JP2010216969A - System, program and mark set for position measurement, and object for position measurement - Google Patents

System, program and mark set for position measurement, and object for position measurement Download PDF

Info

Publication number
JP2010216969A
JP2010216969A JP2009063669A JP2009063669A JP2010216969A JP 2010216969 A JP2010216969 A JP 2010216969A JP 2009063669 A JP2009063669 A JP 2009063669A JP 2009063669 A JP2009063669 A JP 2009063669A JP 2010216969 A JP2010216969 A JP 2010216969A
Authority
JP
Japan
Prior art keywords
basic
signs
plane
basic signs
sign
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009063669A
Other languages
Japanese (ja)
Inventor
Yasuji Seko
保次 瀬古
Hiroyuki Hotta
宏之 堀田
Yasuyuki Saguchi
泰之 佐口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2009063669A priority Critical patent/JP2010216969A/en
Publication of JP2010216969A publication Critical patent/JP2010216969A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system, a program and a mark set for position measurement which maintain the accuracy of the position measurement of an object even when the mark set for the position measurement attached to the object faces a camera straight, and the object for position measurement. <P>SOLUTION: The system for position measurement includes the mark set 2 which has four or more basic marks attached to the object 1 and being in the known positional relations, wherein at least one of the basic marks is disposed apart from a plane whereon the other three or more basic marks are positioned, and wherein the point of intersection with the plane of a perpendicular line drawn to this plane from the basic mark disposed apart from the plane is located outside a polygon formed by the other three or more basic marks. The system includes further the camera 13 which has a two-dimensional imaging element 12 imaging the mark set 2, and an arithmetic device 14 which computes at least one of a three-dimensional position and an angle of the object, based on an image of the mark set photographed by the camera 13. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、位置計測システム、プログラム、標識セットおよび位置計測用の対象物に関するものである。   The present invention relates to a position measurement system, a program, a marker set, and an object for position measurement.

従来から発光点や光の反射点等の基本標識の3次元位置を計測する手段として、種々の技術が提案されている。例えば、特許文献1には、発光ダイオード(LED)光源を一つのカメラで撮像することにより、その3次元位置を計測する技術が開示されている。この技術は、レンズの球面収差を利用して、点光源をリング像に変換し、そのリング像のサイズから光源までの距離を計測し、リング像の中心位置から光源が存在する方向を決定することで、光源の3次元座標を計測するものである。また、特許文献2には、対象物の位置や方向を簡易かつ高精度に測定することができる技術が開示されている。この技術は、例えば矩形状のカードの頂点に配置した複数のLED光源からの光により光リング像を形成し、この光リング像を撮像素子により検出し、その検出情報および各光源の位置関係に基づいて各光源の位置を計測するものである。   Conventionally, various techniques have been proposed as means for measuring the three-dimensional position of a basic sign such as a light emitting point or a light reflecting point. For example, Patent Document 1 discloses a technique for measuring a three-dimensional position of a light-emitting diode (LED) light source by imaging with a single camera. This technology uses the spherical aberration of the lens to convert a point light source into a ring image, measures the distance from the ring image size to the light source, and determines the direction in which the light source exists from the center position of the ring image Thus, the three-dimensional coordinates of the light source are measured. Patent Document 2 discloses a technique that can easily and accurately measure the position and direction of an object. In this technology, for example, a light ring image is formed by light from a plurality of LED light sources arranged at the vertex of a rectangular card, the light ring image is detected by an image sensor, and the detection information and the positional relationship of each light source are determined. Based on this, the position of each light source is measured.

特開2004−212328号公報JP 2004-212328 A 特開2008−58204号公報JP 2008-58204 A

本発明の目的は、対象物に取り付けられる位置計測のための標識セットがカメラと正対する場合でも、対象物の位置計測の精度を保つことができる位置計測システム、プログラム、標識セットおよび位置計測用の対象物を提供することにある。   An object of the present invention is to provide a position measurement system, program, mark set, and position measurement that can maintain the position measurement accuracy of an object even when the mark set for position measurement attached to the object faces the camera. It is to provide the object.

本発明は、上記目的を達成するために、以下の位置計測システム、プログラム、標識セットおよび位置計測用の対象物を提供する。
(1)対象物に取り付けられる位置関係の分かっている4つ以上の基本標識を有し、前記基本標識のうち少なくとも一つの基本標識が他の3つ以上の基本標識の位置する平面から離れて配置され、前記平面から離れて配置される基本標識から前記平面に下ろした垂線の前記平面との交点が前記他の3つ以上の基本標識により形成される多角形の外側に位置する標識セットと、前記標識セットを撮像する2次元撮像素子を有するカメラと、前記カメラで撮像した前記標識セットの画像に基づいて前記対象物の3次元位置および角度の少なくとも一方を演算する演算装置とを備えた位置計測システム。
(2)前記標識セットが前記対象物上で時計回りに第1〜第4の基本標識を有し、前記第2および第4の基本標識が対象物上の低い位置に配置され、前記第1および第3の基本標識が、前記第2および第4の基本標識よりも高い位置に配置され、前記第2、第3および第4の基本標識で第1の三角形を形成し、前記第1、第2および第4の基本標識で第2の三角形を形成するように前記各基本標識が配置される上記(1)記載の位置計測システム。
(3)前記標識セットが前記対象物上で時計回りに第1〜第5の基本標識を有し、前記第2、第3および第5の基本標識が対象物上の低い位置にそれぞれ配置され、前記第1および第4の基本標識が、前記第2、第3および第5の基本標識よりも高い位置に配置され、前記第1および第4の基本標識を結ぶ線が前記第2、第3および第5の基本標識で形成される三角形と3次元的に交差するように前記各基本標識が配置される上記(1)記載の位置計測システム。
(4)前記標識セットが前記対象物上で時計回りに第1〜第6の基本標識を有し、前記第2、第3、第5および第6の基本標識が対象物上の低い位置にそれぞれ配置され、前記第1および第4の基本標識が、前記第2、第3、第5および第6の基本標識よりも高い位置に配置され、前記第1および第4の基本標識を結ぶ線が前記第2、第3、第5および第6の基本標識で形成される四辺形と3次元的に交差するように前記各基本標識が配置される上記(1)記載の位置計測システム。
(5)コンピュータに、対象物に取り付けられる位置関係の分かっている4つ以上の基本標識を有し、前記基本標識のうち少なくとも一つの基本標識が他の3つ以上の基本標識の位置する平面から離れて配置され、前記平面から離れて配置される基本標識から前記平面に下ろした垂線の前記平面との交点が前記他の3つ以上の基本標識により形成される多角形の外側に位置する標識セットを2次元撮像素子を有するカメラで撮像した画像情報を取り込む手順、前記他の3つ以上の基本標識の画像情報から前記対象物の3次元位置および角度の少なくとも一方を演算して複数の解を得る手順、前記複数の解に基づいて前記平面から離れて配置される基本標識の位置をそれぞれ計算し複数の計算値を得る手順、前記複数の計算値と前記平面から離れて配置される基本標識の画像情報から得られる実際値とを比較する手順、前記複数の計算値のうち前記実際値に近い計算値に対応する解を正解として前記対象物の3次元位置および角度の少なくとも一方を求める手順を実行させるためのプログラム。
(6)位置関係の分かっている3つ以上の基本標識と、前記3つ以上の基本標識の位置する平面から離れて配置され、前記平面に下ろした垂線の前記平面との交点が前記3つ以上の基本標識により形成される多角形の外側に位置する、位置関係の分かっている少なくとも一つの基本標識とを備えた標識セット。
(7)上記(6)記載の標識セットが取り付けられた位置計測用の対象物。
In order to achieve the above object, the present invention provides the following position measurement system, program, marker set, and object for position measurement.
(1) It has four or more basic signs with a known positional relationship attached to an object, and at least one of the basic signs is separated from the plane on which the other three or more basic signs are located. A set of signs located at an intersection of a perpendicular line drawn from the basic sign placed at a distance from the plane to the plane and the plane formed by the three or more other basic signs; A camera having a two-dimensional image sensor that images the marker set; and an arithmetic unit that calculates at least one of a three-dimensional position and an angle of the object based on an image of the marker set captured by the camera. Position measurement system.
(2) The sign set has first to fourth basic signs clockwise on the object, the second and fourth basic signs are arranged at a low position on the object, and the first And a third basic sign is positioned higher than the second and fourth basic signs, and the second, third and fourth basic signs form a first triangle, and the first, The position measurement system according to (1), wherein each of the basic signs is arranged so as to form a second triangle by the second and fourth basic signs.
(3) The sign set has first to fifth basic signs clockwise on the object, and the second, third and fifth basic signs are respectively arranged at low positions on the object. The first and fourth basic signs are arranged at a position higher than the second, third and fifth basic signs, and a line connecting the first and fourth basic signs is the second, second, The position measurement system according to (1), wherein each of the basic signs is arranged so as to cross three-dimensionally with a triangle formed by the third and fifth basic signs.
(4) The sign set has first to sixth basic signs clockwise on the object, and the second, third, fifth and sixth basic signs are at a low position on the object. Lines arranged respectively, wherein the first and fourth basic signs are arranged at positions higher than the second, third, fifth and sixth basic signs, and connect the first and fourth basic signs. The position measurement system according to (1), wherein each of the basic signs is arranged so as to cross three-dimensionally with a quadrilateral formed by the second, third, fifth, and sixth basic signs.
(5) The computer has four or more basic signs with known positional relationships attached to the object, and at least one of the basic signs is a plane on which the other three or more basic signs are located. The intersection point of the perpendicular line, which is arranged away from the plane and separated from the plane and from the plane to the plane, is located outside the polygon formed by the three or more other basic signs. A procedure for capturing image information obtained by imaging a marker set with a camera having a two-dimensional imaging device, and calculating at least one of the three-dimensional position and angle of the object from the image information of the other three or more basic markers. A procedure for obtaining a solution; a procedure for obtaining a plurality of calculated values by respectively calculating positions of basic signs arranged away from the plane based on the plurality of solutions; and a step for separating the plurality of calculated values from the plane. Comparing the actual value obtained from the image information of the basic sign placed in a position, and the three-dimensional position and angle of the object as a correct answer corresponding to the calculated value close to the actual value among the calculated values A program for executing a procedure for obtaining at least one of the above.
(6) Three or more basic signs whose positional relationship is known and the three intersections of the perpendicular lines placed on the plane and spaced apart from the plane on which the three or more basic signs are located are the three. A sign set comprising at least one basic sign having a known positional relationship, located outside the polygon formed by the above basic signs.
(7) An object for position measurement to which the marker set according to (6) is attached.

請求項1に記載の位置計測システムによれば、対象物に取り付けられる位置計測のための標識セットがカメラと正対する場合でも、対象物の位置計測の精度を保つことができる。
請求項2に記載の位置計測システムによれば、本構成を有しないものに比べ高い位置に配置される基本標識の平面からの高さを大きくすることができる。
請求項3に記載の位置計測システムによれば、本構成を有しないものに比べ位置計測のために用いる基本標識の選択の自由度を大きくすることができる。
請求項4に記載の位置計測システムによれば、本構成を有しないものに比べ位置計測のために用いる基本標識の選択の自由度を大きくすることができる。
請求項5に記載のプログラムによれば、対象物に取り付けられる位置計測のための標識セットがカメラと正対する場合でも、対象物の位置計測の精度を保つことができる。
請求項6に記載の標識セットによれば、対象物に取り付けられる位置計測のための標識セットがカメラと正対する場合でも、対象物の位置計測の精度を保つことができる。
請求項7に記載の位置計測用の対象物によれば、対象物に取り付けられる位置計測のための標識セットがカメラと正対する場合でも、対象物の位置計測の精度を保つことができる。
According to the position measurement system of the first aspect, even when the marker set for position measurement attached to the object faces the camera, the accuracy of position measurement of the object can be maintained.
According to the position measurement system of the second aspect, it is possible to increase the height from the plane of the basic sign placed at a higher position than that without this configuration.
According to the position measurement system of the third aspect, the degree of freedom of selection of the basic sign used for position measurement can be increased as compared with the one not having this configuration.
According to the position measurement system of the fourth aspect, the degree of freedom of selection of the basic sign used for position measurement can be increased as compared with the one not having this configuration.
According to the program described in claim 5, the accuracy of the position measurement of the object can be maintained even when the marker set for position measurement attached to the object faces the camera.
According to the sign set of the sixth aspect, even when the sign set for position measurement attached to the object faces the camera, the accuracy of position measurement of the object can be maintained.
According to the object for position measurement according to the seventh aspect, even when the marker set for position measurement attached to the object faces the camera, the accuracy of position measurement of the object can be maintained.

4つの基本標識を有する標識セットの3次元位置の演算方法の一例を説明するための図である。It is a figure for demonstrating an example of the calculation method of the three-dimensional position of the label | marker set which has four basic marks. 4つの基本標識を有する標識セットが取り付けられた位置計測用の対象物の一例を示す図である。It is a figure which shows an example of the target object for position measurement to which the marker set which has four basic markers was attached. 4つの基本標識の配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of four basic marks. 図2に示す対象物に取り付けられた標識セットの面とカメラの画像面のなす角度が小さい場合の一例を説明するための図である。It is a figure for demonstrating an example when the angle which the surface of the marker set attached to the target object shown in FIG. 2 and the image surface of a camera are small. 本発明に係る位置計測システムの一実施例を示す図である。It is a figure which shows one Example of the position measurement system which concerns on this invention. 図5の実施例で用いることができる標識セットの一例を示す図である。It is a figure which shows an example of the label | marker set which can be used in the Example of FIG. 標識セットの他の例を示す図である。It is a figure which shows the other example of a label | marker set. 標識セットのさらに他の例を示す図である。It is a figure which shows the further another example of a label | marker set. 演算装置としてパーソナルコンピュータ(PC)を用いた場合の一例を示すブロック図である。It is a block diagram which shows an example at the time of using a personal computer (PC) as an arithmetic unit. コンピュータにより実行される手順の一例を示すフロー図である。It is a flowchart which shows an example of the procedure performed by a computer.

以下、本発明に係る位置計測システムの一実施例を説明するが、その前に、この種の位置計測システムの計測方法の一例と、計測対象がカメラと正対する場合の状況について説明する。
図1は、4つの基本標識を有する標識セットの3次元位置の演算方法の一例を説明するための図である。図示のように、3つの基本標識a1,a2,a3は同一平面上にあり、1つの基本標識a4がその平面上から垂直に高さhだけ離隔した地点にある場合の一例を示す図である。基本標識a4は、図2に示すように、例えばカードや基板等の平板状の位置計測用の対象物1に取り付けられた標識セット2の平面上から突出する突出部3の先端に設けられる。この突出部3の位置と高さhは既知で、例えば3つの基本標識a1,a2,a3の重心に置くことができるが、これに限定されない。図1において、基本標識a1,a2,a3の画像面10上の画像位置c1,c2,c3とカメラの光学中心20との関係から、カメラ座標系における基本標識位置の方向ベクトルdi(i=1,2,3)を算出する。diは規格化した単位ベクトルとする。高い位置の基本標識a4の画像位置c4は算出した複数の解の中から正解を求めるために使用される。これについては後述する。
Hereinafter, an embodiment of the position measurement system according to the present invention will be described. Before that, an example of a measurement method of this type of position measurement system and a situation in which the measurement object faces the camera will be described.
FIG. 1 is a diagram for explaining an example of a method for calculating a three-dimensional position of a sign set having four basic signs. As shown in the figure, three basic signs a1, a2, and a3 are on the same plane, and one basic sign a4 is a diagram showing an example in a case where the basic mark a4 is vertically separated from the plane by a height h. . As shown in FIG. 2, the basic marker a4 is provided at the tip of the protruding portion 3 that protrudes from the plane of the marker set 2 attached to the flat position measuring object 1 such as a card or a board. The position and height h of the protrusion 3 are known, and can be placed at the center of gravity of the three basic signs a1, a2, a3, for example, but are not limited thereto. In FIG. 1, from the relationship between the image positions c1, c2, c3 on the image plane 10 of the basic signs a1, a2, a3 and the optical center 20 of the camera, the direction vector di (i = 1) of the basic sign position in the camera coordinate system. , 2, 3). di is a normalized unit vector. The image position c4 of the high-level basic sign a4 is used to obtain a correct answer from the calculated solutions. This will be described later.

基本標識a1,a2,a3の空間の位置ベクトルをp1,p2,p3とすると、これらはdiの延長線上に存在するので、その係数をt1,t2,t3として、
p1=t1・d1
p2=t2・d2 式3
p3=t3・d3
で表すことができる。
Assuming that the spatial position vectors of the basic signs a1, a2 and a3 are p1, p2 and p3, these exist on the extension line of di, so their coefficients are t1, t2 and t3.
p1 = t1 ・ d1
p2 = t2 · d2 Equation 3
p3 = t3 ・ d3
Can be expressed as

三角形の形状は最初からわかっており、その長さを各々
p1p2=L1
p2p3=L2 式4
p3p1=L3
とすると次式が得られる。式中「^」は累乗を表す。
(t1x1-t2x2)^2+(t1y1-t2y2)^2+(t1z1-t2z2)^2=L1^2
(t2x2-t3x3)^2+(t2y2-t3y3)^2+(t2z2-t3z3)^2=L2^2 式5
(t3x3-t1x1)^2+(t3y3-t1y1)^2+(t3z3-t1z1)^2=L3^2
The shape of the triangle is known from the beginning and the length of each
p1p2 = L1
p2p3 = L2 Equation 4
p3p1 = L3
Then, the following equation is obtained. In the formula, “^” represents a power.
(t1x1-t2x2) ^ 2 + (t1y1-t2y2) ^ 2 + (t1z1-t2z2) ^ 2 = L1 ^ 2
(t2x2-t3x3) ^ 2 + (t2y2-t3y3) ^ 2 + (t2z2-t3z3) ^ 2 = L2 ^ 2 Formula 5
(t3x3-t1x1) ^ 2 + (t3y3-t1y1) ^ 2 + (t3z3-t1z1) ^ 2 = L3 ^ 2

整理すると
t1^2-2t1t2(x1x2+y1y2+z1z2)+t2^2-L1^2=0
t2^2-2t2t3(x2x3+y2y3+z2z3)+t3^2-L2^2=0 式6
t3^2-2t3t1(x3x1+y3y1+z3z1)+t1^2-L3^2=0
が得られ、次式となる。式中「sqrt」は平方根を表す。
t1=A1・t2±sqrt((A1^2-1)・t2^2+L1^2)
t2=A2・t3±sqrt((A2^2-1)・t3^2+L2^2) 式7
t3=A3・t1±sqrt((A3^2-1)・t1^2+L3^2)
ここで、A1,A2,A3は次式のとおりである。
A1=x1x2+y1y2+z1z2
A2=x2x3+y2y3+z2z3 式8
A3=x3x1+y3y1+z3z1
When you organize
t1 ^ 2-2t1t2 (x1x2 + y1y2 + z1z2) + t2 ^ 2-L1 ^ 2 = 0
t2 ^ 2-2t2t3 (x2x3 + y2y3 + z2z3) + t3 ^ 2-L2 ^ 2 = 0 Equation 6
t3 ^ 2-2t3t1 (x3x1 + y3y1 + z3z1) + t1 ^ 2-L3 ^ 2 = 0
Is obtained, and the following equation is obtained. In the formula, “sqrt” represents a square root.
t1 = A1 ・ t2 ± sqrt ((A1 ^ 2-1) ・ t2 ^ 2 + L1 ^ 2)
t2 = A2 ・ t3 ± sqrt ((A2 ^ 2-1) ・ t3 ^ 2 + L2 ^ 2) Equation 7
t3 = A3 ・ t1 ± sqrt ((A3 ^ 2-1) ・ t1 ^ 2 + L3 ^ 2)
Here, A1, A2, and A3 are as follows.
A1 = x1x2 + y1y2 + z1z2
A2 = x2x3 + y2y3 + z2z3 Equation 8
A3 = x3x1 + y3y1 + z3z1

実数解を持つために、式7の平方根の中が正になる。
t1≦ sqrt(L3^2/(1-A3^2))
t2≦ sqrt(L1^2/(1-A1^2)) 式9
t3≦ sqrt(L2^2/(1-A2^2))
In order to have a real solution, the square root of Equation 7 is positive.
t1 ≦ sqrt (L3 ^ 2 / (1-A3 ^ 2))
t2 ≦ sqrt (L1 ^ 2 / (1-A1 ^ 2)) Equation 9
t3 ≦ sqrt (L2 ^ 2 / (1-A2 ^ 2))

この条件を満たす実数t1、t2、t3を順次、式7に代入し、式7が成立するすべてのt1,t2,t3を算出する。次に上記の式3からp1,p2,p3を、即ち、基本標識の3次元位置を算出する。
上述の計算方法に従って実際に計測した結果を以下の表に示す。表1は、基本標識ai(i=1〜3)の座標系を示す。
Real numbers t1, t2, and t3 that satisfy this condition are sequentially substituted into Expression 7, and all t1, t2, and t3 that satisfy Expression 7 are calculated. Next, p1, p2, and p3, that is, the three-dimensional position of the basic sign are calculated from the above equation 3.
The following table shows the results of actual measurement according to the above calculation method. Table 1 shows the coordinate system of the basic sign ai (i = 1 to 3).

Figure 2010216969
Figure 2010216969

表1中の基本標識a1,a2,a3は、図3に示すように、a2を直角の頂点とし、a1,a3が他の2つの頂点となる直角二等辺三角形を形成する。即ち、標識座標系において、
a1=(50,0,0)
a2=(0,0,0)
a3=(0,50,0)
となる。これは線分a1a2とa2a3の長さが50mmであることを意味する。
As shown in FIG. 3, the basic signs a1, a2, and a3 in Table 1 form a right-angled isosceles triangle in which a2 is a right vertex and a1 and a3 are the other two vertices. That is, in the sign coordinate system,
a1 = (50,0,0)
a2 = (0,0,0)
a3 = (0,50,0)
It becomes. This means that the lengths of the line segments a1a2 and a2a3 are 50 mm.

これをある空間位置に配置し、カメラで撮像した。この時のaiの画像点の位置を表2に示す。この画像は通常のカメラの画像を左右反転させているので注意を要する。カメラとしては、640画素×480画素のCMOSセンサを搭載した1394カメラ(IEEE1394でPCと接続可能なデジタルカメラ)を使用した。   This was placed in a certain spatial position and imaged with a camera. Table 2 shows the positions of the image points of ai at this time. Note that this image is a left-right flip of a normal camera image. As the camera, a 1394 camera (digital camera that can be connected to a PC by IEEE 1394) equipped with a CMOS sensor of 640 pixels × 480 pixels was used.

Figure 2010216969
Figure 2010216969

この画像点の位置を用いて式3〜式9から解を求めると、基本標識の空間位置として二つの解Q1,Q2がカメラ座標の値として得られる。これらを表3と表4に示す。   When the solution is obtained from Equations 3 to 9 using the positions of the image points, two solutions Q1 and Q2 are obtained as the values of the camera coordinates as the spatial positions of the basic signs. These are shown in Tables 3 and 4.

Figure 2010216969
Figure 2010216969

Figure 2010216969
Figure 2010216969

表3,4に示すように第1の解Q1と第2の解Q2の2つが得られるが、そのどちらが正解であるかは不明である。そこで、3つの基本標識a1,a2,a3の位置する平面上から離隔した地点にある基本標識a4の画像面10における画像位置c4を用いて次のようにして正解を求める。まず、上記の2つの解の基本標識a1,a2,a3の位置から位置関係の分かっている基本標識a4のそれぞれの位置を計算する。この計算値とカメラで撮影した基本標識a4の画像面上の位置の実際値とを比較し、この実際値に近い方の計算値に対応する解を正解とする。この場合において、標識セットの面(基本標識a1,a2,a3の位置する平面)がカメラ光軸付近で正対した場合、すなわち標識セット面と画像面とのなす角度が小さく、例えば両面のなす角度が5度未満の場合には、計測精度が落ちる。このように正対すると、高さのある基本標識a4の画像位置の変化量が小さく、2つ以上存在する計算値の内どちらが正解かを識別しにくくなる。   As shown in Tables 3 and 4, two solutions, the first solution Q1 and the second solution Q2, are obtained, but it is unclear which is the correct solution. Therefore, the correct answer is obtained as follows using the image position c4 on the image plane 10 of the basic sign a4 at a point separated from the plane where the three basic signs a1, a2, and a3 are located. First, the position of each of the basic signs a4 whose positional relationship is known is calculated from the positions of the basic signs a1, a2, and a3 of the above two solutions. This calculated value is compared with the actual value of the position on the image plane of the basic sign a4 photographed by the camera, and the solution corresponding to the calculated value closer to this actual value is determined as the correct answer. In this case, when the face of the sign set (the plane on which the basic signs a1, a2, and a3 are located) face each other in the vicinity of the optical axis of the camera, that is, the angle between the sign set face and the image plane is small. When the angle is less than 5 degrees, the measurement accuracy decreases. When facing in this way, the amount of change in the image position of the basic mark a4 having a height is small, and it becomes difficult to identify which of two or more calculated values is correct.

図4は、図2に示す対象物に取り付けられた標識セットの面とカメラの画像面のなす角度が小さい場合の一例を説明するための図である。本例のシステムは、図示のように、対象物1に取り付けられる位置関係の分かっている3つの基本標識a1,a2,a3を有する標識セット2と、標識セット2を撮像するレンズ11および2次元撮像素子12を有するカメラ13と、カメラ13で撮像した標識セット2の画像に基づいて対象物1の位置および角度の少なくとも一方を演算する演算装置14とを備える。演算装置14は上述のように演算を行う。演算部14の構成例については後述する。本図に示すカメラ13の位置は仮想的なものであり、実際の位置関係は図1と同様にカメラの光学中心20に対し2次元撮像素子12の素子面を画像面10として示す。図4に示すように、標識セット2の3つの基本標識a1,a2,a3は同一平面上にあり、1つの基本標識a4がその平面上から垂直に高さhだけ離隔した地点にある。いま画像面10と基本標識a1,a2,a3の位置する平面とのなす角度がθ1、両面の角度が0とθ1のときのカメラの光学中心20から基本標識a4を見たときの角度をγ、基本標識a4とカメラの光学中心20間の距離をLとすると、tanγ=h・sinθ1/Lの関係が成り立つ。この関係から、両面のなす角度θ1が小さいと、高さのある基本標識a4の変化量も小さく、したがって画像面10におけるその画像位置の変化量も小さくなる。   FIG. 4 is a diagram for explaining an example in which the angle formed by the surface of the sign set attached to the object shown in FIG. 2 and the image surface of the camera is small. As shown in the figure, the system of this example includes a marker set 2 having three basic markers a1, a2, and a3 that are known to be attached to the object 1, a lens 11 that captures the marker set 2, and a two-dimensional image. A camera 13 having an image sensor 12 and an arithmetic device 14 that calculates at least one of the position and the angle of the object 1 based on the image of the marker set 2 captured by the camera 13 are provided. The computing device 14 performs computation as described above. A configuration example of the calculation unit 14 will be described later. The position of the camera 13 shown in this figure is virtual, and the actual positional relationship shows the element surface of the two-dimensional image sensor 12 as the image plane 10 with respect to the optical center 20 of the camera, as in FIG. As shown in FIG. 4, the three basic signs a1, a2 and a3 of the sign set 2 are on the same plane, and one basic sign a4 is at a point vertically separated from the plane by a height h. The angle when the basic sign a4 is viewed from the optical center 20 of the camera when the angle between the image plane 10 and the plane on which the basic signs a1, a2, a3 are located is θ1, and the angles of both faces are 0 and θ1, is γ. If the distance between the basic mark a4 and the optical center 20 of the camera is L, the relationship tan γ = h · sin θ1 / L is established. From this relationship, when the angle θ1 formed by both surfaces is small, the amount of change of the basic mark a4 having a height is small, and thus the amount of change of the image position on the image surface 10 is also small.

図5は、本発明に係る位置計測システムの一実施例を示す図である。図6は、図5の実施例で用いることができる標識セットの一例を示す図である。本実施例の説明の前に標識セットについて説明する。図6に示すように、標識セット2は、位置計測用の対象物に取り付けられる位置関係の分かっている4つの基本標識a1,a2,a3,a4を有し、そのうち基本標識a1が他の3つの基本標識a2,a3,a4の位置する平面61から離れて配置され、この基本標識a1から平面61に下ろした垂線の平面61との交点62は、他の3つの基本標識a2,a3,a4により形成される三角形63の外側に位置する。この関係は、上記において基本標識a1をa3に代えても同様である。このように図6の標識セット2は、対象物上で時計回りに4つの基本標識a1,a2,a3,a4を有し、2つの基本標識a2,a4が対象物上の低い位置に配置され、残りの2つの基本標識a1,a3が、先の基本標識a2,a4よりも高い位置に配置され、基本標識a2,a3,a4で第1の三角形を形成し、基本標識a1,a2,a4で第2の三角形を形成するように各基本標識が配置される。なお、本例では基本標識a1とa3をともに基本標識a2,a4よりも高い位置に配置しているが、高い位置に配置する基本標識は少なくとも一つあればよい。また、図6中の各基本標識を結ぶ枠組みは理解を容易とするために記載したもので実際にはなく、平面61から離れて配置される基本標識a1、a3は例えば図2に示すように対象物1上から突出する突出部の先端に設けられる。以下同様である。   FIG. 5 is a diagram showing an embodiment of the position measurement system according to the present invention. FIG. 6 is a diagram showing an example of a marker set that can be used in the embodiment of FIG. The label set will be described before the description of the present embodiment. As shown in FIG. 6, the sign set 2 has four basic signs a1, a2, a3, and a4 whose positional relationships are known to be attached to the object for position measurement, of which the basic sign a1 is the other three. An intersection 62 with a perpendicular plane 61 which is arranged away from the plane 61 where the two basic signs a2, a3 and a4 are located and which is lowered from the basic sign a1 to the plane 61 is the other three basic signs a2, a3 and a4. Is located outside the triangle 63 formed by This relationship is the same even if the basic mark a1 is replaced with a3 in the above. Thus, the sign set 2 of FIG. 6 has four basic signs a1, a2, a3, a4 clockwise on the object, and the two basic signs a2, a4 are arranged at a low position on the object. The remaining two basic signs a1, a3 are arranged at positions higher than the previous basic signs a2, a4, and the basic signs a2, a3, a4 form a first triangle, and the basic signs a1, a2, a4 Each basic mark is arranged so as to form a second triangle. In this example, both the basic signs a1 and a3 are arranged at positions higher than the basic signs a2 and a4. However, at least one basic sign may be arranged at a high position. Further, the framework for connecting the basic signs in FIG. 6 is described for ease of understanding, and is not actually provided. The basic signs a1 and a3 arranged away from the plane 61 are, for example, as shown in FIG. It is provided at the tip of the protruding portion that protrudes from above the object 1. The same applies hereinafter.

図5に戻って説明すると、本実施例では、図6に示す標識セット2と、この標識セット2を撮像する2次元撮像素子12を有するカメラ13と、カメラ13で撮像した標識セット2の画像に基づいて対象物1の位置および角度の少なくとも一方を演算する演算装置14とを備える。演算装置14は上述のように演算を行う。本図に示すカメラ13の位置は仮想的なものであり、実際の位置関係は図1と同様にカメラの光学中心20に対し2次元撮像素子12の素子面を画像面10として示す。図5に示すように、標識セット2は、四角形の一方の対角の2つの基本標識a2,a4が対象物1上の低い位置に配置され、他方の対角の2つの基本標識a1,a3が対象物1の平面上から垂直に高さhだけ離隔した高い位置に配置される。いまカメラの画像面10と基本標識a2,a4の位置する対象物1の平面とのなす角度がθ1、平面上から垂直に高さhだけ離隔した基本標識a1,a3と対象物1の中心部を結ぶ線と対象物1の平面とのなす角度をθ2、画像面10と対象物1の平面とのなす角度が0とθ1のときのカメラの光学中心20から基本標識a1を見たときの角度をγ、基本標識a1とカメラの光学中心20間の距離をLとすると、tanγ=h・sin(θ1+θ2)/Lの関係が成り立つ。この関係から、両面のなす角度θ1が小さい場合でも、高さのある基本標識a1により形成される角度θ2を用いて、カメラの画像面10となす角度が(θ1+θ2)の平面をつくることができる。本実施例では、高さのある基本標識a1により角度θ2が確保されるので、基本標識a1の変化量が大きくすることができ、したがって画像面10における画像位置の変化量も大きくすることができる。角度θ2は計測精度との関係から例えば5度以上とすることが好ましい。この事情は基本標識a1の対角に配置される高さのある基本標識a3についても同様である。   Returning to FIG. 5, in the present embodiment, the sign set 2 shown in FIG. 6, the camera 13 having the two-dimensional image sensor 12 that images the sign set 2, and the image of the sign set 2 captured by the camera 13. And an arithmetic unit 14 that calculates at least one of the position and the angle of the object 1 based on the above. The computing device 14 performs computation as described above. The position of the camera 13 shown in this figure is virtual, and the actual positional relationship shows the element surface of the two-dimensional image sensor 12 as the image plane 10 with respect to the optical center 20 of the camera, as in FIG. As shown in FIG. 5, in the sign set 2, the two basic signs a <b> 2 and a <b> 4 on one diagonal of the square are arranged at a low position on the object 1, and the two basic signs a <b> 1 and a <b> 3 on the other diagonal are arranged. Is arranged at a high position vertically separated from the plane of the object 1 by a height h. The angle between the image plane 10 of the camera and the plane of the object 1 on which the basic signs a2 and a4 are located is θ1, and the basic signs a1 and a3 vertically separated from the plane by a height h and the center of the object 1 When the basic sign a1 is viewed from the optical center 20 of the camera when the angle between the line connecting the two and the plane of the object 1 is θ2, and the angle between the image plane 10 and the plane of the object 1 is 0 and θ1 When the angle is γ and the distance between the basic mark a1 and the optical center 20 of the camera is L, the relationship of tan γ = h · sin (θ1 + θ2) / L is established. From this relationship, even when the angle θ1 formed by both surfaces is small, a plane having an angle (θ1 + θ2) formed with the image plane 10 of the camera can be formed using the angle θ2 formed by the basic mark a1 having a height. . In the present embodiment, since the angle θ2 is secured by the basic mark a1 having a height, the change amount of the basic mark a1 can be increased, and therefore the change amount of the image position on the image plane 10 can also be increased. . The angle θ2 is preferably set to, for example, 5 degrees or more from the relationship with the measurement accuracy. The situation is the same for the basic mark a3 having a height arranged at the diagonal of the basic mark a1.

このように、標識セット2は、カメラの画像面10に対して正対しない基本標識の組をつくることができる。したがって、例えば、図6の基本標識a2,a3,a4で形成される三角形63が画像面10に正対する時、別の基本標識a1,a3,a4で形成される三角形は画像面10に正対しない。つまり、両方同時に正対することがない。図6の高い位置にある基本標識a1から基本標識a2,a3,a4の位置する平面61に下ろした垂線の足が、基本標識a2,a3,a4で形成される三角形63の外側に出ていることで、上記の両三角形がカメラの画像面10に対して同時に正対することがない基本標識の配置構造が作ることができる。図6において、平面61からの基本標識a1との高さhは従来の約2倍高くなる。   In this way, the sign set 2 can create a set of basic signs that do not face the image plane 10 of the camera. Therefore, for example, when the triangle 63 formed by the basic signs a2, a3, a4 in FIG. 6 faces the image plane 10, the triangle formed by the other basic signs a1, a3, a4 faces the image plane 10. do not do. In other words, both do not face each other at the same time. In FIG. 6, the legs of the perpendicular line extending from the basic sign a1 at the high position to the plane 61 where the basic signs a2, a3, a4 are located are outside the triangle 63 formed by the basic signs a2, a3, a4. Thus, it is possible to create an arrangement structure of basic signs in which the above-described triangles do not face each other at the same time with respect to the image plane 10 of the camera. In FIG. 6, the height h from the flat surface 61 to the basic mark a1 is about twice as high as the conventional one.

図7は、標識セットの他の例を示す図である。本例の標識セット2は、対象物上で時計回りに5つの基本標識a1,a2,a3,a4,a5を有し、そのうち基本標識a2,a3,a5が対象物上の低い位置にそれぞれ配置され、基本標識a1,a4が、基本標識a2,a3,a5よりも高い位置に配置され、基本標識a1,a4を結ぶ線が基本標識a2,a3,a5で形成される三角形と3次元的に交差するように各基本標識が配置される。図示のように、高い位置に配置される基本標識a1,a4から基本標識a2,a3,a5の位置する平面に下ろした垂線の前記平面との交点は、基本標識a2,a3,a5により形成される三角形の外側に位置する。本例の場合、例えば基本標識a2,a3,a5の位置する平面と画像面10のなす角度が小さいときでも、高い位置に配置される基本標識a1またはa4で生成される図5に示すような角度θ2を用いることができるので、両面のなす角度を(θ1+θ2)とすることができる。また本例でも、高い位置の基本標識a1,a4と低い位置の基本標識a2,a3,a5とを組み合わせて、図6の場合と同様に三角形を形成してもよい。   FIG. 7 is a diagram illustrating another example of the marker set. The sign set 2 of this example has five basic signs a1, a2, a3, a4, a5 clockwise on the object, and the basic signs a2, a3, a5 are respectively arranged at low positions on the object. The basic signs a1, a4 are arranged at positions higher than the basic signs a2, a3, a5, and a line connecting the basic signs a1, a4 is three-dimensionally with the triangle formed by the basic signs a2, a3, a5. Each basic sign is arranged to intersect. As shown in the figure, the intersections of the perpendicular lines drawn from the basic signs a1, a4 arranged at a high position to the plane where the basic signs a2, a3, a5 are located are formed by the basic signs a2, a3, a5. Located outside the triangle. In the case of this example, for example, as shown in FIG. 5 generated by the basic sign a1 or a4 arranged at a high position even when the angle formed by the plane where the basic signs a2, a3, a5 are located and the image plane 10 is small. Since the angle θ2 can be used, the angle between both surfaces can be (θ1 + θ2). Also in this example, a triangle may be formed in the same manner as in FIG. 6 by combining the high-level basic signs a1, a4 and the low-level basic signs a2, a3, a5.

図8は、標識セットのさらに他の例を示す図である。本例の標識セット2は、対象物上で時計回りに6つの基本標識a1,a2,a3,a4,a5,a6を有し、そのうち基本標識a2,a3,a5,a6が対象物上の低い位置にそれぞれ配置され、基本標識a1,a4が、基本標識a2,a3,a5,a6よりも高い位置に配置され、基本標識a1,a4を結ぶ線が基本標識a2,a3,a5,a6で形成される四辺形と3次元的に交差するように各基本標識が配置される。図示のように、高い位置に配置される基本標識a1,a4から基本標識a2,a3,a5,a6の位置する平面に下ろした垂線の前記平面との交点は、基本標識a2,a3,a5,a6により形成される四辺形の外側に位置する。本例の場合も、例えば基本標識a2,a3,a5,a6の位置する平面と画像面10のなす角度が小さいときでも、高い位置に配置される基本標識a1またはa4で生成される図5に示すような角度θ2を用いることができるので、両面のなす角度を(θ1+θ2)とすることができる。また本例でも、高い位置の基本標識a1,a4と低い位置の基本標識a2,a3,a5,a6とを組み合わせて、図6の場合と同様に三角形を形成してもよい。   FIG. 8 is a diagram showing still another example of the marker set. The sign set 2 of this example has six basic signs a1, a2, a3, a4, a5, a6 clockwise on the object, of which the basic signs a2, a3, a5, a6 are low on the object. The basic signs a1, a4 are arranged at positions higher than the basic signs a2, a3, a5, a6, and a line connecting the basic signs a1, a4 is formed by the basic signs a2, a3, a5, a6. Each basic mark is arranged so as to cross three-dimensionally with the quadrilateral. As shown in the drawing, the intersections of the perpendicular lines drawn from the basic signs a1, a4 arranged at a high position to the plane where the basic signs a2, a3, a5, a6 are located are the basic signs a2, a3, a5, It is located outside the quadrilateral formed by a6. In the case of this example as well, for example, even when the angle formed between the plane where the basic signs a2, a3, a5 and a6 are located and the image plane 10 is small, the basic mark a1 or a4 arranged at a high position is generated in FIG. Since the angle θ2 as shown can be used, the angle between both surfaces can be (θ1 + θ2). Also in this example, a triangle may be formed in the same manner as in FIG. 6 by combining the high-level basic signs a1, a4 and the low-level basic signs a2, a3, a5, a6.

上記実施例において、標識セットを構成する各基本標識は、例えばLED等の光源を用いることができる。この場合、光源の発光を制御する図示しない発光制御装置が対象物1に配置される。また、上述の光源の代わりに再帰反射板を用い、その再帰反射板を照明するための照明装置を備えるようにしてもよい。また基本標識は、LED等の光源や再帰反射板に限定されず、これ以外のものを用いてもよい。さらに、カメラ13は、例えばCCDやCMOSセンサ等を搭載したデジタルカメラが用いられるが、これに限定されない。演算装置14は、カメラ13の図示しない通信手段と有線あるいは無線で接続され、カメラ13と通信できるように構成される。演算装置14は、例えばパーソナルコンピュータ(PC)等のコンピュータが用いられるが、これに限定されない。   In the above embodiment, each basic marker constituting the marker set can use a light source such as an LED. In this case, a light emission control device (not shown) that controls the light emission of the light source is disposed on the object 1. Moreover, you may make it use the retroreflection board instead of the above-mentioned light source, and provide the illuminating device for illuminating the retroreflection board. Moreover, a basic label is not limited to light sources, such as LED, and a retroreflection board, You may use things other than this. Furthermore, for example, a digital camera equipped with a CCD, a CMOS sensor, or the like is used as the camera 13, but is not limited thereto. The computing device 14 is connected to a communication unit (not shown) of the camera 13 by wire or wirelessly and is configured to be able to communicate with the camera 13. The computing device 14 is a computer such as a personal computer (PC), but is not limited thereto.

図9は、演算装置としてパーソナルコンピュータ(PC)を用いた場合の一例を示すブロック図である。ここで用いられる標識セットは、対象物に取り付けられる位置関係の分かっている4つ以上の基本標識を有し、前記基本標識のうち少なくとも一つの基本標識が他の3つ以上の基本標識の位置する平面から離れて配置され、前記平面から離れて配置される基本標識から前記平面に下ろした垂線の前記平面との交点が前記他の3つ以上の基本標識により形成される多角形の外側に位置するものである。演算装置14は、この標識セットを2次元撮像素子を有するカメラで撮像した画像情報を入力する入力部41と、入力した画像情報に基づいて前記対象物の3次元位置および角度の少なくとも一方を演算する演算部(CPU)42と、演算した前記対象物の3次元位置および角度の少なくとも一方を例えばモニタ等の表示装置に出力する出力部43とを備える。演算部42には記憶部44が接続され、両者間で情報の授受が行われる。記憶部44は演算部42で実行されるプログラムやそこで用いられる各種情報を格納するものであり、内部メモリとして構成することができるが、これに限定されず、外部に接続した記憶装置でもよい。   FIG. 9 is a block diagram illustrating an example in which a personal computer (PC) is used as the arithmetic device. The sign set used here has four or more basic signs whose positional relationship is known to be attached to an object, and at least one of the basic signs is the position of the other three or more basic signs. The intersection of the perpendicular line, which is arranged away from the plane to be separated from the basic sign arranged away from the plane and to the plane, is outside the polygon formed by the three or more other basic signs. It is what is located. The computing device 14 computes at least one of the three-dimensional position and the angle of the object based on the input unit 41 for inputting image information obtained by imaging the marker set with a camera having a two-dimensional image sensor. And an output unit 43 that outputs at least one of the calculated three-dimensional position and angle of the object to a display device such as a monitor. A storage unit 44 is connected to the calculation unit 42, and information is exchanged between them. The storage unit 44 stores a program executed by the calculation unit 42 and various types of information used therein, and can be configured as an internal memory, but is not limited thereto, and may be a storage device connected to the outside.

以上の手順は、コンピュータに次のプログラムを実行させることで実施することができる。図10はコンピュータにより実行される手順の一例を示すフロー図である。すなわち、このプログラムは、コンピュータに、対象物に取り付けられる位置関係の分かっている4つ以上の基本標識を有し、前記基本標識のうち少なくとも一つの基本標識が他の3つ以上の基本標識の位置する平面から離れて配置され、前記平面から離れて配置される基本標識から前記平面に下ろした垂線の前記平面との交点が前記他の3つ以上の基本標識により形成される多角形の外側に位置する標識セットを2次元撮像素子を有するカメラで撮像した画像情報を取り込む手順(ステップ51)、前記他の3つ以上の基本標識の画像情報から前記対象物の3次元位置および角度の少なくとも一方を演算して複数の解を得る手順(ステップ52)、前記複数の解に基づいて前記平面から離れて配置される基本標識の位置をそれぞれ計算し複数の計算値を得る手順(ステップ53)、前記複数の計算値と前記平面から離れて配置される基本標識の画像情報から得られる実際値とを比較する手順(ステップ54)、前記複数の計算値のうち前記実際値に近い計算値に対応する解を正解として前記対象物の3次元位置および角度の少なくとも一方を求める手順(ステップ55)を実行させるためのものである。本例では、プログラムを演算装置の記憶部に格納した実施形態として説明したが、このプログラムをCDROM等の記憶媒体に格納して又は通信手段によって提供することも可能である。   The above procedure can be implemented by causing a computer to execute the following program. FIG. 10 is a flowchart showing an example of a procedure executed by the computer. That is, this program has four or more basic signs whose positional relationship is known to be attached to an object in a computer, and at least one of the basic signs is one of three or more other basic signs. Outside of the polygon formed by the three or more other basic signs, the intersection point of the perpendicular line which is arranged away from the plane in which the plane is located and which is perpendicular to the plane from the basic sign arranged away from the plane is formed. A procedure for capturing image information obtained by imaging a set of signs positioned at a camera having a two-dimensional image sensor (step 51), and at least a three-dimensional position and an angle of the object from image information of the other three or more basic signs A procedure for calculating one solution to obtain a plurality of solutions (step 52), and calculating the positions of the basic signs arranged away from the plane based on the plurality of solutions. A procedure for obtaining the calculated value (step 53), a procedure for comparing the plurality of calculated values with the actual value obtained from the image information of the basic sign arranged away from the plane (step 54), and the plurality of calculated values Among them, a procedure (step 55) for obtaining at least one of the three-dimensional position and the angle of the target object with the solution corresponding to the calculated value close to the actual value as a correct answer is executed. In this example, the program is described as an embodiment in which the program is stored in the storage unit of the arithmetic device. However, the program may be stored in a storage medium such as a CDROM or provided by communication means.

1 対象物
2 標識セット
3 突出部
10 カメラの画像面
11 レンズ
12 2次元撮像素子
13 カメラ
14 演算装置
20 カメラの光学中心
DESCRIPTION OF SYMBOLS 1 Object 2 Marking set 3 Protruding part 10 Camera image surface 11 Lens 12 Two-dimensional image sensor 13 Camera 14 Computation device 20 Optical center of camera

Claims (7)

対象物に取り付けられる位置関係の分かっている4つ以上の基本標識を有し、前記基本標識のうち少なくとも一つの基本標識が他の3つ以上の基本標識の位置する平面から離れて配置され、前記平面から離れて配置される基本標識から前記平面に下ろした垂線の前記平面との交点が前記他の3つ以上の基本標識により形成される多角形の外側に位置する標識セットと、前記標識セットを撮像する2次元撮像素子を有するカメラと、前記カメラで撮像した前記標識セットの画像に基づいて前記対象物の3次元位置および角度の少なくとも一方を演算する演算装置とを備えた位置計測システム。   Four or more basic signs having a known positional relationship to be attached to an object, and at least one of the basic signs is arranged away from a plane on which the other three or more basic signs are located; A set of signs in which an intersection of a perpendicular line dropped from a basic sign arranged away from the plane with the plane and the plane is located outside a polygon formed by the three or more other basic signs; and the sign A position measurement system comprising: a camera having a two-dimensional image sensor that images a set; and an arithmetic device that calculates at least one of a three-dimensional position and an angle of the object based on an image of the marker set captured by the camera . 前記標識セットが前記対象物上で時計回りに第1〜第4の基本標識を有し、前記第2および第4の基本標識が対象物上の低い位置に配置され、前記第1および第3の基本標識が、前記第2および第4の基本標識よりも高い位置に配置され、前記第2、第3および第4の基本標識で第1の三角形を形成し、前記第1、第2および第4の基本標識で第2の三角形を形成するように前記各基本標識が配置される請求項1記載の位置計測システム。   The sign set has first to fourth basic signs clockwise on the object, the second and fourth basic signs are arranged at a low position on the object, and the first and third Are arranged at a position higher than the second and fourth basic signs, the second, third and fourth basic signs form a first triangle, and the first, second and The position measurement system according to claim 1, wherein each of the basic signs is arranged to form a second triangle with a fourth basic sign. 前記標識セットが前記対象物上で時計回りに第1〜第5の基本標識を有し、前記第2、第3および第5の基本標識が対象物上の低い位置にそれぞれ配置され、前記第1および第4の基本標識が、前記第2、第3および第5の基本標識よりも高い位置に配置され、前記第1および第4の基本標識を結ぶ線が前記第2、第3および第5の基本標識で形成される三角形と3次元的に交差するように前記各基本標識が配置される請求項1記載の位置計測システム。   The sign set has first to fifth basic signs clockwise on the object, and the second, third and fifth basic signs are arranged at low positions on the object, respectively. The first and fourth basic signs are arranged at a position higher than the second, third and fifth basic signs, and a line connecting the first and fourth basic signs is the second, third and second The position measurement system according to claim 1, wherein each of the basic signs is arranged so as to cross three-dimensionally with a triangle formed by five basic signs. 前記標識セットが前記対象物上で時計回りに第1〜第6の基本標識を有し、前記第2、第3、第5および第6の基本標識が対象物上の低い位置にそれぞれ配置され、前記第1および第4の基本標識が、前記第2、第3、第5および第6の基本標識よりも高い位置に配置され、前記第1および第4の基本標識を結ぶ線が前記第2、第3、第5および第6の基本標識で形成される四辺形と3次元的に交差するように前記各基本標識が配置される請求項1記載の位置計測システム。   The set of signs has first to sixth basic signs clockwise on the object, and the second, third, fifth and sixth basic signs are respectively arranged at low positions on the object. The first and fourth basic signs are arranged at a position higher than the second, third, fifth and sixth basic signs, and a line connecting the first and fourth basic signs is the first The position measurement system according to claim 1, wherein each of the basic signs is arranged so as to cross three-dimensionally with a quadrilateral formed by the second, third, fifth and sixth basic signs. コンピュータに、対象物に取り付けられる位置関係の分かっている4つ以上の基本標識を有し、前記基本標識のうち少なくとも一つの基本標識が他の3つ以上の基本標識の位置する平面から離れて配置され、前記平面から離れて配置される基本標識から前記平面に下ろした垂線の前記平面との交点が前記他の3つ以上の基本標識により形成される多角形の外側に位置する標識セットを2次元撮像素子を有するカメラで撮像した画像情報を取り込む手順、前記他の3つ以上の基本標識の画像情報から前記対象物の3次元位置および角度の少なくとも一方を演算して複数の解を得る手順、前記複数の解に基づいて前記平面から離れて配置される基本標識の位置をそれぞれ計算し複数の計算値を得る手順、前記複数の計算値と前記平面から離れて配置される基本標識の画像情報から得られる実際値とを比較する手順、前記複数の計算値のうち前記実際値に近い計算値に対応する解を正解として前記対象物の3次元位置および角度の少なくとも一方を求める手順を実行させるためのプログラム。   The computer has four or more basic signs having a known positional relationship attached to an object, and at least one of the basic signs is separated from a plane on which the other three or more basic signs are located. A set of signs positioned at an intersection of a perpendicular line drawn from the basic sign placed at a distance from the plane with the plane and outside the polygon formed by the three or more other basic signs A procedure for capturing image information captured by a camera having a two-dimensional image sensor, and calculating at least one of the three-dimensional position and angle of the object from the image information of the other three or more basic signs to obtain a plurality of solutions A procedure, a procedure for obtaining a plurality of calculated values by respectively calculating positions of basic signs arranged away from the plane based on the plurality of solutions, and arranging a plurality of calculated values and the plane apart from the plane A step of comparing the actual value obtained from the image information of the basic sign, and at least a three-dimensional position and an angle of the object with a solution corresponding to a calculated value close to the actual value among the plurality of calculated values as a correct answer A program for executing the procedure for finding one. 位置関係の分かっている3つ以上の基本標識と、前記3つ以上の基本標識の位置する平面から離れて配置され、前記平面に下ろした垂線の前記平面との交点が前記3つ以上の基本標識により形成される多角形の外側に位置する、位置関係の分かっている少なくとも一つの基本標識とを備えた標識セット。   The intersection of three or more basic signs whose positional relationship is known and the plane of the perpendicular line that is arranged away from the plane on which the three or more basic signs are located and is lowered to the plane is the three or more basic signs. A set of signs comprising at least one basic mark having a known positional relationship located outside a polygon formed by the sign. 請求項6記載の標識セットが取り付けられた位置計測用の対象物。   An object for position measurement to which the marker set according to claim 6 is attached.
JP2009063669A 2009-03-16 2009-03-16 System, program and mark set for position measurement, and object for position measurement Pending JP2010216969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063669A JP2010216969A (en) 2009-03-16 2009-03-16 System, program and mark set for position measurement, and object for position measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063669A JP2010216969A (en) 2009-03-16 2009-03-16 System, program and mark set for position measurement, and object for position measurement

Publications (1)

Publication Number Publication Date
JP2010216969A true JP2010216969A (en) 2010-09-30

Family

ID=42975978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063669A Pending JP2010216969A (en) 2009-03-16 2009-03-16 System, program and mark set for position measurement, and object for position measurement

Country Status (1)

Country Link
JP (1) JP2010216969A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7930834B2 (en) * 2005-09-28 2011-04-26 Hunter Engineering Company Method and apparatus for vehicle service system optical target assembly
US8341848B2 (en) 2005-09-28 2013-01-01 Hunter Engineering Company Method and apparatus for vehicle service system optical target assembly
US8401236B2 (en) 2007-05-21 2013-03-19 Snap-On Incorporated Method and apparatus for wheel alignment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7930834B2 (en) * 2005-09-28 2011-04-26 Hunter Engineering Company Method and apparatus for vehicle service system optical target assembly
US8215023B2 (en) 2005-09-28 2012-07-10 Hunter Engineering Company Method and apparatus for vehicle service system optical target assembly
US8341848B2 (en) 2005-09-28 2013-01-01 Hunter Engineering Company Method and apparatus for vehicle service system optical target assembly
US8490290B2 (en) 2005-09-28 2013-07-23 Hunter Engineering Company Vehicle service system optical target assembly calibration
US8561307B2 (en) 2005-09-28 2013-10-22 Hunter Engineering Company Method and apparatus for vehicle service system optical target assembly
US8875407B2 (en) 2005-09-28 2014-11-04 Hunter Engineering Company Vehicle service system optical target assembly calibration
US9544545B2 (en) 2005-09-28 2017-01-10 Hunter Engineering Company Vehicle service system optical target assembly calibration
US8401236B2 (en) 2007-05-21 2013-03-19 Snap-On Incorporated Method and apparatus for wheel alignment

Similar Documents

Publication Publication Date Title
JP4530011B2 (en) Position measurement system
JP5746477B2 (en) Model generation device, three-dimensional measurement device, control method thereof, and program
JP2010025759A (en) Position measuring system
JP5548482B2 (en) Position / orientation measuring apparatus, position / orientation measuring method, program, and storage medium
JP6465789B2 (en) Program, apparatus and method for calculating internal parameters of depth camera
JP6132275B2 (en) Size measuring apparatus and size measuring method
US7529387B2 (en) Placement information estimating method and information processing device
JP5036260B2 (en) Position and orientation calculation method and apparatus
JP4599515B2 (en) Method and apparatus for aligning three-dimensional shape data
JP5999615B2 (en) Camera calibration information generating apparatus, camera calibration information generating method, and camera calibration information generating program
JP6573419B1 (en) Positioning method, robot and computer storage medium
CN110068270A (en) A kind of monocular vision box volume measurement method based on multi-line structured light image recognition
CN101821580A (en) System and method for three-dimensional measurement of the shape of material objects
JP2015056057A (en) Method of estimating posture and robot
CN105513074B (en) A kind of scaling method of shuttlecock robot camera and vehicle body to world coordinate system
Boehm Accuracy investigation for structured-light based consumer 3D sensors
JP2011047830A (en) Position measuring system, arithmetic unit and program for measuring position
JP2008107087A (en) Apparatus for estimating light source location
JP2010216969A (en) System, program and mark set for position measurement, and object for position measurement
Yamauchi et al. Calibration of a structured light system by observing planar object from unknown viewpoints
JP5487946B2 (en) Camera image correction method, camera apparatus, and coordinate transformation parameter determination apparatus
JP2010071677A (en) Position measuring system
JP6073123B2 (en) Stereoscopic display system, stereoscopic image generating apparatus, and stereoscopic image generating program
JP2010079458A (en) Handwriting display system
JP2011059009A (en) Position measuring object, position measuring system, arithmetic unit for position measurement, and program