JP2010216456A - 多段遠心圧縮機及び多段遠心圧縮機の改造方法 - Google Patents

多段遠心圧縮機及び多段遠心圧縮機の改造方法 Download PDF

Info

Publication number
JP2010216456A
JP2010216456A JP2009067695A JP2009067695A JP2010216456A JP 2010216456 A JP2010216456 A JP 2010216456A JP 2009067695 A JP2009067695 A JP 2009067695A JP 2009067695 A JP2009067695 A JP 2009067695A JP 2010216456 A JP2010216456 A JP 2010216456A
Authority
JP
Japan
Prior art keywords
flow path
working fluid
return
return flow
centrifugal compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009067695A
Other languages
English (en)
Inventor
Manabu Yagi
学 八木
Takanori Shibata
貴範 柴田
Tetsuya Kuwano
哲也 桑野
Hideo Nishida
秀夫 西田
Hiromi Kobayashi
博美 小林
Masanori Tanaka
征将 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2009067695A priority Critical patent/JP2010216456A/ja
Publication of JP2010216456A publication Critical patent/JP2010216456A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

【課題】戻り流路における作動流体の流体損失を低減し、効率を向上できる多段遠心圧縮機とその改造方法を提供することを課題とする。
【解決手段】回転軸5の周りに回転する羽根車1を軸方向に複数段備え、羽根車1から吐出された作動流体11を転向させる曲がり流路3と、曲がり流路3を通過した作動流体11を後段の羽根車1に流入させる戻り流路4を含む多段遠心圧縮機100において、戻り流路4の入口4aの軸方向流路幅WsINが、出口4bの軸方向流路幅WsOUTと同等になるように戻り流路4が形成されていることを特徴とする。
【選択図】図1

Description

本発明は、多段遠心圧縮機及び多段遠心圧縮機の改造方法に関し、より詳細には、案内羽根を備える戻り流路を設けた多段遠心圧縮機とその改造方法に関する。
一般的な一軸の多段遠心圧縮機には、羽根車(遠心羽根車)と、ディフューザと、曲がり流路と、戻り流路とが、多段遠心圧縮機に流入する流体(作動流体)の流れの上流から下流に向かって配置されている。
羽根車は、流入する作動流体を回転軸から離れる方向(半径方向外向き)に吐出してディフューザに流入させ、曲がり流路は、ディフューザから流入する作動流体を、羽根車の回転軸に近づく方向(半径方向内向き)に転向する流路である。また、戻り流路は、曲がり流路から流入する作動流体を、後段の羽根車に導いて流入させる流路である。
多段遠心圧縮機の羽根車から吐出された作動流体は、ディフューザ、及び曲がり流路を介して戻り流路に流入する。このときに戻り流路に流入する作動流体は、羽根車の回転方向、すなわち、回転軸を中心とした周方向に回転していることから、戻り流路には、作動流体の流れを回転軸の中心に向かう半径方向の流れに転向するための案内羽根が備わっている。
このような構成の多段遠心圧縮機に関して、例えば特許文献1には、案内羽根の端部を曲がり流路の中央付近に設けて戻り流路の流体損失(圧力損失)を低減し、多段遠心圧縮機の効率を向上する技術が開示されている。
また、例えば特許文献2には、戻り流路の入口で案内羽根を高くして、戻り流路の入口における作動流体の摩擦による流体損失を低減し、多段遠心圧縮機の効率を向上する技術が開示されている。
特開平10−331793号公報 特開平7−63197号公報
しかしながら、例えば特許文献1に開示される多段遠心圧縮機においては、戻り流路に備わる案内羽根のみで、作動流体の流れを周方向の流れから半径方向の流れに転向する必要があり、この場合、作動流体の流れを約60°〜70°転向することになる。
このように、案内羽根のみで作動流体の流れを約60°〜70°転向するためには、作動流体の流速を充分に減速する必要があり、案内羽根の翼負荷(案内羽根の両側面の圧力差)を充分に大きくする必要がある。
そして、翼負荷を充分に大きくした案内羽根に沿って作動流体が流れるとき、作動流体が案内羽根の表面から剥離しやすいことがわかっている。
このような作動流体の剥離が発生すると、作動流体の流れの転向が不充分になって戻り流路内の2次流れが増大する。そして、戻り流路の出口において作動流体に周方向の流れが発生し、戻り流路における作動流体の流体損失が発生する。
また、戻り流路の出口で作動流体に周方向の流れが発生すると、後段の羽根車に流入する作動流体の流れに不均一性が生じ、戻り流路の入口において作動流体の流体損失が発生する。
そして、このような流体損失が発生すると、多段遠心圧縮機の効率が低下するという問題がある。
さらに、例えば特許文献2に開示される多段遠心圧縮機においては、曲がり流路の入口から曲がり流路の出口(戻り流路の入口)に向かって作動流体の流路幅を急に拡大するとともに、曲がり流路の内周側の曲率半径を小さくしていることから、曲がり流路の曲率半径が0に近くなる、曲がり流路の出口の内周側で作動流体の剥離が発生しやすいという問題がある。
そこで本発明は、戻り流路における作動流体の流体損失を低減し、効率を向上できる多段遠心圧縮機及び多段遠心圧縮機の改造方法を提供することを課題とする。
前記課題を解決するため、本発明は、戻り流路の入口における回転軸方向流路幅を、戻り流路の出口の回転軸方向流路幅と同等に形成する多段遠心圧縮機とした。
また、切削加工によって、戻り流路の入口の回転軸方向流路幅を、戻り流路の出口の回転軸方向流路幅と同等に形成する、多段遠心圧縮機の改造方法とした。
本発明によれば、戻り流路における作動流体の流体損失を低減し、効率を向上できる多段遠心圧縮機及び多段遠心圧縮機の改造方法を提供することができる。
本実施形態に係る多段遠心圧縮機の一部構造を示す断面図である。 案内羽根の形状を示す図である。 戻り流路内の流路面積の分布を示す図である。 図2のX2−X2断面図であり、(a)は本実施形態に係る戻り流路の形状を示す図、(b)は、比較例に係る戻り流路の形状を示す図である。 曲がり流路流入角αに対する圧力回復係数Cpと損失係数ζを示すグラフである。 曲がり流路の形状を示す図である。 従来の多段遠心圧縮機を切削加工する状態を示す図である。 作動流体の流速の変化を示す図である。
以下、本発明を実施するための形態について、適宜図を参照して詳細に説明する。
図1は、本実施形態に係る多段遠心圧縮機の一部構造を示す断面図、図2は、図1におけるX1−X1断面図であり、案内羽根の形状を示す図である。
なお、図2において、案内羽根6は断面図ではなく、ディフューザ2の側から見た形状を示している。
図1に示すように、多段遠心圧縮機100は、羽根7を備え、軸中心5aの回りに回転する回転軸5と一体に回転する羽根車1と、多段遠心圧縮機100の外壁9と内壁8の間に形成され、作動流体11の流路となるディフューザ2、曲がり流路3、戻り流路4等を含んで構成される。
なお、図1では省略するが、羽根車1、ディフューザ2、曲がり流路3、及び戻り流路4を含んで構成される組を1段とし、多段遠心圧縮機100は、この組が直列に配置されて複数段で構成される。すなわち、前段の戻り流路4を通過した作動流体11が後段の羽根車1に流入し、作動流体11は順次圧縮される。
以下、「上流」は作動流体11の流れに対する上流を示し、「下流」は作動流体11の流れに対する下流を示す。
羽根車1から吐出されてディフューザ2に流入する作動流体11は、ディフューザ2に取り付けられる複数の羽根(図示せず)によって減速して静圧が回復する。そして、作動流体11は、曲がり流路3、及び戻り流路4を経由して、下流に備わる後段の羽根車(図示せず)に流入する。
このように、ディフューザ2に図示しない複数の羽根を取り付けることで作動流体11の流速を減速させ、下流に備わる曲がり流路3及び戻り流路4における流体損失を小さくすることができ、多段遠心圧縮機100の効率を向上できる。ただし、図示しない複数の羽根は取り付けなくても特に問題は無い。
作動流体11は、羽根車1の回転によって、回転軸5から離れる方向(半径方向外向き)に吐出するが、曲がり流路3によって、回転軸5に近づく方向(半径方向内向き)に転向され、戻り流路4に流入する。
戻り流路4には、回転軸5を中心とした周方向に流れている作動流体11を、回転軸5の軸中心5aに向かう半径方向の流れに転向するための案内羽根6が備わる。案内羽根6は、外壁9と内壁8の間に、戻り流路4の回転軸5の軸方向に亘って配設される。
また、図2に示すように、戻り流路4には、複数の案内羽根6が、回転軸5の軸中心5aを中心として略放射状に、外壁9に立設するように備わっている。換言すると、外壁9、内壁8(図1参照)、及び2つの案内羽根6,6で囲まれた領域で戻り流路4が形成される。
案内羽根6は、軸中心5aと反対側の縁部、すなわち戻り流路4の入口4a側の縁部(以下、前縁6aと称する)の側に向かって、回転軸5の回転方向と逆の方向に湾曲した形状を呈する。
また、案内羽根6の翼厚は、軸中心5a側の縁部、すなわち戻り流路4の出口4b側の縁部(以下、後縁6bと称する)で最小値であり、前縁6aに向かって増大する。そして、前縁6aより若干後縁6bの側に設けられる最大翼厚部6cで最大翼厚WMAXになり、前縁6aに向かって減少する。
案内羽根6の高さは、図1に示す、戻り流路4の回転軸方向流路幅(以下、軸方向流路幅Wsと称する)と同等であり、戻り流路4の軸方向流路幅Wsによって決定される。
従来、戻り流路4の出口4bにおける作動流体11の流速をできるだけ小さくして、摩擦による作動流体11の流体損失を低減するように、戻り流路4の出口4bの軸方向流路幅WsOUTを好適に設定する。さらに、戻り流路4の出口4b側の径方向位置と入口4a側の径方向位置の差によって生じる、作動流体11の流路面積の差を小さくするため、戻り流路4の入口4aの軸方向流路幅WsINを、出口4bの軸方向流路幅WsOUTより小さく形成する。例えば、戻り流路4の入口4aの軸方向流路幅WsINが、出口4bの軸方向流路幅WsOUTの90%より小さい多段遠心圧縮機100が知られている。
なお、図2には、比較例として、従来の案内羽根6’の形状を破線で示している。
図3は、戻り流路内の流路面積の分布を示す図であり、縦軸は流路面積を示し、横軸は流れ方向距離を示す。なお、流れ方向距離は、戻り流路4(図2参照)に沿って作動流体11(図2参照)が流れるときの入口4aからの距離である。
従来、比較例として図3に二点鎖線で示すように、案内羽根6’(図2参照)が形成されない場合、流路面積は、戻り流路4の入口4aから出口4bに向かって一定に減少するが、案内羽根6’を形成して入口4aの近傍に、細い破線で示すようにスロート部を設けることで、流路面積をスロート部で最小にし、出口4bに向かって漸増するように流路面積を分布できる。
そして、このように流路面積を分布させることで、戻り流路4における、摩擦による作動流体11の流体損失を好適に低減している。
このような比較例に対し、本実施形態に係る多段遠心圧縮機100(図1参照)においては、戻り流路4の入口4aの軸方向流路幅WsIN(図1参照)が、出口4bの軸方向流路幅WsOUT(図1参照)と略同等になる戻り流路4が形成されることを特徴とする。
より詳細には、戻り流路4の出口4bの軸方向流路幅WsOUTに対して10%以内の差で、入口4aの軸方向流路幅WsINが形成されることを特徴とする。
このように構成すると、案内羽根6(図2参照)が形成されない場合、図3に一点鎖線で示すように、戻り流路4の入口4aの流路面積は、二点鎖線で示す比較例より大きくなり、流路面積は出口4bに向かって一定に減少する。
そして、案内羽根6(図2参照)を形成して、流れ方向距離に沿った流路面積の分布を、比較例に近づけるように構成する。
すなわち、戻り流路4の入口4aの流路面積が比較例より大きいことから、入口4aにおける案内羽根6の翼厚を比較例より厚くして流路面積を急激に減少させ、スロート部における流路面積が比較例と同等になるように構成する。
次に、案内羽根6の形状を説明する。図2に示すように、本実施形態に係る案内羽根6は前縁6aを鈍頭形状とし、さらに、前縁6aに内接する内接円6dの半径rが最大翼厚部6cにおける最大翼厚WMAXの25%以上になるように構成することで、図3に実線で示すように、破線で示す比較例の流路面積の分布に近づくことがわかった。
そして、流れ方向距離に沿った流路面積の分布を比較例に近づけることで、戻り流路4における、摩擦による作動流体11(図1参照)の流体損失を好適に低減できる。
図4は、図2のX2−X2断面図であり、(a)は本実施形態に係る戻り流路の形状を示す図、(b)は、比較例に係る戻り流路の形状を示す図である。
図4の(a)、(b)に示すように、本実施形態に係る戻り流路4の軸方向流路幅WsINは、比較例の戻り流路4’の軸方向流路幅WsIN’より大きくなる。
また、本実施形態に係る案内羽根6の前縁6aの翼厚は、従来の形状である比較例の案内羽根6’の前縁6a’の翼厚より厚くなることから、本実施形態に係る戻り流路4の軸方向流路幅WsINと直交する方向の流路幅(周方向流路幅WθIN)は、比較例の戻り流路4’の周方向流路幅WθIN’より小さくなる。
したがって、本実施形態に係る戻り流路4の、周方向流路幅WθINに対する軸方向流路幅WsINの比(WsIN/WθIN)は、比較例(WsIN’/WθIN’)より大きくなる。
この構成によって、戻り流路4における作動流体11(図1参照)の濡れ縁面積、すなわち、作動流体11が外壁9、及び内壁8と接触する面積を小さくできる。したがって、戻り流路4を流れる作動流体11の、摩擦による流体損失を低減できる。
図5は、曲がり流路流入角αに対する、曲がり流路及び戻り流路の圧力回復係数Cpと損失係数ζを示すグラフであり、縦軸は、曲がり流路3(図1参照)及び戻り流路4(図1参照)の圧力回復係数Cp及び損失係数ζを示し、横軸は曲がり流路流入角αを示している。
図1に示す曲がり流路3の入口全圧をPtin、入口静圧をPsin、戻り流路4の出口全圧をPtout、戻り流路4の出口静圧をPsoutとしたとき、曲がり流路3及び戻り流路4の圧力回復係数Cpは次式(1)で示される。
Cp=(Psout−Psin)/(Ptin−Psin) ・・・(1)
また損失係数ζは、次式(2)で示される。
ζ=(Ptin−Ptout)/(Ptin−Psin) ・・・(2)
なお、曲がり流路流入角αは、羽根車1の回転方向と反対の方向を正とした場合に、曲がり流路3の入口において、作動流体11の流れ方向が半径方向となす角である。
図5に太い実線で示すように、曲がり流路流入角αが小さい領域(大流量領域)から曲がり流路流入角αが大きい領域(小流量領域)の全域に亘って、本実施形態に係る圧力回復係数Cpは、比較例として細い実線で示す従来の圧力回復係数Cpより増加している。さらに、太い破線で示すように、本実施形態に係る損失係数ζは、比較例として細い破線で示す従来の損失係数ζより減少している。
また、本実施形態に係る案内羽根6の前縁6a(図2参照)は、比較例の案内羽根6’の前縁6a’(図2参照)より翼厚の厚い鈍頭形状を呈していることから、例えば多段遠心圧縮機100(図1参照)の運転状況の変化にともなって、戻り流路4(図1参照)に流入する作動流体11(図1参照)の流量が変化し、案内羽根6の入口角度と作動流体11が戻り流路4に流入する時の流入角度の差が大きくなるような場合であっても、曲がり流路3(図1参照)の入口から戻り流路4の出口4b(図1参照)の間で、比較例より、圧力回復係数Cpを増加できるとともに、損失係数ζを減少できる。したがって、多段遠心圧縮機100の効率を向上できる。
以上のように、図1に示す、本実施形態に係る多段遠心圧縮機100は、戻り流路4の入口4aの軸方向流路幅WsINが比較例より大きく形成され、濡れ縁面積を小さくできる。したがって、作動流体11が内壁8及び外壁9に接触する面積を小さくでき、摩擦による作動流体11の流体損失を低減できるという優れた効果を奏する。
また、戻り流路4の入口4aの流路面積が大きくなり、作動流体11の流速が低下することから、案内羽根6に対する衝突による作動流体11の流体損失を低減できるという優れた効果を奏する。
さらに、案内羽根6の前縁6a(図2参照)を鈍頭形状としたことから、例えば多段遠心圧縮機100の運転状況の変化にともなって、戻り流路4に流入する作動流体11の流量が変化し、案内羽根6の入口角度と作動流体11が戻り流路4に流入する時の流入角度の差が大きくなるような場合であっても、案内羽根6に対する衝突による作動流体11の流体損失を低減できるという優れた効果を奏する。
次に、曲がり流路3(図1参照)の形状について考える。
図6は、曲がり流路の形状を示す図である。
図6に示すように、本実施形態において、戻り流路4の入口4aの軸方向流路幅WsINは、出口4bの軸方向流路幅WsOUT(図1参照)と略同等の大きさであることから、曲がり流路3の外壁9の形状は、作動流体11の流れに沿って上流から下流に向かって曲率半径が大きくなる。
このとき、図6に二点鎖線で示すように、作動流体11の流れに沿った内壁8の曲率半径が一定であると、戻り流路4の入口4aにおいて内壁8の曲率半径と外壁9の曲率半径の差が広がり、作動流体11は、内壁8の側の流速が、内壁8の曲率半径に対して好適な流速より速くなる。そして、内壁8の曲率が0になる戻り流路4の入口4aで、作動流体11の剥離が発生する場合がある。
そこで、曲がり流路3における、作動流体11の流れに沿った内壁8の曲率半径を、上流の側で小さくするとともに下流の側で大きくした。具体的に、ディフューザ2から半径方向外向きに流れて曲がり流路3に流入する作動流体11が、回転軸5(図1参照)の軸方向に転向する上流側の内壁8の曲率半径(内周側の曲率半径)をR1とし、作動流体11が、回転軸5の軸方向から半径方向内向きに転向する下流側の内壁8の曲率半径(内周側の曲率半径)をR2としたとき、R1がR2より小さくなる(R1<R2)ように、曲がり流路3を形成する。
このような形状に曲がり流路3を形成することで、曲がり流路3の下流の側から戻り流路4の入口4aに向かって、内壁8の曲率半径と外壁9の曲率半径の差の広がりを小さくできる。したがって、戻り流路4の入口4aにおける作動流体11の剥離を抑制でき、ひいては、多段遠心圧縮機100(図1参照)の効率向上に寄与する。
なお、曲がり流路3における内壁8の曲率半径R1、R2の値は、実験等で最適な値を決定すればよい。また、2つの曲率半径R1、R2からなる内壁8に限定されず、例えば曲がり流路3の上流から下流に向かって、曲率半径が漸増するように内壁8を形成してもよい。
以上、図6に示すように、戻り流路4の入口4aの軸方向流路幅WsINを広げるのにともなって、曲がり流路3の形状、特に内壁8の曲率半径を好適に設定することで、入口4aにおける作動流体11の剥離を抑制でき、多段遠心圧縮機100(図1参照)の効率を向上できる。
また、図1に示す、戻り流路4の入口4aの軸方向流路幅WsINが出口4bの軸方向流路幅WsOUTと略同等の戻り流路4は、例えば従来の多段遠心圧縮機100に備わる戻り流路4を切削加工して形成してもよい。
図7は、従来の多段遠心圧縮機を切削加工する状態を示す図、図8は、作動流体の流速の変化を示す図である。図7に破線で示すように、従来、戻り流路4の入口4aの軸方向流路幅WsIN’が、出口4bの軸方向流路幅WsOUTより小さいとき、例えば案内羽根6の回転軸5の軸方向の形状を維持したまま、曲がり流路3の外周側を形成する外壁9を回転軸5の軸方向に切削加工し、戻り流路4の入口4aの軸方向流路幅WsIN’をWsINに広げることができる。
したがって、例えば従来の多段遠心圧縮機100の外壁9を切削加工することで、戻り流路4の入口4aの軸方向流路幅WsINを容易に広げることができ、さらに、外壁9の、戻り流路4を形成する部分を切削加工し、入口4aの軸方向流路幅WsINが出口4bの軸方向流路幅WsOUTと略同等になる戻り流路4を形成することで、前記の効果を奏することができる。
このとき、図8に示すように、戻り流路4の入口4aにおける作動流体11の流速は、周方向の速度(以下、周速度Vsと称する)と、半径方向の速度(以下、半径速度Vrと称する)を有するが、入口4aの軸方向流路幅WsINが拡大したことで、作動流体11の半径速度Vrは、図8に破線で示すVrOLDから実線で示すVrNEWに減速する。
作動流体11の周速度Vsは変化しないことから、半径速度Vrの減速にともなって、戻り流路4の入口4aにおける作動流体11の戻り流路流入角βが、図8に示すように周方向に転向し、案内羽根6の形状を変更することなく、作動流体11の戻り流路流入角βを変更できる。すなわち、作動流体11が戻り流路4へ流入するときの特性を変えることができる。
そこで、入口4aの軸方向流路幅WsINを広げる効果と、作動流体11が戻り流路4へ流入するときの特性とから、多段遠心圧縮機100(図1参照)の効率が最大に(良好に)なるような入口4aの軸方向流路幅WsINを決定すればよい。
このように、戻り流路4の入口4aの軸方向流路幅WsINを広げることは、例えば従来の多段遠心圧縮機100の外壁9を切削加工することでも実現でき、多段遠心圧縮機100を新規に製造するのに比べてはるかに低いコストで、多段遠心圧縮機100の効率を向上できる(適宜図1参照)。
さらに、図7に示す曲がり流路3における内壁8の曲率半径は、内壁8を切削加工するという容易な作業で適宜変更可能である。したがって、例えば、戻り流路4の入口4aで作動流体11が剥離を起こさないように、内壁8の曲率半径を決定し、内壁8を切削加工することで、多段遠心圧縮機100の効率を容易に向上できる。
1 羽根車
3 曲がり流路
4 戻り流路
4a 入口(戻り流路の入口)
4b 出口(戻り流路の出口)
5 回転軸
5a 軸中心
6 案内羽根
6a 前縁
6b 後縁
6c 最大翼厚部
6d 内接円
7 羽根
8 内壁
9 外壁
11 作動流体
100 多段遠心圧縮機
半径(内接円の半径)
R1,R2 曲率半径(内周側の曲率半径)
Ws 軸方向流路幅(回転軸方向流路幅)
WsIN 軸方向流路幅(戻り流路の入口の回転軸方向流路幅)
WsOUT 軸方向流路幅(戻り流路の出口の回転軸方向流路幅)
MAX 最大翼厚

Claims (5)

  1. 回転軸の周りに回転して半径方向外向きに作動流体を吐出する羽根車を、前記回転軸の軸方向に複数段備え、
    前記羽根車から吐出された前記作動流体を、前記羽根車の半径方向内向きに転向させる曲がり流路と、
    前記曲がり流路で転向された前記作動流体を、後段の前記羽根車に流入させる戻り流路と、を含んでなる多段遠心圧縮機において、
    前記戻り流路の入口の回転軸方向流路幅が、前記戻り流路の出口の回転軸方向流路幅と同等になるように前記戻り流路が形成されていることを特徴とする多段遠心圧縮機。
  2. 前記戻り流路に設けられる案内羽根の前縁が鈍頭形状に形成され、
    前記前縁の内接円の半径が、前記案内羽根の最大翼厚の25%以上であることを特徴とする請求項1に記載の多段遠心圧縮機。
  3. 前記曲がり流路の、前記作動流体の流れに沿った内周側の曲率半径は、
    前記作動流体が前記半径方向外向きから前記回転軸の軸方向に転向される上流側より、前記作動流体が前記軸方向から前記半径方向内向きに転向される下流側で大きいことを特徴とする請求項1又は請求項2に記載の多段遠心圧縮機。
  4. 前記曲がり流路の外周側を形成する外壁を切削加工し、
    前記戻り流路の入口の回転軸方向流路幅が前記戻り流路の出口の回転軸方向流路幅と同等になる前記戻り流路を形成したことを特徴とする請求項1乃至請求項3のいずれか1項に記載の多段遠心圧縮機。
  5. 回転軸の周りに回転して半径方向外向きに作動流体を吐出する羽根車を、前記回転軸の軸方向に複数段備え、
    前記羽根車から吐出された前記作動流体を、前記羽根車の半径方向内向きに転向させる曲がり流路と、
    前記曲がり流路で転向された前記作動流体を、後段の前記羽根車に流入させる戻り流路と、を含んでなる多段遠心圧縮機の改造方法であって、
    前記戻り流路の入口の回転軸方向流路幅が前記戻り流路の出口の回転軸方向流路幅の90%より小さいときに、前記曲がり流路の外周側を形成する外壁を切削加工して、前記戻り流路の入口の回転軸方向流路幅が前記戻り流路の出口の回転軸方向流路幅と同等の前記戻り流路を形成する工程を含むことを特徴とする多段遠心圧縮機の改造方法。
JP2009067695A 2009-03-19 2009-03-19 多段遠心圧縮機及び多段遠心圧縮機の改造方法 Pending JP2010216456A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067695A JP2010216456A (ja) 2009-03-19 2009-03-19 多段遠心圧縮機及び多段遠心圧縮機の改造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009067695A JP2010216456A (ja) 2009-03-19 2009-03-19 多段遠心圧縮機及び多段遠心圧縮機の改造方法

Publications (1)

Publication Number Publication Date
JP2010216456A true JP2010216456A (ja) 2010-09-30

Family

ID=42975541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067695A Pending JP2010216456A (ja) 2009-03-19 2009-03-19 多段遠心圧縮機及び多段遠心圧縮機の改造方法

Country Status (1)

Country Link
JP (1) JP2010216456A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255619A (ja) * 2009-04-27 2010-11-11 Man Turbo Ag 多段式遠心コンプレッサ
CN103062077A (zh) * 2011-10-24 2013-04-24 珠海格力电器股份有限公司 多级制冷压缩机及其中间补气结构
CN103206389A (zh) * 2012-01-12 2013-07-17 珠海格力电器股份有限公司 多级制冷压缩机及其中间补气结构
WO2014115417A1 (ja) * 2013-01-28 2014-07-31 三菱重工業株式会社 遠心回転機械
WO2016079222A1 (de) * 2014-11-21 2016-05-26 Siemens Aktiengesellschaft Rückführstufe
JP2016125488A (ja) * 2014-12-31 2016-07-11 ゼネラル・エレクトリック・カンパニイ ガスタービンエンジン用ダート抽出装置
CN106122062A (zh) * 2016-05-31 2016-11-16 哈尔滨工程大学 一种利用超临界二氧化碳流体为工质的压气机性能预测与评估方法
WO2018181343A1 (ja) * 2017-03-31 2018-10-04 三菱重工業株式会社 遠心圧縮機
CN111608931A (zh) * 2020-05-27 2020-09-01 江西省子轩科技有限公司 一种压缩机的级间反导叶
JP7272815B2 (ja) 2019-02-20 2023-05-12 株式会社日立インダストリアルプロダクツ 多段遠心流体機械

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255619A (ja) * 2009-04-27 2010-11-11 Man Turbo Ag 多段式遠心コンプレッサ
US8602730B2 (en) 2009-04-27 2013-12-10 Man Diesel & Turbo Se Multi stage radial compressor
CN103062077A (zh) * 2011-10-24 2013-04-24 珠海格力电器股份有限公司 多级制冷压缩机及其中间补气结构
CN103062077B (zh) * 2011-10-24 2014-05-07 珠海格力电器股份有限公司 多级制冷压缩机及其中间补气结构
CN103206389A (zh) * 2012-01-12 2013-07-17 珠海格力电器股份有限公司 多级制冷压缩机及其中间补气结构
EP2949946A4 (en) * 2013-01-28 2016-09-14 Mitsubishi Heavy Ind Ltd CENTRIFUGAL ROTATION MACHINE
JPWO2014115417A1 (ja) * 2013-01-28 2017-01-26 三菱重工業株式会社 遠心回転機械
US20150308453A1 (en) * 2013-01-28 2015-10-29 Mitsubishi Heavy Industries Compressor Corporation Centrifugal rotation machine
CN104781562A (zh) * 2013-01-28 2015-07-15 三菱重工业株式会社 离心旋转机械
WO2014115417A1 (ja) * 2013-01-28 2014-07-31 三菱重工業株式会社 遠心回転機械
US10087950B2 (en) 2013-01-28 2018-10-02 Mitsubishi Heavy Industries Compressor Corporation Centrifugal rotation machine
WO2016079222A1 (de) * 2014-11-21 2016-05-26 Siemens Aktiengesellschaft Rückführstufe
JP2016125488A (ja) * 2014-12-31 2016-07-11 ゼネラル・エレクトリック・カンパニイ ガスタービンエンジン用ダート抽出装置
US10267179B2 (en) 2014-12-31 2019-04-23 General Electric Company Dirt extraction apparatus for a gas turbine engine
CN106122062A (zh) * 2016-05-31 2016-11-16 哈尔滨工程大学 一种利用超临界二氧化碳流体为工质的压气机性能预测与评估方法
WO2018181343A1 (ja) * 2017-03-31 2018-10-04 三菱重工業株式会社 遠心圧縮機
JP7272815B2 (ja) 2019-02-20 2023-05-12 株式会社日立インダストリアルプロダクツ 多段遠心流体機械
JP7429810B2 (ja) 2019-02-20 2024-02-08 株式会社日立インダストリアルプロダクツ 多段遠心流体機械
CN111608931A (zh) * 2020-05-27 2020-09-01 江西省子轩科技有限公司 一种压缩机的级间反导叶
CN111608931B (zh) * 2020-05-27 2021-10-08 江西省子轩科技有限公司 一种压缩机的级间反导叶

Similar Documents

Publication Publication Date Title
JP2010216456A (ja) 多段遠心圧縮機及び多段遠心圧縮機の改造方法
EP3564537B1 (en) Centrifugal compressor and turbocharger
EP2886875B1 (en) Centrifugal compressor
JP2008075536A (ja) 遠心圧縮機
US11073163B2 (en) Centrifugal compressor
JP2009057959A (ja) 遠心圧縮機とその羽根車およびその運転方法
JP2008175124A (ja) 遠心圧縮機
US10138898B2 (en) Centrifugal compressor and turbocharger
JP2007224866A (ja) 遠心圧縮機
EP3567260B1 (en) Centrifugal rotary machine
JP7429810B2 (ja) 多段遠心流体機械
JP2018178769A (ja) 多段流体機械
JP6169007B2 (ja) 動翼、及び軸流回転機械
JP3187468U (ja) 多段遠心圧縮機
JP5232721B2 (ja) 遠心圧縮機
JP4146371B2 (ja) 遠心圧縮機
JP2008163821A (ja) 遠心圧縮機
JP2015183575A (ja) 流路形成部、ケーシング、および、遠心式回転機械
JP2016109092A (ja) 遠心式圧縮機のインペラ
JP6215154B2 (ja) 回転機械
JP7433261B2 (ja) 多段遠心圧縮機
JP7190861B2 (ja) 遠心式流体機械
JP2005180372A (ja) 圧縮機のインペラ
WO2017072844A1 (ja) 回転機械
WO2023238541A1 (ja) 多段遠心圧縮機