JP2010216895A - Micro mass sensor - Google Patents

Micro mass sensor Download PDF

Info

Publication number
JP2010216895A
JP2010216895A JP2009062062A JP2009062062A JP2010216895A JP 2010216895 A JP2010216895 A JP 2010216895A JP 2009062062 A JP2009062062 A JP 2009062062A JP 2009062062 A JP2009062062 A JP 2009062062A JP 2010216895 A JP2010216895 A JP 2010216895A
Authority
JP
Japan
Prior art keywords
mass sensor
film
substrate
sensitive film
trace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009062062A
Other languages
Japanese (ja)
Inventor
Mare Konishi
希 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009062062A priority Critical patent/JP2010216895A/en
Publication of JP2010216895A publication Critical patent/JP2010216895A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micro mass sensor such as a moisture sensor which has superior heat resistance and durability, and further, is easy to produce at low cost. <P>SOLUTION: The micro mass sensor includes a substrate 3, a metal electrode film 4 deposited on the substrate 3, and a sensitive film 2 deposited over the electrode film 4, wherein the sensitive film 2 is formed with micro carbon fibers made hydrophilic by subjecting the fiber surface to an oxidation treatment. Also, the sensitive film 2 is a film prepared by coating the dispersion liquid of the micro carbon fibers over the electrode film 4 and drying. Preferably, the micro carbon fibers are carbon nanotubes and the substrate is formed with a single crystal of langasite. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、作製が容易であると共に耐熱性や耐久性に優れた湿度センサやアルコールセンサとなる微量質量センサに関する。   The present invention relates to a trace mass sensor that can be easily manufactured and is a humidity sensor or an alcohol sensor that is excellent in heat resistance and durability.

従来、水晶振動子等の固有振動数や共振周波数の変化を利用した湿度センサが知られている。例えば、特許文献1には、単結晶シリコンや水晶等の基板上に、カチオン性高分子膜とアニオン性高分子膜とが積層された湿度センサが提案されている。この湿度センサは、高分子膜に吸着した水分子の微量質量を、水晶振動子等の固有振動数や共振周波数の変化から検出して湿度を測定するものである。   Conventionally, a humidity sensor that utilizes changes in the natural frequency or resonance frequency of a crystal resonator or the like is known. For example, Patent Document 1 proposes a humidity sensor in which a cationic polymer film and an anionic polymer film are laminated on a substrate such as single crystal silicon or quartz. This humidity sensor measures humidity by detecting a minute mass of water molecules adsorbed on a polymer film from changes in the natural frequency or resonance frequency of a crystal resonator or the like.

特開2008−249511号公報(特許請求の範囲)JP 2008-249511 A (Claims)

上記従来の技術には、以下の課題が残されている。
すなわち、特許文献1に示す湿度センサでは、感応膜として高分子膜を採用しているため、耐熱性や耐久性に欠け、高温環境での検知が困難であるという不都合があった。また、高分子膜を積層する必要があるため、成膜工程が多く、製造コストが増大してしまう問題もあった。
The following problems remain in the conventional technology.
That is, the humidity sensor shown in Patent Document 1 employs a polymer film as a sensitive film, and thus has a disadvantage that it lacks heat resistance and durability and is difficult to detect in a high temperature environment. Moreover, since it is necessary to laminate | stack a polymer film, there existed a problem that there were many film-forming processes and manufacturing cost increased.

本発明は、前述の課題に鑑みてなされたもので、耐熱性や耐久性に優れ、さらに作製が容易で製造コストの低い湿度センサ等の微量質量センサを提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a trace mass sensor such as a humidity sensor that has excellent heat resistance and durability, is easy to manufacture, and is low in manufacturing cost.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の微量質量センサは、基板と、該基板上に成膜された金属の電極膜と、該電極膜上に成膜された感応膜と、を備え、該感応膜が、繊維表面を酸化処理して親水化した微細炭素繊維で形成されていることを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the trace mass sensor of the present invention includes a substrate, a metal electrode film formed on the substrate, and a sensitive film formed on the electrode film, and the sensitive film is a fiber surface. It is characterized by being formed of fine carbon fibers hydrophilized by oxidizing.

この微量質量センサでは、感応膜が、繊維表面を酸化処理して親水化した微細炭素繊維で形成されているので、親水化されて親水基を有する微細炭素繊維によって、水分子やOH基(ヒドロキシ基)を有するアルコール等を吸着・脱着して、高感度に水分子やアルコールを検知可能であると共に、高分子膜の感応膜に比べて高い耐熱性及び耐久性を有している。   In this trace mass sensor, the sensitive membrane is formed of fine carbon fibers that are hydrophilized by oxidizing the fiber surface, so that water molecules and OH groups (hydroxyl) are made by the fine carbon fibers that are hydrophilic and have hydrophilic groups. It is possible to detect water molecules and alcohol with high sensitivity by adsorbing and desorbing alcohol having a base), and has higher heat resistance and durability than a sensitive film of a polymer film.

また、本発明の微量質量センサは、前記感応膜が、前記微細炭素繊維の分散液を前記電極膜上に塗布して乾燥させた膜であることを特徴とする。
すなわち、この微量質量センサでは、感応膜が、微細炭素繊維の分散液を電極膜上に塗布して乾燥させた膜であるので、焼成や積層等の工程が不要で、作製が容易であり、製造コストを低く抑えることができる。
In the trace mass sensor of the present invention, the sensitive film is a film obtained by applying and drying the fine carbon fiber dispersion on the electrode film.
That is, in this trace mass sensor, since the sensitive film is a film obtained by applying a fine carbon fiber dispersion liquid on the electrode film and drying it, steps such as firing and lamination are unnecessary, and the production is easy. Manufacturing costs can be kept low.

また、本発明の微量質量センサは、前記微細炭素繊維が、カーボンナノチューブであることを特徴とする。
すなわち、この微量質量センサでは、微細炭素繊維が、カーボンナノチューブであるので、ナノオーダーの繊維が互いに絡み合って、より高い耐久性及び検出感度を有する感応膜が得られる。
Moreover, the trace mass sensor of the present invention is characterized in that the fine carbon fiber is a carbon nanotube.
That is, in this minute mass sensor, since the fine carbon fibers are carbon nanotubes, nano-order fibers are entangled with each other, and a sensitive film having higher durability and detection sensitivity can be obtained.

また、本発明の微量質量センサは、前記基板が、ランガサイト単結晶で形成されていることを特徴とする。
すなわち、この微量質量センサでは、基板が、耐熱性に優れたランガサイト単結晶で形成されているので、ランガサイト振動子となる基板に上記感応膜が形成されて、さらに高い耐熱性及び耐久性を得ることができる。
Moreover, the trace mass sensor of the present invention is characterized in that the substrate is formed of a langasite single crystal.
That is, in this trace mass sensor, since the substrate is formed of a langasite single crystal having excellent heat resistance, the above-mentioned sensitive film is formed on the substrate to be a langasite vibrator, and further higher heat resistance and durability. Can be obtained.

また、本発明の微量質量センサは、前記感応膜に水分子を吸着させて水分を検出する湿度センサであることを特徴とする。
また、本発明の微量質量センサは、前記感応膜にアルコールを吸着させてアルコールを検出するアルコールセンサであることを特徴とする。
The trace mass sensor of the present invention is a humidity sensor that detects water by adsorbing water molecules to the sensitive film.
Moreover, the trace mass sensor of the present invention is an alcohol sensor that detects alcohol by adsorbing alcohol to the sensitive film.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係る微量質量センサによれば、感応膜が、繊維表面を酸化処理して親水化した微細炭素繊維で形成されているので、高い耐熱性及び耐久性を有して高感度に水分子やアルコールを検知可能である。さらに、感応膜を、微細炭素繊維のスラリー又はペーストを電極膜上に塗布して乾燥させた膜とすることで、作製が容易であり、製造コストを低く抑えることができる。したがって、本発明は、高温環境でも使用可能であり、低コストな湿度センサやアルコールセンサとして好適である。
The present invention has the following effects.
That is, according to the micro-mass sensor according to the present invention, the sensitive film is formed of fine carbon fibers obtained by hydrophilizing the fiber surface by oxidation, so that it has high heat resistance and durability and high sensitivity. It can detect water molecules and alcohol. Furthermore, by making the sensitive film a film obtained by applying a fine carbon fiber slurry or paste onto the electrode film and drying it, the production is easy and the manufacturing cost can be kept low. Therefore, the present invention can be used in a high temperature environment and is suitable as a low-cost humidity sensor or alcohol sensor.

本発明に係る微量質量センサの一実施形態を示す平面図である。It is a top view which shows one Embodiment of the trace mass sensor which concerns on this invention. 図1のA−A線矢視断面図である。It is AA arrow sectional drawing of FIG. 本発明に係る微量質量センサの実施例において、湿度感応性を示すデータとして経過時間に対する共振周波数のグラフである。In the Example of the trace mass sensor which concerns on this invention, it is a graph of the resonant frequency with respect to elapsed time as data which shows humidity sensitivity. 本発明に係る微量質量センサの実施例において、湿度感応性を示すデータとして湿度に対する共振周波数のグラフである。In the Example of the trace mass sensor based on this invention, it is a graph of the resonant frequency with respect to humidity as data which shows humidity sensitivity. 本発明に係る微量質量センサの実施例において、アルコール感応性を示すデータとして経過時間に対する共振周波数変化のグラフである。In the Example of the trace mass sensor which concerns on this invention, it is a graph of the resonant frequency change with respect to elapsed time as data which show alcohol sensitivity. 本発明に係る微量質量センサの実施例において、アルコール感応性を示すデータとしてエタノール濃度に対する共振周波数変化のグラフである。In the Example of the trace mass sensor which concerns on this invention, it is a graph of the resonant frequency change with respect to ethanol concentration as data which show alcohol sensitivity.

以下、本発明に係る微量質量センサの一実施形態を、図1及び図2を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために縮尺を適宜変更している。   Hereinafter, an embodiment of a minute mass sensor according to the present invention will be described with reference to FIGS. 1 and 2. In each drawing used in the following description, the scale is appropriately changed so that each member can be recognized or easily recognized.

本実施形態の微量質量センサ1は、図1及び図2に示すように、感応膜2に水分子を吸着させて水分を検出する湿度センサ又は感応膜2にアルコールを吸着させてアルコールを検出するアルコールセンサであって、基板3と、該基板3の表裏面上に成膜された一対の電極膜4と、これら電極膜4上に成膜された一対の上記感応膜2と、を備えている。   As shown in FIGS. 1 and 2, the trace mass sensor 1 according to the present embodiment detects alcohol by adsorbing alcohol to the humidity sensor or the sensitive film 2 that adsorbs water molecules to the sensitive film 2 and detects moisture. An alcohol sensor, comprising a substrate 3, a pair of electrode films 4 formed on the front and back surfaces of the substrate 3, and a pair of the sensitive films 2 formed on the electrode films 4. Yes.

上記基板3は、ランガサイト単結晶で形成されている。
なお、ランガサイト(Langasite:LaGaSiO14)単結晶は、キュリー温度が水晶よりも高く高温領域で使用可能な材料であって、温度による弾性波伝搬速度、周波数の変化率が小さく、圧電性の大小を表す電気機械結合係数(電気エネルギーと機械エネルギーの相互変換効率を示す係数)が水晶に比べて大きいことから、圧電デバイス用や弾性波デバイス用の基板材料として優れている。
The substrate 3 is formed of a langasite single crystal.
Note that the Langasite (La 3 Ga 5 SiO 14 ) single crystal is a material that has a Curie temperature higher than that of quartz and can be used in a high temperature region, and has a small elastic wave propagation speed and frequency change rate due to temperature. Since the electromechanical coupling coefficient (coefficient indicating the mutual conversion efficiency between electric energy and mechanical energy) representing the magnitude of piezoelectricity is larger than that of quartz, it is excellent as a substrate material for piezoelectric devices and acoustic wave devices.

上記感応膜2は、繊維表面を酸化処理して親水化した微細炭素繊維で形成されている。また、感応膜2は、微細炭素繊維の分散液を電極膜4上に塗布して乾燥させた膜である。また、上記微細炭素繊維は、カーボンナノチューブである。   The sensitive film 2 is formed of fine carbon fibers obtained by hydrophilizing the fiber surface by oxidation treatment. The sensitive film 2 is a film obtained by applying a fine carbon fiber dispersion on the electrode film 4 and drying it. The fine carbon fiber is a carbon nanotube.

この感応膜2の成膜方法を説明すると、まず、カーボンナノチューブの繊維表面を酸化処理して親水性を付与する。この酸化処理は、例えばカーボンナノチューブに硫酸などの硫黄含有強酸を添加し、硝酸などの酸化剤を加え、このスラリーを加熱しながら攪拌した後、濾過し、残留する酸を洗浄して除去する方法が採用される。この酸化処理により、カルボニル基やカルボキシル基あるいはニトロ基などの極性官能基が形成されて親水化される。   The film forming method of the sensitive film 2 will be described. First, the fiber surface of the carbon nanotube is oxidized to impart hydrophilicity. In this oxidation treatment, for example, a sulfur-containing strong acid such as sulfuric acid is added to carbon nanotubes, an oxidizing agent such as nitric acid is added, the slurry is stirred while heating, and then filtered, and the remaining acid is washed and removed. Is adopted. By this oxidation treatment, a polar functional group such as a carbonyl group, a carboxyl group, or a nitro group is formed and hydrophilized.

次に、この親水化させたカーボンナノチューブをエタノールの溶媒に例えば5wt%の濃度で入れて、カーボンナノチューブ分散液を作製する。なお、カーボンナノチューブは、表面を酸化処理して親水化させているので、分散剤を使用しなくても溶媒中で良好な分散状態を維持することができる。   Next, this hydrophilic carbon nanotube is placed in an ethanol solvent at a concentration of, for example, 5 wt% to prepare a carbon nanotube dispersion. In addition, since the surface of the carbon nanotube is hydrophilized by oxidation treatment, a good dispersion state can be maintained in the solvent without using a dispersant.

このカーボンナノチューブ分散液を基板3の表裏面上に塗布し、乾燥機で例えば100℃5分の条件で乾燥させることで、実用強度のある感応膜2が成膜できる。本実施形態では、約10μmの膜厚で感応膜2が形成されている。
なお、カーボンナノチューブ分散液に結着剤を加えてスラリー又はペーストにして、上記塗布を行っても構わない。結着剤としては、例えばポリフッ化ビニリデン(PVdF)、カルボキシメチルセルロース(CMC)などが採用可能である。
The carbon nanotube dispersion liquid is applied onto the front and back surfaces of the substrate 3 and dried with a dryer at, for example, 100 ° C. for 5 minutes, whereby the sensitive film 2 having practical strength can be formed. In the present embodiment, the sensitive film 2 is formed with a film thickness of about 10 μm.
The coating may be performed by adding a binder to the carbon nanotube dispersion to form a slurry or paste. As the binder, for example, polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC) and the like can be employed.

上記電極膜4は、金属膜であって、例えば表面側がAuで形成されていると共に裏面側がCrで形成されている。
この微量質量センサ1では、振動モードとして例えばランガサイト振動子となる基板3の厚み方向の上下表面がそれぞれ対向方向にすべるような振動モードである厚みすべり振動を利用して、数MHz〜数百MHz帯域の周波数をカバーして共振周波数の変化を検出可能である。
The electrode film 4 is a metal film. For example, the front surface side is made of Au and the back surface side is made of Cr.
In this trace mass sensor 1, several MHz to several hundreds are utilized by utilizing thickness shear vibration, which is a vibration mode in which the upper and lower surfaces in the thickness direction of the substrate 3 serving as a Langasite vibrator, for example, slide in opposite directions as vibration modes. A change in resonance frequency can be detected by covering the frequency in the MHz band.

このように本実施形態の微量質量センサ1では、感応膜2が、繊維表面を酸化処理して親水化した微細炭素繊維で形成されているので、親水化されて親水基を有する微細炭素繊維によって、水分子やOH基(ヒドロキシ基)を有するアルコール等を吸着・脱着して、高感度に水分子やアルコールを検知可能であると共に、高分子膜の感応膜に比べて高い耐熱性及び耐久性を有している。   Thus, in the trace mass sensor 1 of the present embodiment, the sensitive film 2 is formed of fine carbon fibers that are hydrophilized by oxidizing the fiber surface. Therefore, the fine carbon fibers that are hydrophilic and have hydrophilic groups are used. Adsorbs and desorbs water molecules and alcohols with OH groups (hydroxy groups) to detect water molecules and alcohol with high sensitivity, and has higher heat resistance and durability compared to polymer membrane sensitive membranes. have.

特に、微細炭素繊維が、カーボンナノチューブであるので、ナノオーダーの繊維が互いに絡み合って、より高い耐久性及び検出感度を有する感応膜が得られる。
さらに、基板3が、耐熱性に優れたランガサイト単結晶で形成されているので、ランガサイト振動子となる基板3に上記感応膜2が形成されて、さらに高い耐熱性及び耐久性を得ることができる。例えば、500℃の高温環境でも湿度センサ又はアルコールセンサとして機能可能である。
In particular, since the fine carbon fibers are carbon nanotubes, nano-order fibers are entangled with each other, and a sensitive film having higher durability and detection sensitivity can be obtained.
Furthermore, since the substrate 3 is formed of a langasite single crystal having excellent heat resistance, the sensitive film 2 is formed on the substrate 3 to be a langasite vibrator to obtain higher heat resistance and durability. Can do. For example, it can function as a humidity sensor or an alcohol sensor even in a high temperature environment of 500 ° C.

また、感応膜2が、微細炭素繊維の分散液を電極膜4上に塗布して乾燥させた膜であるので、焼成や積層等の工程が不要で、作製が容易であり、製造コストを低く抑えることができる。   In addition, since the sensitive film 2 is a film obtained by applying a fine carbon fiber dispersion on the electrode film 4 and drying it, steps such as firing and lamination are not required, and the production is easy and the manufacturing cost is low. Can be suppressed.

次に、本発明に係る微量質量センサを、上記実施形態に基づいて実際に作製した実施例により評価した結果を具体的に説明する。   Next, the result of having evaluated the trace mass sensor based on this invention by the Example actually produced based on the said embodiment is demonstrated concretely.

まず、上記本実施形態の微量質量センサを実際に作製した実施例を湿度センサとして使用して、湿度感応性として経過時間に対する共振周波数について評価した結果を、図3に示す。この評価では、測定雰囲気の湿度を30分毎に変化させたときの共振周波数を調べた。また、測定雰囲気の湿度は、47%RH、57%RH、67%RH、77%RHの順に変化させている。
この評価結果から、本実施例の微量質量センサ(湿度センサ)では、時間と共に変化する湿度に応じて高い応答性を有して共振周波数が変化していることがわかる。
First, FIG. 3 shows the result of evaluating the resonance frequency with respect to the elapsed time as humidity sensitivity using an example in which the minute mass sensor of the present embodiment was actually manufactured as a humidity sensor. In this evaluation, the resonance frequency was examined when the humidity of the measurement atmosphere was changed every 30 minutes. The humidity of the measurement atmosphere is changed in the order of 47% RH, 57% RH, 67% RH, and 77% RH.
From this evaluation result, it can be seen that in the trace mass sensor (humidity sensor) of this example, the resonance frequency changes with high responsiveness according to the humidity that changes with time.

また、本実施例の微量質量センサ(湿度センサ)について、湿度に対する共振周波数の平均値について評価した結果を、図4に示す。この評価結果から、本実施例の微量質量センサ(湿度センサ)では、湿度が高いほど共振周波数が低くなることがわかる。このように本実施例の微量質量センサは、湿度センサとして十分な湿度感応性を有していることわかる。   In addition, FIG. 4 shows the result of evaluating the average value of the resonance frequency with respect to the humidity of the trace mass sensor (humidity sensor) of this example. From this evaluation result, it can be seen that in the trace mass sensor (humidity sensor) of this example, the higher the humidity, the lower the resonance frequency. Thus, it can be seen that the trace mass sensor of the present example has sufficient humidity sensitivity as a humidity sensor.

次に、本実施例の微量質量センサをアルコールセンサとして使用して、アルコール感応性として経過時間に対する共振周波数の変化について評価した結果を、図5に示す。この評価では、密閉容器内に微量質量センサ(アルコールセンサ)を設置し、そこへ各種アルコールを1滴投入したときの共振周波数の変化を測定した。なお、測定に使用したアルコールは、メタノール(MeOH)、エタノール(EtOH)、イソプロパノール(IPA)である。   Next, FIG. 5 shows the results of evaluating the change in resonance frequency with respect to elapsed time as alcohol sensitivity using the trace mass sensor of this example as an alcohol sensor. In this evaluation, a minute mass sensor (alcohol sensor) was installed in an airtight container, and the change in resonance frequency was measured when one drop of various alcohols was added thereto. In addition, the alcohol used for the measurement is methanol (MeOH), ethanol (EtOH), and isopropanol (IPA).

この評価結果から、本実施例の微量質量センサ(アルコールセンサ)では、アルコールの滴下後に大きく共振周波数が変化し、その後、アルコールが拡散して一定の濃度に安定したことを示すように、共振周波数の変化が一定のレベルに落ち着いていることがわかる。   From this evaluation result, in the trace mass sensor (alcohol sensor) of this example, the resonance frequency greatly changes after the alcohol is dropped, and then the alcohol is diffused and the resonance frequency is stabilized to indicate that the concentration is stable. It can be seen that the change in is settled to a certain level.

また、本実施例の微量質量センサ(アルコールセンサ)について、エタノール濃度に対する共振周波数の変化について評価した結果を、図6に示す。この評価結果から、本実施例の微量質量センサ(アルコールセンサ)では、エタノール濃度が高いほど共振周波数が低くなることがわかる。このように本実施例の微量質量センサは、アルコールセンサとして十分なアルコール感応性を有していることわかる。   Moreover, the result of having evaluated the change of the resonant frequency with respect to ethanol concentration about the trace mass sensor (alcohol sensor) of a present Example is shown in FIG. From this evaluation result, it can be seen that, in the trace mass sensor (alcohol sensor) of this example, the higher the ethanol concentration, the lower the resonance frequency. Thus, it can be seen that the trace mass sensor of this example has sufficient alcohol sensitivity as an alcohol sensor.

なお、本発明の技術範囲は上記実施形態及び実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、ランガサイト単結晶で形成した基板を採用しているが、同様に高温での特性に優れたランガテイト単結晶などの他のランガサイト系単結晶で形成した基板を使用しても構わない。
The technical scope of the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above embodiment, a substrate formed of a langasite single crystal is used, but a substrate formed of another langasite single crystal such as a rangate single crystal having excellent characteristics at a high temperature is used. It doesn't matter.

1…微量質量センサ、2…感応膜、3…基板、4…電極膜   DESCRIPTION OF SYMBOLS 1 ... Trace mass sensor, 2 ... Sensitive film, 3 ... Substrate, 4 ... Electrode film

Claims (6)

基板と、
該基板上に成膜された金属の電極膜と、
該電極膜上に成膜された感応膜と、を備え、
該感応膜が、繊維表面を酸化処理して親水化した微細炭素繊維で形成されていることを特徴とする微量質量センサ。
A substrate,
A metal electrode film formed on the substrate;
A sensitive film formed on the electrode film,
A trace mass sensor, wherein the sensitive film is formed of fine carbon fibers obtained by hydrophilizing the fiber surface by oxidation treatment.
請求項1に記載の微量質量センサにおいて、
前記感応膜が、前記微細炭素繊維の分散液を前記電極膜上に塗布して乾燥させた膜であることを特徴とする微量質量センサ。
The trace mass sensor according to claim 1,
The micro-mass sensor, wherein the sensitive film is a film obtained by applying the fine carbon fiber dispersion liquid onto the electrode film and drying it.
請求項1又は2に記載の微量質量センサにおいて、
前記微細炭素繊維が、カーボンナノチューブであることを特徴とする微量質量センサ。
The trace mass sensor according to claim 1 or 2,
A minute mass sensor, wherein the fine carbon fiber is a carbon nanotube.
請求項1から3のいずれか一項に記載の微量質量センサにおいて、
前記基板が、ランガサイト単結晶で形成されていることを特徴とする微量質量センサ。
In the trace mass sensor according to any one of claims 1 to 3,
A trace mass sensor, wherein the substrate is made of a langasite single crystal.
請求項1から4のいずれか一項に記載の微量質量センサにおいて、
前記感応膜に水分子を吸着させて水分を検出する湿度センサであることを特徴とする微量質量センサ。
In the trace mass sensor according to any one of claims 1 to 4,
A trace mass sensor, wherein the moisture sensor detects moisture by adsorbing water molecules to the sensitive film.
請求項1から4のいずれか一項に記載の微量質量センサにおいて、
前記感応膜にアルコールを吸着させてアルコールを検出するアルコールセンサであることを特徴とする微量質量センサ。
In the trace mass sensor according to any one of claims 1 to 4,
A trace mass sensor that is an alcohol sensor that detects alcohol by adsorbing alcohol to the sensitive film.
JP2009062062A 2009-03-13 2009-03-13 Micro mass sensor Pending JP2010216895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009062062A JP2010216895A (en) 2009-03-13 2009-03-13 Micro mass sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009062062A JP2010216895A (en) 2009-03-13 2009-03-13 Micro mass sensor

Publications (1)

Publication Number Publication Date
JP2010216895A true JP2010216895A (en) 2010-09-30

Family

ID=42975911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009062062A Pending JP2010216895A (en) 2009-03-13 2009-03-13 Micro mass sensor

Country Status (1)

Country Link
JP (1) JP2010216895A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066510A (en) * 2013-09-30 2015-04-13 独立行政法人物質・材料研究機構 Aromatic amine adsorbent, quartz resonator gas sensor using the same and manufacturing method of these

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166160A (en) * 1984-09-08 1986-04-04 Shimadzu Corp Humidity sensor and manufacture thereof
JPH0280938A (en) * 1988-09-16 1990-03-22 Hitachi Ltd Sensor for magnetic memory device, magnetic memory device using said sensor and control of said device
JPH02285236A (en) * 1989-04-27 1990-11-22 Nok Corp Manufacture of crystal resonator moisture sensor
JPH11190689A (en) * 1997-12-26 1999-07-13 Seiko Instruments Inc Chemical substance measuring quartz oscillator and chemical substance detecting device using it
JP2001242057A (en) * 2000-02-28 2001-09-07 Natl Inst Of Advanced Industrial Science & Technology Meti Small simplified detection device for gas or floating file particle in atmosphere
JP2005134392A (en) * 2003-10-27 2005-05-26 Michigan Molecular Inst Composite material, chemical sensor and vapor sensing device
WO2005108482A1 (en) * 2004-05-07 2005-11-17 Japan Science And Technology Agency Polysaccharide/carbon nanotube composite
JP2005331445A (en) * 2004-05-21 2005-12-02 Meidensha Corp Flow cell type qcm sensor
JP2007010361A (en) * 2005-06-28 2007-01-18 Ngk Insulators Ltd Voltage drive element
JP2007057289A (en) * 2005-08-23 2007-03-08 Seiko Instruments Inc Microsensor for analysis
JP2007121306A (en) * 2005-10-27 2007-05-17 Hoko Koka Daigakko Multi-scale cantilever structure having nano-sized minute hole, and method for manufacturing the same
JP2008083041A (en) * 2006-08-30 2008-04-10 Kri Inc Detecting element, manufacturing method therefor, and detector
JP2008249511A (en) * 2007-03-30 2008-10-16 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Humidity sensor
JP2009029695A (en) * 2007-06-29 2009-02-12 Toray Ind Inc Aggregate of carbon nanotubes, dispersion thereof and conductive film

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166160A (en) * 1984-09-08 1986-04-04 Shimadzu Corp Humidity sensor and manufacture thereof
JPH0280938A (en) * 1988-09-16 1990-03-22 Hitachi Ltd Sensor for magnetic memory device, magnetic memory device using said sensor and control of said device
JPH02285236A (en) * 1989-04-27 1990-11-22 Nok Corp Manufacture of crystal resonator moisture sensor
JPH11190689A (en) * 1997-12-26 1999-07-13 Seiko Instruments Inc Chemical substance measuring quartz oscillator and chemical substance detecting device using it
JP2001242057A (en) * 2000-02-28 2001-09-07 Natl Inst Of Advanced Industrial Science & Technology Meti Small simplified detection device for gas or floating file particle in atmosphere
JP2005134392A (en) * 2003-10-27 2005-05-26 Michigan Molecular Inst Composite material, chemical sensor and vapor sensing device
WO2005108482A1 (en) * 2004-05-07 2005-11-17 Japan Science And Technology Agency Polysaccharide/carbon nanotube composite
JP2005331445A (en) * 2004-05-21 2005-12-02 Meidensha Corp Flow cell type qcm sensor
JP2007010361A (en) * 2005-06-28 2007-01-18 Ngk Insulators Ltd Voltage drive element
JP2007057289A (en) * 2005-08-23 2007-03-08 Seiko Instruments Inc Microsensor for analysis
JP2007121306A (en) * 2005-10-27 2007-05-17 Hoko Koka Daigakko Multi-scale cantilever structure having nano-sized minute hole, and method for manufacturing the same
JP2008083041A (en) * 2006-08-30 2008-04-10 Kri Inc Detecting element, manufacturing method therefor, and detector
JP2008249511A (en) * 2007-03-30 2008-10-16 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Humidity sensor
JP2009029695A (en) * 2007-06-29 2009-02-12 Toray Ind Inc Aggregate of carbon nanotubes, dispersion thereof and conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066510A (en) * 2013-09-30 2015-04-13 独立行政法人物質・材料研究機構 Aromatic amine adsorbent, quartz resonator gas sensor using the same and manufacturing method of these

Similar Documents

Publication Publication Date Title
Wu et al. A high sensitivity nanomaterial based SAW humidity sensor
JP7168991B2 (en) Method for transferring thin film material
CN102393264B (en) Pressure sensor based on nano-piezoelectric fiber
Le et al. Humidity sensors based on AlN microcantilevers excited at high-order resonant modes and sensing layers of uniform graphene oxide
Zurn et al. Fabrication and structural characterization of a resonant frequency PZT microcantilever
WO2015085816A1 (en) Mems humidity sensor and preparation method
Penza et al. Thin-film bulk-acoustic-resonator gas sensor functionalized with a nanocomposite Langmuir–Blodgett layer of carbon nanotubes
Mistry et al. Highly sensitive self-actuated zinc oxide resonant microcantilever humidity sensor
Luo et al. Surface engineering on polyimide–silver films in low-cost, flexible humidity sensors
Zheng et al. A high-performance CMUT humidity sensor based on cellulose nanocrystal sensing film
JP6048870B2 (en) Method for manufacturing β-type polyvinylidene fluoride film, β-type polyvinylidene fluoride film, piezoelectric sensor provided with β-type polyvinylidene fluoride film, and method for manufacturing piezoelectric sensor
CN110726757B (en) Humidity sensor based on halloysite nanotube and preparation method thereof
Lim et al. Surface acoustic device for high response NO2 gas sensor using p-phenylenediamine-reduced graphene oxide nanocomposite coated on langasite
KR102235307B1 (en) Chitosan-carbon nanotube core-shell nanohybrid based humidity sensor
CN108152340A (en) A kind of MEMS gas sensors and preparation method thereof
JP2010216895A (en) Micro mass sensor
CN111044618B (en) Piezoelectric sensor for detecting acoustic emission signals and preparation method of piezoelectric film
CN102730632A (en) Method for processing metal film strainometer based on MEMS (Micro-electromechanical Systems)
Wang et al. Tunable humidity-sensing performance of graphene oxide with leaf-vein-like multiwall carbon nanotube conductive networks
JP2008083041A (en) Detecting element, manufacturing method therefor, and detector
CN105136884B (en) Diaphragm type moisture sensor based on carbon nano-tube/poly vinylpyrrolidone
Xia et al. A Latin-cross-shaped integrated resonant cantilever with second torsion-mode resonance for ultra-resoluble bio-mass sensing
Yang et al. Quad-cantilever microsensors with a low-cost single-sided micro-machining technique for trace chemical vapor detection
Hur et al. Determination of liquid density and viscosity using a self-actuating microcantilever
Ganji et al. Fabrication of a novel mems capacitive microphone using lateral slotted diaphragm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A131 Notification of reasons for refusal

Effective date: 20121218

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A02 Decision of refusal

Effective date: 20130412

Free format text: JAPANESE INTERMEDIATE CODE: A02