JP2010214225A - Ammonia decomposition catalyst, and method of decomposing ammonia using the same - Google Patents

Ammonia decomposition catalyst, and method of decomposing ammonia using the same Download PDF

Info

Publication number
JP2010214225A
JP2010214225A JP2009060814A JP2009060814A JP2010214225A JP 2010214225 A JP2010214225 A JP 2010214225A JP 2009060814 A JP2009060814 A JP 2009060814A JP 2009060814 A JP2009060814 A JP 2009060814A JP 2010214225 A JP2010214225 A JP 2010214225A
Authority
JP
Japan
Prior art keywords
ammonia
catalyst
hydrogen
reaction
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009060814A
Other languages
Japanese (ja)
Inventor
Hideaki Tsuneki
英昭 常木
Hisakazu Shindo
久和 進藤
Kuninori Miyazaki
邦典 宮碕
Masanori Yoshimune
壮基 吉宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2009060814A priority Critical patent/JP2010214225A/en
Publication of JP2010214225A publication Critical patent/JP2010214225A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To control the temperature rise in a catalyst bed to prevent the damage of a reformer and the deterioration of a catalyst in an autothermal reformer (ATR) for ammonia. <P>SOLUTION: As for an ammonia decomposition catalyst, rA/rD at a reaction temperature of 400°C is ≥0.2 and ≤10, when rD mmol/(g s) represents the speed of consuming ammonia in the reaction of decomposing ammonia into nitrogen and hydrogen and rA mmol/(g s) represents the speed of consuming ammonia in the reaction of burning ammonia to form nitrogen and water. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アンモニア、酸素および水素を含むガス中のアンモニアを分解するためのアンモニア分解触媒および当該触媒を用いたアンモニア分解方法に関するものである。   The present invention relates to an ammonia decomposition catalyst for decomposing ammonia in a gas containing ammonia, oxygen and hydrogen, and an ammonia decomposition method using the catalyst.

近年、地球温暖化防止を目的として二酸化炭素の排出の少ない技術が求められている。水素は燃料として用いられたとき、二酸化炭素の排出はなく、燃料として注目されている。水素を得る手段として化学反応に副生する水素、製鋼時に副生する水素等の手段がある。しかし、これらの技術は副生する水素を利用するものであり安定して水素を得ることは困難である。   In recent years, there has been a demand for technology that emits less carbon dioxide for the purpose of preventing global warming. When hydrogen is used as a fuel, it does not emit carbon dioxide and has attracted attention as a fuel. As means for obtaining hydrogen, there are means such as hydrogen by-produced in a chemical reaction and hydrogen by-produced during steelmaking. However, these techniques use by-produced hydrogen, and it is difficult to stably obtain hydrogen.

水素を得る手段として、アンモニアの分解反応があり、反応としては NH → 0.5N + 1.5Hである。この反応は10.9kcal/molの大きな吸熱反応であり、反応熱の供給が問題となる。この反応熱の供給方法として、アンモニアや分解で生成した水素を一部燃焼しその燃焼熱を用いるオートサーマルリフォーマー(ATR)があり(特許文献1,非特許文献1)、燃焼反応はNH + 0.75O → 0.5N + 1.5HO、H + 0.5O → HO である。ATRに用いる触媒としては、Ruをアルミナに担持した触媒(特許文献1)、Pt、Rhをアルミナに担持した触媒(非特許文献1)がある。 As a means for obtaining hydrogen, there is a decomposition reaction of ammonia, and the reaction is NH 3 → 0.5N 2 + 1.5H 2 . This reaction is a large endothermic reaction of 10.9 kcal / mol, and supply of reaction heat becomes a problem. As a method for supplying the reaction heat, there is an autothermal reformer (ATR) that partially burns ammonia or hydrogen generated by decomposition and uses the heat of combustion (Patent Document 1, Non-Patent Document 1), and the combustion reaction is NH 3 +. 0.75O 2 → 0.5N 2 + 1.5H 2 O, H 2 + 0.5O 2 → H 2 O. As a catalyst used for ATR, there are a catalyst in which Ru is supported on alumina (Patent Document 1) and a catalyst in which Pt and Rh are supported on alumina (Non-Patent Document 1).

しかし、これらの触媒を反応に用いるとき触媒組成によっては制御が難しく定常的に一定の濃度の水素を得ることは容易ではないことがある。また触媒層の温度が変化することでアンモニア改質器に損傷、触媒の劣化を招くことがある。一方、アンモニアの改質が充分でないときは水素を燃料として用いるとき質の良くない燃料を提供することになる。   However, when these catalysts are used in the reaction, it may be difficult to control depending on the catalyst composition, and it may not be easy to obtain a constant concentration of hydrogen. In addition, the temperature of the catalyst layer may change, causing damage to the ammonia reformer and deterioration of the catalyst. On the other hand, when the reforming of ammonia is not sufficient, a poor quality fuel is provided when hydrogen is used as the fuel.

国際公開特許 WO 01/87770 A1International Patent Publication WO 01/87770 A1

室井高城著「工業貴金属触媒」幸書房、2003年5月26日、p297Muroi Takagi, "Industrial Precious Metal Catalysts" Koshobo, May 26, 2003, p297

本発明は、アンモニアのオートサーマルリフォーマー(ATR)において、触媒層の温度上昇を制御し、改質器の損傷・触媒の劣化を防止する方法を提供する。   The present invention provides a method for controlling temperature rise of a catalyst layer and preventing reformer damage and catalyst deterioration in an ammonia autothermal reformer (ATR).

本発明者らは鋭意検討の結果、上記課題を解決する方法として、アンモニア、酸素および水素を含むガス中のアンモニアを水素に分解する触媒であって、アンモニア、酸素、水素の分圧をそれぞれ 40kPa、10kPa、10kPaとした場合において、アンモニアを窒素と水素に分解する反応のアンモニア消費速度をrD mmol/(g・s)、アンモニアを燃焼して窒素と水を生成する反応のアンモニア消費速度をrA mmol/(g・s)と、反応温度400℃におけるrA/rDが0.2以上、10以下であることを特徴とするアンモニア分解用触媒を用いることによって、ATRの温度の過度な上昇を抑え、改質器の損傷・触媒の劣化を防止することができることを見出し発明の完成に至ったものである。   As a result of intensive studies, the inventors of the present invention have, as a method for solving the above problems, a catalyst for decomposing ammonia in a gas containing ammonia, oxygen, and hydrogen into hydrogen, each having a partial pressure of 40 kPa for ammonia, oxygen, and hydrogen. In the case of 10 kPa and 10 kPa, the ammonia consumption rate of the reaction of decomposing ammonia into nitrogen and hydrogen is rD mmol / (g · s), and the ammonia consumption rate of the reaction of burning ammonia to generate nitrogen and water is rA Excessive rise in the temperature of ATR is suppressed by using an ammonia decomposition catalyst characterized in that rA / rD at a reaction temperature of 400 ° C. is 0.2 or more and 10 or less at mmol / (g · s). The inventors have found that damage to the reformer and deterioration of the catalyst can be prevented, and the present invention has been completed.

本発明により、アンモニアのオートサーマルリフォーマー(ATR)において、触媒層の温度上昇を制御し、改質器の損傷・触媒の劣化を防止することができる。   According to the present invention, in an ammonia autothermal reformer (ATR), the temperature rise of the catalyst layer can be controlled to prevent the reformer from being damaged and the catalyst from being deteriorated.

図1は実施例1における改質反応時において、触媒のガス入り口側(0mm)から触媒のガス出口側(100mm)での温度変化を示したものである。FIG. 1 shows the temperature change from the gas inlet side (0 mm) of the catalyst to the gas outlet side (100 mm) of the catalyst during the reforming reaction in Example 1. 図2は実施例2における改質反応時において、触媒のガス入り口側(0mm)から触媒のガス出口側(100mm)での温度変化を示したものである。FIG. 2 shows the temperature change from the gas inlet side (0 mm) of the catalyst to the gas outlet side (100 mm) of the catalyst during the reforming reaction in Example 2. 図3は比較例1における改質反応時において、触媒のガス入り口側(0mm)から触媒のガス出口側(100mm)での温度変化を示したものである。FIG. 3 shows the temperature change from the gas inlet side (0 mm) of the catalyst to the gas outlet side (100 mm) of the catalyst during the reforming reaction in Comparative Example 1. 図4は比較例2における改質反応時において、触媒のガス入り口側(0mm)から触媒のガス出口側(100mm)での温度変化を示したものである。FIG. 4 shows the temperature change from the gas inlet side (0 mm) of the catalyst to the gas outlet side (100 mm) of the catalyst during the reforming reaction in Comparative Example 2.

本発明に用いるガスは、アンモニア、酸素を含むガス(以下「反応ガス」とも称する)であれば良く、好ましくはアンモニアの分圧が10〜1000kPa、更に好ましくは20〜500kPaであり、好ましくは酸素の分圧が1〜300kPa、更に好ましくは2〜200kPaであり、好ましくはアンモニア1に対する酸素のモル比が0.05〜0.4、更に好ましくは0.1〜0.2である。当該反応ガスは水素、窒素を含むことができる。   The gas used in the present invention may be any gas containing ammonia and oxygen (hereinafter also referred to as “reactive gas”), preferably the ammonia partial pressure is 10 to 1000 kPa, more preferably 20 to 500 kPa, preferably oxygen. Is 1 to 300 kPa, more preferably 2 to 200 kPa, preferably the molar ratio of oxygen to ammonia 1 is 0.05 to 0.4, more preferably 0.1 to 0.2. The reaction gas can contain hydrogen and nitrogen.

反応ガスは触媒に対し空間速度で1000〜100000h−1、好ましくは2000〜50000h−1である。 The reaction gas has a space velocity with respect to the catalyst of 1000 to 100,000 h −1 , preferably 2000 to 50,000 h −1 .

(アンモニア分解触媒)
本発明にかかる触媒は、以下の通りに特定することができる。アンモニア、酸素および水素を含むガス中のアンモニアを水素に分解する触媒であって、アンモニア、酸素、水素の分圧をそれぞれ 40kPa、10kPa、10kPaとした場合において、アンモニアを窒素と水素に分解する反応のアンモニア消費速度をrD mmol/(g・s)、アンモニアを燃焼して窒素と水を生成する反応のアンモニア消費速度をrA mmol/(g・s)とすると、反応温度400℃におけるrA/rDが0.2以上、10以下であることを特徴とするアンモニア分解用触媒である。
(Ammonia decomposition catalyst)
The catalyst according to the present invention can be specified as follows. A catalyst that decomposes ammonia in a gas containing ammonia, oxygen, and hydrogen into hydrogen, and decomposes ammonia into nitrogen and hydrogen when the partial pressures of ammonia, oxygen, and hydrogen are 40 kPa, 10 kPa, and 10 kPa, respectively. Assuming that the ammonia consumption rate is rD mmol / (g · s) and the ammonia consumption rate of the reaction of burning ammonia to produce nitrogen and water is rA mmol / (g · s), rA / rD at a reaction temperature of 400 ° C. Is a catalyst for decomposing ammonia, characterized in that it is 0.2 or more and 10 or less.

本発明に係るアンモニア分解触媒は、(1)アンモニアを窒素と水素に分解する作用(アンモニア分解作用)と、(2)アンモニアを燃焼して窒素と水を生成する作用(アンモニア燃焼作用)と、を有し、反応温度400℃におけるrA/rDが0.2以上、10以下であること、を要するものである。   The ammonia decomposition catalyst according to the present invention includes (1) an action of decomposing ammonia into nitrogen and hydrogen (ammonia decomposition action), (2) an action of burning ammonia to produce nitrogen and water (ammonia combustion action), And rA / rD at a reaction temperature of 400 ° C. is 0.2 or more and 10 or less.

(アンモニア分解作用)
本発明に係る「アンモニアを窒素と水素に分解する反応のアンモニア消費速度(以下、「rD」と称する)」とは、触媒1g当たり、1秒間に消費されるアンモニアのモル数により定義されるものである。rDの測定方法としては、酸素を加えずにアンモニアの分解反応だけを行い、アンモニアの分解率から求めることができる。その際、高SVで測定を行いアンモニア消費率を20%未満とすることが好ましい。また触媒を不活性物質で希釈するなどして吸熱反応による触媒層温度の低下を防止することが好ましい。
(Ammonia decomposition)
The “ammonia consumption rate of a reaction for decomposing ammonia into nitrogen and hydrogen (hereinafter referred to as“ rD ”)” according to the present invention is defined by the number of moles of ammonia consumed per second per gram of catalyst. It is. As a method for measuring rD, it can be obtained from the decomposition rate of ammonia by performing only the decomposition reaction of ammonia without adding oxygen. At that time, it is preferable to perform measurement at a high SV to make the ammonia consumption rate less than 20%. Moreover, it is preferable to prevent the catalyst layer temperature from decreasing due to an endothermic reaction by diluting the catalyst with an inert substance.

また、当該アンモニア分解触媒は触媒組成が同一であっても本発明に用いることができる触媒に該当するものではなく、前提条件として反応温度400℃におけるrA/rDが0.2以上、10以下を満たすことを要する。好ましくは、反応温度400℃でrDが0.1〜100mmol/(g・s)、更に好ましくは0.2〜50mmol/(g・s)である。   In addition, the ammonia decomposition catalyst does not correspond to a catalyst that can be used in the present invention even if the catalyst composition is the same, and as a precondition, rA / rD at a reaction temperature of 400 ° C. is 0.2 or more and 10 or less. It is necessary to satisfy. Preferably, at a reaction temperature of 400 ° C., rD is 0.1 to 100 mmol / (g · s), more preferably 0.2 to 50 mmol / (g · s).

(アンモニア燃焼作用)
本発明に係る「アンモニアを燃焼して窒素と水を生成する反応のアンモニア消費速度(以下、「rA」と称する)」とは、触媒1g当たり、1秒間に燃焼によって消費されるアンモニアのモル数により定義されるものである。rAの測定方法としては、アンモニアと酸素を混合して触媒に供給した場合のアンモニアの消費率から求めることができる。その際、高SVで測定を行いアンモニア消費率を20%未満とすることが好ましい。また触媒を不活性物質で希釈するなどして反応による触媒層温度の上昇や低下を防止することが好ましい。この方法で求めたアンモニアの消費速度には分解によるアンモニア消費が含まれているのでそれを差し引きする必要がある。すなわち、アンモニアと酸素を混合して触媒に供給した場合のアンモニアの消費率から、アンモニアの分解と燃焼を合わせたアンモニアの消費速度rDAを求め、別に測定したアンモニアの分解速度rDを用いて rA=rDA−rA としてrAを求めることができる。
(Ammonia combustion action)
The “ammonia consumption rate of the reaction of burning ammonia to produce nitrogen and water (hereinafter referred to as“ rA ”)” according to the present invention is the number of moles of ammonia consumed by combustion per second per 1 g of catalyst. Is defined by As a measuring method of rA, it can be determined from the consumption rate of ammonia when ammonia and oxygen are mixed and supplied to the catalyst. At that time, it is preferable to perform measurement at a high SV to make the ammonia consumption rate less than 20%. It is also preferable to prevent the catalyst layer temperature from rising or falling due to the reaction by diluting the catalyst with an inert substance. The ammonia consumption rate determined by this method includes ammonia consumption due to decomposition, which must be subtracted. That is, from the ammonia consumption rate when ammonia and oxygen are mixed and supplied to the catalyst, the ammonia consumption rate rDA that combines the decomposition and combustion of ammonia is obtained, and rA = rA can be obtained as rDA-rA.

また、当該アンモニア分解触媒は触媒組成が同一であっても本発明に用いることができる触媒に該当するものではなく、前提条件として反応温度400℃におけるrA/rDが0.2以上、10以下を満たすことを要する。好ましくは、rAが反応温度400℃で0.05〜200mmol/(g・s)、更に好ましくは0.1〜100mmol/(g・s)である。   In addition, the ammonia decomposition catalyst does not correspond to a catalyst that can be used in the present invention even if the catalyst composition is the same, and as a precondition, rA / rD at a reaction temperature of 400 ° C. is 0.2 or more and 10 or less. It is necessary to satisfy. Preferably, rA is 0.05 to 200 mmol / (g · s), more preferably 0.1 to 100 mmol / (g · s) at a reaction temperature of 400 ° C.

また低温で作動のためには、低温でもある程度のアンモニア燃焼活性があることが好ましく反応温度200℃におけるrAは0.0005mmol/(g・s)以上であり、好ましくは0.002mmol/(g・s)以上、1mmol/(g・s)以下である。   In order to operate at a low temperature, it is preferable that ammonia combustion activity to some extent even at a low temperature, and rA at a reaction temperature of 200 ° C. is 0.0005 mmol / (g · s) or more, preferably 0.002 mmol / (g · s). s) to 1 mmol / (g · s).

(水素燃焼作用)
本発明に係るアンモニア分解触媒の更なる作用として、水素を燃焼して水を生成する作用(以下、「水素燃焼作用」と称する)を有することが好ましい。当該水素燃焼作用の指標となる「水素を燃焼して水を生成する反応の水素消費速度(以下、「rH」と称する。)」とは、触媒1g当たり、1秒間に消費される水素のモル数により定義されるものであり、rHの測定方法としては、アンモニアを加えずに水素の燃焼反応だけを行い、水素の消費率あるいは水の生成率から求めることができる。その際、高SVで測定を行い水素消費率をを20%未満とすることが好ましい。また触媒を不活性物質で希釈するなどして発熱反応による触媒層温度の上昇を防止することが好ましい。
(Hydrogen combustion action)
As a further action of the ammonia decomposition catalyst according to the present invention, it is preferable to have an action of burning water to generate water (hereinafter referred to as “hydrogen combustion action”). “Hydrogen consumption rate of reaction for burning water to produce water (hereinafter referred to as“ rH ”)” as an index of the hydrogen combustion action is the mole of hydrogen consumed per second per 1 g of catalyst. The rH can be determined from the hydrogen consumption rate or the water production rate by performing only the hydrogen combustion reaction without adding ammonia. At that time, it is preferable to perform measurement at a high SV to make the hydrogen consumption rate less than 20%. It is also preferable to prevent the catalyst layer temperature from increasing due to an exothermic reaction by diluting the catalyst with an inert substance.

本水素燃焼作用により、アンモニアの分解によって生成した水素も酸素によって触媒上で燃焼することができ、燃焼熱を供給することができる。水素を燃焼して水を生成する反応の水素消費速度をrH mmol/(g・s)とすると反応温度400℃におけるrH/rDが好ましくは0.02以上、20以下であり、更に好ましくは0.05以上、10以下である。   By this hydrogen combustion action, hydrogen generated by the decomposition of ammonia can also be burned on the catalyst by oxygen, and combustion heat can be supplied. When the hydrogen consumption rate of the reaction for producing water by burning hydrogen is rH mmol / (g · s), rH / rD at a reaction temperature of 400 ° C. is preferably 0.02 or more and 20 or less, more preferably 0 .05 or more and 10 or less.

(アンモニア分解触媒の組成等)
アンモニア分解触媒の組成としては、Fe、Co、Ni、Moの遷移金属系、La、Ce、Ndの希土類系、Ru、Rh、Ir、Pd、Ptの貴金属系を用いることができる。遷移金属系は合金、窒化物、炭化物、酸化物、複合酸化物として用いることができ、希土類系は酸化物として用いることができ、遷移金属系および希土類系とも、アルミナ、シリカ、ジルコニア、チタニア等の高比表面積の担体に担持して用いることができる。Ru、Rh、Ir、Pd、Ptなどの貴金属は、アルミナ、シリカ、ジルコニア、チタニア等の高比表面積の担体に担持して用いることができる。また遷移金属系や希土類系に少量の貴金属を含有させることもできる。
(Composition of ammonia decomposition catalyst)
As the composition of the ammonia decomposition catalyst, a transition metal system of Fe, Co, Ni, and Mo, a rare earth system of La, Ce, and Nd, and a noble metal system of Ru, Rh, Ir, Pd, and Pt can be used. Transition metal systems can be used as alloys, nitrides, carbides, oxides, composite oxides, rare earth systems can be used as oxides, and both transition metal systems and rare earth systems are alumina, silica, zirconia, titania, etc. It can be used by being supported on a carrier having a high specific surface area. Precious metals such as Ru, Rh, Ir, Pd, and Pt can be used by being supported on a high specific surface area carrier such as alumina, silica, zirconia, and titania. Also, a small amount of noble metal can be contained in the transition metal system or rare earth system.

触媒調製例としては、一般的な調製方法を用いることができ、例えば、水溶性の触媒成分前駆体を水に溶解しアンモニア等で水酸化物とし沈殿させた後乾燥・焼成し触媒とする方法(沈殿法)、触媒成分に用いる元素の酸化物を単独または複数種の酸化物を混合して用いる方法(混合法)、触媒成分前駆体を水性液として高比表面積の担体に担持する方法(担持法)、触媒成分の前駆体を窒素処理して窒化物を得る方法(窒化物法)などがある。   As a catalyst preparation example, a general preparation method can be used, for example, a method in which a water-soluble catalyst component precursor is dissolved in water, precipitated as a hydroxide with ammonia or the like, dried and calcined to obtain a catalyst. (Precipitation method), a method of using an oxide of an element used for a catalyst component alone or by mixing a plurality of types of oxides (mixing method), a method of supporting a catalyst component precursor as an aqueous liquid on a high specific surface area carrier ( And a method of obtaining a nitride by treating a precursor of a catalyst component with nitrogen (nitride method).

なお、触媒を調製するに際して、rD、rAが上記範囲内となるように制御するものである。制御方法としては、(1)触媒原料を硝酸塩、硫酸塩、炭酸塩、水酸化物等適宜選定すること、(2)調製時の乾燥又は焼成の温度・時間を触媒組成に応じて適宜変更すること、(3)触媒調製時の焼成を還元ガス、不活性ガスを用いること、(4)上記触媒用成分の合金、窒化物、酸化物、複合酸化物を適宜混合すること、などの手段である。これらの手段により得られた触媒を上記のrD、rAの測定方法により、rD、rAを測定し、本発明の範囲内となるものを本発明に係る触媒として用いるものである。   In preparing the catalyst, rD and rA are controlled so as to be within the above range. As a control method, (1) The catalyst raw material is appropriately selected such as nitrate, sulfate, carbonate, hydroxide, etc. (2) The temperature or time of drying or firing during preparation is appropriately changed according to the catalyst composition. (3) Using a reducing gas or an inert gas for firing during catalyst preparation, (4) Mixing the catalyst component alloy, nitride, oxide and composite oxide as appropriate. is there. The catalyst obtained by these means is used to measure rD and rA by the above-described rD and rA measurement method, and use the catalyst within the scope of the present invention as the catalyst according to the present invention.

アンモニア分解触媒とアンモニア燃焼触媒とを混合(混合触媒)して用いることもできる。その場合酸素が消費され尽くす触媒層の後半では燃焼触媒は必要ないので、反応ガスの流れに対して分解触媒と燃焼触媒の混合触媒を前段に設置し、後段には分解触媒のみを設置することが好ましい。   An ammonia decomposition catalyst and an ammonia combustion catalyst may be mixed (mixed catalyst) for use. In that case, a combustion catalyst is not required in the latter half of the catalyst layer where oxygen is consumed, so a mixed catalyst of cracking catalyst and combustion catalyst is installed in the front stage with respect to the flow of the reaction gas, and only a cracking catalyst is installed in the rear stage. Is preferred.

(アンモニア燃焼触媒)
本発明に係るアンモニア分解触媒と併用することができるアンモニア燃焼触媒としては、アンモニアを燃焼しNとHOにしうるものであれば何れのものであっても良く、例えば酸化バナジウム、酸化タングステン、酸化モリブデン、酸化マンガン、酸化鉄、酸化コバルト、酸化ニッケル、ペロブスカイト型酸化物、Ru、Rh、Ir、Pd、Ptなどを用いることができる。Ru、Rh、Ir、Pd、Ptなどの貴金属は、アルミナ、シリカ、ジルコニア、チタニア等の高比表面積の担体に担持して用いることができる。
(Ammonia combustion catalyst)
The ammonia combustion catalyst that can be used in combination with the ammonia decomposition catalyst according to the present invention may be any catalyst as long as it can burn ammonia to form N 2 and H 2 O. For example, vanadium oxide, tungsten oxide Molybdenum oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, perovskite oxide, Ru, Rh, Ir, Pd, Pt, or the like can be used. Precious metals such as Ru, Rh, Ir, Pd, and Pt can be used by being supported on a high specific surface area carrier such as alumina, silica, zirconia, and titania.

混合するときの触媒量はそれぞれの触媒活性によって大きく異なるが分解触媒100質量部に対して燃焼触媒を0.1〜500質量部、好ましくは0.5〜200質量部である。   The amount of catalyst when mixing varies greatly depending on the catalytic activity, but is 0.1 to 500 parts by mass, preferably 0.5 to 200 parts by mass of the combustion catalyst with respect to 100 parts by mass of the cracking catalyst.

ATRの最高反応温度は400〜800℃、好ましくは500〜700℃である。反応温度が800℃を超えるときはアンモニア分解器に損傷を与えるおそれがあることも触媒の劣化をまねくおそれのあることがあり、好ましくはないからである。   The maximum reaction temperature of ATR is 400 to 800 ° C, preferably 500 to 700 ° C. This is because when the reaction temperature exceeds 800 ° C., the ammonia decomposer may be damaged or the catalyst may deteriorate, which is not preferable.

以下に、実施例、比較例を用いて本発明を詳細に説明するが本発明の趣旨に反しない限り実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples unless it is contrary to the gist of the present invention.

(実施例1)
アンモニア分解触媒として、Irをアルミナに担持した触媒前駆体を水素還元処理し、rD=0.74mmol/(g・s)、rA/rD=0.95、rH/rD=0.39であるものを得た。当該アンモニア分解触媒を直径10mm長さ150mmの石英製反応管に触媒層長として100mm充填し、反応ガスとしてアンモニアを58mol%、酸素を8.7mol%、窒素を33mol%を含むものを、予熱器で200℃に加熱して、常圧でSV 9000h-1で導入し反応した。反応器は十分に保温し、断熱状態とした。反応器出口ガスは酸素とアンモニアは消費され、水素・窒素・水からなっていた。結果は図1に示す。
Example 1
As an ammonia decomposition catalyst, a catalyst precursor in which Ir is supported on alumina is subjected to hydrogen reduction treatment, and rD = 0.74 mmol / (g · s), rA / rD = 0.95, rH / rD = 0.39 Got. The ammonia decomposition catalyst is packed into a quartz reaction tube having a diameter of 10 mm and a length of 150 mm as a catalyst layer length of 100 mm, and a reaction gas containing 58 mol% ammonia, 8.7 mol% oxygen, and 33 mol% nitrogen is used as a preheater. The mixture was heated to 200 ° C. and introduced at SV 9000 h −1 at normal pressure to react. The reactor was kept warm and insulated. The reactor outlet gas consumed oxygen, ammonia, and consisted of hydrogen, nitrogen, and water. The results are shown in FIG.

(実施例2)
アンモニア分解触媒として、Co,Ce、Zrの元素からなる触媒前駆体10部とPtをアルミナに担持した触媒前駆体1部を混合した後、水素還元処理し、rD=0.6mmol/(g・s)、rA/rD=0.32、rH/rD=0.17であるものを得た。当該アンモニア分解触媒を直径10mm長さ150mmの石英製反応管に触媒層長として100mm充填し、反応ガスとしてアンモニアを58mol%、酸素を8.7mol%、窒素を33mol%を含むものを、予熱器で200℃に加熱して、常圧でSV 6000h-1で導入し反応した。反応器は十分に保温し、断熱状態とした。反応器出口ガスは酸素とアンモニアは消費され、水素・窒素・水からなっていた。
結果は図2に示す。
(Example 2)
As an ammonia decomposition catalyst, 10 parts of a catalyst precursor composed of Co, Ce, and Zr elements and 1 part of a catalyst precursor having Pt supported on alumina were mixed and then subjected to hydrogen reduction treatment, and rD = 0.6 mmol / (g · s), rA / rD = 0.32, rH / rD = 0.17 were obtained. The ammonia decomposition catalyst is packed into a quartz reaction tube having a diameter of 10 mm and a length of 150 mm as a catalyst layer length of 100 mm, and a reaction gas containing 58 mol% ammonia, 8.7 mol% oxygen, and 33 mol% nitrogen is used as a preheater. The mixture was heated to 200 ° C. and introduced at SV 6000 h −1 at normal pressure to react. The reactor was kept warm and insulated. The reactor outlet gas consumed oxygen and ammonia and consisted of hydrogen, nitrogen and water.
The results are shown in FIG.

(比較例1)
アンモニア分解触媒として、La、Coの元素からなる触媒前駆体1部とPtをアルミナに担持した触媒前駆体10部を混合した後、水素還元処理し、rD=0.06mmol/(g・s)rA/rD=31.6、rH/rD=16.6であるものを得た。当該アンモニア分解触媒を直径10mm長さ150mmの石英製反応管に触媒層長として100mm充填し、反応ガスとしてアンモニアを58mol%、酸素を8.7mol%、窒素を33mol%を含むものを、予熱器で200℃に加熱して、常圧でSV 18000h-1で導入し反応した。反応器は十分に保温し、断熱状態とした。
結果は図3に示す。
(Comparative Example 1)
As an ammonia decomposition catalyst, 1 part of a catalyst precursor composed of La and Co elements and 10 parts of a catalyst precursor supporting Pt on alumina were mixed, and then subjected to hydrogen reduction treatment, rD = 0.06 mmol / (g · s) What was rA / rD = 31.6 and rH / rD = 16.6 was obtained. The ammonia decomposition catalyst is packed into a quartz reaction tube having a diameter of 10 mm and a length of 150 mm as a catalyst layer length of 100 mm, and a reaction gas containing 58 mol% ammonia, 8.7 mol% oxygen, and 33 mol% nitrogen is used as a preheater. The mixture was heated to 200 ° C. and introduced at SV 18000 h −1 at normal pressure to react. The reactor was kept warm and insulated.
The results are shown in FIG.

(比較例2)
アンモニア分解触媒として、Niをアルミナに担持した触媒前駆体を水素還元処理し、rD=0.05mmol/(g・s)、rA/rD=0.029、rH/rD=0.074であるものを得た。当該アンモニア分解触媒を直径10mm長さ150mmの石英製反応管に触媒層長として100mm充填し、反応ガスとしてアンモニアを58mol%、酸素を8.7mol%、窒素を33mol%を含むものを、予熱器で200℃に加熱して、常圧でSV 3000h-1で導入し反応した。反応器は十分に保温し、断熱状態とした。反応器出口でもアンモニアは大部分分解せず残存していた。
結果は図4に示す。
(Comparative Example 2)
As an ammonia decomposition catalyst, a catalyst precursor in which Ni is supported on alumina is subjected to hydrogen reduction treatment, and rD = 0.05 mmol / (g · s), rA / rD = 0.029, rH / rD = 0.074 Got. The ammonia decomposition catalyst is packed into a quartz reaction tube having a diameter of 10 mm and a length of 150 mm as a catalyst layer length of 100 mm, and a reaction gas containing 58 mol% ammonia, 8.7 mol% oxygen, and 33 mol% nitrogen is used as a preheater. The mixture was heated to 200 ° C. and introduced at SV 3000 h −1 at normal pressure to react. The reactor was kept warm and insulated. Most of the ammonia remained without being decomposed at the reactor outlet.
The results are shown in FIG.

本発明は、反応器に悪影響が少なく、長時間触媒を用いることができるものである。アンモニア含有ガスから水素を得ることができる。   The present invention has little adverse effect on the reactor and can use the catalyst for a long time. Hydrogen can be obtained from the ammonia-containing gas.

Claims (5)

アンモニア、酸素および水素を含むガス中のアンモニアを水素に分解する触媒であって、反応温度400℃におけるrA/rDが0.2以上、10以下であることを特徴とするアンモニア分解用触媒。
(なお、アンモニア、酸素および水素の分圧をそれぞれ40kPa、10kPa、10kPaとした場合、
アンモニアを窒素と水素に分解する反応のアンモニア消費速度をrD mmol/(g・s)、アンモニアを燃焼して窒素と水を生成する反応のアンモニア消費速度をrA mmol/(g・s)で示す。)
A catalyst for decomposing ammonia in a gas containing ammonia, oxygen and hydrogen into hydrogen, wherein rA / rD at a reaction temperature of 400 ° C. is 0.2 or more and 10 or less.
(If the partial pressures of ammonia, oxygen and hydrogen are 40 kPa, 10 kPa and 10 kPa, respectively,
The ammonia consumption rate of the reaction of decomposing ammonia into nitrogen and hydrogen is expressed as rD mmol / (g · s), and the ammonia consumption rate of the reaction of burning ammonia to generate nitrogen and water is expressed as rA mmol / (g · s). . )
反応温度200℃におけるrAが0.00005mmol/(g・s)で以上であることを特徴とする請求項1記載の触媒 The catalyst according to claim 1, wherein rA at a reaction temperature of 200 ° C is 0.00005 mmol / (g · s) or more. 請求項1記載の触媒を用いてアンモニア、酸素および水素を含むガス中のアンモニアを分解し水素を得ることを特徴とするアンモニア分解方法。 A method for decomposing ammonia, comprising decomposing ammonia in a gas containing ammonia, oxygen and hydrogen using the catalyst according to claim 1 to obtain hydrogen. 請求項3記載の方法において、アンモニア分解触媒とアンモニア燃焼触媒を混合した触媒(以下、「混合触媒」と称する)を用いることを特徴とする請求項3記載のアンモニア分解方法。 4. The ammonia decomposition method according to claim 3, wherein a catalyst obtained by mixing an ammonia decomposition catalyst and an ammonia combustion catalyst (hereinafter referred to as "mixed catalyst") is used. 請求項3記載の方法において、アンモニア分解反応温度が800℃未満であることを特徴とする請求項3記載のアンモニア分解方法。 The ammonia decomposition method according to claim 3, wherein the ammonia decomposition reaction temperature is less than 800 ° C.
JP2009060814A 2009-03-13 2009-03-13 Ammonia decomposition catalyst, and method of decomposing ammonia using the same Pending JP2010214225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009060814A JP2010214225A (en) 2009-03-13 2009-03-13 Ammonia decomposition catalyst, and method of decomposing ammonia using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009060814A JP2010214225A (en) 2009-03-13 2009-03-13 Ammonia decomposition catalyst, and method of decomposing ammonia using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014142118A Division JP2014208352A (en) 2014-07-10 2014-07-10 Ammonia decomposition catalyst and ammonia decomposition method using the catalyst

Publications (1)

Publication Number Publication Date
JP2010214225A true JP2010214225A (en) 2010-09-30

Family

ID=42973661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060814A Pending JP2010214225A (en) 2009-03-13 2009-03-13 Ammonia decomposition catalyst, and method of decomposing ammonia using the same

Country Status (1)

Country Link
JP (1) JP2010214225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116056789A (en) * 2020-09-11 2023-05-02 韩国化学研究院 Catalyst for ammonia decomposition reaction and hydrogen production method using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456301A (en) * 1987-08-27 1989-03-03 Nippon Kokan Kk Treatment of ammonia
JPH02198639A (en) * 1989-01-27 1990-08-07 Nkk Corp Catalyst for decomposing ammonia
JPH05330802A (en) * 1992-05-27 1993-12-14 Kansai Coke & Chem Co Ltd Production of ammonia-cracked gas and production of hydrogen
JPH07275657A (en) * 1994-04-08 1995-10-24 Mitsubishi Heavy Ind Ltd Ammonia decomposition method
JPH07328437A (en) * 1994-06-08 1995-12-19 Mitsubishi Heavy Ind Ltd Ammonia decomposition catalyst
JPH10249165A (en) * 1997-03-07 1998-09-22 Masaru Ichikawa Treatment of ammonia-containing gas
WO2001087770A1 (en) * 2000-05-12 2001-11-22 Gradient Technology Production of hydrogen by autothermic decomposition of ammonia
JP2010207783A (en) * 2009-03-12 2010-09-24 Toyota Central R&D Labs Inc Ammonia decomposition catalyst, ammonia decomposition method using the same and ammonia decomposition reaction device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456301A (en) * 1987-08-27 1989-03-03 Nippon Kokan Kk Treatment of ammonia
JPH02198639A (en) * 1989-01-27 1990-08-07 Nkk Corp Catalyst for decomposing ammonia
JPH05330802A (en) * 1992-05-27 1993-12-14 Kansai Coke & Chem Co Ltd Production of ammonia-cracked gas and production of hydrogen
JPH07275657A (en) * 1994-04-08 1995-10-24 Mitsubishi Heavy Ind Ltd Ammonia decomposition method
JPH07328437A (en) * 1994-06-08 1995-12-19 Mitsubishi Heavy Ind Ltd Ammonia decomposition catalyst
JPH10249165A (en) * 1997-03-07 1998-09-22 Masaru Ichikawa Treatment of ammonia-containing gas
WO2001087770A1 (en) * 2000-05-12 2001-11-22 Gradient Technology Production of hydrogen by autothermic decomposition of ammonia
JP2010207783A (en) * 2009-03-12 2010-09-24 Toyota Central R&D Labs Inc Ammonia decomposition catalyst, ammonia decomposition method using the same and ammonia decomposition reaction device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116056789A (en) * 2020-09-11 2023-05-02 韩国化学研究院 Catalyst for ammonia decomposition reaction and hydrogen production method using the same

Similar Documents

Publication Publication Date Title
JP5426201B2 (en) Ammonia decomposition apparatus and ammonia decomposition method using the apparatus
Gallego et al. Dry reforming of methane over LaNi1− yByO3±δ (B= Mg, Co) perovskites used as catalyst precursor
JP4414951B2 (en) Catalyst for catalytic partial oxidation of hydrocarbons and process for producing synthesis gas
KR101529906B1 (en) Process for operating hts reactor
JP5778309B2 (en) Hydrogen production catalyst and hydrogen production method using the same
KR20140067676A (en) Iron modified ni-based perovskite type catalyst, preparing method thereof, and producing method of synthesis gas from combined steam co2 reforming of methane using the same
JP2005046742A (en) Method for preparing catalyst for fischer-tropsch synthesis
Szijjártó et al. High-throughput and combinatorial development of multicomponent catalysts for ethanol steam reforming
JPH09131533A (en) Catalyst composition for production of synthetic gas and production of synthetic gas using same
JP2010269966A (en) Hydrogen production system
JP5624343B2 (en) Hydrogen production method
JP2014208352A (en) Ammonia decomposition catalyst and ammonia decomposition method using the catalyst
JP5531462B2 (en) Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas
JP2012167070A (en) Method of synthesizing chemical
JP2012213682A (en) Ammonia decomposition catalyst and ammonia decomposition method using the catalyst
JP2010214225A (en) Ammonia decomposition catalyst, and method of decomposing ammonia using the same
JP5717993B2 (en) Reforming apparatus and manufacturing method thereof
Jun et al. Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: effect of composition
JP4465478B2 (en) Catalyst for hydrogen production
JP6102473B2 (en) Catalyst for producing synthesis gas, method for regenerating the catalyst, and method for producing synthesis gas
JP6089894B2 (en) Catalyst for producing synthesis gas and method for producing synthesis gas
JP4608659B2 (en) Method for producing direct heat supply type hydrocarbon reforming catalyst
JP5800719B2 (en) Hydrogen production catalyst and hydrogen production method using the same
WO2018158884A1 (en) Catalyst for carbon dioxide modification of methane, method for producing same, and method for producing synthesis gas
JP5842540B2 (en) Method and apparatus for producing methane from CO2 and / or CO

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140529