JP2010218742A - Solid polymer electrolyte membrane and fuel cell - Google Patents

Solid polymer electrolyte membrane and fuel cell Download PDF

Info

Publication number
JP2010218742A
JP2010218742A JP2009061130A JP2009061130A JP2010218742A JP 2010218742 A JP2010218742 A JP 2010218742A JP 2009061130 A JP2009061130 A JP 2009061130A JP 2009061130 A JP2009061130 A JP 2009061130A JP 2010218742 A JP2010218742 A JP 2010218742A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
polymer electrolyte
solid polymer
fuel cell
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009061130A
Other languages
Japanese (ja)
Inventor
Yutaka Kasai
裕 葛西
Liti Abu
里提 阿布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AOMORI PREFECTURAL INDUSTRIAL TECHNOLOGY RESEARCHCENTER
Aomori Prefectural Industrial Technology Research Center
Original Assignee
AOMORI PREFECTURAL INDUSTRIAL TECHNOLOGY RESEARCHCENTER
Aomori Prefectural Industrial Technology Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AOMORI PREFECTURAL INDUSTRIAL TECHNOLOGY RESEARCHCENTER, Aomori Prefectural Industrial Technology Research Center filed Critical AOMORI PREFECTURAL INDUSTRIAL TECHNOLOGY RESEARCHCENTER
Priority to JP2009061130A priority Critical patent/JP2010218742A/en
Publication of JP2010218742A publication Critical patent/JP2010218742A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte membrane easy to be synthesized at low cost, having proton conductivity capable of use for a fuel cell, with low methanol permeation and hardly generating environmental problems at the time of discard, and a fuel cell using it. <P>SOLUTION: The solid polymer electrolyte membrane is a membrane consisting of a sulfoalkyl cellulose obtained by sulfo-alkylation of a cellulose, and cross-linked by a cross-linking agent. The fuel cell is provided by using the solid polymer electrolyte membrane. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、プロトン伝導性を有しメタノール透過を抑制した固体高分子電解質膜及びそれを用いた燃料電池に関する。 The present invention relates to a solid polymer electrolyte membrane having proton conductivity and suppressing methanol permeation, and a fuel cell using the same.

電解質膜にプロトン伝導性の高分子を用いた固体高分子形燃料電池は、比較的低温で作動することや、小型化が可能で高出力密度であるという特徴を有しており、電気自動車用や家庭用の電源として利用する研究が行われている。また、固体高分子形燃料電池の一種でメタノールを直接燃料とする直接メタノール形燃料電池はエネルギー密度が高いことからリチウムイオン電池等の二次電池に代わる小型機器用の電源として期待されている。 A polymer electrolyte fuel cell using a proton-conducting polymer as an electrolyte membrane has features that it operates at a relatively low temperature, can be miniaturized, and has a high output density. Research is being conducted to use it as a household power source. In addition, a direct methanol fuel cell, which is a type of solid polymer fuel cell and uses methanol as a direct fuel, is expected to serve as a power source for small-sized equipment that replaces secondary batteries such as lithium ion batteries because of its high energy density.

これら固体高分子形燃料電池用の電解質膜としてはナフィオン(登録商標、デュポン社製)等のパーフルオロスルホン酸系高分子が知られている。しかし、これらの電解質は製造工程が複雑で非常に高価であるという問題があり、フッ素系のポリマーであるため合成時、廃棄時に環境に配慮する必要がある。また、直接メタノール形燃料電池の電解質膜に用いた場合には燃料のメタノールが電解質膜を透過(クロスオーバー)しやすいため、空気極に達したメタノールが酸素と直接反応し燃料の利用効率を低下させるばかりか、過電圧が増大し電位を低下させてしまうという問題があった。これを避けるため燃料のメタノールを希釈して使用されてもいるが、燃料タンクが大きくなるためエネルギー密度の低下を招く。そのため、メタノールの透過性が低い固体高分子電解質膜の開発が望まれている。 As electrolyte membranes for these polymer electrolyte fuel cells, perfluorosulfonic acid polymers such as Nafion (registered trademark, manufactured by DuPont) are known. However, these electrolytes have a problem that the manufacturing process is complicated and very expensive. Since these electrolytes are fluorine-based polymers, it is necessary to consider the environment during synthesis and disposal. In addition, when used as an electrolyte membrane of a direct methanol fuel cell, the fuel methanol easily permeates (crosses over) the electrolyte membrane, so that the methanol that reaches the air electrode directly reacts with oxygen, reducing the fuel utilization efficiency. In addition, there is a problem that the overvoltage increases and the potential is lowered. In order to avoid this, the fuel methanol is diluted and used. However, since the fuel tank becomes large, the energy density is lowered. Therefore, development of a solid polymer electrolyte membrane having low methanol permeability is desired.

上記の問題を解決するために、低メタノール透過性の電解質膜として特許文献1や非特許文献1には架橋硫酸化アルギン酸電解質膜が報告されているが、プロトン伝導性が不十分であった。 In order to solve the above-mentioned problem, Patent Document 1 and Non-Patent Document 1 report a crosslinked sulfated alginic acid electrolyte membrane as a low methanol-permeable electrolyte membrane, but proton conductivity is insufficient.

特開2008−27767公報JP 2008-27767 A

葛西ら,高分子論文集,65,(2008)295-300Kasai et al., Polymer Papers, 65, (2008) 295-300

本発明は上記の問題点を鑑みてなされたもので、安価で合成が容易であり、燃料電池に使用可能なプロトン伝導性を有し、メタノール透過が低く、廃棄時に環境問題を引き起こさない固体高分子電解質膜及びそれを用いた燃料電池を提供することを目的とする。 The present invention has been made in view of the above problems, is inexpensive, easy to synthesize, has proton conductivity that can be used in fuel cells, has low methanol permeability, and does not cause environmental problems when discarded. An object of the present invention is to provide a molecular electrolyte membrane and a fuel cell using the same.

本発明者は前記課題を解決すべく鋭意研究を重ねた結果、天然多糖類であるセルロースをスルホアルキル化することにより得られるスルホアルキルセルロースをさらに架橋することにより得られる架橋スルホアルキルセルロースからなる高分子固体電解質膜が、プロトン伝導性を有しメタノール透過率が低いという特徴を有することを見出した。すなわち本発明は、セルロースをスルホアルキル化することにより得られるスルホアルキルセルロースからなる膜であって、該膜が架橋剤によって架橋されたものであることを特徴とする固体高分子電解質膜に関する。また、本発明は該固体高分子電解質膜を使用してなることを特徴とする燃料電池に関する。 As a result of intensive studies to solve the above-mentioned problems, the present inventor has developed a high-molecular-weight product comprising a crosslinked sulfoalkylcellulose obtained by further crosslinking a sulfoalkylcellulose obtained by sulfoalkylating cellulose, which is a natural polysaccharide. It has been found that the molecular solid electrolyte membrane has the characteristics of proton conductivity and low methanol permeability. That is, the present invention relates to a membrane made of sulfoalkyl cellulose obtained by sulfoalkylating cellulose, wherein the membrane is crosslinked with a crosslinking agent. The present invention also relates to a fuel cell comprising the solid polymer electrolyte membrane.

本発明によると天然多糖類であるセルロースから固体高分子電解質膜と、この電解質膜を使用する燃料電池を得ることができる。この電解質膜はプロトン伝導性を有しメタノール透過率が低いので、直接メタノール形燃料電池に用いた場合には、メタノール透過による燃料利用率の低下を抑制することができる。また、この電解質膜は天然物を原料とし容易に合成できるため従来のフッ素系の電解質膜に比べ簡単なプロセスで製造することができ、フッ素を含まないため廃棄時に環境問題を生じるおそれも少ない。 According to the present invention, a solid polymer electrolyte membrane and a fuel cell using this electrolyte membrane can be obtained from cellulose which is a natural polysaccharide. Since this electrolyte membrane has proton conductivity and low methanol permeability, when used directly in a methanol fuel cell, it is possible to suppress a decrease in fuel utilization due to methanol permeation. In addition, since this electrolyte membrane can be easily synthesized from a natural product as a raw material, it can be manufactured by a simple process compared to conventional fluorine-based electrolyte membranes, and since it does not contain fluorine, there is little risk of causing environmental problems when discarded.

本発明の固体高分子電解質膜は、セルロースにスルホアルキル化反応を行うことにより得られたスルホアルキルセルロースを膜成形後、架橋反応を行うことによりスルホアルキルセルロース分子間を架橋させた後、スルホン酸塩をスルホン酸にイオン交換することによって得られる。 The solid polymer electrolyte membrane of the present invention is obtained by forming a sulfoalkyl cellulose obtained by carrying out a sulfoalkylation reaction on cellulose and then crosslinking the sulfoalkyl cellulose molecules by carrying out a crosslinking reaction, followed by sulfonic acid. It is obtained by ion exchange of the salt to sulfonic acid.

セルロースをスルホアルキル化しスルホアルキルセルロースを合成する方法は特に限定されず、例えばセルロースを溶媒中で、ハロゲン化アルカンスルホン酸(塩)、スルトン等のスルホアルキル化剤と反応させる方法が利用できる。 A method for sulfoalkylating cellulose to synthesize sulfoalkylcellulose is not particularly limited. For example, a method of reacting cellulose with a sulfoalkylating agent such as halogenated alkanesulfonic acid (salt) or sultone in a solvent can be used.

膜成形方法は特に限定されないがキャスト法により成形するのが一般的である。例えば水のようなスルホアルキルセルロース可溶の溶媒に溶解させることによりスルホアルキルセルロース溶液を作製する。その溶液をガラス製や樹脂製の基板上に流延し、溶媒を揮発させ乾燥することにより膜が成形される。膜の厚さは10〜200μmが好ましく、膜厚が10μm未満であると強度が低下するほか、燃料である水素やメタノールの透過を十分阻止できないおそれがあり、200μmを超えると膜抵抗が高くなり好ましくない。 The film forming method is not particularly limited, but it is generally formed by a casting method. For example, a sulfoalkyl cellulose solution is prepared by dissolving in a sulfoalkyl cellulose-soluble solvent such as water. The solution is cast on a glass or resin substrate, the solvent is evaporated, and the film is formed by drying. The thickness of the membrane is preferably 10 to 200 μm. If the thickness is less than 10 μm, the strength decreases, and there is a possibility that the permeation of hydrogen or methanol as a fuel cannot be sufficiently prevented. If the thickness exceeds 200 μm, the membrane resistance increases. It is not preferable.

スルホアルキルセルロースの架橋方法は特に限定されず、例えば、スルホアルキルセルロース膜を、架橋剤を含む反応溶液に浸漬し架橋反応を行う方法を用いることができる。架橋剤としてはホルムアルデヒド、アセトアルデヒド、グルタルアルデヒド等のアルデヒド類;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル等のポリグリシジルエーテル類;コハク酸、シュウ酸、マレイン酸等の多価カルボン酸類;エピクロロヒドリン等のハロヒドリン化合物類;テトラメトキシシラン、テトラエトキシシラン等の金属アルコキシド等を挙げることができる。 The crosslinking method of the sulfoalkyl cellulose is not particularly limited. For example, a method of performing a crosslinking reaction by immersing a sulfoalkyl cellulose membrane in a reaction solution containing a crosslinking agent can be used. Crosslinkers include aldehydes such as formaldehyde, acetaldehyde, glutaraldehyde; polyglycidyl ethers such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and glycerol polyglycidyl ether; polyvalent succinic acid, oxalic acid, maleic acid, and the like Carboxylic acids; halohydrin compounds such as epichlorohydrin; metal alkoxides such as tetramethoxysilane and tetraethoxysilane.

架橋膜を塩酸水溶液、硫酸水溶液等の酸水溶液に浸漬しスルホン酸塩をスルホン酸にイオン交換することによって本発明の架橋スルホアルキルセルロースよりなる固体高分子電解質膜が得られる。 A solid polymer electrolyte membrane made of the crosslinked sulfoalkylcellulose of the present invention can be obtained by immersing the crosslinked membrane in an aqueous acid solution such as an aqueous hydrochloric acid solution or an aqueous sulfuric acid solution and ion-exchanging the sulfonate to sulfonic acid.

本発明の固体高分子電解質膜を用いて燃料電池を製造する方法は特に限定されず、公知の方法によって製造することが可能である。例えば、電解質膜の両側に2枚の電極を接合し、この接合体を反応ガスやメタノール水溶液を供給する溝または開口部が設けられた導電性のセパレータで挟持する事により燃料電池が得られる。該電極は触媒と拡散層から形成され、触媒としては白金触媒や白金−ルテニウム触媒等が、拡散層としてはカーボンペーパーやカーボンクロス等を用いることができる。 The method for producing a fuel cell using the solid polymer electrolyte membrane of the present invention is not particularly limited, and can be produced by a known method. For example, a fuel cell can be obtained by joining two electrodes on both sides of an electrolyte membrane and sandwiching the joined body with a conductive separator provided with a groove or an opening for supplying a reaction gas or a methanol aqueous solution. The electrode is formed of a catalyst and a diffusion layer. As the catalyst, a platinum catalyst, a platinum-ruthenium catalyst, or the like can be used, and as the diffusion layer, carbon paper, carbon cloth, or the like can be used.

以下に本発明の実施の形態をさらに詳細に説明するが、本発明の範囲はこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail, but the scope of the present invention is not limited to these.

(実施例1)
2−プロパノール25mlにセルロース粉末1.8gおよび44.4質量%水酸化ナトリウム水溶液7.2gを加え、1時間かくはんした。2−ブロモエタンスルホン酸ナトリウム4.2gを加え、かくはんしながら70℃にてスルホエチル化反応を5時間行った。反応生成物をろ過し、70質量%メタノール水溶液で洗浄後、さらにメタノールにて洗浄し、乾燥することによりスルホエチルセルロースを得た。このスルホエチルセルロースを蒸留水に溶解することにより約1.5質量%水溶液を得た。この水溶液をプラスチックシャーレ上に流延し、室温にて乾燥することにより膜成形した。
2−プロパノール36部に対しエチレングリコールジグリシジルエーテルを4部、及び0.1N水酸化ナトリウム水溶液を4部の割合で混合し架橋反応溶液を作製した。この反応溶液に上記の膜を浸漬し、60℃にて5時間架橋反応を行った。この膜を0.5N塩酸溶液に2時間浸漬することによりナトリウムイオンを水素イオンにイオン交換後、蒸留水で十分洗浄し架橋スルホエチルセルロース電解質膜を得た。
Example 1
To 25 ml of 2-propanol, 1.8 g of cellulose powder and 7.2 g of 44.4 mass% sodium hydroxide aqueous solution were added and stirred for 1 hour. Sodium 2-bromoethanesulfonate (4.2 g) was added, and the sulfoethylation reaction was carried out at 70 ° C. for 5 hours with stirring. The reaction product was filtered, washed with a 70 mass% aqueous methanol solution, further washed with methanol, and dried to obtain sulfoethylcellulose. This sulfoethyl cellulose was dissolved in distilled water to obtain an about 1.5 mass% aqueous solution. This aqueous solution was cast on a plastic petri dish and dried at room temperature to form a film.
A crosslinking reaction solution was prepared by mixing 4 parts of ethylene glycol diglycidyl ether and 4 parts of a 0.1N sodium hydroxide aqueous solution with respect to 36 parts of 2-propanol. The film was immersed in this reaction solution, and a crosslinking reaction was performed at 60 ° C. for 5 hours. This membrane was immersed in a 0.5N hydrochloric acid solution for 2 hours to exchange sodium ions with hydrogen ions, and then thoroughly washed with distilled water to obtain a crosslinked sulfoethylcellulose electrolyte membrane.

(実施例2)
実施例1に示した方法で得られたスルホエチルセルロースを蒸留水に溶解することにより約1.5質量%水溶液を得た。この水溶液をプラスチックシャーレ上に流延し、室温にて乾燥させることにより膜成形を行った。
2−プロパノール24部に対しエチレングリコールジグリシジルエーテルを16部、及び0.1N水酸化ナトリウム水溶液を4部の割合で混合し架橋反応溶液を作製した。この反応溶液に上記の膜を浸漬し、60℃にて5時間架橋反応を行った。この膜を0.5N塩酸溶液に2時間浸漬することによりナトリウムイオンを水素イオンにイオン交換後、蒸留水で十分洗浄し架橋スルホエチルセルロース電解質膜を得た。
(Example 2)
The sulfoethyl cellulose obtained by the method shown in Example 1 was dissolved in distilled water to obtain an aqueous solution of about 1.5% by mass. This aqueous solution was cast on a plastic petri dish and dried at room temperature to form a film.
A crosslinking reaction solution was prepared by mixing 16 parts of ethylene glycol diglycidyl ether and 4 parts of a 0.1N sodium hydroxide aqueous solution with respect to 24 parts of 2-propanol. The film was immersed in this reaction solution, and a crosslinking reaction was performed at 60 ° C. for 5 hours. This membrane was immersed in a 0.5N hydrochloric acid solution for 2 hours to exchange sodium ions with hydrogen ions, and then thoroughly washed with distilled water to obtain a crosslinked sulfoethylcellulose electrolyte membrane.

(比較例1)
従来のパーフルオロスルホン酸電解質としてナフィオン(登録商標)112(デュポン社製)を3体積%過酸化水素中で1時間、蒸留水中で1時間、1M硫酸溶液中で1時間、および蒸留水中で1時間それぞれ煮沸した後、固体高分子電解質膜として用いた。
(Comparative Example 1)
Nafion (registered trademark) 112 (manufactured by DuPont) as a conventional perfluorosulfonic acid electrolyte is 1 hour in 3% by volume hydrogen peroxide, 1 hour in distilled water, 1 hour in 1M sulfuric acid solution, and 1 in distilled water. After boiling each time, it was used as a solid polymer electrolyte membrane.

(プロトン伝導度の測定)
実施例1、実施例2及び比較例1で得られた固体高分子電解質膜を白金黒をめっきした白金はく電極を備えたフッ素樹脂製セルに挟み込み、Solartron社製インピーダンスアナライザー(SI−1260)を用いて、25℃にて0.1Hz〜100kHzの周波数範囲で交流インピーダンス法により固体高分子電解質膜の抵抗を測定しプロトン伝導度を求めた。測定中固体高分子電解質膜は湿潤状態に保持した。その結果、プロトン伝導度は実施例1は0.10S/cm、実施例2は0.044S/cmでありプロトン伝導性を示した。また、比較例1は0.094S/cmであった。
(Measurement of proton conductivity)
The solid polymer electrolyte membrane obtained in Example 1, Example 2 and Comparative Example 1 was sandwiched between fluororesin cells equipped with platinum-plated electrodes plated with platinum black, and Solartron Impedance Analyzer (SI-1260). Was used to measure the resistance of the solid polymer electrolyte membrane by the AC impedance method in the frequency range of 0.1 Hz to 100 kHz at 25 ° C., and the proton conductivity was obtained. During the measurement, the solid polymer electrolyte membrane was kept wet. As a result, the proton conductivity was 0.10 S / cm in Example 1 and 0.044 S / cm in Example 2, indicating proton conductivity. Moreover, the comparative example 1 was 0.094 S / cm.

(メタノール透過係数の測定)
実施例1、実施例2及び比較例1で得られた固体高分子電解質膜をアクリル樹脂製H型セル間に挟み込み、一方のセルに蒸留水を入れ、他方のセルには18Mのメタノール水溶液を入れ25℃にてかくはんした。各セルの容量は50mlであり、セル間の開口部の直径は16mmであった。1時間後に蒸留水中に溶出したメタノール濃度を島津製作所製ガスクロマトグラフ(GC−14B)を用いて測定しメタノール透過係数を求めた。その結果、実施例1は、5.7×10−7cm/s、実施例2は、1.2×10−7cm/s、比較例1は、3.0×10−6cm/sであり、本発明で得られる固体高分子電解質膜は従来の固体高分子電解質膜よりもメタノール透過性が低い。
(Measurement of methanol permeability coefficient)
The solid polymer electrolyte membranes obtained in Example 1, Example 2 and Comparative Example 1 were sandwiched between acrylic resin H-type cells, distilled water was put into one cell, and 18M methanol aqueous solution was put into the other cell. The mixture was stirred at 25 ° C. The capacity of each cell was 50 ml, and the diameter of the opening between the cells was 16 mm. One hour later, the methanol concentration eluted in distilled water was measured using a gas chromatograph (GC-14B) manufactured by Shimadzu Corporation to determine the methanol permeability coefficient. As a result, Example 1 was 5.7 × 10 −7 cm 2 / s, Example 2 was 1.2 × 10 −7 cm 2 / s, and Comparative Example 1 was 3.0 × 10 −6 cm. 2 / s, and the solid polymer electrolyte membrane obtained in the present invention has lower methanol permeability than the conventional solid polymer electrolyte membrane.

Claims (4)

セルロースをスルホアルキル化することにより得られるスルホアルキルセルロースからなる膜であって、該膜が架橋剤によって架橋されたものであることを特徴とする固体高分子電解質膜。 A solid polymer electrolyte membrane comprising a sulfoalkyl cellulose obtained by sulfoalkylating cellulose, wherein the membrane is crosslinked with a crosslinking agent. 前記スルホアルキルセルロースがスルホエチルセルロースである、請求項1に記載の固体高分子電解質膜。 The solid polymer electrolyte membrane according to claim 1, wherein the sulfoalkyl cellulose is sulfoethyl cellulose. 前記架橋剤がエチレングリコールジグリシジルエーテルである、請求項1又は2に記載の固体高分子電解質膜。 The solid polymer electrolyte membrane according to claim 1 or 2, wherein the crosslinking agent is ethylene glycol diglycidyl ether. 請求項1〜3のいずれかに記載の固体高分子電解質膜を使用してなることを特徴とする燃料電池。 A fuel cell comprising the solid polymer electrolyte membrane according to claim 1.
JP2009061130A 2009-03-13 2009-03-13 Solid polymer electrolyte membrane and fuel cell Pending JP2010218742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009061130A JP2010218742A (en) 2009-03-13 2009-03-13 Solid polymer electrolyte membrane and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061130A JP2010218742A (en) 2009-03-13 2009-03-13 Solid polymer electrolyte membrane and fuel cell

Publications (1)

Publication Number Publication Date
JP2010218742A true JP2010218742A (en) 2010-09-30

Family

ID=42977364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061130A Pending JP2010218742A (en) 2009-03-13 2009-03-13 Solid polymer electrolyte membrane and fuel cell

Country Status (1)

Country Link
JP (1) JP2010218742A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101926169B1 (en) 2017-03-22 2018-12-07 한국화학연구원 Sulfonated cellulose, proton conducting polymer membranes using the same, and polymer electrolyte membrane fuel cell having proton conducting polymer membranes
EP3422438A1 (en) * 2017-06-28 2019-01-02 Fundación Centro de Investigación Cooperativa de Energías Alternativas, CIC Energigune Fundazioa Solid polymer electrolyte based on modified cellulose and its use in lithium or sodium secondary batteries
WO2020085090A1 (en) * 2018-10-22 2020-04-30 東洋製罐グループホールディングス株式会社 Gas barrier composition
WO2022145318A1 (en) 2020-12-28 2022-07-07 パナソニックIpマネジメント株式会社 Alkali metal ion-conductive solid electrolyte, method for producing same, separator for nonaqueous electrolyte secondary batteries, method for producing said separator for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101926169B1 (en) 2017-03-22 2018-12-07 한국화학연구원 Sulfonated cellulose, proton conducting polymer membranes using the same, and polymer electrolyte membrane fuel cell having proton conducting polymer membranes
EP3422438A1 (en) * 2017-06-28 2019-01-02 Fundación Centro de Investigación Cooperativa de Energías Alternativas, CIC Energigune Fundazioa Solid polymer electrolyte based on modified cellulose and its use in lithium or sodium secondary batteries
JP2019059912A (en) * 2017-06-28 2019-04-18 フンダシオン セントロ デ インベスティガシオン コオペラティバ デ エネルヒアス アルテルナティバス セイセ エネルヒグネ フンダツィオアFundacion Centro De Investigacion Cooperativa De Energias Alternativas Cic Energigune Fundazioa Solid polymer electrolyte based on modified cellulose, and application thereof in lithium or sodium secondary battery
US10892521B2 (en) 2017-06-28 2021-01-12 Fundacion Centro De Investigacion Cooperativa De Energias Alternativ As Cic Energigune Fundazioa Solid polymer electrolyte based on modified cellulose and its use in lithium or sodium secondary batteries
JP7308580B2 (en) 2017-06-28 2023-07-14 フンダシオン セントロ デ インベスティガシオン コオペラティバ デ エネルヒアス アルテルナティバス セイセ エネルヒグネ フンダツィオア Solid polymer electrolyte based on modified cellulose and its use in lithium or sodium secondary batteries
WO2020085090A1 (en) * 2018-10-22 2020-04-30 東洋製罐グループホールディングス株式会社 Gas barrier composition
CN112912430A (en) * 2018-10-22 2021-06-04 东洋制罐集团控股株式会社 Gas barrier composition
WO2022145318A1 (en) 2020-12-28 2022-07-07 パナソニックIpマネジメント株式会社 Alkali metal ion-conductive solid electrolyte, method for producing same, separator for nonaqueous electrolyte secondary batteries, method for producing said separator for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
Yuan et al. Mechanism of polysulfone-based anion exchange membranes degradation in vanadium flow battery
Qiu et al. Alkaline imidazolium-and quaternary ammonium-functionalized anion exchange membranes for alkaline fuel cell applications
JP4776683B2 (en) POLYMER ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
Zhang et al. Influence of solvent on polymer prequaternization toward anion-conductive membrane fabrication for all-vanadium flow battery
US8871406B2 (en) Highly proton conductive crosslinked vinylsulfonic acid polymer electrolyte composite membranes and its preparation method for polymer electrolyte fuel cells
KR101569719B1 (en) Crosslinked hydrocarbon polymer electrolyte membranes with diols by radiation and manufacturing method thereof
US10862151B2 (en) Polyphenylsulfone-based proton conducting polymer electrolyte, proton conducting solid polymer electrolyte membrane, electrode catalyst layer for solid polymer fuel cells, method for producing electrode catalyst layer for slid polymer fuel cells, and fuel cell
JP2003288916A (en) Direct methanol fuel cell membrane and its manufacturing method
JP5959046B2 (en) Anion conducting electrolyte membrane and method for producing the same
JP2010218742A (en) Solid polymer electrolyte membrane and fuel cell
Ma et al. The research status of Nafion ternary composite membrane
JP4899238B2 (en) Composite cross-linked electrolyte
JP5673922B2 (en) Cross-linked aromatic polymer electrolyte membrane, production method thereof, and polymer fuel cell using cross-linked aromatic polymer electrolyte membrane
KR20110035124A (en) Preparation method of composite membranes crosslinked with anhydrous electrolyte and polymer electrolyte fuel cell systems using the same
JP2013229325A (en) Polymer electrolyte membrane, membrane electrode assembly and fuel cell
JP5233065B2 (en) Polymer having ionic group, polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell
El-Toony et al. Casting of poly (vinyl alcohol)/glycidyl methacrylate reinforced with titanium dioxide nanoparticles for proton exchange fuel cells
KR101127567B1 (en) A method for modifying a surface of proton exchange membranes using ion implantation and proton exchange membranes modified thereby
JP2007056155A (en) Ion conductive material, solid polymer electrolyte membrane, and fuel battery
JP2008027767A (en) Polymer electrolyte membrane, and fuel cell
JP4790225B2 (en) Gel electrolyte, electrode for fuel cell, fuel cell, and method for producing gel electrolyte
JP5407063B2 (en) Method for producing polymer electrolyte membrane
CN108878939B (en) Preparation method of cross-linked anion exchange membrane
JP6942322B2 (en) Proton conductive polymer-synthetic resin composite, proton conductive electrolyte membrane containing this composite, method for synthesizing proton conductive polymer-synthetic resin composite, solid polymer electrolyte fuel cell and solid polymer electrolyte water Electrolytic system
JP2017063039A (en) Polymer electrolyte film and fuel cell