JP2010210909A - Method of inspecting electrophotographic photoreceptor - Google Patents

Method of inspecting electrophotographic photoreceptor Download PDF

Info

Publication number
JP2010210909A
JP2010210909A JP2009056596A JP2009056596A JP2010210909A JP 2010210909 A JP2010210909 A JP 2010210909A JP 2009056596 A JP2009056596 A JP 2009056596A JP 2009056596 A JP2009056596 A JP 2009056596A JP 2010210909 A JP2010210909 A JP 2010210909A
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic photosensitive
defect
inspection
electrophotographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009056596A
Other languages
Japanese (ja)
Inventor
Junpei Kuno
純平 久野
Ko Kitamura
航 北村
Hidetoshi Hirano
秀敏 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009056596A priority Critical patent/JP2010210909A/en
Publication of JP2010210909A publication Critical patent/JP2010210909A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Cleaning In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of inspecting an electrophotographic photoreceptor of improved accuracy without reducing the productivity. <P>SOLUTION: In a first step of optical inspection, white light is radiated to the electrophotographic photoreceptor, and the existence of a false defect of a photoreceptor is determined based on the current value measured when its reflected light is measured. In a first step of electric inspection, a conductive roller is pressure-contacted to the photoreceptor surface, direct voltage is applied while the photoreceptor is rotated, the current flowing from the conductive roller to the photoreceptor is measured, and the existence of a defect of the photoreceptor is determined based on the measured current value. In a second step of optical inspection, a laser light is radiated to only a photoreceptor where a false defect is detected in the first step of optical inspection and no defect is detected in the first step of electric inspection, among inspected photoreceptors; the reflected light of the light is measured; and the existence of a false defect of the photoreceptor is determined based on the measured current value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子写真感光体の検査方法に関する。   The present invention relates to an inspection method for an electrophotographic photosensitive member.

電子写真装置に用いられる像保持部材として、電子写真感光体(以下、単に「感光体」ということもある)があり、中でも、高生産性、材料設計の容易性および将来性の観点から、有機光導電性物質を使用する有機電子写真感光体の開発が盛んに行われている。
電子写真感光体、例えば、有機電子写真感光体は、一般に、有機光導電性物質を結着樹脂に溶解または分散させて感光層塗布液を作製し、それを導電性支持体上に塗布、乾燥することにより製造される。
このような電子写真感光体には、導電性支持体上に存在する突起状の欠陥、感光層塗布液内の異物又は電子写真感光体の製造工程中に付着する異物に起因する欠陥が存在することがある。これらの欠陥は、電子写真画像上の黒点及び白点等の画像欠陥となったり、感光体の絶縁破壊の原因となったりする。従って、実際の使用上に問題となる感光体の欠陥に関しては、検査にて検出し、取り除く必要がある。このような検査としては、従来、人による目視検査が行われていたが、大量の検査を人手で行うには多くの人員が必要であり、また、人によって検査結果にバラツキが生じ、また疲労により検査能力が低下する等の問題がある。そのため、近年、人の目視検査に代わる電子写真感光体の欠陥の検査方法及びその方法を実施する装置が提案されている。その代表的なものとして光学的な技術(例えば、特許文献1、2参照)と電気的な技術(例えば、特許文献3、4参照)が提案されている。
As an image holding member used in an electrophotographic apparatus, there is an electrophotographic photosensitive member (hereinafter sometimes simply referred to as “photosensitive member”), and in particular, from the viewpoint of high productivity, ease of material design, and future potential, Development of organic electrophotographic photoreceptors using photoconductive substances has been actively conducted.
In general, an electrophotographic photosensitive member, for example, an organic electrophotographic photosensitive member, is prepared by dissolving or dispersing an organic photoconductive substance in a binder resin to prepare a photosensitive layer coating solution, which is applied to a conductive support and dried. It is manufactured by doing.
Such an electrophotographic photosensitive member has defects due to protrusions existing on the conductive support, foreign matter in the photosensitive layer coating solution, or foreign matter attached during the manufacturing process of the electrophotographic photosensitive member. Sometimes. These defects may cause image defects such as black spots and white spots on the electrophotographic image, and may cause dielectric breakdown of the photoreceptor. Therefore, it is necessary to detect and remove the defect of the photosensitive member that causes a problem in actual use by inspection. Conventionally, human visual inspections have been performed as such inspections, but many people are required to perform a large number of inspections manually, and inspection results vary from person to person. As a result, there is a problem that the inspection ability is lowered. Therefore, in recent years, a method for inspecting a defect of an electrophotographic photosensitive member in place of a human visual inspection and an apparatus for carrying out the method have been proposed. As typical examples, an optical technique (for example, see Patent Documents 1 and 2) and an electric technique (for example, see Patent Documents 3 and 4) have been proposed.

特開平6−137844号公報JP-A-6-137844 特開平11−118449号公報JP-A-11-118449 特公平2−43134号公報Japanese Patent Publication No. 2-43134 特開平9−325169号公報JP 9-325169 A

特許文献1〜4に提案されている技術は、単独での感光体欠陥の検出精度の向上にはなっていたが、実際の感光体ドラムにおいて生じうる多様な欠陥を検出するには十分とはいえなかった。なぜなら、光学検査方法及び電気検査方法には、それぞれ検出が容易な欠陥と検出が困難な欠陥とがあるからである。例えば、導電性支持体としての金属基体の微小突起に起因する感光体の欠陥は、感光体の絶縁破壊の原因となり、また得られる画像の欠陥の原因となり得る欠陥であるが、その欠陥は小さい場合も多く、光学検査方法による検出が困難な傾向がある。これらの微小突起に起因する感光体の欠陥を検出するように閾値を設定すると、今度は本来欠陥でないのに欠陥として検出する誤検出の確率が上昇してしまい、感光体の生産性が低下する傾向があった。また、光学検査の精度を向上させようとして、分解能を上げると、検査視野が小さくなることによって検査時間が増大し、生産性が低下する傾向があった。一方で、導電性でない異物の付着や膜厚ムラは、一般的に電気検査方法では検出が困難な傾向がある。また、電気検査の精度を向上させようと感光体に対して高圧印加を行うと、欠陥がなくとも感光体が絶縁破壊する確率が増大し、生産性が低下する傾向があった。よって、更なる改善が望まれていた。そして、単純に光学検査方法と電気検査方法とを組み合わせるだけでは、効果が十分でない場合があった。   The techniques proposed in Patent Documents 1 to 4 have improved the detection accuracy of a single photoconductor defect, but are sufficient to detect various defects that can occur in an actual photoconductor drum. I couldn't. This is because the optical inspection method and the electrical inspection method each have a defect that is easy to detect and a defect that is difficult to detect. For example, a defect of a photoreceptor due to a minute protrusion of a metal substrate as a conductive support is a defect that can cause dielectric breakdown of the photoreceptor and a defect of an obtained image, but the defect is small. In many cases, detection by an optical inspection method tends to be difficult. If a threshold value is set so as to detect a defect of the photoreceptor due to these minute protrusions, this increases the probability of false detection to be detected as a defect even though it is not originally a defect, thereby reducing the productivity of the photoreceptor. There was a trend. Further, if the resolution is increased in order to improve the accuracy of the optical inspection, the inspection field is reduced, and the inspection time is increased and the productivity tends to decrease. On the other hand, adhesion of non-conductive foreign matter and film thickness unevenness generally tend to be difficult to detect by an electrical inspection method. Further, when a high voltage is applied to the photoconductor so as to improve the accuracy of electrical inspection, the probability that the photoconductor is dielectrically broken increases even if there is no defect, and the productivity tends to decrease. Therefore, further improvement has been desired. In some cases, simply combining the optical inspection method and the electrical inspection method is not sufficient.

そこで、本発明の目的は、生産性に優れ、精度の向上した電子写真感光体の検査方法を提供することである。   Accordingly, an object of the present invention is to provide an inspection method for an electrophotographic photosensitive member which is excellent in productivity and improved in accuracy.

本発明者らは、鋭意検討した結果、特定のフローで検査工程を実施することで、生産性に優れ、精度の向上した電子写真感光体の検査方法となることを見いだし、本発明をなすに至った。   As a result of intensive studies, the present inventors have found that an inspection method for an electrophotographic photosensitive member having excellent productivity and accuracy can be achieved by carrying out an inspection process according to a specific flow. It came.

即ち、本発明は、電子写真感光体に白色の光を照射し、該光の反射光を光電変換素子からなる受光手段により測定し、測定された電流値に基づいて、電子写真感光体の被疑欠陥の有無を判定する光学検査第一工程と、電子写真感光体の表面に導電性ローラを圧接して、電子写真感光体を回転させながら直流電圧を印加し、導電性ローラから電子写真感光体へ流れる電流を、電流測定手段により測定し、測定された電流値に基づいて、電子写真感光体の欠陥の有無を判定する電気検査第一工程とを有する電子写真感光体の検査方法であって、検査した電子写真感光体を、該光学検査第一工程において被疑欠陥が検出されず、該電気検査第一工程において欠陥が検出されなかった電子写真感光体と、該電気検査第一工程において欠陥が検出された電子写真感光体と、該光学検査第一工程において被疑欠陥が検出され、該電気検査第一工程において欠陥が検出されなかった電子写真感光体とに分類して、該光学検査第一工程において被疑欠陥が検出され、該電気検査第一工程において欠陥が検出されなかった電子写真感光体のみについて、該電子写真感光体にレーザー光を照射し、該光の反射光を光電変換素子からなる受光手段により測定し、測定された電流値に基づいて、電子写真感光体の被疑欠陥の有無を判定する光学検査第二工程を実施することを特徴とする電子写真感光体の検査方法である。   That is, the present invention irradiates the electrophotographic photosensitive member with white light, measures the reflected light of the light by a light receiving means including a photoelectric conversion element, and based on the measured current value, First step of optical inspection for determining the presence or absence of defects, a conductive roller is pressed against the surface of the electrophotographic photosensitive member, and a DC voltage is applied while rotating the electrophotographic photosensitive member. An electrophotographic photosensitive member inspection method comprising: an electric inspection first step for measuring a current flowing through the electrophotographic photosensitive member by measuring current with a current measuring unit and determining the presence or absence of a defect in the electrophotographic photosensitive member based on the measured current value. The inspected electrophotographic photosensitive member has no suspicious defect detected in the first optical inspection step, and no defect has been detected in the first electric inspection step. Detected The photoconductor is classified into an electrophotographic photoreceptor in which a suspicious defect is detected in the first optical inspection process and no defect is detected in the first electrical inspection process, and is suspected in the first optical inspection process. A light receiving means comprising a photoelectric conversion element that irradiates a laser beam to the electrophotographic photosensitive member only for the electrophotographic photosensitive member in which a defect is detected and no defect is detected in the first electric inspection step. An electrophotographic photoconductor inspection method characterized by carrying out a second optical inspection step for determining the presence or absence of a suspicious defect of an electrophotographic photoconductor based on the measured current value.

また、本発明は、上記の電子写真感光体の検査方法において、該光学検査第二工程における検出情報と所定の閾値に基づいて、該当する電子写真感光体の被疑欠陥を、欠陥でないと判断できるもの、欠陥であると判断できるもの、又はそのどちらであるか判断できないものとに分類して、被疑欠陥がどちらであるか判断できない電子写真感光体のみについて、該電子写真感光体の表面に、第一の導電性ローラを圧接して、電子写真感光体を回転させながら直流電圧に交流電圧を重畳した電圧を印加する第1の工程、及び、第1の工程の後に、電子写真感光体表面に第二の導電性ローラを圧接して、電子写真感光体を回転させながら直流電圧を印加する第2の工程を有し、第2の工程により、第二の導電性ローラから電子写真感光体へ流れる電流を、電流測定手段により測定し、測定された電流値に基づいて、電子写真感光体の欠陥の有無を判定する電気検査第二工程を実施することを特徴とする検査方法である。   Further, according to the present invention, in the above-described electrophotographic photosensitive member inspection method, the suspected defect of the corresponding electrophotographic photosensitive member can be determined not to be a defect based on the detection information in the second optical inspection step and a predetermined threshold value. Categorized into those that can be judged as defects, those that cannot be judged, or those that cannot be judged, and only for the electrophotographic photosensitive member that cannot be judged as to which of the suspected defects, on the surface of the electrophotographic photosensitive member, A first step of applying a voltage in which an AC voltage is superimposed on a DC voltage while rotating the electrophotographic photosensitive member while pressing the first conductive roller; and after the first step, the surface of the electrophotographic photosensitive member And a second step of applying a DC voltage while rotating the electrophotographic photosensitive member by pressing the second conductive roller to the second conductive roller, and the second step from the second conductive roller to the electrophotographic photosensitive member. Electricity flowing to And measured by current measuring means, based on the measured current value, a test method which comprises carrying out the determining electrical inspection second step the presence or absence of a defect of the electrophotographic photosensitive member.

さらに、本発明は、上記の電子写真感光体の検査方法において、該光学検査第二工程における検出情報と所定の閾値に基づいて、該当する電子写真感光体の被疑欠陥を、欠陥でないと判断できるもの、欠陥であると判断できるもの、又はそのどちらであるか判断できないものとに分類して、被疑欠陥がどちらであるか判断できない電子写真感光体のみについて、第一の導電性ローラを該電子写真感光体の表面に圧接し、該電子写真感光体を回転させながら直流電圧を印加するとともに、該導電性ローラと該電子写真感光体との間で発生する放電領域に対して、電子写真感光体が感度を有する光を照射する第1の工程、及び、第1の工程の後に、電子写真感光体表面に第二の導電性ローラを圧接して、電子写真感光体に直流電圧を印加する第2の工程を有し、第2の工程により、導電性ローラから電子写真感光体へ流れる電流を、電流測定手段により測定し、測定された電流値に基づいて、電子写真感光体の欠陥の有無を判定する電気検査第二工程を実施することを特徴とする検査方法である。   Furthermore, according to the present invention, in the above-described electrophotographic photosensitive member inspection method, the suspected defect of the corresponding electrophotographic photosensitive member can be determined not to be a defect based on the detection information in the second optical inspection step and a predetermined threshold value. The first conductive roller is classified into an electrophotographic photosensitive member only for an electrophotographic photosensitive member that cannot be determined whether it is a defect, a defect that can be determined as a defect, or a defect that cannot be determined. While applying pressure to the surface of the photographic photosensitive member and applying a DC voltage while rotating the electrophotographic photosensitive member, an electrophotographic photosensitive member is applied to a discharge region generated between the conductive roller and the electrophotographic photosensitive member. A first step of irradiating the body with sensitive light, and after the first step, a second conductive roller is pressed against the surface of the electrophotographic photosensitive member, and a DC voltage is applied to the electrophotographic photosensitive member. Second And measuring the current flowing from the conductive roller to the electrophotographic photosensitive member by the current measuring means in the second step, and determining the presence or absence of a defect in the electrophotographic photosensitive member based on the measured current value. The electrical inspection second step is performed.

本発明によれば、検査精度の向上した、電子写真感光体の検査方法を提供することが出来る。   According to the present invention, an inspection method for an electrophotographic photosensitive member with improved inspection accuracy can be provided.

以下、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明の電子写真感光体の検査方法は、電子写真感光体に白色の光を照射し、該光の反射光を光電変換素子からなる受光手段により測定し、測定された電流値に基づいて、電子写真感光体の被疑欠陥の有無を判定する光学検査第一工程と、電子写真感光体の表面に導電性ローラを圧接して、電子写真感光体を回転させながら直流電圧を印加し、導電性ローラから電子写真感光体へ流れる電流を、電流測定手段により測定し、測定された電流値に基づいて、電子写真感光体の欠陥の有無を判定する電気検査第一工程とを有する電子写真感光体の検査方法であって、検査した電子写真感光体を、該光学検査第一工程において被疑欠陥が検出されず、該電気検査第一工程において欠陥が検出されなかった電子写真感光体と、該電気検査第一工程において欠陥が検出された電子写真感光体と、該光学検査第一工程において被疑欠陥が検出され、該電気検査第一工程において欠陥が検出されなかった電子写真感光体とに分類して、該光学検査第一工程において被疑欠陥が検出され、該電気検査第一工程において欠陥が検出されなかった電子写真感光体のみについて、該電子写真感光体にレーザー光を照射し、該光の反射光を光電変換素子からなる受光手段により測定し、測定された電流値に基づいて、電子写真感光体の被疑欠陥の有無を判定する光学検査第二工程を実施する電子写真感光体の検査方法である。   The method for inspecting an electrophotographic photosensitive member of the present invention irradiates the electrophotographic photosensitive member with white light, measures the reflected light of the light by a light receiving means comprising a photoelectric conversion element, and based on the measured current value, The first step of optical inspection to determine the presence or absence of suspected defects on the electrophotographic photosensitive member, and a conductive roller is pressed against the surface of the electrophotographic photosensitive member, and a DC voltage is applied while rotating the electrophotographic photosensitive member. An electrophotographic photosensitive member having a first electric inspection step of measuring the current flowing from the roller to the electrophotographic photosensitive member by a current measuring means and determining the presence or absence of a defect in the electrophotographic photosensitive member based on the measured current value The inspected electrophotographic photosensitive member is an electrophotographic photosensitive member in which no suspicious defect is detected in the first optical inspection step and no defect is detected in the first electric inspection step, and In the first inspection process The electrophotographic photosensitive member in which the defect is detected and the electrophotographic photosensitive member in which the suspicious defect is detected in the first optical inspection step and no defect is detected in the first electric inspection step, For only the electrophotographic photosensitive member in which the suspicious defect was detected in the first inspection step and no defect was detected in the first electric inspection step, the electrophotographic photosensitive member was irradiated with laser light, and the reflected light of the light was photoelectrically detected. This is an inspection method for an electrophotographic photosensitive member, in which a second optical inspection step is performed to determine the presence or absence of a suspicious defect in the electrophotographic photosensitive member based on a measured current value measured by a light receiving means including a conversion element.

以下に本発明の実施の形態を添付図面に基づいて、説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1及び2は本発明の特徴を最も良く表す動作の流れを示すフローチャートである。図1及び2において、本発明における光学検査第一工程10とは、被疑欠陥が存在するか、しないかを明確に判定するために実施される工程である。それに応じた閾値が設定される。光学検査第一工程10には、上記要求を満たす範囲で任意の構成の光学検査方法を用いることが可能である。   1 and 2 are flowcharts showing the flow of operations that best express the features of the present invention. 1 and 2, the optical inspection first step 10 in the present invention is a step performed to clearly determine whether or not a suspected defect exists. A threshold value is set accordingly. In the optical inspection first step 10, an optical inspection method having an arbitrary configuration can be used as long as the above requirements are satisfied.

本発明における電気検査第一工程20とは、電子写真装置において初期より電子写真感光体の絶縁破壊の原因となり、画像不良となる欠陥が存在するかどうかを明確に判定するために実施される工程である。それに応じた閾値が設定される。電気検査第一工程20には、上記要求を満たす範囲で任意の構成の電気検査方法を用いることが可能である。   The first electric inspection step 20 in the present invention is a step performed to clearly determine whether or not there is a defect that causes the dielectric breakdown of the electrophotographic photosensitive member from the beginning and causes an image defect in the electrophotographic apparatus. It is. A threshold value is set accordingly. In the electrical inspection first step 20, it is possible to use an electrical inspection method having an arbitrary configuration within a range that satisfies the above requirements.

本発明において、被検体としての電子写真感光体の検査は、まず、光学検査第一工程10、電気検査第一工程20、分別工程30の順で、あるいは、電気検査第一工程20、光学検査第一工程10、分別工程30の順で、実施される。
分別工程30において、光学検査第一工程で被疑欠陥が検出されず、電気検査第一工程で欠陥が検出されなかった電子写真感光体31は、ピンホール、打痕、擦り傷、気泡の巻き込み、クラック、ゴミ等の付着による欠陥や感光層の膜厚のムラ、液ダレや基体の微小欠陥等が存在している可能性が極めて低いと判断されるため、欠陥なしと判定する。
In the present invention, the electrophotographic photosensitive member as the subject is inspected first in the order of the optical inspection first step 10, the electric inspection first step 20, the sorting step 30, or the electric inspection first step 20, optical inspection. The first step 10 and the separation step 30 are performed in this order.
In the separation process 30, the suspicious defect is not detected in the first optical inspection process and the defect is not detected in the first electrical inspection process. The electrophotographic photosensitive member 31 has pinholes, dents, scratches, bubble entrainment, and cracks. It is determined that there is very little possibility that a defect due to adhesion of dust or the like, unevenness in the film thickness of the photosensitive layer, dripping, or a minute defect of the substrate exists, and therefore, it is determined that there is no defect.

本発明における電気第一検査工程で欠陥が検出された電子写真感光体33は、クラック、ゴミ等の付着による欠陥や感光層の膜厚のムラ、液ダレや基体の微小欠陥等により、電子写真感光体の絶縁破壊しいては画像不良を引き起こす可能性が高いと判断されるため、欠陥ありと判定する。   The electrophotographic photosensitive member 33 in which defects are detected in the first electrical inspection process of the present invention is caused by electrophotography due to defects due to adhesion of cracks, dust, etc., film thickness unevenness of the photosensitive layer, liquid sag, micro defects on the substrate, and the like. Since it is determined that there is a high possibility of causing an image defect if the dielectric breakdown of the photosensitive member occurs, it is determined that there is a defect.

本発明における光学第一検査工程で被疑欠陥が検出され、電気第一検査工程で欠陥が検出されなかった電子写真感光体32は、被疑欠陥の解析を行うために、光学検査第二工程40へとすすめる。   The electrophotographic photosensitive member 32 in which the suspicious defect is detected in the first optical inspection step and the defect is not detected in the first electrical inspection step is directed to the second optical inspection step 40 in order to analyze the suspicious defect. Recommended.

本発明における光学検査第二工程40では、光学検査第一工程10において検出された被疑欠陥が欠陥かどうかの判定を行うための検出情報が得られる。さらには、該当する被疑欠陥が光学検査では欠陥かどうかの判定が不能であり、精密な電気検査第二工程へすすめると判定するための検出情報が得られると尚、好ましい。そのために、光学検査第一工程10に比べて、光学検査第二工程40では、光源をレーザー光源とした分解能の高い装置を使用することが好ましい。光学検査第二工程40には、上記要求を満たす範囲で、任意の構成の光学検査方法を用いることができる。   In the second optical inspection step 40 in the present invention, detection information for determining whether the suspected defect detected in the first optical inspection step 10 is a defect is obtained. Furthermore, it is preferable that it is impossible to determine whether or not the relevant suspected defect is a defect in the optical inspection, and detection information for determining that the precise electric inspection second step is recommended is obtained. Therefore, it is preferable to use an apparatus having a higher resolution in which the light source is a laser light source in the second optical inspection step 40 than in the first optical inspection step 10. In the optical inspection second step 40, an optical inspection method having an arbitrary configuration can be used within a range that satisfies the above requirements.

本発明における光学検査第二工程40の結果、該検出情報と所定の閾値に基づき、該当する電子写真感光体の被疑欠陥が欠陥でない41か、欠陥である43かの分別を行う。あるいは、検出情報と所定の閾値に基づき、該当する電子写真感光体の被疑欠陥は欠陥でない51か、欠陥である53か、光学検査では欠陥かどうか判定不能で、電気検査第二工程を実施する52、のいずれかの判断を行う判断工程50を実施すると尚、好ましい。分別工程及び判断工程における、被疑欠陥が欠陥であるか、欠陥でないかの基準は下記のとおりである。   As a result of the second optical inspection step 40 in the present invention, based on the detection information and a predetermined threshold value, the suspicious defect of the corresponding electrophotographic photosensitive member is classified as 41 that is not a defect or 43 that is a defect. Alternatively, based on the detection information and a predetermined threshold, it is impossible to determine whether the suspicious defect of the corresponding electrophotographic photosensitive member is a defect 51, a defect 53, or a defect by optical inspection, and the electrical inspection second step is performed. It is still preferable to carry out the determination step 50 for determining any of 52. The criteria for whether the suspected defect is a defect or not in the classification process and the determination process are as follows.

欠陥でない41、51とは、被疑欠陥が、電子写真画像上の黒点や白点、濃度ムラ等の画像欠陥となったり、繰り返し使用により感光体の絶縁破壊の原因となることはないと考えられる場合である。例えば、異常が、導電性のない異物の付着物であり、極めて小さくて電子写真装置の現像性に影響を与えない大きさである場合が挙げられる。また、異常が、軽微な膜厚ムラで、電子写真装置の現像性に影響を与えない大きさである場合が挙げられる。また、電子写真感光体の塗工乾燥後のゴミの付着や、光学系のノイズ混入による光学検査第一工程の誤検知の場合も、含まれる。   Non-defects 41 and 51 are considered that the suspected defect does not cause image defects such as black spots, white spots, and density unevenness on the electrophotographic image, or cause the dielectric breakdown of the photoreceptor due to repeated use. Is the case. For example, there is a case where the abnormality is a foreign matter adhering matter having no electrical conductivity and has a size that is extremely small and does not affect the developability of the electrophotographic apparatus. In addition, there is a case where the abnormality is a slight film thickness unevenness and does not affect the developability of the electrophotographic apparatus. Also included are cases where dust adheres after coating and drying of the electrophotographic photosensitive member, or erroneous detection in the first optical inspection process due to noise in the optical system.

欠陥である43、53とは、被疑欠陥が、電子写真画像上の黒点や白点、濃度ムラ等の画像欠陥となったり、繰り返し使用により感光体の絶縁破壊の原因となる可能性が高いと考えられる場合である。43の場合には、電子写真画像上の黒点や白点、濃度ムラ等の画像欠陥とならないが、繰り返し使用により感光体の絶縁破壊の原因となる可能性がある場合も含まれる。例えば、異常が、比較的大きな異物の付着物であり、電子写真装置の現像性に影響を与え、黒点や白点等の画像欠陥となる場合が挙げられる。また、異常が、比較的大きな膜厚ムラであり、電子写真装置の現像性に影響を与え、濃度ムラ等の画像欠陥となる場合が挙げられる。   Defects 43 and 53 indicate that the suspected defect is likely to cause image defects such as black spots, white spots, and density unevenness on an electrophotographic image, or to cause dielectric breakdown of the photoreceptor due to repeated use. This is the case. In the case of No. 43, image defects such as black spots, white spots, and density unevenness on the electrophotographic image are not caused, but there are cases where repeated use may cause dielectric breakdown of the photoreceptor. For example, the abnormality is a deposit of relatively large foreign matter, which affects the developability of the electrophotographic apparatus and causes image defects such as black spots and white spots. Further, there is a case where the abnormality is a relatively large film thickness unevenness, which affects the developability of the electrophotographic apparatus and results in image defects such as density unevenness.

光学検査では被疑欠陥が欠陥かどうか判定不能で、電気検査第二工程を実施する52とは、被疑欠陥が、電子写真画像上の黒点や白点、濃度ムラ等の画像欠陥とならないが、繰り返し使用により感光体の絶縁破壊の原因となる可能性がある場合をいう。例えば、被疑欠陥が異物の付着物であり、極めて小さくて電子写真装置の現像性に影響を与えない大きさであるが、異物が導電性かどうか判らない場合が挙げられる。   It is impossible to determine whether or not the suspicious defect is a defect in the optical inspection, and the electric inspection second process 52 is performed. The suspicious defect does not become an image defect such as a black spot, a white spot, and density unevenness on the electrophotographic image, but repeatedly The case where there is a possibility of causing dielectric breakdown of the photosensitive member by use. For example, there is a case where the suspected defect is a foreign matter deposit and is extremely small and does not affect the developability of the electrophotographic apparatus, but it is not known whether the foreign matter is conductive.

本発明における電気検査第二工程60は、判断工程で繰り返し使用により感光体の絶縁破壊の原因となる可能性があると判断された被疑欠陥について、絶縁破壊の可能性を明確にするために実施される。電子写真装置において想定される繰り返し使用条件も加味し、適切な検査条件及び閾値が設定される。該検出情報と所定の閾値に基づき、該被疑欠陥が絶縁破壊の原因となる欠陥かどうかを検出し、欠陥なし61か、欠陥あり63かの分別を行う。本発明における電気検査第二工程では、上記要求を満たす範囲で、任意の構成の電気検査手法を用いることが可能である。
検査の対象とされる電子写真感光体が接触帯電方式の電子写真装置に用いられる電子写真感光体である場合には、より好適に本発明の効果を得ることができる。
The second electrical inspection process 60 in the present invention is performed in order to clarify the possibility of dielectric breakdown of the suspected defect that is determined to be a cause of dielectric breakdown of the photoreceptor due to repeated use in the determination process. Is done. Appropriate inspection conditions and threshold values are set in consideration of repeated use conditions assumed in the electrophotographic apparatus. Based on the detection information and a predetermined threshold value, it is detected whether or not the suspected defect is a defect that causes a dielectric breakdown, and it is determined whether there is no defect 61 or 63. In the second electrical inspection step in the present invention, it is possible to use an electrical inspection technique having an arbitrary configuration within a range that satisfies the above requirements.
When the electrophotographic photoconductor to be inspected is an electrophotographic photoconductor used in a contact charging type electrophotographic apparatus, the effects of the present invention can be obtained more suitably.

次に、本発明の、電子写真感光体の検査方法における、各検査工程の構成について説明する。   Next, the configuration of each inspection process in the method for inspecting an electrophotographic photosensitive member of the present invention will be described.

本発明の光学検査第一工程とは、電子写真感光体に白色の光を照射し、該光の反射光を光電変換素子からなる受光手段により測定し、測定された電流値に基づいて、電子写真感光体の被疑欠陥の有無を判定する工程である。
ここで、本発明の光学検査第一工程における白色の光の照射とは、例えばハロゲンランプを白色光源として用い、また光ファイバーと光学フィルターを利用し、ハロゲンランプからの光を帯状光束として電子写真感光体へ投光することである。反射光とは、正反射光及び散乱反射光が挙げられる。光電変換素子からなる受光手段とは、例えばラインセンサー型CCDカメラが挙げられる。判定に用いる閾値は、欠陥がある電子写真感光体を検査した際の光電変換センサーの電流値に基づいて欠陥である可能性がある異常が被疑欠陥として検出されるレベルに、設定される。
The first step of optical inspection of the present invention is to irradiate the electrophotographic photosensitive member with white light, measure the reflected light of the light by a light receiving means comprising a photoelectric conversion element, and based on the measured current value, This is a step of determining the presence or absence of a suspicious defect on a photographic photoreceptor.
Here, the irradiation of white light in the first optical inspection step of the present invention means that, for example, a halogen lamp is used as a white light source, an optical fiber and an optical filter are used, and the light from the halogen lamp is used as a zonal light beam. It is to shine on the body. Examples of the reflected light include regular reflected light and scattered reflected light. An example of the light receiving means including a photoelectric conversion element is a line sensor type CCD camera. The threshold used for the determination is set to a level at which an abnormality that may be a defect is detected as a suspected defect based on the current value of the photoelectric conversion sensor when an electrophotographic photosensitive member having a defect is inspected.

図3は本発明の光学検査第一工程を実施する装置の一例の概略構成を示した図である。同図において、白色光源3001から白色光3002を電子写真感光体3に軸方向に一様に照射させる。その反射光3004をラインセンサー型CCDカメラ3005にて受光する。ラインセンサー型CCDカメラ3005において、反射光情報は、電気信号に変換され、不図示の処理装置に送られて、予め設定されていた閾値に基づき、被疑欠陥あるいは欠陥の判定が行われる。尚、図示していないが、照射光及び反射光を調整する光学系を必要に応じて有しても良い。
例えば、ビームエクスパンダー、反射ミラー、シリンドリカルレンズ、マスク板、コリメータレンズ、fθレンズなどである。
被疑欠陥あるいは欠陥の判定方法には様々な方法があるが、一例として、電気信号に変換された反射光情報をある閾値によって2値化し、被疑欠陥あるいは欠陥の大きさや面積より閾値を設定して、欠陥を判定する方法が挙げられる。
FIG. 3 is a diagram showing a schematic configuration of an example of an apparatus for performing the first optical inspection process of the present invention. In the figure, white light 3002 is uniformly irradiated from the white light source 3001 to the electrophotographic photosensitive member 3 in the axial direction. The reflected light 3004 is received by the line sensor type CCD camera 3005. In the line sensor type CCD camera 3005, the reflected light information is converted into an electrical signal, sent to a processing device (not shown), and a suspected defect or a defect is determined based on a preset threshold value. Although not shown, an optical system for adjusting the irradiation light and the reflected light may be provided as necessary.
For example, a beam expander, a reflection mirror, a cylindrical lens, a mask plate, a collimator lens, an fθ lens, and the like.
There are various methods for determining the suspected defect or defect. As an example, the reflected light information converted into an electrical signal is binarized by a certain threshold value, and the threshold value is set based on the size or area of the suspected defect or defect. And a method for determining defects.

本発明の光学検査第二工程とは、電子写真感光体にレーザー光を照射し、該光の反射光を光電変換素子からなる受光手段により測定し、測定された電流値に基づいて、電子写真感光体の被疑欠陥の有無を判定する工程である。
本発明の光学検査第二工程におけるレーザー光の照射とは、例えばHe−Neレーザーを光源として用い、ビームエキスパンダーあるいはマスク板を利用して、電子写真感光体に投光することである。反射光とは、正反射光及び散乱反射光が挙げられる。光電変換素子からなる受光手段とは、例えばラインセンサー型CCDカメラ又は光電子倍増管(フォトマル)が挙げられる。判定に用いる閾値は、欠陥がある電子写真感光体を検査した際の光電変換センサーの電流値に基づいて欠陥である異常が欠陥として検出されるレベルに、設定される。この際、光学検査第二工程でのレーザー光は光学検査第一工程よりも高分解能であるため、より精度の高い欠陥の検出が可能である。さらには、欠陥かどうか判定不能な場合は、それらも識別できるように、所定の閾値を設定できると尚、好ましい。
In the second optical inspection step of the present invention, the electrophotographic photosensitive member is irradiated with laser light, the reflected light of the light is measured by a light receiving means comprising a photoelectric conversion element, and electrophotography is performed based on the measured current value. This is a step of determining the presence or absence of a suspicious defect on the photoreceptor.
The irradiation of laser light in the second optical inspection step of the present invention is to project light onto an electrophotographic photoreceptor using, for example, a He—Ne laser as a light source and using a beam expander or a mask plate. Examples of the reflected light include regular reflected light and scattered reflected light. Examples of the light receiving means comprising a photoelectric conversion element include a line sensor type CCD camera or a photomultiplier tube (photomultiplier). The threshold value used for the determination is set to a level at which an abnormality as a defect is detected as a defect based on the current value of the photoelectric conversion sensor when an electrophotographic photosensitive member having a defect is inspected. At this time, since the laser beam in the second optical inspection step has a higher resolution than the first optical inspection step, it is possible to detect a defect with higher accuracy. Furthermore, it is preferable that a predetermined threshold value can be set so that it can be identified if it is not possible to determine whether or not it is a defect.

図4は本発明の光学検査第二工程を実施する装置の一例の概略構成を示した図である。同図において、光源4001からのレーザ光ビーム4002を、反射ミラー4003及びポリゴンミラー4004を介して電子写真感光体4005の軸方向に走査するように照射させる。その反射光4006を光電子増倍管7にて受光する。   FIG. 4 is a diagram showing a schematic configuration of an example of an apparatus for performing the second optical inspection process of the present invention. In the drawing, a laser beam 4002 from a light source 4001 is irradiated so as to scan in the axial direction of an electrophotographic photosensitive member 4005 via a reflection mirror 4003 and a polygon mirror 4004. The reflected light 4006 is received by the photomultiplier tube 7.

光電子増倍管4007おいて、反射光情報は、電気信号に変換され、不図示の処理装置に送られて、予め設定されていた閾値に基づき、欠陥の判定が行われる。尚、図示していないが、照射光及び反射光を調整する光学系を必要に応じて有しても良い。
例えば、ビームエクスパンダー、反射ミラー、シリンドリカルレンズ、マスク板、コリメータレンズ、fθレンズなどである。
被疑欠陥あるいは欠陥の判定方法には様々な方法があるが、一例として、電気信号に変換された反射光情報をある閾値によって2値化し、被疑欠陥あるいは欠陥の大きさや面積に閾値を設定して、欠陥を判定する方法が挙げられる。
In the photomultiplier tube 4007, the reflected light information is converted into an electrical signal, sent to a processing device (not shown), and a defect is determined based on a preset threshold value. Although not shown, an optical system for adjusting the irradiation light and the reflected light may be provided as necessary.
For example, a beam expander, a reflection mirror, a cylindrical lens, a mask plate, a collimator lens, an fθ lens, and the like.
There are various methods for determining the suspected defect or defect. For example, the reflected light information converted into an electrical signal is binarized by a certain threshold value, and the threshold value is set for the size or area of the suspected defect or defect. And a method for determining defects.

光学検査第二工程においてレーザー光を用いて光学検査を行うことにより、分解能の向上および欠陥検出精度の向上を図ることが可能であるが、同時に検査に要する時間は増加する傾向にある。レーザー光の分解能を高めることによって、検査視野は狭くなる、すなわち、単位時間あたりの検査面積が小さくなるためである。よって、検査時間の増加による生産性の低下が懸念となる。本発明においては、欠陥をもっている疑いのある検査体にのみ検査を行うことで、生産性の低下を抑制している。そのために、電子写真感光体の生産性を損なうことなく、欠陥検出の精度を向上させることができる。   By performing optical inspection using laser light in the second optical inspection step, it is possible to improve resolution and improve defect detection accuracy, but at the same time, the time required for inspection tends to increase. This is because the inspection visual field is narrowed by increasing the resolution of the laser light, that is, the inspection area per unit time is reduced. Therefore, a decrease in productivity due to an increase in inspection time is a concern. In the present invention, only a test body suspected of having a defect is inspected to suppress a decrease in productivity. For this reason, it is possible to improve the accuracy of defect detection without impairing the productivity of the electrophotographic photosensitive member.

本発明の電気検査第一工程とは、電子写真感光体表面に導電性ローラを圧接して、電子写真感光体を回転させながら直流電圧を印加し、導電性ローラから電子写真感光体へ流れる電流を、電流測定手段により測定し、測定された電流値に基づいて、電子写真感光体の欠陥の有無を判定する工程である。   The first step of the electrical inspection of the present invention is to apply a direct current voltage while rotating the electrophotographic photosensitive member by pressing the conductive roller on the surface of the electrophotographic photosensitive member, and a current flowing from the conductive roller to the electrophotographic photosensitive member. Is measured by a current measuring means, and the presence or absence of a defect in the electrophotographic photosensitive member is determined based on the measured current value.

図5は本発明の電気検査第一工程を実施するための装置の一例の概略構成を示した図である。図5において、5001は円筒状支持体上に感光層を形成した電子写真感光体であり、矢印の方向に所定の周速度で回転駆動される。電子写真感光体5001には、回転過程において、電子写真感光体5001に圧接された導電性ローラ5002により直流電圧のみを印加される。電子写真感光体5001を1周以上回転駆動させながら、電流値検出手段5004により電子写真感光体1を流れる電流が検出される。検出された電流値を電流値処理手段5005により読み取り、所定の閾値に基づいて欠陥の有無を判定する。具体的には、一定以上電流が流れた場合を欠陥ありと判断し、それより小さい電流が流れた場合は欠陥なしと判断する。なお、5003は高圧電源を示す。   FIG. 5 is a diagram showing a schematic configuration of an example of an apparatus for carrying out the first electric inspection process of the present invention. In FIG. 5, reference numeral 5001 denotes an electrophotographic photosensitive member having a photosensitive layer formed on a cylindrical support, and is driven to rotate at a predetermined peripheral speed in the direction of an arrow. Only a DC voltage is applied to the electrophotographic photosensitive member 5001 by a conductive roller 5002 pressed against the electrophotographic photosensitive member 5001 during the rotation process. While the electrophotographic photosensitive member 5001 is driven to rotate one or more times, the current flowing through the electrophotographic photosensitive member 1 is detected by the current value detecting means 5004. The detected current value is read by the current value processing means 5005, and the presence or absence of a defect is determined based on a predetermined threshold value. Specifically, it is determined that there is a defect when a current flows above a certain level, and it is determined that there is no defect when a smaller current flows. Reference numeral 5003 denotes a high voltage power source.

本発明の電気検査第二工程には、二つの態様がある。第1態様の電気検査第二工程としては、例えば、第一の導電性ローラを電子写真感光体表面に圧接し、電子写真感光体を回転させながら直流電圧に交流電圧を重畳した電圧を印加する第1の工程と、第二の導電性ローラを電子写真感光体表面に圧接し、電子写真感光体を回転させながら直流電圧を印加する第2の工程であって、導電性ローラから電子写真感光体へ流れる電流を電流測定手段により測定し、測定された電流値に基づいて、電子写真感光体の欠陥の有無を判定する工程とをこの順に実施する電気検査工程であることが望ましい。なお、上記第2の工程には、電流を測定する手段に加えて、電流値を処理する手段を用いるのが好ましい。また、第2態様の電気検査第二工程は、第一の導電性ローラを電子写真感光体表面に圧接し、電子写真感光体を回転させながら直流電圧を印加するとともに、導電性ローラと電子写真感光体との間で発生する放電領域に対して、電子写真感光体が感度を有する光を照射する第1の工程と、第二の導電性ローラを電子写真感光体表面に圧接し、電子写真感光体に直流電圧を印加する第2の工程であって、導電性ローラから電子写真感光体へ流れる電流を電流測定手段により測定し、測定された電流値に基づいて、電子写真感光体の欠陥の有無を判定する工程をこの順に実施する電気検査工程であることが望ましい。この場合においても、上記第2の工程には、電流を測定する手段に加えて、電流値を処理する手段を用いることが好ましい。   There are two modes in the second electrical inspection process of the present invention. As the second step of the electrical inspection of the first aspect, for example, the first conductive roller is pressed against the surface of the electrophotographic photosensitive member, and a voltage obtained by superimposing the alternating voltage on the direct current voltage is applied while rotating the electrophotographic photosensitive member. A first step and a second step in which a second conductive roller is pressed against the surface of the electrophotographic photosensitive member and a DC voltage is applied while rotating the electrophotographic photosensitive member. It is desirable to be an electrical inspection process in which the current flowing through the body is measured by a current measuring means, and the process of determining the presence or absence of defects in the electrophotographic photosensitive member based on the measured current value is performed in this order. In the second step, it is preferable to use a means for processing the current value in addition to the means for measuring the current. In the second step of the electrical inspection of the second aspect, the first conductive roller is pressed against the surface of the electrophotographic photosensitive member, and a DC voltage is applied while rotating the electrophotographic photosensitive member. A first step in which the electrophotographic photosensitive member is irradiated with light having sensitivity to a discharge region generated between the photosensitive member and a second conductive roller is pressed against the surface of the electrophotographic photosensitive member. A second step of applying a DC voltage to the photosensitive member, wherein a current flowing from the conductive roller to the electrophotographic photosensitive member is measured by a current measuring means, and a defect in the electrophotographic photosensitive member is determined based on the measured current value. It is desirable to be an electrical inspection process in which the process of determining the presence or absence of this is performed in this order. Even in this case, in the second step, it is preferable to use a means for processing the current value in addition to the means for measuring the current.

図6は本発明の電気検査第二工程の第1態様の第1の工程を実施するための装置の一例の概略構成を示した図である。図6において、6001は円筒状支持体上に形成された電子写真感光体であり、矢印の方向に所定の周速度で回転駆動される。電子写真感光体6001は、回転過程において、電子写真感光体6001に圧接された導電性ローラ6002により直流電圧に交流電圧を重畳した電圧を印加される。電子写真感光体内に微小欠陥があると、その部分に集中的に電流が流れることにより微小欠陥部が劣化し、欠陥が顕在化される。電子写真感光体6001は、1周以上回転駆動しながら電圧印加を受けた後、必要に応じて除電工程を行い、顕在化された欠陥を検出するための電気検査第二工程の第2の工程に移動される。なお、6003は高圧電源を示す。   FIG. 6 is a diagram showing a schematic configuration of an example of an apparatus for carrying out the first step of the first mode of the second step of the electrical inspection of the present invention. In FIG. 6, reference numeral 6001 denotes an electrophotographic photosensitive member formed on a cylindrical support, which is rotationally driven in the direction of the arrow at a predetermined peripheral speed. In the rotation process, the electrophotographic photosensitive member 6001 is applied with a voltage obtained by superimposing an AC voltage on a DC voltage by a conductive roller 6002 pressed against the electrophotographic photosensitive member 6001. If there is a microdefect in the electrophotographic photosensitive member, the current flows intensively in that portion, so that the microdefect portion is deteriorated and the defect becomes obvious. The electrophotographic photosensitive member 6001 is subjected to a voltage application while being driven to rotate for one or more rounds, and then performs a static elimination process as necessary, and a second step of an electric inspection second step for detecting a manifested defect. Moved to. Reference numeral 6003 denotes a high voltage power source.

本発明においては、下記式(1)で示される電気検査第二工程の第1態様の第1の工程の最大印加電圧Vmaxが、1000V以上3000V以下であり、かつ、Vmaxが電子写真装置の最大暗部電位より大きいことが検査精度の向上及び生産性の点から好ましい。

最大印加電圧Vmax=|直流電圧Vdc|+交流ピーク間電圧Vp×1/2 (1)

最大印加電圧Vmaxが1000Vより低いと、微小欠陥に流れる電流が不十分となるため、直流電圧に交流電圧を重畳した電圧を印加しても微小欠陥が存在する部分の感光層が絶縁破壊を起こし難くなる。そのため、電気検査第二工程において欠陥が検出され難くなる。一方、3000Vより高いと、欠陥以外の電子写真感光体の絶縁破壊が起こり易くなる。
また、最大印加電圧Vmaxが電子写真装置の最大暗部電位より大きいほうが検査精度の向上の点から好ましい。
In the present invention, the maximum applied voltage Vmax in the first step of the first aspect of the second step of the electrical inspection represented by the following formula (1) is 1000 V or more and 3000 V or less, and Vmax is the maximum of the electrophotographic apparatus. It is preferable from the point of improvement of inspection accuracy and productivity that it is larger than the dark part potential.

Maximum applied voltage Vmax = | DC voltage Vdc | + AC peak-to-peak voltage Vp × 1/2 (1)

If the maximum applied voltage Vmax is lower than 1000 V, the current flowing through the minute defect becomes insufficient. Therefore, even if a voltage obtained by superimposing the alternating voltage on the direct current voltage is applied, the photosensitive layer in the portion where the minute defect exists causes dielectric breakdown. It becomes difficult. This makes it difficult to detect defects in the second electrical inspection process. On the other hand, if it is higher than 3000 V, dielectric breakdown of the electrophotographic photosensitive member other than defects tends to occur.
Further, the maximum applied voltage Vmax is preferably larger than the maximum dark portion potential of the electrophotographic apparatus from the viewpoint of improving inspection accuracy.

また、電子写真感光体の回転スピードは100mm/sec以下にすることが検査精度の点から好ましい。電子写真感光体の回転スピードを遅くして電子写真感光体に電圧を印加し続ける時間を長くすることで、微小欠陥が加速的に劣化し、電気検査第二工程において検出され易くなる。   In addition, the rotational speed of the electrophotographic photoreceptor is preferably 100 mm / sec or less from the viewpoint of inspection accuracy. By slowing down the rotation speed of the electrophotographic photosensitive member and increasing the time during which the voltage is continuously applied to the electrophotographic photosensitive member, minute defects are accelerated and are easily detected in the second step of electrical inspection.

更に、本発明の電気検査第二工程の第1態様の第1の工程においては、印加する交流電圧の周波数が500Hz以上であることが検査精度の点から好ましく、特には1000Hz以上であることが好ましい。交流電圧の周波数が高い方が、微小欠陥が加速的に劣化し、電気検査第二工程において検出され易くなる。
図7は本発明の電気検査第二工程の第2態様における第1の工程を実施するための装置の概略構成を示した図である。図7において、7001は円筒状支持体上に感光層を形成した電子写真感光体であり、矢印の方向に所定の周速度で回転駆動される。電子写真感光体7001には、その回転過程において、電子写真感光体7001に圧接された導電性ローラ7002と電子写真感光体7001との放電領域に電子写真感光体が感度を有する光が照射される。電子写真感光体内に微小欠陥があると、その部分に集中的に電流が流れることにより微小欠陥部が劣化し、欠陥が顕在化される。電子写真感光体7001は1周以上回転駆動しながら電圧印加を受けた後、必要に応じて除電工程を行い、顕在化された欠陥を検出する電気検査第二工程の第2の工程に移動される。なお、7003は高圧電源を、7004は電流地検出手段を、7005は電流地処理手段を、7006は光源を示す。
Furthermore, in the first step of the first aspect of the electric inspection second step of the present invention, the frequency of the AC voltage to be applied is preferably 500 Hz or more from the viewpoint of inspection accuracy, particularly 1000 Hz or more. preferable. When the frequency of the AC voltage is higher, the micro defects are accelerated and are easily detected in the second electrical inspection process.
FIG. 7 is a view showing a schematic configuration of an apparatus for carrying out the first step in the second aspect of the second step of the electrical inspection of the present invention. In FIG. 7, reference numeral 7001 denotes an electrophotographic photosensitive member having a photosensitive layer formed on a cylindrical support, and is driven to rotate at a predetermined peripheral speed in the direction of an arrow. In the rotation process, the electrophotographic photosensitive member 7001 is irradiated with light having sensitivity to the discharge region between the electroconductive roller 7002 and the electrophotographic photosensitive member 7001 which are in pressure contact with the electrophotographic photosensitive member 7001. . If there is a microdefect in the electrophotographic photosensitive member, the current flows intensively in that portion, so that the microdefect portion is deteriorated and the defect becomes obvious. The electrophotographic photosensitive member 7001 is moved to the second step of the second step of the electric inspection to detect the manifested defect by performing the charge removing step as needed after receiving the voltage application while being driven to rotate one or more times. The Reference numeral 7003 denotes a high-voltage power source, 7004 denotes a current ground detection means, 7005 denotes a current ground processing means, and 7006 denotes a light source.

本発明においては、導電性ローラに直流電圧のみを印加する場合、電子写真感光体の静電容量に応じた所定の電位に帯電されると放電が終了してしまう。
その場合、より多くの電流を流して微少欠陥を加速的に劣化させることが困難である。そのために、電子写真感光体が所定の電位にいたる前に、電子写真感光体に光を照射して表面電位を低下させることで、より多くの電流を流すことができる。
電流の流れる大きさ(電流値)は、電子写真感光体の静電容量や帯電バイアスによっても変わるが、電子写真感光体に照射する光量を変えることでも変動することが分かっている。そこで本発明では、照射する光量を変更した場合は、電流値によって光量の大小を判断するものとする。
In the present invention, when only a DC voltage is applied to the conductive roller, the discharge ends when charged to a predetermined potential corresponding to the electrostatic capacity of the electrophotographic photosensitive member.
In that case, it is difficult to accelerate the deterioration of minute defects by flowing more current. Therefore, before the electrophotographic photosensitive member reaches a predetermined potential, more electric current can be passed by irradiating the electrophotographic photosensitive member with light to lower the surface potential.
It is known that the magnitude of current flow (current value) varies depending on the electrostatic capacity and charging bias of the electrophotographic photosensitive member, but also varies depending on the amount of light applied to the electrophotographic photosensitive member. Therefore, in the present invention, when the amount of light to be irradiated is changed, the amount of light is determined based on the current value.

残留電位になるまで除電した電子写真感光体を、暗所中にて帯電したときに流れる電流値をIとした場合、前述の第一工程での光量は、電流値がI×1.5以上になるような光量設定が、検査精度の向上および生産性の点から好ましい。
また、電子写真感光体の回転スピードは100mm/sec以下にすることが検査精度の点から好ましい。
電子写真感光体の回転スピードを遅くして電子写真感光体に電圧を印加し続ける時間を長くすることで微小欠陥が加速的に劣化し、電気検査第二工程において検出され易くなる。
Assuming that the current value that flows when an electrophotographic photosensitive member that has been neutralized until it reaches the residual potential is charged in a dark place is I, the amount of light in the first step is equal to or greater than I × 1.5. Such a light amount setting is preferable from the viewpoint of improvement in inspection accuracy and productivity.
In addition, the rotational speed of the electrophotographic photoreceptor is preferably 100 mm / sec or less from the viewpoint of inspection accuracy.
By slowing down the rotation speed of the electrophotographic photosensitive member and extending the time during which the voltage is continuously applied to the electrophotographic photosensitive member, micro defects are accelerated and are easily detected in the second step of electrical inspection.

次に、本発明の電気検査第二工程の第1態様及び第2態様における第2の工程について詳細に説明する。
電気検査第二工程における第2の工程では、電子写真感光体の繰り返し使用によって顕在化される微小欠陥を精度よく検出できる構成の装置を任意に用いることができる。
Next, the 2nd process in the 1st aspect and the 2nd aspect of the electrical inspection 2nd process of this invention is demonstrated in detail.
In the second step of the electrical inspection second step, an apparatus having a configuration capable of accurately detecting minute defects that are manifested by repeated use of the electrophotographic photosensitive member can be used.

図5は、前述したように、本発明の電気検査第一工程を実施するための装置の一例の概略構成を示した図であるが、この装置は本発明の電気検査第二工程の第1態様及び第2態様における第2の工程を実施するためにも用いることができる。図5において、5001は円筒状支持体上に形成された電子写真感光体であり、矢印の方向に所定の周速度で回転駆動される。電子写真感光体5001には、その回転過程において、電子写真感光体5001に圧接された導電性ローラ5002により直流電圧のみを印加される。電子写真感光体5001を1周以上回転駆動させながら電流値検出手段5004により電子写真感光体を流れる電流を検出する。検出した電流値を電流値処理手段5005により読み取り、所定の閾値に基づいて欠陥の有無を判定する。具体的には、一定以上電流が流れた場合を欠陥ありと判断し、それより小さい電流が流れた場合は欠陥なしと判断する。
本発明においては、電気検査第二工程の第1態様及び第2態様における第二工程は暗所で行うことが検査精度の向上の点から好ましい。
FIG. 5 is a diagram showing a schematic configuration of an example of an apparatus for carrying out the first electric inspection process of the present invention as described above. This apparatus is the first of the second electric inspection process of the present invention. It can also be used to perform the second step in the embodiment and the second embodiment. In FIG. 5, reference numeral 5001 denotes an electrophotographic photosensitive member formed on a cylindrical support, which is rotationally driven at a predetermined peripheral speed in the direction of an arrow. In the rotation process, only a DC voltage is applied to the electrophotographic photosensitive member 5001 by a conductive roller 5002 that is in pressure contact with the electrophotographic photosensitive member 5001. The current flowing through the electrophotographic photosensitive member is detected by the current value detecting means 5004 while rotating the electrophotographic photosensitive member 5001 for one or more rotations. The detected current value is read by the current value processing means 5005 and the presence or absence of a defect is determined based on a predetermined threshold value. Specifically, it is determined that there is a defect when a current flows above a certain level, and it is determined that there is no defect when a smaller current flows.
In this invention, it is preferable from the point of the improvement of a test | inspection precision to perform the 2nd process in the 1st aspect and 2nd aspect of an electrical inspection 2nd process in a dark place.

次に、本発明の検査方法が適用される電子写真感光体の構成例について説明する。   Next, a configuration example of an electrophotographic photoreceptor to which the inspection method of the present invention is applied will be described.

電子写真感光体は、支持体と、該支持体上に設けられた有機感光層(以下、単に「感光層」ともいう。)とを有する。電子写真感光体としては、一般的には、円筒状支持体上に感光層を形成した円筒状有機電子写真感光体が広く用いられるが、ベルト状或いはシート状の形状も可能である。 The electrophotographic photoreceptor includes a support and an organic photosensitive layer (hereinafter also simply referred to as “photosensitive layer”) provided on the support. In general, a cylindrical organic electrophotographic photosensitive member having a photosensitive layer formed on a cylindrical support is widely used as the electrophotographic photosensitive member, but a belt-like or sheet-like shape is also possible.

感光層は、電荷輸送物質と電荷発生物質とを同一の層に含有する単層型感光層であっても、電荷発生物質を含有する電荷発生層と電荷輸送物質を含有する電荷輸送層とに分離した積層型(機能分離型)感光層であってもよい。電子写真感光体は、電子写真特性の観点から、積層型感光層が好ましい。また、積層型感光層は、支持体側から電荷発生層、電荷輸送層の順に積層した順層型感光層であっても、支持体側から電荷輸送層、電荷発生層の順に積層した逆層型感光層であってもよい。電子写真感光体において、積層型感光層を採用する場合、電子写真特性の観点から、順層型感光層が好ましい。また、電荷発生層を積層構造としてもよく、また、電荷輸送層を積層構成としてもよい。更に、耐久性能向上等を目的とし感光層上に保護層を設けることも可能である。   Even if the photosensitive layer is a single-layer type photosensitive layer containing the charge transport material and the charge generation material in the same layer, the charge generation layer containing the charge generation material and the charge transport layer containing the charge transport material Separated layered (functionally separated type) photosensitive layers may be used. The electrophotographic photosensitive member is preferably a laminated photosensitive layer from the viewpoint of electrophotographic characteristics. In addition, even if the laminated type photosensitive layer is a normal type photosensitive layer in which the charge generation layer and the charge transport layer are laminated in this order from the support side, the reverse layer type photosensitive layer in which the charge transport layer and the charge generation layer are laminated in order from the support side. It may be a layer. When an electrophotographic photosensitive member employs a laminated type photosensitive layer, a normal layer type photosensitive layer is preferred from the viewpoint of electrophotographic characteristics. Further, the charge generation layer may have a laminated structure, and the charge transport layer may have a laminated structure. Furthermore, it is possible to provide a protective layer on the photosensitive layer for the purpose of improving the durability.

支持体としては、導電性を有するもの(導電性支持体)が好ましく、例えば、アルミニウム、アルミニウム合金又はステンレスのような金属製の支持体を用いることができる。アルミニウム又はアルミニウム合金の場合は、ED管、EI管や、これらを切削、電解複合研磨(電解作用を有する電極と電解質溶液による電解及び研磨作用を有する砥石による研磨)、湿式又は乾式ホーニング処理したものも用いることができる。また、アルミニウム、アルミニウム合金又は酸化インジウム−酸化スズ合金を真空蒸着によって被膜形成された層を有する上記金属製支持体や樹脂製支持体(ポリエチレンテレフタレート、ポリブチレンテレフタレート、フェノール樹脂、ポリプロピレン又はポリスチレン樹脂)を用いることもできる。また、カーボンブラック、酸化スズ粒子、酸化チタン粒子又は銀粒子のような導電性粒子を樹脂や紙に含浸した支持体や、導電性結着樹脂を有するプラスチックを用いることもできる。   As a support body, what has electroconductivity (conductive support body) is preferable, for example, metal supports, such as aluminum, aluminum alloy, or stainless steel, can be used. In the case of aluminum or aluminum alloy, ED tube, EI tube, and these are cut, electrolytic composite polishing (electrolysis with electrode having electrolytic action and polishing with grinding stone having polishing action), wet or dry honing treatment Can also be used. In addition, the above metal support or resin support (polyethylene terephthalate, polybutylene terephthalate, phenol resin, polypropylene, or polystyrene resin) having a layer formed by vacuum deposition of aluminum, aluminum alloy, or indium oxide-tin oxide alloy. Can also be used. In addition, a support in which conductive particles such as carbon black, tin oxide particles, titanium oxide particles, or silver particles are impregnated in a resin or paper, or a plastic having a conductive binder resin can also be used.

支持体の表面は、レーザー光の散乱による干渉縞の防止を目的として、切削処理、粗面化処理、アルマイト処理を施してもよい。   The surface of the support may be subjected to a cutting process, a roughening process, or an alumite process for the purpose of preventing interference fringes due to scattering of laser light.

支持体の体積抵抗率は、支持体の表面が導電性を付与するために設けられた層である場合、その層の体積抵抗率は、1×1010Ω・cm以下であることが好ましく、特には1×10Ω・cm以下であることがより好ましい。 When the volume resistivity of the support is a layer provided for imparting conductivity to the surface of the support, the volume resistivity of the layer is preferably 1 × 10 10 Ω · cm or less, In particular, it is more preferably 1 × 10 6 Ω · cm or less.

支持体と、後述の中間層又は感光層(電荷発生層、電荷輸送層)との間には、レーザー光の散乱による干渉縞の防止や、支持体の傷の被覆を目的とした導電層を設けてもよい。これは、導電性粉体を適当な結着樹脂に分散させた塗布液を塗工することにより形成される層である。   Between the support and an intermediate layer or photosensitive layer (charge generation layer, charge transport layer) described later, there is a conductive layer for the purpose of preventing interference fringes due to scattering of laser light and covering scratches on the support. It may be provided. This is a layer formed by applying a coating liquid in which conductive powder is dispersed in an appropriate binder resin.

このような導電性粉体としては、以下のようなものが挙げられる。カーボンブラック、アセチレンブラック;アルミニウム、ニッケル、鉄、ニクロム、銅、亜鉛又は銀のような金属粉;導電性酸化スズ又はITOのような金属酸化物粉体。   Examples of such conductive powder include the following. Carbon black, acetylene black; metal powder such as aluminum, nickel, iron, nichrome, copper, zinc or silver; metal oxide powder such as conductive tin oxide or ITO.

また、同時に用いられる結着樹脂としては、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂及びアルキッド樹脂等の熱可塑樹脂、熱硬化性樹脂又は光硬化性樹脂が挙げられる。   The binder resin used simultaneously is polystyrene, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer, polyester, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer. , Polyvinyl acetate, polyvinylidene chloride, polyarylate resin, phenoxy resin, polycarbonate, cellulose acetate resin, ethyl cellulose resin, polyvinyl butyral, polyvinyl formal, polyvinyl toluene, poly-N-vinyl carbazole, acrylic resin, silicone resin, epoxy resin, Examples thereof include thermoplastic resins such as melamine resin, urethane resin, phenol resin, and alkyd resin, thermosetting resin, and photocurable resin.

導電層は、上記導電性粉体と結着樹脂を、テトラヒドロフラン又はエチレングリコールジメチルエーテルのようなエーテル系溶剤;メタノールのようなアルコール系溶剤;メチルエチルケトンのようなケトン系溶剤;トルエンのような芳香族炭化水素溶剤に分散し、又は溶解し、これを塗布することにより形成することができる。導電層の平均膜厚は0.2μm以上であり、かつ40μm以上であることが好ましく、1μm以上であり、かつ35μm以下であることがより好ましく、更には5μm以上であり、かつ30μm以下であることがより一層好ましい。
導電性顔料や抵抗調節顔料を分散させた導電層は、その表面が粗面化される傾向にある。
The conductive layer consists of the conductive powder and the binder resin, an ether solvent such as tetrahydrofuran or ethylene glycol dimethyl ether; an alcohol solvent such as methanol; a ketone solvent such as methyl ethyl ketone; an aromatic carbon such as toluene. It can be formed by dispersing or dissolving in a hydrogen solvent and applying it. The average film thickness of the conductive layer is 0.2 μm or more, preferably 40 μm or more, more preferably 1 μm or more, and more preferably 35 μm or less, and further preferably 5 μm or more and 30 μm or less. It is even more preferable.
The surface of a conductive layer in which a conductive pigment or a resistance adjusting pigment is dispersed tends to be roughened.

支持体又は導電層と、感光層(電荷発生層、電荷輸送層)との間には、バリア機能や接着機能を有する中間層を設けてもよい。中間層は、例えば、感光層の接着性改良、塗工性改良、支持体からの電荷注入性改良、感光層の電気的破壊に対する保護のために形成される。   An intermediate layer having a barrier function or an adhesive function may be provided between the support or the conductive layer and the photosensitive layer (charge generation layer, charge transport layer). The intermediate layer is formed, for example, for improving adhesion of the photosensitive layer, improving coating properties, improving charge injection from the support, and protecting the photosensitive layer from electrical breakdown.

中間層は、硬化性樹脂を塗布後硬化させて樹脂層を形成する、あるいは、結着樹脂を含有する中間層用塗布液を導電層上に塗布し、乾燥することによって形成することができる。
中間層の結着樹脂としては、ポリビニルアルコール、ポリビニルメチルエーテル、ポリアクリル酸類、メチルセルロース、エチルセルロース、ポリグルタミン酸又はカゼインのような水溶性樹脂;ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド酸樹脂、メラミン樹脂、エポキシ樹脂、ポリウレタン樹脂及びポリグルタミン酸エステル樹脂等が挙げられる。電気的バリア性を効果的に発現させるためには、また、塗工性、密着性、耐溶剤性及び抵抗のような観点から、中間層の結着樹脂は熱可塑性樹脂が好ましい。具体的には、熱可塑性ポリアミド樹脂が好ましい。ポリアミド樹脂としては、溶液状態で塗布できるような低結晶性又は非結晶性の共重合ナイロンが好ましい。中間層の平均膜厚は、0.05μm以上であり、かつ7μm以下であることが好ましく、更には0.1μm以上であり、かつ2μm以下であることがより好ましい。
The intermediate layer can be formed by applying a curable resin and then curing to form a resin layer, or by applying an intermediate layer coating solution containing a binder resin on the conductive layer and drying.
As the binder resin for the intermediate layer, water-soluble resins such as polyvinyl alcohol, polyvinyl methyl ether, polyacrylic acids, methyl cellulose, ethyl cellulose, polyglutamic acid or casein; polyamide resin, polyimide resin, polyamideimide resin, polyamic acid resin, melamine Examples thereof include resins, epoxy resins, polyurethane resins, and polyglutamic acid ester resins. In order to effectively develop the electrical barrier property, the binder resin of the intermediate layer is preferably a thermoplastic resin from the viewpoints of coatability, adhesion, solvent resistance and resistance. Specifically, a thermoplastic polyamide resin is preferable. The polyamide resin is preferably a low crystalline or non-crystalline copolymer nylon that can be applied in a solution state. The average film thickness of the intermediate layer is preferably 0.05 μm or more and 7 μm or less, more preferably 0.1 μm or more and 2 μm or less.

また、中間層において電荷(キャリア)の流れが滞らないようにするために、中間層中に、半導電性粒子を分散させる、あるいは、電子輸送物質(アクセプターのような電子受容性物質)を含有させてもよい。   In addition, in order to prevent the flow of electric charges (carriers) in the intermediate layer, semiconductive particles are dispersed in the intermediate layer, or an electron transport material (electron-accepting material such as an acceptor) is contained. You may let them.

次に、電子写真感光体の感光層について説明する。   Next, the photosensitive layer of the electrophotographic photoreceptor will be described.

電子写真感光体に用いられる電荷発生物質としては、以下のものが挙げられる。モノアゾ、ジスアゾ又はトリスアゾのようなアゾ顔料;金属フタロシアニン又は非金属フタロシアニンのようなフタロシアニン顔料;インジゴ又はチオインジゴのようなインジゴ顔料;ペリレン酸無水物又はペリレン酸イミドのようなペリレン顔料;アンスラキノン又はピレンキノンのような多環キノン顔料;スクワリリウム色素、ピリリウム塩又はチアピリリウム塩、トリフェニルメタン色素;セレン、セレン−テルル又はアモルファスシリコンのような無機物質;キナクリドン顔料、アズレニウム塩顔料、シアニン染料、キサンテン色素、キノンイミン色素又はスチリル色素。これら電荷発生材料は1種のみ用いてもよく、2種以上用いてもよい。これらの中でも、特にオキシチタニウムフタロシアニン、ヒドロキシガリウムフタロシアニンあるいはクロロガリウムフタロシアニンのような金属フタロシアニンは、高感度であるため好ましい。 Examples of the charge generating material used in the electrophotographic photosensitive member include the following. Azo pigments such as monoazo, disazo or trisazo; phthalocyanine pigments such as metal phthalocyanine or non-metal phthalocyanine; indigo pigments such as indigo or thioindigo; perylene pigments such as perylene anhydride or perylene imide; anthraquinone or pyrenequinone Polycyclic quinone pigments such as: squarylium dyes, pyrylium salts or thiapyrylium salts, triphenylmethane dyes; inorganic substances such as selenium, selenium-tellurium or amorphous silicon; quinacridone pigments, azurenium salt pigments, cyanine dyes, xanthene dyes, quinoneimines Dye or styryl dye. These charge generation materials may be used alone or in combination of two or more. Among these, metal phthalocyanines such as oxytitanium phthalocyanine, hydroxygallium phthalocyanine or chlorogallium phthalocyanine are particularly preferable because of their high sensitivity.

感光層が積層型感光層である場合、電荷発生層に用いる結着樹脂としては、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ブチラール樹脂、ポリスチレン樹脂、ポリビニルアセタール樹脂、ジアリルフタレート樹脂、アクリル樹脂、メタクリル樹脂、酢酸ビニル樹脂、フェノール樹脂、シリコーン樹脂、ポリスルホン樹脂、スチレン−ブタジエン共重合体樹脂、アルキッド樹脂、エポキシ樹脂、尿素樹脂及び塩化ビニル−酢酸ビニル共重合体樹脂等が挙げられる。特には、ブチラール樹脂が好ましい。これらは、単独、混合又は共重合体として1種又は2種以上用いることができる。   When the photosensitive layer is a laminated photosensitive layer, the binder resin used for the charge generation layer is polycarbonate resin, polyester resin, polyarylate resin, butyral resin, polystyrene resin, polyvinyl acetal resin, diallyl phthalate resin, acrylic resin, methacrylic resin, and the like. Examples thereof include resins, vinyl acetate resins, phenol resins, silicone resins, polysulfone resins, styrene-butadiene copolymer resins, alkyd resins, epoxy resins, urea resins, and vinyl chloride-vinyl acetate copolymer resins. In particular, a butyral resin is preferred. These can be used alone, as a mixture or as a copolymer, or one or more thereof.

電荷発生層は、電荷発生物質を結着樹脂及び溶剤と共に分散して得られる電荷発生層用塗布液を塗布し、乾燥することによって形成することができる。また、電荷発生層は、電荷発生物質の蒸着膜としてもよい。分散方法としては、ホモジナイザー、超音波、ボールミル、サンドミル、アトライター又はロールミルを用いた方法が挙げられる。電荷発生物質と結着樹脂との割合は、質量比で10:1〜1:10の範囲が好ましく、特には3:1〜1:1の範囲がより好ましい。   The charge generation layer can be formed by applying and drying a charge generation layer coating solution obtained by dispersing a charge generation material together with a binder resin and a solvent. The charge generation layer may be a vapor generation film of a charge generation material. Examples of the dispersion method include a method using a homogenizer, an ultrasonic wave, a ball mill, a sand mill, an attritor, or a roll mill. The ratio between the charge generating material and the binder resin is preferably in the range of 10: 1 to 1:10, and more preferably in the range of 3: 1 to 1: 1.

電荷発生層用塗布液に用いる溶剤は、使用する結着樹脂や電荷発生物質の溶解性や分散安定性から選択される。有機溶剤としては、アルコール系溶剤、スルホキシド系溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤及び芳香族炭化水素溶剤が挙げられる。   The solvent used for the charge generation layer coating solution is selected from the solubility and dispersion stability of the binder resin and charge generation material used. Examples of the organic solvent include alcohol solvents, sulfoxide solvents, ketone solvents, ether solvents, ester solvents, and aromatic hydrocarbon solvents.

電荷発生層の平均膜厚は5μm以下であることが好ましく、特には0.1μm以上2μm以下であることがより好ましい。   The average film thickness of the charge generation layer is preferably 5 μm or less, more preferably 0.1 μm or more and 2 μm or less.

また、電荷発生層には、種々の増感剤、酸化防止剤、紫外線吸収剤及び/又は可塑剤を必要に応じて添加することもできる。また、電荷発生層において電荷(キャリア)の流れが滞らないようにするために、電荷発生層には、電子輸送物質(アクセプターのような電子受容性物質)を含有させてもよい。   Further, various sensitizers, antioxidants, ultraviolet absorbers and / or plasticizers can be added to the charge generation layer as necessary. In order to prevent the flow of charges (carriers) in the charge generation layer from stagnation, the charge generation layer may contain an electron transport material (an electron accepting material such as an acceptor).

電子写真感光体に用いられる電荷輸送物質としては、トリアリールアミン化合物、ヒドラゾン化合物、スチリル化合物、スチルベン化合物、ピラゾリン化合物、オキサゾール化合物、チアゾール化合物及びトリアリルメタン化合物が挙げられる。これら電荷輸送物質は1種のみ用いてもよく、2種以上用いてもよい。   Examples of the charge transport material used in the electrophotographic photoreceptor include triarylamine compounds, hydrazone compounds, styryl compounds, stilbene compounds, pyrazoline compounds, oxazole compounds, thiazole compounds, and triallylmethane compounds. These charge transport materials may be used alone or in combination of two or more.

電荷輸送層は、電荷輸送物質と結着樹脂とを溶剤に溶解させることによって得られる電荷輸送層用塗布液を塗布し、これを乾燥させることによって形成することができる。また、上記電荷輸送物質のうち単独で成膜性を有するものは、結着樹脂を用いずにそれ単独で成膜し、電荷輸送層とすることもできる。   The charge transport layer can be formed by applying a charge transport layer coating solution obtained by dissolving a charge transport material and a binder resin in a solvent, and drying it. In addition, among the above charge transport materials, those having film formability alone can be formed as a charge transport layer by itself without using a binder resin.

感光層が積層型感光層である場合、電荷輸送層に用いる結着樹脂としては、例えば、アクリル樹脂、スチレン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリフェニレンオキシド樹脂、エポキシ樹脂、ポリウレタン樹脂、アルキッド樹脂及び不飽和樹脂等が挙げられる。特には、ポリメチルメタクリレート樹脂、ポリスチレン樹脂、スチレン−アクリロニトリル共重合体樹脂、ポリカーボネート樹脂、ポリアリレート樹脂及びジアリルフタレート樹脂が好ましい。これらは、単独、混合又は共重合体として1種又は2種以上用いることができる。   When the photosensitive layer is a laminated photosensitive layer, examples of the binder resin used for the charge transport layer include acrylic resin, styrene resin, polyester resin, polycarbonate resin, polyarylate resin, polysulfone resin, polyphenylene oxide resin, epoxy resin, Examples include polyurethane resins, alkyd resins, and unsaturated resins. In particular, polymethyl methacrylate resin, polystyrene resin, styrene-acrylonitrile copolymer resin, polycarbonate resin, polyarylate resin and diallyl phthalate resin are preferable. These can be used alone, as a mixture or as a copolymer, or one or more thereof.

電荷輸送層は、電荷輸送物質と結着樹脂を溶剤に溶解して得られる電荷輸送層用塗布液を塗布し、乾燥することによって形成することができる。電荷輸送物質と結着樹脂との割合は、質量比で2:1〜1:2の範囲が好ましい。
電荷輸送層用塗布液に用いる溶剤としては、以下のものが挙げられる。アセトン又はメチルエチルケトンのようなケトン系溶剤;酢酸メチル又は酢酸エチルのようなエステル系溶剤;テトラヒドロフラン、ジオキソラン、ジメトキシメタン又はジメトキシエタンのようなエーテル系溶剤;トルエン、キシレン又はクロロベンゼンのような芳香族炭化水素溶剤。これら溶剤は、単独で使用してもよいが、2種類以上を混合して使用してもよい。これらの溶剤の中でも、エーテル系溶剤又は芳香族炭化水素溶剤を使用することが、樹脂溶解性のような観点から好ましい。
電荷輸送層の平均膜厚は、5μm以上50μm以下であることが好ましく、特には10μm以上35μm以下であることがより好ましい。
また、電荷輸送層には、例えば酸化防止剤、紫外線吸収剤及び/又は可塑剤を必要に応じて添加することもできる。
The charge transport layer can be formed by applying and drying a charge transport layer coating solution obtained by dissolving a charge transport material and a binder resin in a solvent. The ratio of the charge transport material and the binder resin is preferably in the range of 2: 1 to 1: 2 by mass ratio.
The following are mentioned as a solvent used for the coating liquid for charge transport layers. Ketone solvents such as acetone or methyl ethyl ketone; ester solvents such as methyl acetate or ethyl acetate; ether solvents such as tetrahydrofuran, dioxolane, dimethoxymethane or dimethoxyethane; aromatic hydrocarbons such as toluene, xylene or chlorobenzene solvent. These solvents may be used alone or in combination of two or more. Among these solvents, it is preferable to use an ether solvent or an aromatic hydrocarbon solvent from the viewpoint of resin solubility.
The average film thickness of the charge transport layer is preferably 5 μm or more and 50 μm or less, and more preferably 10 μm or more and 35 μm or less.
In addition, for example, an antioxidant, an ultraviolet absorber, and / or a plasticizer can be added to the charge transport layer as necessary.

電子写真感光体の各層には各種添加剤を添加することができる。添加剤としては、酸化防止剤や紫外線吸収剤の劣化防止剤や、フッ素原子含有樹脂粒子の潤滑剤が挙げられる。   Various additives can be added to each layer of the electrophotographic photoreceptor. Examples of the additive include an antioxidant, a deterioration inhibitor for ultraviolet absorbers, and a lubricant for fluorine atom-containing resin particles.

次に、電子写真装置について詳細に説明する。
図8に電子写真装置の一例の概略を示す。同図において、8100はドラム状の電子写真感光体であり、矢印方向に所定の周速度で回転駆動される。感光体8100は、回転過程において、一次帯電手段8117によりその周面に正又は負の所定電位の均一帯電を受け、次いで、スリット露光やレーザービーム走査露光等の露光手段8121から出力される目的の画像情報の時系列電気デジタル画像信号に対応して強調変調された露光光8123を受ける。こうして感光体8100の周面に対し、目的の画像情報に対応した静電潜像が順次形成されていく。
Next, the electrophotographic apparatus will be described in detail.
FIG. 8 shows an outline of an example of an electrophotographic apparatus. In the figure, reference numeral 8100 denotes a drum-shaped electrophotographic photosensitive member, which is rotationally driven at a predetermined peripheral speed in the direction of the arrow. In the rotation process, the photosensitive member 8100 receives uniform charging at a predetermined positive or negative potential on the peripheral surface thereof by the primary charging unit 8117, and then outputs from the exposure unit 8121 such as slit exposure or laser beam scanning exposure. The exposure light 8123 that has been enhanced and modulated corresponding to the time-series electrical digital image signal of the image information is received. In this way, electrostatic latent images corresponding to target image information are sequentially formed on the peripheral surface of the photoconductor 8100.

形成された静電潜像は、次いで現像手段8140によりトナー現像され、不図示の給紙部から感光体8100と転写手段8114との間に感光体100の回転と同期して取り出されて給紙された転写材8124に、感光体8100の表面に形成担持されているトナー画像が転写手段8114により順次転写されていく。   The formed electrostatic latent image is then developed with toner by the developing means 8140, and is taken out from a paper feed unit (not shown) between the photoconductor 8100 and the transfer means 8114 in synchronization with the rotation of the photoconductor 100 and fed. The toner image formed and supported on the surface of the photoreceptor 8100 is sequentially transferred onto the transferred transfer material 8124 by the transfer unit 8114.

トナー画像の転写を受けた転写材8114は、感光体面から分離されて搬送ベルト8125により像定着手段8126へ導入されて像定着を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。   The transfer material 8114 that has received the transfer of the toner image is separated from the surface of the photosensitive member, introduced into the image fixing means 8126 by the conveyor belt 8125, and subjected to image fixing to be printed out as an image formed product (print, copy). Is done.

像転写後の感光体8100の表面は、クリーニング手段8116によって転写残りトナーの除去を受けて清浄面化され、更に前露光手段(不図示)からの前露光光(不図示)により除電処理された後、繰り返し画像形成に使用される。なお、一次帯電手段8117が帯電ローラー等を用いた接触帯電手段である場合は前露光は必ずしも必要ではない。   The surface of the photoreceptor 8100 after the image transfer is cleaned by removing the transfer residual toner by the cleaning unit 8116, and is further subjected to charge removal processing by pre-exposure light (not shown) from the pre-exposure unit (not shown). After that, it is repeatedly used for image formation. Note that pre-exposure is not necessarily required when the primary charging unit 8117 is a contact charging unit using a charging roller or the like.

本発明においては、少なくとも上述の電子写真感光体8100及び現像手段8140を容器に納めてプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱自在な構成にしてもよい。例えば、一次帯電手段8117、現像手段8140及びクリーニング手段8116を感光体8100と共に一体に支持してカートリッジ化して、装置本体に着脱自在なプロセスカートリッジとすることができる。   In the present invention, at least the above-described electrophotographic photosensitive member 8100 and developing means 8140 are housed in a container and integrally coupled as a process cartridge, and this process cartridge is mounted on a main body of an electrophotographic apparatus such as a copying machine or a laser beam printer. On the other hand, it may be configured to be detachable. For example, the primary charging unit 8117, the developing unit 8140, and the cleaning unit 8116 are integrally supported together with the photosensitive member 8100 to form a cartridge so that the process cartridge can be attached to and detached from the apparatus main body.

また、露光光8123は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいは、センサーで原稿を読取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動及び液晶シャッターアレイの駆動等により照射される光である。   Further, when the electrophotographic apparatus is a copying machine or a printer, the exposure light 8123 is a reflected light or transmitted light from a document, or a document is read by a sensor, converted into a signal, and a laser beam scanning performed according to this signal. Light emitted by driving the LED array, driving the liquid crystal shutter array, or the like.

以下に、具体的な実施例を挙げて本発明をより詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例中の「部」は「質量部」を意味する。   Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In the examples, “part” means “part by mass”.

<評価用電子写真感光体の作製>
直径24mm、長さ246mmのアルミニウムシリンダーを支持体とした。
次に、10質量%酸化アンチモンを含有する酸化スズで被覆した酸化チタン粒子50部、レゾール型フェノール樹脂25部、メトキシプロパノール30部、メタノール20部及びシリコーンオイル(ポリジメチルシロキサンポリオキシアルキレン共重合体、重量平均分子量3000)0.002部を、直径1mmのガラスビーズを用いたサンドミル装置で2時間分散することによって、導電層用塗布液を調製した。この導電層用塗布液を支持体上に浸漬塗布し、これを20分間140℃で硬化させることによって、膜厚が20μmの導電層を形成した。
<Production of electrophotographic photoreceptor for evaluation>
An aluminum cylinder having a diameter of 24 mm and a length of 246 mm was used as a support.
Next, 50 parts of titanium oxide particles coated with tin oxide containing 10% by weight of antimony oxide, 25 parts of a resol type phenol resin, 30 parts of methoxypropanol, 20 parts of methanol and a silicone oil (polydimethylsiloxane polyoxyalkylene copolymer) The conductive layer coating solution was prepared by dispersing 0.002 part of a weight average molecular weight of 3000) for 2 hours in a sand mill apparatus using glass beads having a diameter of 1 mm. This conductive layer coating solution was dip-coated on a support and cured at 140 ° C. for 20 minutes to form a conductive layer having a thickness of 20 μm.

次に、N−メトキシメチル化6ナイロン5部をメタノール95部に溶解させることによって、中間層用塗布液を調製した。
この中間層用塗布液を支持体上に浸漬塗布し、これを20分間100℃で乾燥させることによって、膜厚が0.8μmの中間層を形成した。
Next, an intermediate layer coating solution was prepared by dissolving 5 parts of N-methoxymethylated 6 nylon in 95 parts of methanol.
This intermediate layer coating solution was dip coated on a support and dried at 100 ° C. for 20 minutes to form an intermediate layer having a thickness of 0.8 μm.

次に、CuKα特性X線回折におけるブラッグ角2θ±0.2°の7.5°、9.9°、12.5°、16.3°、18.6°、25.1°および28.3°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶(電荷発生物質)10部、下記式(1)で示される構造を有する化合物0.1部、

Figure 2010210909
ポリビニルブチラール樹脂(商品名:エスレックBX−1、積水化学工業(株)製)5部、並びに、シクロヘキサノン250部を、直径1mmのガラスビーズを用いたサンドミル装置で4時間分散し、その後、酢酸エチル250部を加えることによって、電荷発生層用塗布液を調製した。
この電荷発生層用塗布液を中間層上に浸漬塗布し、これを10分間100℃で乾燥させることによって、膜厚が0.2μmの電荷発生層を形成した。 Next, Bragg angles 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction of 7.5 °, 9.9 °, 12.5 °, 16.3 °, 18.6 °, 25.1 ° and 28. 10 parts of a crystalline hydroxygallium phthalocyanine crystal (charge generation material) having a strong peak at 3 °, 0.1 part of a compound having a structure represented by the following formula (1),
Figure 2010210909
5 parts of polyvinyl butyral resin (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) and 250 parts of cyclohexanone were dispersed in a sand mill apparatus using glass beads having a diameter of 1 mm for 4 hours, and then ethyl acetate. By adding 250 parts, a charge generation layer coating solution was prepared.
This charge generation layer coating solution was dip-coated on the intermediate layer and dried at 100 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.2 μm.

次に、下記式(CT−1)

Figure 2010210909
で示される電荷輸送物質5部と、下記式(CT−2)
Figure 2010210909
で示される電荷輸送物質3部と、下記式(CTB−1)
Figure 2010210909
で示される繰り返し単位を有するポリカーボネート樹脂(重量平均分子量:50000)10部とをモノクロロベンゼン55部とジメトキシメタン15部の混合溶媒に溶解し、電荷輸送層用塗布液を調製した。これを電荷発生層上に浸漬塗布法で塗布し、110℃、1時間乾燥して、膜厚が12μmの電荷輸送層を形成した。 Next, the following formula (CT-1)
Figure 2010210909
5 parts of a charge transport material represented by formula (CT-2)
Figure 2010210909
3 parts of a charge transport material represented by formula (CTB-1)
Figure 2010210909
10 parts of a polycarbonate resin (weight average molecular weight: 50000) having a repeating unit represented by the formula (1) was dissolved in a mixed solvent of 55 parts of monochlorobenzene and 15 parts of dimethoxymethane to prepare a coating solution for a charge transport layer. This was applied onto the charge generation layer by a dip coating method and dried at 110 ° C. for 1 hour to form a charge transport layer having a thickness of 12 μm.

こうして得られた電子写真感光体1000本より、実際の使用上問題となる層中欠陥品及び基体欠陥品を選別した。層中欠陥とは、塗工中に導電性の異物が存在することによる欠陥で、繰り返し使用によって、感光体の絶縁破壊の原因となるものである。また、基体欠陥とは、基体の微小欠陥が存在することによる欠陥で、繰り返し使用によって、感光体の絶縁破壊の原因となるものである。尚、実際の使用上問題となる欠陥かどうかの判定は、次に示す画像評価装置によって評価し、実際の使用上問題となる欠陥の形状を特定することにより行った。   From 1000 electrophotographic photoreceptors thus obtained, in-layer defective products and substrate defective products that cause problems in actual use were selected. The in-layer defect is a defect due to the presence of conductive foreign matters during coating, and causes repeated dielectric breakdown of the photoreceptor. Further, the substrate defect is a defect due to the presence of minute defects on the substrate, and causes the dielectric breakdown of the photoreceptor by repeated use. It should be noted that the determination as to whether or not the defect is a problem in actual use was performed by evaluating with the following image evaluation apparatus, and specifying the shape of the defect in question in actual use.

画像形成装置として、概ね図8に示されるものを用いた。また、電子写真感光体として、上記の感光体製造例で作成したものを用いた。この感光体に、一次帯電部材としてゴムローラー帯電器を当接させ(当接圧60g/cm)、直流電圧のみを印加して感光体上を一様に帯電する。一次帯電に次いで、レーザー光で画像部分を露光することにより静電潜像を形成する。この時、暗部電位Vd=−450V、明部電位VL=−100Vとした。   An image forming apparatus shown in FIG. 8 was used. The electrophotographic photoreceptor used was the one prepared in the above photoreceptor production example. A rubber roller charger as a primary charging member is brought into contact with this photoconductor (contact pressure 60 g / cm), and only the DC voltage is applied to uniformly charge the photoconductor. Subsequent to primary charging, an electrostatic latent image is formed by exposing the image portion with laser light. At this time, the dark portion potential Vd = −450V and the light portion potential VL = −100V.

感光体と現像スリーブとの間隙は280μmとし、トナー担持体として下記の構成の層厚約7μm、JIS中心線平均粗さ(Ra)1.3μmの樹脂層を、表面が鏡面である直径20のアルミニウム円筒上に形成した現像スリーブを使用し、現像磁極95mT(950ガウス)、トナー規制部材として厚み1.0mm、自由長10mmのウレタンゴム製ブレードを14.7N/m(15kg/m)の線圧で当接させた。
フェノール樹脂 100部
グラファイト(粒径約7μm) 90部
カーボンブラック 10部
次いで、現像バイアスとして直流バイアス成分Vdc=−300V、重畳する交流バイアス成分Vpp=1600V、f=2000Hzを用いた。また、現像スリーブの周速は感光体周速(120mm/sec)に対して順方向に110%のスピード(132mm/sec)とした。
The gap between the photosensitive member and the developing sleeve is 280 μm, and the toner carrier has a resin layer with a layer thickness of about 7 μm and a JIS centerline average roughness (Ra) of 1.3 μm as described below, and a surface having a mirror surface with a diameter of 20 Using a developing sleeve formed on an aluminum cylinder, a developing magnetic pole of 95 mT (950 gauss), a toner regulating member having a thickness of 1.0 mm and a free length 10 mm urethane rubber blade of 14.7 N / m (15 kg / m) The contact was made by pressure.
Phenol resin 100 parts Graphite (particle size: about 7 μm) 90 parts Carbon black 10 parts Next, a DC bias component Vdc = −300 V, an overlapping AC bias component Vpp = 1600 V, and f = 2000 Hz were used as a developing bias. The peripheral speed of the developing sleeve was 110% (132 mm / sec) in the forward direction with respect to the peripheral speed of the photosensitive member (120 mm / sec).

また、転写ローラー(導電性カーボンを分散したエチレン−プロピレンゴム製、導電性弾性層の体積抵抗値108Ωcm、表面ゴム硬度24゜、直径20mm、当接圧59 N/m(6kg/m))を感光体回転方向の周速(120mm/sec)に対して等速とし、転写バイアスは直流1.5kVとした。
定着方法としては熱ローラー定着装置を用いた。
Also, a transfer roller (made of ethylene-propylene rubber in which conductive carbon is dispersed, the volume resistance of the conductive elastic layer is 10 8 Ωcm, the surface rubber hardness is 24 °, the diameter is 20 mm, and the contact pressure is 59 N / m (6 kg / m). ) At a constant speed with respect to the peripheral speed (120 mm / sec) in the rotation direction of the photosensitive member, and the transfer bias was 1.5 kV DC.
As a fixing method, a heat roller fixing device was used.

この画像形成装置を用い、電子写真感光体の製造例で作製した電子写真感光体から得られる画像の評価を行った。電子写真感光体を上述の画像形成装置に装着し、ハーフトーン画像、ベタ白画像、ベタ黒画像を出力し、初期画像とした。また4000枚の耐久を行い、耐久画像とした。初期画像及び耐久画像より、実際の使用上問題となる欠陥を設定した。   Using this image forming apparatus, an image obtained from the electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example was evaluated. The electrophotographic photosensitive member was mounted on the above-described image forming apparatus, and a halftone image, a solid white image, and a solid black image were output to obtain an initial image. In addition, the durability of 4000 sheets was performed to obtain a durable image. From the initial image and the durable image, defects that cause problems in actual use were set.

<光学検査第一工程>
検査装置として、図3で示される検査装置を用いた。白色光源には、ハロゲンランプを用い、評価用電子写真感光体で確認された層中欠陥、基体欠陥、及び画像不良となる膜厚ムラが被疑欠陥として検出できるよう、光学系と閾値を設定した。閾値に基づいて被疑欠陥を検出した。
<First optical inspection process>
The inspection device shown in FIG. 3 was used as the inspection device. For the white light source, a halogen lamp was used, and the optical system and threshold value were set so that defects in the layer, substrate defects, and film thickness irregularities that caused image defects were detected as suspicious defects. . Suspected defects were detected based on the threshold.

<光学検査第二工程>
検査装置として、図4で示される検査装置を用いた。レーザー光源には、He−Neレーザーを用い下記の選別がそれぞれ独立して可能なように、光学系と閾値を設定した。
(層中欠陥及び基体欠陥を対象として)
○:存在せず
△:実際の使用上黒点、白点欠陥とならないサイズが存在
×:実際の使用上黒点、白点欠陥となるサイズが存在(膜厚ムラを対象として)
○:実際の使用上画像欠陥となるムラは存在せず
×:実際の使用上画像欠陥となるムラが存在
<Second optical inspection process>
The inspection device shown in FIG. 4 was used as the inspection device. As the laser light source, a He—Ne laser was used, and an optical system and a threshold value were set so that the following selection could be performed independently.
(For in-layer defects and substrate defects)
○: Not present △: There is a size that does not cause a black spot or white spot defect in actual use ×: A size that causes a black spot or white spot defect in actual use exists (targeting film thickness unevenness)
○: There is no unevenness that becomes an image defect in actual use. ×: There is unevenness that becomes an image defect in actual use.

<電気検査第一工程>
検査装置として、図5で示される検査装置を用いた。この工程は、暗所で行った。電子写真感光体表面に導電性ローラを圧接して電子写真感光体を回転駆動させた後、2周回転させながら直流電圧を印加した。導電性ローラから電子写真感光体に流れる電流値を電流値測定手段5004により測定した。測定した電流値を電流値処理手段5005により、所定の閾値に基づいて欠陥を検出した。これを、表2において電気検査工程Aとする。
<First electrical inspection process>
The inspection device shown in FIG. 5 was used as the inspection device. This step was performed in the dark. A conductive roller was pressed against the surface of the electrophotographic photosensitive member to rotate the electrophotographic photosensitive member, and then a DC voltage was applied while rotating twice. A current value flowing from the conductive roller to the electrophotographic photosensitive member was measured by a current value measuring unit 5004. A defect was detected from the measured current value by the current value processing means 5005 based on a predetermined threshold value. This is designated as electrical inspection step A in Table 2.

<判断工程>
表1に示される基準に従って、欠陥なし51、電気検査第二工程へすすめる52、欠陥あり53の判断を行った。
<Judgment process>
According to the criteria shown in Table 1, determination was made as to whether there was no defect 51, 52 to proceed to the second electrical inspection process, and 53 with a defect.

<電気検査第二工程>
電気検査第二工程の第1態様における検査装置として、図6及び図5で示される検査装置を用いた。 電気検査第二工程の第1態様における第1の工程は、暗所で行った。電子写真感光体表面に導電性ローラを圧接して電子写真感光体を回転駆動させた後、2周回転させながら直流電圧に交流電圧を重畳した電圧を印加した。
次に、直流電圧の電圧を0Vにして電子写真感光体を1周回転させて除電を行った。その後、第2の工程を行った。
<Second electrical inspection process>
The inspection apparatus shown in FIGS. 6 and 5 was used as the inspection apparatus in the first aspect of the second electrical inspection process. The first step in the first aspect of the second electrical inspection step was performed in the dark. A conductive roller was pressed against the surface of the electrophotographic photosensitive member to rotationally drive the electrophotographic photosensitive member, and then a voltage obtained by superimposing an alternating current voltage on a direct current voltage was applied while rotating twice.
Next, the voltage of the DC voltage was set to 0V, and the electrophotographic photosensitive member was rotated once to perform static elimination. Then, the 2nd process was performed.

電気検査第二工程の第2の工程は暗所で行った。電子写真感光体表面に導電性ローラを圧接して電子写真感光体を回転駆動させた後、2周回転させながら直流電圧を印加した。
導電性ローラから電子写真感光体に流れる電流値を電流値測定手段5004により測定した。測定した電流値を電流値処理手段5005により、所定の閾値に基づいて欠陥の有無を検出した。これを、表2において電気検査工程Bとする。
また、電気検査第二工程の第2態様における第1の工程及び第2の工程についても、下記の方法で実施した。
検査装置としては、図7及び図5で示される検査装置を用いた。
電気検査第二工程の第2態様における第1の工程は暗所で行い、図7に示すように導電性ローラと電子写真感光体との間で発生する放電領域に光を照射した。電子写真感光体を回転駆動させた後、2周回転させながら放電領域に光を照射した。次に、直流電圧の電圧を0Vにして電子写真感光体を1周回転させて光を照射して除電を行った。その後、電気検査第二工程の第2の工程を行った。
The second step of the electrical inspection second step was performed in the dark. A conductive roller was pressed against the surface of the electrophotographic photosensitive member to rotate the electrophotographic photosensitive member, and then a DC voltage was applied while rotating twice.
A current value flowing from the conductive roller to the electrophotographic photosensitive member was measured by a current value measuring unit 5004. The measured current value is detected by the current value processing means 5005 based on a predetermined threshold value. This is designated as an electrical inspection step B in Table 2.
Moreover, it implemented by the following method also about the 1st process and 2nd process in the 2nd aspect of an electrical inspection 2nd process.
As the inspection apparatus, the inspection apparatus shown in FIGS. 7 and 5 was used.
The first step in the second aspect of the second electric inspection step was performed in a dark place, and light was applied to the discharge region generated between the conductive roller and the electrophotographic photosensitive member as shown in FIG. After rotating the electrophotographic photosensitive member, the discharge region was irradiated with light while rotating twice. Next, the DC voltage was set to 0 V, and the electrophotographic photosensitive member was rotated once to irradiate light to perform static elimination. Then, the 2nd process of the electrical inspection 2nd process was performed.

電気検査第二工程の第2の工程も、暗所で行った。電子写真感光体表面に導電性ローラを圧接して電子写真感光体を回転駆動させた後、2周回転させながら直流電圧を印加した。   The second step of the electrical inspection second step was also performed in the dark. A conductive roller was pressed against the surface of the electrophotographic photosensitive member to rotate the electrophotographic photosensitive member, and then a DC voltage was applied while rotating twice.

導電性ローラから電子写真感光体に流れる電流値を電流値検出手段5004により検出した。検出した電流値を電流値処理手段5005により読み取り、所定の閾値に基づいて欠陥の有無を判定した。具体的には、一定以上電流が流れた場合を欠陥ありと判断し、それより小さい電流が流れた場合は欠陥なしと判断する。これを、表2において電気検査工程Cとする。   The current value flowing from the conductive roller to the electrophotographic photosensitive member was detected by the current value detecting means 5004. The detected current value is read by the current value processing means 5005, and the presence or absence of a defect is determined based on a predetermined threshold value. Specifically, it is determined that there is a defect when a current flows above a certain level, and it is determined that there is no defect when a smaller current flows. This is designated as an electrical inspection step C in Table 2.

<実施例1〜4、比較例1、2>
上述の諸工程を図9及び表2に示すような順に(第1工程〜第6工程)実施し、上記のように作製した評価用電子写真感光体の検査を行った。この際、比較例の光学検査においては、被疑欠陥として検出されたものを欠陥とした。
尚、欠陥なしの精度とは、欠陥が存在しない電子写真感光体のうち、欠陥なしの判定を受けたものの割合を示す。
また、欠陥ありの精度とは、欠陥ありの判定を受けたもののうち、欠陥が存在するものの割合を示す。結果を表2に示す。
<Examples 1-4, Comparative Examples 1 and 2>
The above-described steps were carried out in the order shown in FIG. 9 and Table 2 (first step to sixth step), and the evaluation electrophotographic photosensitive member produced as described above was inspected. At this time, in the optical inspection of the comparative example, those detected as suspected defects were determined as defects.
The defect-free accuracy refers to the proportion of electrophotographic photoreceptors that have no defects and that have been determined to be defect-free.
Further, the accuracy with a defect indicates a ratio of those having a defect among those subjected to the determination with a defect. The results are shown in Table 2.

Figure 2010210909
Figure 2010210909

Figure 2010210909
Figure 2010210909

Figure 2010210909
Figure 2010210909

表2に示した結果から明らかな様に、本発明の検査方法によれば、従来の方法を単純に組み合わせた場合に比べて、より精度良く欠陥を検出できることが判った。   As is apparent from the results shown in Table 2, it has been found that the inspection method of the present invention can detect defects with higher accuracy than when the conventional methods are simply combined.

本発明の検査方法の特徴を最もよく表す動作の流れを示すフローチャートである。It is a flowchart which shows the flow of the operation | movement which best represents the characteristic of the inspection method of this invention. 本発明の検査方法の特徴を最もよく表す動作の流れを示すフローチャートである。It is a flowchart which shows the flow of the operation | movement which best represents the characteristic of the inspection method of this invention. 本発明の光学検査第一工程を実施するための装置の一例の概略構成を示す図である。It is a figure which shows schematic structure of an example of the apparatus for implementing the optical test | inspection 1st process of this invention. 本発明の光学検査第二工程を実施するための装置の一例の概略構成を示す図である。It is a figure which shows schematic structure of an example of the apparatus for implementing the optical test 2nd process of this invention. 本発明の電気検査第一工程及び電気検査第二工程の第1、第2態様の第2の工程を実施するための装置の一例の概略構成を示す図である。It is a figure which shows schematic structure of an example of the apparatus for implementing the 2nd process of the 1st, 2nd aspect of the electrical test 1st process and the electrical test 2nd process of this invention. 本発明の電気検査第二工程の第1態様の第1の工程を実施するための装置の一例の概略構成を示す図である。It is a figure which shows schematic structure of an example of the apparatus for implementing the 1st process of the 1st aspect of the electrical inspection 2nd process of this invention. 本発明の電気検査第二工程の第2態様の第1の工程を実施するための装置の概略構成を示す図である。It is a figure which shows schematic structure of the apparatus for implementing the 1st process of the 2nd aspect of the electrical inspection 2nd process of this invention. 本発明の検査方法の対象となる電子写真装置の一例の概略構成を示す図である。It is a figure which shows schematic structure of an example of the electrophotographic apparatus used as the object of the inspection method of this invention. 本発明の実施例の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement of the Example of this invention.

10 光学検査第一工程
20 電気検査第一工程
30 分別工程
31 欠陥なしと判定される電子写真感光体
32 光学検査第二工程へ進む電子写真感光体
33 欠陥ありと判定される電子写真感光体
40 光学検査第二工程
41 光学検査第二工程で検査を終了する場合に欠陥なしと判定される電子写真感光体
43 光学検査第二工程で検査を終了する場合に欠陥ありと判定される電子写真感光体
50 判断工程
51 欠陥なしと判定される電子写真感光体
52 電気検査第二工程へ進む電子写真感光体
53 欠陥ありと判定される電子写真感光体
60 電気検査第二工程
61 欠陥なしと判定される電子写真感光体
63 欠陥ありと判定される電子写真感光体
3001 白色光光源
3002 白色光
3003 電子写真感光体
3004 反射光
3005 ラインセンサー型CCDカメラ
4001 レーザー光源
4002 レーザー光
4003 反射ミラー
4004 ポリゴンミラー
4005 電子写真感光体
4006 反射光
4007 光電子増倍管
5001 電子写真感光体
5002 導電性ローラ
5003 高圧電源
5004 電流値検出手段
5005 電流値処理手段
6001 電子写真感光体
6002 導電性ローラ
6003 高圧電源
7001 電子写真感光体
7002 導電性ローラ
7003 高圧電源
7004 電流値検出手段
7005 電流値処理手段
7006 光源
8100 電子写真感光体
8117 一次帯電手段
8121 露光手段
8123 露光光
8124 転写材
8140 現像手段
8114 転写手段
8125 搬送ベルト
8126 像定着手段
8116 クリーニング手段
9010 第1工程
9020 第2工程
9030 第3工程
9031 欠陥なしと判定される電子写真感光体
9032 第4工程へ進む電子写真感光体
9033 欠陥ありと判定される電子写真感光体
9040 第4工程
9041 第4工程で検査を終了する場合に欠陥なしと判定される電子写真感光体
9043 第4工程で検査を終了する場合に欠陥ありと判定される電子写真感光体
9050 第5工程
9051 欠陥なしと判定される電子写真感光体
9052 第6工程へ進む電子写真感光体
9053 欠陥ありと判定される電子写真感光体
9060 第6工程
9061 欠陥なしと判定される電子写真感光体
9063 欠陥ありと判定される電子写真感光体
DESCRIPTION OF SYMBOLS 10 Optical inspection 1st process 20 Electrical inspection 1st process 30 Sorting process 31 Electrophotographic photoreceptor 32 determined to be defect-free Electrophotographic photoreceptor 33 proceeding to optical inspection 2nd process Electrophotographic photoreceptor 40 determined to be defective Optical inspection second process 41 Electrophotographic photosensitive member 43 determined as having no defect when the inspection is completed in the optical inspection second process. Electrophotographic photosensitive film determined as having a defect when the inspection is completed in the second optical inspection process. Body 50 Judging Step 51 Electrophotographic Photosensitive Member 52 Determined as Defectless Electrophotographic Photosensitive Member 53 Proceeding to Second Step of Electrical Inspection 53 Electrophotographic Photosensitive Member 60 Determined as Defected Second Step of Electrical Inspection 61 Determining No Defect Electrophotographic photosensitive member 63 electrophotographic photosensitive member 3001 determined to be defective white light source 3002 white light 3003 electrophotographic photosensitive member 3004 reflected light 3005 line sensor CCD camera 4001 Laser light source 4002 Laser light 4003 Reflective mirror 4004 Polygon mirror 4005 Electrophotographic photoreceptor 4006 Reflected light 4007 Photomultiplier tube 5001 Electrophotographic photoreceptor 5002 Conductive roller 5003 High-voltage power supply 5004 Current value detection means 5005 Current value processing means 6001 Electrophotographic photoreceptor 6002 Conductive roller 6003 High-voltage power supply 7001 Electrophotographic photoreceptor 7002 Conductive roller 7003 High-voltage power supply 7004 Current value detection means 7005 Current value processing means 7006 Light source 8100 Electrophotographic photoreceptor 8117 Primary charging means 8121 Exposure means 8123 Exposure Light 8124 Transfer material 8140 Developing means 8114 Transfer means 8125 Conveying belt 8126 Image fixing means 8116 Cleaning means 9010 First step 9020 Second step 9030 Second Step 9031 Electrophotographic Photosensitive Member 9032 Determined as Defect-Free Electrophotographic Photosensitive Member 9033 Proceeding to Fourth Step Electrophotographic Photosensitive Member 9040 Determined as Defected Fourth Step 9041 No Defect When Inspection Is Completed in Fourth Step The electrophotographic photosensitive member 9043 determined to be defective when the inspection is finished in the fourth step 9050 The fifth step 9051 The electrophotographic photosensitive member 9052 determined to have no defect Proceed to the sixth step. Electrophotographic photosensitive member 9053 Electrophotographic photosensitive member 9060 determined to have a defect Sixth step 9061 Electrophotographic photosensitive member 9063 to be determined to have no defect Electrophotographic photosensitive member to be determined to have a defect

Claims (4)

電子写真感光体に白色の光を照射し、該光の反射光を光電変換素子からなる受光手段により測定し、測定された電流値に基づいて、電子写真感光体の被疑欠陥の有無を判定する光学検査第一工程と、
電子写真感光体の表面に導電性ローラを圧接して、電子写真感光体を回転させながら直流電圧を印加し、導電性ローラから電子写真感光体へ流れる電流を、電流測定手段により測定し、測定された電流値に基づいて、電子写真感光体の欠陥の有無を判定する電気検査第一工程とを
有する電子写真感光体の検査方法であって、検査した電子写真感光体を、
該光学検査第一工程において被疑欠陥が検出されず、
該電気検査第一工程において欠陥が検出されなかった電子写真感光体と、
該電気検査第一工程において欠陥が検出された電子写真感光体と、
該光学検査第一工程において被疑欠陥が検出され、
該電気検査第一工程において欠陥が検出されなかった電子写真感光体と
に分類して、
該光学検査第一工程において被疑欠陥が検出され、
該電気検査第一工程において欠陥が検出されなかった電子写真感光体のみについて、
該電子写真感光体にレーザー光を照射し、該光の反射光を光電変換素子からなる受光手段により測定し、測定された電流値に基づいて、電子写真感光体の被疑欠陥の有無を判定する光学検査第二工程を実施することを特徴とする電子写真感光体の検査方法。
The electrophotographic photosensitive member is irradiated with white light, the reflected light of the light is measured by a light receiving means including a photoelectric conversion element, and the presence or absence of a suspected defect in the electrophotographic photosensitive member is determined based on the measured current value. Optical inspection first process,
A conductive roller is pressed against the surface of the electrophotographic photosensitive member, a DC voltage is applied while rotating the electrophotographic photosensitive member, and the current flowing from the conductive roller to the electrophotographic photosensitive member is measured and measured by a current measuring means. An electrophotographic photosensitive member inspection method having an electrical inspection first step for determining the presence or absence of defects in the electrophotographic photosensitive member based on the current value, wherein the inspected electrophotographic photosensitive member includes:
No suspected defect is detected in the first optical inspection step,
An electrophotographic photoreceptor in which no defects were detected in the first electric inspection step;
An electrophotographic photosensitive member in which defects are detected in the first electrical inspection step;
Suspected defects are detected in the first optical inspection process,
Classify it as an electrophotographic photoreceptor in which no defects were detected in the first electric inspection step,
Suspected defects are detected in the first optical inspection process,
Only for the electrophotographic photosensitive member in which no defect was detected in the first electric inspection step,
The electrophotographic photosensitive member is irradiated with laser light, the reflected light of the light is measured by a light receiving means including a photoelectric conversion element, and the presence or absence of a suspected defect in the electrophotographic photosensitive member is determined based on the measured current value. An inspection method for an electrophotographic photosensitive member, wherein the second step of optical inspection is performed.
該光学検査第二工程における検出情報と所定の閾値に基づいて、
該当する電子写真感光体の被疑欠陥を、
欠陥でないと判断できるもの、欠陥であると判断できるもの、又はそのどちらであるか判断できないものと
に分類して、被疑欠陥がどちらであるか判断できない電子写真感光体のみについて、該電子写真感光体の表面に、第一の導電性ローラを圧接して、電子写真感光体を回転させながら直流電圧に交流電圧を重畳した電圧を印加する第1の工程、及び、
第1の工程の後に、電子写真感光体表面に第二の導電性ローラを圧接して、電子写真感光体を回転させながら直流電圧を印加する第2の工程を有し、
第2の工程により、第二の導電性ローラから電子写真感光体へ流れる電流を、電流測定手段により測定し、測定された電流値に基づいて、電子写真感光体の欠陥の有無を判定する電気検査第二工程を実施することを特徴とする請求項1に記載の電子写真感光体の検査方法。
Based on the detection information and the predetermined threshold in the second optical inspection step,
The suspected defect of the corresponding electrophotographic photoreceptor
It is classified into those that can be judged as non-defects, those that can be judged as defects, or those that cannot be judged, and only those electrophotographic photosensitive members that cannot be judged as suspected defects. A first step of applying a voltage in which an AC voltage is superimposed on a DC voltage while rotating the electrophotographic photosensitive member by pressing a first conductive roller on the surface of the body; and
After the first step, there is a second step of applying a DC voltage while pressing the second conductive roller on the surface of the electrophotographic photosensitive member and rotating the electrophotographic photosensitive member,
In the second step, the electric current flowing from the second conductive roller to the electrophotographic photosensitive member is measured by the current measuring means, and based on the measured current value, the presence / absence of a defect in the electrophotographic photosensitive member is determined. The inspection method for an electrophotographic photosensitive member according to claim 1, wherein a second inspection step is performed.
該光学検査第二工程における検出情報と所定の閾値に基づいて、該当する電子写真感光体の被疑欠陥を、
欠陥でないと判断できるもの、欠陥であると判断できるもの、又はそのどちらであるか判断できないものと
に分類して、被疑欠陥がどちらであるか判断できない電子写真感光体のみについて、第一の導電性ローラを該電子写真感光体の表面に圧接し、該電子写真感光体を回転させながら直流電圧を印加するとともに、該導電性ローラと該電子写真感光体との間で発生する放電領域に対して、電子写真感光体が感度を有する光を照射する第1の工程、及び、
第1の工程の後に、電子写真感光体表面に第二の導電性ローラを圧接して、電子写真感光体を回転させながら直流電圧を印加する第2の工程を有し、
第2の工程により、導電性ローラから電子写真感光体へ流れる電流を、電流測定手段により測定し、測定された電流値に基づいて、電子写真感光体の欠陥の有無を判定する電気検査第二工程を実施することを特徴とする請求項1に記載の電子写真感光体の検査方法。
Based on the detection information in the second optical inspection step and a predetermined threshold, the suspected defect of the corresponding electrophotographic photosensitive member is
The first conductive material is classified into those that can be judged as non-defective, those that can be judged as defective, or those that cannot be judged, and only those electrophotographic photosensitive members that cannot be judged as suspected defects. A pressure roller is pressed against the surface of the electrophotographic photosensitive member, a DC voltage is applied while rotating the electrophotographic photosensitive member, and a discharge region generated between the conductive roller and the electrophotographic photosensitive member is applied. A first step of irradiating the electrophotographic photosensitive member with sensitive light, and
After the first step, there is a second step of applying a DC voltage while pressing the second conductive roller on the surface of the electrophotographic photosensitive member and rotating the electrophotographic photosensitive member,
In the second step, an electric test is performed in which the current flowing from the conductive roller to the electrophotographic photosensitive member is measured by a current measuring means, and the presence or absence of a defect in the electrophotographic photosensitive member is determined based on the measured current value. The method for inspecting an electrophotographic photosensitive member according to claim 1, wherein the step is performed.
該電子写真感光体が、接触帯電方式の電子写真装置に用いられる電子写真感光体であることを特徴とする請求項1〜3に記載の電子写真感光体の検査方法。   The method for inspecting an electrophotographic photosensitive member according to claim 1, wherein the electrophotographic photosensitive member is an electrophotographic photosensitive member used in a contact charging type electrophotographic apparatus.
JP2009056596A 2009-03-10 2009-03-10 Method of inspecting electrophotographic photoreceptor Pending JP2010210909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056596A JP2010210909A (en) 2009-03-10 2009-03-10 Method of inspecting electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056596A JP2010210909A (en) 2009-03-10 2009-03-10 Method of inspecting electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JP2010210909A true JP2010210909A (en) 2010-09-24

Family

ID=42971150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056596A Pending JP2010210909A (en) 2009-03-10 2009-03-10 Method of inspecting electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2010210909A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211432A (en) * 2013-04-01 2014-11-13 キヤノン株式会社 Method for testing charge generation layer and process for manufacturing electrophotographic photoreceptor in large scale
JP2017102194A (en) * 2015-11-30 2017-06-08 キヤノン株式会社 Inspection method in manufacturing method of electrophotographic photoreceptor
JP2020016859A (en) * 2018-07-27 2020-01-30 キヤノン株式会社 Electrophotographic photoreceptor inspection method and inspection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211432A (en) * 2013-04-01 2014-11-13 キヤノン株式会社 Method for testing charge generation layer and process for manufacturing electrophotographic photoreceptor in large scale
JP2017102194A (en) * 2015-11-30 2017-06-08 キヤノン株式会社 Inspection method in manufacturing method of electrophotographic photoreceptor
JP2020016859A (en) * 2018-07-27 2020-01-30 キヤノン株式会社 Electrophotographic photoreceptor inspection method and inspection device
JP7098468B2 (en) 2018-07-27 2022-07-11 キヤノン株式会社 Electrophotographic photosensitive member inspection method and inspection equipment

Similar Documents

Publication Publication Date Title
JP4662893B2 (en) Method for evaluating electrophotographic photoreceptor
JP2016038577A (en) Electrophotographic photoreceptor, process cartridge and electrophotographing device
JP6333629B2 (en) Electrophotographic photoreceptor and image forming apparatus having the same
JP4590484B2 (en) Electrophotographic apparatus and process cartridge
JP2017134280A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2014059459A (en) Electrophotographic photoreceptor and image forming device including the same
JP6426490B2 (en) Method of manufacturing electrophotographic photosensitive member
JP2010091851A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2010210909A (en) Method of inspecting electrophotographic photoreceptor
JP5719886B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP2007086319A (en) Electrophotographic photoreceptor, method for manufacturing the same, and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor
JP5562313B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP3958154B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2014066789A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP5718413B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP5527574B2 (en) Photoconductor inspection device and photoconductor recycling system using the photoconductor inspection device
JP2008026479A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP5300341B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2008026481A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP7171395B2 (en) Method for forming irregularities on surface of cylindrical electrophotographic photoreceptor and method for manufacturing cylindrical electrophotographic photoreceptor
JP2005227470A (en) Electrophotographic apparatus and process cartridge
JP2013011885A (en) Electrophotographic photoreceptor, process cartridge, electrophotographic apparatus and laminated film
JP2007017876A (en) Electrophotographic apparatus
JP2015230406A (en) Electrophotographic photoreceptor and image forming apparatus using the same
JP5438445B2 (en) Method for producing electrophotographic photosensitive member

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100617

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100730

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101227