 102 is a non-magnetic material so that the block body 102 is not magnetized in the leakage magnetic field. Although most ceramics are non-magnetic materials, strictly speaking, they are magnetic materials that are slightly magnetized. Here, although the strength of the leakage magnetic field reaching the calibration block 10 changes as the stage 3 moves, the strength of this magnetic field can be examined in advance. Even if the material forming the block body 102 is a magnetic body, if the magnetization curve is a magnetic body having no hysteresis, the magnetization strength of the block body 102 is uniquely determined according to the strength of the magnetic field examined in advance. The influence on the drawing accuracy due to the magnetization of the block main body 102 can be corrected. Therefore, the forming material of the block body 102 may be a magnetic material whose magnetization curve has no hysteresis.

被膜103の形成材料たる金属としては、ニッケル、チタン、金等を挙げることができるが、中でも固有抵抗が約6.9μΩ・cmと比較的大きく、安価で機械加工しやすいニッケルが好ましい。また、被膜103の機械加工前の膜厚が10μm未満であると、ピンホールが発生したり、ブロック本体102の表面粗さの影響が被膜103の表面に現れ、被膜103の表面を平滑に機械加工する途中でブロック本体102が露出してしまう可能性がある。従って、被膜103の機械加工前の膜厚は10μm以上とすることが望ましい。また、膜厚が100μm以下であれば、被膜103の電気抵抗値が高くなり、被膜103中の渦電流の発生を抑制できる。膜厚が100μmを超えると、膜厚を渦電流の発生が抑制される程度まで薄くするために、機械加工による削り代が無駄に増加してしまうから、被膜103の機械加工前の膜厚は100μm以下とすることが望ましい。   Examples of the metal that forms the coating 103 include nickel, titanium, gold, and the like. Among them, nickel, which has a relatively large specific resistance of about 6.9 μΩ · cm, is inexpensive, and is easy to machine, is preferable. Further, if the film thickness of the film 103 before machining is less than 10 μm, pinholes are generated or the influence of the surface roughness of the block body 102 appears on the surface of the film 103, and the surface of the film 103 is machined smoothly. There is a possibility that the block main body 102 is exposed during the processing. Therefore, the film thickness of the coating 103 before machining is desirably 10 μm or more. Moreover, if the film thickness is 100 μm or less, the electrical resistance value of the film 103 becomes high, and the generation of eddy currents in the film 103 can be suppressed. When the film thickness exceeds 100 μm, since the film thickness is reduced to such an extent that the generation of eddy current is suppressed, the machining allowance by machining increases unnecessarily. It is desirable that the thickness be 100 μm or less.

被膜103の表面、即ち、基準反射面101は、機械加工で表面粗さRaが0.01〜0.03程度になるように仕上げられる。ここで、機械加工としては、切削加工や研削加工を挙げることができるが、研削加工では基準反射面101のエッジ部のダレを生じやすくなるため、切削加工で被膜103の表面を基準反射面101に仕上げることが好ましい。   The surface of the coating 103, that is, the reference reflecting surface 101 is finished by machining so that the surface roughness Ra is about 0.01 to 0.03. Here, examples of the machining include cutting and grinding. However, since the edge of the reference reflective surface 101 is likely to sag in the grinding, the surface of the coating 103 is removed by cutting. It is preferable to finish.

上記の如く製造した校正ブロック10を用いれば、漏洩磁場中で校正ブロック10が移動しても、ブロック本体102は非導電性材料で形成されるため、渦電流の発生が抑制され、描画精度を確保できる。また、金属製の被膜103の表面を機械加工することで、基準反射面101の高度の平滑性を確保でき、高さ測定器9による測定高さにばらつきを生じず、高さ測定器9の校正ミスを防止できる。   If the calibration block 10 manufactured as described above is used, even if the calibration block 10 moves in the leakage magnetic field, the block body 102 is formed of a non-conductive material, so that the generation of eddy currents is suppressed and the drawing accuracy is improved. It can be secured. Further, by machining the surface of the metal coating 103, a high degree of smoothness of the reference reflecting surface 101 can be secured, and the height measured by the height measuring device 9 does not vary, and the height measuring device 9 Calibration errors can be prevented.

ところで、被膜103の機械加工に際しては、表面を平滑にするだけでなく、基準反射面101の各段の高さが所定の規定高さになるように調整する必要があるが、表面の平滑性を確保しつつ高さも合わせることは容易ではない。そこで、高さ調整を容易にした校正ブロック10の製造方法の実施形態について、図3を参照して説明する。   By the way, when machining the coating 103, it is necessary not only to make the surface smooth, but also to adjust the height of each step of the reference reflecting surface 101 to a predetermined specified height. It is not easy to match the height while securing the height. An embodiment of a method for manufacturing the calibration block 10 that facilitates height adjustment will be described with reference to FIG.

この実施形態では、図3(a)に示す如く、ブロック本体102を非導電材料で形成すると共に、ブロック本体102の上面に金属製の被膜103を10〜100μm程度の厚さで積層しており、この点は上記実施形態と同様であるが、更に、ブロック本体102の下面に所定の膜厚(例えば、100μm)の金属製の第2の被膜104を積層している。そして、図3(b)に示す如く、被膜103の表面を表面粗さRaが0.01〜0.03程度になるように機械加工して基準反射面101に仕上げる。その後、基準反射面101の高さを計測し、この高さが規定高さになるように、図3(c)に示す如く、第2の被膜104を機械加工する。これによれば、被膜103の機械加工では表面の平滑性を確保するだけでよく、第2の被膜104の機械加工で基準反射面101の高さを容易に調整できる。   In this embodiment, as shown in FIG. 3A, the block body 102 is made of a non-conductive material, and a metal coating 103 is laminated on the upper surface of the block body 102 to a thickness of about 10 to 100 μm. This point is the same as in the above embodiment, but a second metal film 104 having a predetermined film thickness (for example, 100 μm) is further laminated on the lower surface of the block main body 102. Then, as shown in FIG. 3B, the surface of the coating 103 is machined so that the surface roughness Ra is about 0.01 to 0.03 to finish the reference reflective surface 101. Thereafter, the height of the reference reflecting surface 101 is measured, and the second coating 104 is machined as shown in FIG. 3C so that this height becomes a specified height. According to this, it is only necessary to ensure the smoothness of the surface when machining the coating 103, and the height of the reference reflecting surface 101 can be easily adjusted by machining the second coating 104.

尚、描画中は、試料Wに照射された電子ビームの一部が反射し、反射電子が校正ブロック10の基準反射面101のみならずブロック本体102の周側面等に当たることがある。すると、非導電性材料製のブロック本体102が電子の電荷でチャージアップされ、描画精度に悪影響が及ぶ。このようなチャージアップを防止するため、前記被膜103、104を形成する前に、ブロック本体102の全表面に、導電性材料、例えば、金の薄膜(膜厚0.5μm程度)を形成してもよい。   During drawing, a part of the electron beam irradiated on the sample W is reflected, and the reflected electrons may hit not only the reference reflecting surface 101 of the calibration block 10 but also the peripheral side surface of the block main body 102 or the like. Then, the block body 102 made of a non-conductive material is charged up with electric charges, which adversely affects the drawing accuracy. In order to prevent such charge-up, a conductive material, for example, a gold thin film (with a film thickness of about 0.5 μm) is formed on the entire surface of the block body 102 before the coatings 103 and 104 are formed. Also good.

以上、本発明の実施形態について図面を参照して説明したが、本発明はこれに限定されない。例えば、上記実施形態の校正ブロック10の基準反射面101は、階段状に複数の段が付いているが、最下段と最上段との間を傾斜面で結ぶような基準反射面を形成してもよい。また、上記実施形態は、電子ビームを照射する電子ビーム描画装置に本発明を適用したものであるが、イオンビーム等の他の荷電粒子ビームを照射する描画装置にも同様に本発明を適用できる。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to this. For example, the reference reflecting surface 101 of the calibration block 10 of the above embodiment has a plurality of steps in a staircase shape, but forms a reference reflecting surface that connects the lowermost step and the uppermost step with an inclined surface. Also good. In the above-described embodiment, the present invention is applied to an electron beam lithography apparatus that irradiates an electron beam. However, the present invention can be similarly applied to a lithography apparatus that irradiates other charged particle beams such as an ion beam. .

W…試料
2…電子鏡筒(ビーム照射手段)
3…ステージ
9…高さ測定器
10…校正ブロック
101…基準反射面
102…ブロック本体
103…被膜
104…第2の被膜

W ... Sample 2 ... Electronic column (beam irradiation means)
DESCRIPTION OF SYMBOLS 3 ... Stage 9 ... Height measuring instrument 10 ... Calibration block 101 ... Reference | standard reflection surface 102 ... Block main body 103 ... Coating | coated 104 ... 2nd coating | coated

Claims (5)

ステージ上に載置された試料の表面に光線を入反射させて試料の高さを測定する高さ測定器の校正のために、ステージ上に設けられる、上面に高さ測定器からの光線を反射する基準反射面を有する校正ブロックの製造方法であって、
校正ブロックのブロック本体を非導電性材料で形成し、ブロック本体の上面に金属製の被膜を積層し、被膜の表面を機械加工で前記基準反射面に仕上げることを特徴とする校正ブロックの製造方法。
In order to calibrate a height measuring instrument that measures the height of the sample by making the light incident on and reflected from the surface of the sample placed on the stage, the light from the height measuring instrument is placed on the upper surface provided on the stage. A method of manufacturing a calibration block having a reference reflecting surface to be reflected,
A calibration block manufacturing method comprising: forming a block body of a calibration block from a non-conductive material; laminating a metal film on an upper surface of the block body; and finishing the surface of the film to the reference reflective surface by machining. .
前記被膜の機械加工前の膜厚は10〜100μmであることを特徴とする請求項1記載の校正ブロックの製造方法。   2. The method of manufacturing a calibration block according to claim 1, wherein the film thickness of the coating before machining is 10 to 100 [mu] m. 前記ブロック本体の下面に第2の被膜を積層し、前記被膜の機械加工後に、前記基準反射面の高さが所定高さになるように第2の被膜を機械加工することを特徴とする請求項1又は2記載の校正ブロックの製造方法。   The second coating is laminated on the lower surface of the block main body, and the second coating is machined so that the height of the reference reflecting surface becomes a predetermined height after the machining of the coating. Item 3. A method for manufacturing a calibration block according to Item 1 or 2. 前記ブロック本体を形成する非導電性材料は、非磁性体又は磁化曲線がヒステリシスを持たない磁性体であることを特徴とする請求項1〜3の何れか1項記載の校正ブロックの製造方法。   The method for manufacturing a calibration block according to any one of claims 1 to 3, wherein the non-conductive material forming the block body is a non-magnetic material or a magnetic material having a magnetization curve having no hysteresis. 試料を載置するステージと、ビーム照射手段とを備え、ステージ上に載置された試料にビーム照射手段により荷電粒子ビームを照射して所定のパターンを描画する荷電粒子ビーム描画装置であって、
ステージ上に載置された試料の表面に光線を入反射させて試料の高さを測定する光学式高さ測定器と、この高さ測定器の校正のために、ステージ上に設けた校正ブロックとを備えるものにおいて、
前記校正ブロックとして、請求項1〜4の何れか1項記載の製造方法で製造された校正ブロックを用いることを特徴とする荷電粒子ビーム描画装置。

A charged particle beam drawing apparatus comprising a stage for placing a sample and a beam irradiating means, and irradiating the sample placed on the stage with a charged particle beam by the beam irradiating means to draw a predetermined pattern,
An optical height measuring instrument that measures the height of a sample by making light incident on and reflected from the surface of the sample placed on the stage, and a calibration block provided on the stage for calibration of the height measuring instrument In what comprises
The charged particle beam drawing apparatus characterized by using the calibration block manufactured with the manufacturing method of any one of Claims 1-4 as said calibration block.

JP2009064197A 2009-03-17 2009-03-17 Calibration block and charged particle beam drawing apparatus Expired - Fee Related JP5635240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009064197A JP5635240B2 (en) 2009-03-17 2009-03-17 Calibration block and charged particle beam drawing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009064197A JP5635240B2 (en) 2009-03-17 2009-03-17 Calibration block and charged particle beam drawing apparatus

Publications (3)

Publication Number Publication Date
JP2010219283A true JP2010219283A (en) 2010-09-30
JP2010219283A5 JP2010219283A5 (en) 2012-01-12
JP5635240B2 JP5635240B2 (en) 2014-12-03

Family

ID=42977802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009064197A Expired - Fee Related JP5635240B2 (en) 2009-03-17 2009-03-17 Calibration block and charged particle beam drawing apparatus

Country Status (1)

Country Link
JP (1) JP5635240B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037729A (en) * 1983-08-10 1985-02-27 Nippon Telegr & Teleph Corp <Ntt> Sample stage
JPS636736A (en) * 1986-06-25 1988-01-12 エヌ・ベ−・フィリップス・フル−イランペンファブリケン Electromagnetic lens system
JPH0589815A (en) * 1991-09-26 1993-04-09 Hitachi Ltd Electron beam application device
JPH063115A (en) * 1992-06-19 1994-01-11 Hitachi Ltd Measuring equipment of height of sample
JPH08195345A (en) * 1994-11-18 1996-07-30 Hitachi Ltd Electron beam drawing device
JP2002175971A (en) * 2000-12-08 2002-06-21 Nikon Corp Magnetic lens, method of manufacturing magnetic shield, charged particle beam exposure system, and method of manufacturing semiconductor device
JP2002530880A (en) * 1998-11-20 2002-09-17 ライカ マイクロシステムス リトグラフィー ゲゼルシャフト ミット ベシュレンクテル ハフツング Substrate support device
JP2004253401A (en) * 2000-12-28 2004-09-09 Nikon Corp Stage system, exposure system, method of adjusting multipoint position detecting system, and method of manufacturing device
JP2008177256A (en) * 2007-01-17 2008-07-31 Nuflare Technology Inc Electron beam lithography apparatus and mask manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037729A (en) * 1983-08-10 1985-02-27 Nippon Telegr & Teleph Corp <Ntt> Sample stage
JPS636736A (en) * 1986-06-25 1988-01-12 エヌ・ベ−・フィリップス・フル−イランペンファブリケン Electromagnetic lens system
JPH0589815A (en) * 1991-09-26 1993-04-09 Hitachi Ltd Electron beam application device
JPH063115A (en) * 1992-06-19 1994-01-11 Hitachi Ltd Measuring equipment of height of sample
JPH08195345A (en) * 1994-11-18 1996-07-30 Hitachi Ltd Electron beam drawing device
JP2002530880A (en) * 1998-11-20 2002-09-17 ライカ マイクロシステムス リトグラフィー ゲゼルシャフト ミット ベシュレンクテル ハフツング Substrate support device
JP2002175971A (en) * 2000-12-08 2002-06-21 Nikon Corp Magnetic lens, method of manufacturing magnetic shield, charged particle beam exposure system, and method of manufacturing semiconductor device
JP2004253401A (en) * 2000-12-28 2004-09-09 Nikon Corp Stage system, exposure system, method of adjusting multipoint position detecting system, and method of manufacturing device
JP2008177256A (en) * 2007-01-17 2008-07-31 Nuflare Technology Inc Electron beam lithography apparatus and mask manufacturing method

Also Published As

Publication number Publication date
JP5635240B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
KR100471018B1 (en) Gap adjustment apparatus and gap adjustment method for adjusting gap between two objects
JP5087258B2 (en) Charged particle beam drawing method, charged particle beam drawing apparatus, positional deviation amount measuring method, and position measuring apparatus
JP5506560B2 (en) Drawing apparatus and device manufacturing method
KR102477184B1 (en) Method for inspecting a sample with a charged particle beam device, and charged particle beam device
KR20180118757A (en) A device for changing the surface shape of an optical element by electron irradiation
KR100946313B1 (en) Electron beam recording apparatus
JP2011243957A (en) Electron beam lithography device and device manufacturing method
JP2960746B2 (en) Beam irradiation method, electron beam drawing method, beam irradiation apparatus, and electron beam drawing apparatus
US20130216954A1 (en) Drawing apparatus, and method of manufacturing article
JP2011258576A (en) Standard sample used for charged particle beam device, charged particle beam device, and manufacturing method of standard sample used for charged particle beam device
KR102221957B1 (en) Charged particle beam writing apparatus and charged particle beam writing method
JP5635240B2 (en) Calibration block and charged particle beam drawing apparatus
TW500983B (en) Lithographic projection apparatus, method of reducing a measured optical distortion in the projection system of a lithographic projection apparatus, integrated circuit device and the method of making same, and method of manufacturing a vitreous optical
JP2013042114A (en) Drawing device, and article manufacturing method
JP3969640B2 (en) Charged particle beam drawing apparatus and drawing method using the same
TW202221752A (en) Method of imaging a sample with a charged particle beam device, method of calibrating a charged particle beam device, and charged particle beam device
JP2004132863A (en) Beam adjusting sample, beam adjusting method, and beam adjusting device
US6531786B1 (en) Durable reference marks for use in charged-particle-beam (CPB) microlithography, and CPB microlithography apparatus and methods comprising same
Shi et al. Platinum Kirkpatrik-Baez mirrors for a hard x-ray microfocusing system made by profile coating
JP3866782B2 (en) Electron beam exposure apparatus and exposure method
JP7280237B2 (en) Automatic sample tilt correction device and sample tilt automatic correction method
JP4250899B2 (en) Substrate drawing method
JP2010219283A5 (en) Calibration block manufacturing method, calibration block, and charged particle beam drawing apparatus
JPH11204408A (en) Electron beam incident angle measuring method in electron beam aligner, and exposure method using the method
JP2022539968A (en) Method, sensor and stage apparatus for determining center of radiation spot

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141016

R150 Certificate of patent or registration of utility model

Ref document number: 5635240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees