JP2010210124A - Heat source system - Google Patents

Heat source system Download PDF

Info

Publication number
JP2010210124A
JP2010210124A JP2009055369A JP2009055369A JP2010210124A JP 2010210124 A JP2010210124 A JP 2010210124A JP 2009055369 A JP2009055369 A JP 2009055369A JP 2009055369 A JP2009055369 A JP 2009055369A JP 2010210124 A JP2010210124 A JP 2010210124A
Authority
JP
Japan
Prior art keywords
pipe
refrigerator
heat medium
cold water
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009055369A
Other languages
Japanese (ja)
Other versions
JP5386199B2 (en
Inventor
Noriyuki Odate
啓之 大立
Kuniaki Yamada
邦昭 山田
Satoshi Yamashita
敏 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Setsubi Kogyo Co Ltd
Original Assignee
Sanken Setsubi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Setsubi Kogyo Co Ltd filed Critical Sanken Setsubi Kogyo Co Ltd
Priority to JP2009055369A priority Critical patent/JP5386199B2/en
Publication of JP2010210124A publication Critical patent/JP2010210124A/en
Application granted granted Critical
Publication of JP5386199B2 publication Critical patent/JP5386199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat source system avoiding transmission of a heating medium exceeding a set temperature to a load side and avoiding stop of refrigerators due to short circuit of the heating medium while alleviating complication of the system configuration and control. <P>SOLUTION: The heat source system 1 is provided with: the plurality of refrigerators arranged in parallel; a communication pipe 55 communicated with both assembly parts 60, 68 without being interposed in a load system 99; a first extraction pipe 13 for extracting a first cooled heating medium CS1 on the upstream side of a first on-off valve 12; a second extraction pipe 23 for extracting a second cooled heating medium CS2 on the upstream side of a second on-off valve 22; and a bypass pipe 53 connected to a connecting part P3 of the both extraction pipes 13, 23 and the communication pipe 55. In this configuration, an on-off valve of a refrigerator system for leading out a heating medium CS of required temperature or less of the load system 55 is closed, and the heating medium CS is introduced to the refrigerator via the bypass pipe 53, the communication pipe 55 and the return assembly part 68. After the required temperature of the load system 99 is achieved, the on-off valve is opened to enable transmission to the load system 99. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は熱源システムに関し、特にシステム構成及び制御の複雑さを緩和したうえで安定した冷熱を供給することができる熱源システムに関する。   The present invention relates to a heat source system, and more particularly, to a heat source system that can supply stable cooling energy while reducing the complexity of the system configuration and control.

熱源系統を構成する冷凍機で生成された冷水を、空調機や生産機器等の負荷系統に供給することにより、建物内の冷房や生産機器の冷却等を行うシステムがある。このようなシステムは、負荷の変動に応じて適切な流量の冷水を生成可能なように熱源系統が複数の冷凍機で構成され、熱源系統と負荷系統とが往ヘッダ及び還ヘッダを介して接続されているものが多い。そして、冷凍機の起動直後は負荷系統が要求する設定温度の冷水を生成するのが困難であることに鑑みて、冷凍機で生成された冷水を負荷系統に供給せずに冷凍機に戻すバイパス管と、バイパス管に設けられた二方弁と、冷凍機と両(往、還)ヘッダとを接続するメイン配管に設けられた二方弁とを、熱源系統を構成する各冷凍機にそれぞれ設け、冷凍機で生成された冷水の温度が設定温度を上回る場合に、バイパス管の二方弁を開に、メイン配管の二方弁を閉にすることにより、設定温度を上回る温度の冷水が負荷系統に供給されることを回避するようにしたシステムがある(例えば、特許文献1参照。)。   There is a system that cools a building or cools production equipment by supplying cold water generated by a refrigerator constituting the heat source system to a load system such as an air conditioner or production equipment. In such a system, the heat source system is composed of multiple refrigerators so that chilled water with an appropriate flow rate can be generated according to load fluctuations, and the heat source system and the load system are connected via a forward header and a return header. There are many things that have been done. In view of the fact that it is difficult to generate cold water at the set temperature required by the load system immediately after the start of the refrigerator, the bypass for returning the cold water generated by the refrigerator to the refrigerator without supplying it to the load system. Pipe, a two-way valve provided in the bypass pipe, and a two-way valve provided in the main pipe connecting the refrigerator and both (forward and return) headers to each refrigerator constituting the heat source system, respectively If the temperature of the chilled water generated by the refrigerator exceeds the set temperature, the chilled water with a temperature exceeding the set temperature can be obtained by opening the two-way valve of the bypass pipe and closing the two-way valve of the main pipe. There is a system that avoids being supplied to a load system (for example, see Patent Document 1).

特開2004−353986号公報(段落0027、図1等)JP 2004-353986 A (paragraph 0027, FIG. 1 etc.)

冷凍機は、一般に、保護装置として内部で凍結し得るような温度の冷水が導入された場合に運転を停止させる機能を有している。このため、保護装置を作動させないためには、負荷系統への送水温度の上昇を一部許容したうえで冷凍機から供給される冷水の温度が設定温度まで下がる前にバイパスを停止させていた。しかしながら、例えばクリーンルームのような精密空調が要求される負荷等では、負荷系統への送水温度の上昇が許容されない場合がある。このような場合、上述のシステムでは、設定温度を上回る温度の冷水を、負荷系統に供給することを回避するべくバイパスさせて冷凍機に戻す一方で、バイパスさせることにより比較的短時間に温度が低下した、負荷系統が要求するような低温度の冷水を、冷凍機に流入させないように、バイパス管及びメイン配管に設けられた二方弁を応答速度の速いものとしたうえで、両二方弁を厳密に制御する難しい制御が要求されていた。さらに、バイパス管及び2つの二方弁を各冷凍機がそれぞれ備えているため、システム構成及び制御が複雑になっていた。   The refrigerator generally has a function of stopping operation when cold water having a temperature that can be frozen inside is introduced as a protective device. For this reason, in order not to activate the protection device, the bypass is stopped before the temperature of the cold water supplied from the refrigerator falls to the set temperature after allowing a rise in the water supply temperature to the load system. However, for example, a load such as a clean room that requires precision air conditioning may not allow an increase in the water supply temperature to the load system. In such a case, in the above-described system, the chilled water having a temperature higher than the set temperature is bypassed and returned to the refrigerator to avoid supplying it to the load system. The two-way valve provided in the bypass pipe and the main pipe has a fast response speed so that the low temperature cold water required by the load system will not flow into the refrigerator. Difficult control to strictly control the valve has been required. Furthermore, since each refrigerator has a bypass pipe and two two-way valves, the system configuration and control are complicated.

本発明は上述の課題に鑑み、システム構成及び制御の複雑さを緩和したうえで、設定温度を上回る熱媒体が負荷側に送られることの回避と、熱媒体のショートサーキットに起因する冷凍機停止の回避とが両立する熱源システムを提供することを目的とする。   In view of the above-described problems, the present invention reduces the complexity of the system configuration and control, avoids the heat medium exceeding the set temperature being sent to the load side, and stops the refrigerator caused by the short circuit of the heat medium. An object of the present invention is to provide a heat source system compatible with avoidance of heat.

上記目的を達成するために、本発明の第1の態様に係る熱源システムは、例えば図1に示すように、熱媒体Cを冷却する冷凍機が複数並列に配置された冷凍機群100であって、第1の冷凍機101と、第1の冷凍機101に対して並列に配置された第2の冷凍機102と、を有する冷凍機群100と;第1の冷凍機101で冷却された熱媒体Cである第1の被冷却熱媒体CS1を流す第1の被冷却熱媒体管11であって、流路を遮断可能な第1の開閉弁12を有する第1の被冷却熱媒体管11と;第2の冷凍機102で冷却された熱媒体Cである第2の被冷却熱媒体CS2を流す第2の被冷却熱媒体管21であって、流路を遮断可能な第2の開閉弁22を有する第2の被冷却熱媒体管21と;第1の被冷却熱媒体CS1と第2の被冷却熱媒体CS2とを、熱媒体CSが保有する冷熱が利用される負荷系統99に向けて送る前に集合させる往集合部60と;負荷系統99で利用されて温度が上昇した熱媒体CRを冷凍機群100に導入する前に集合させる還集合部68と;往集合部60と還集合部68とを負荷系統99を介さずに連通する連通管55と;第1の開閉弁12の上流側で第1の被冷却熱媒体管11から第1の被冷却熱媒体CS1を抜き出す第1の抜出管13と;第2の開閉弁22の上流側で第2の被冷却熱媒体管21から第2の被冷却熱媒体CS2を抜き出す第2の抜出管23であって、第1の抜出管13に接続された第2の抜出管23と;第1の抜出管13と第2の抜出管23との接続部P3と、連通管55とに接続されたバイパス管53とを備える。   In order to achieve the above object, the heat source system according to the first aspect of the present invention is a refrigerator group 100 in which a plurality of refrigerators for cooling the heat medium C are arranged in parallel as shown in FIG. The first refrigerator 101 and the second refrigerator 102 having the second refrigerator 102 arranged in parallel to the first refrigerator 101; and cooled by the first refrigerator 101 1st to-be-cooled heat medium pipe | tube 11 which flows the 1st to-be-cooled heat medium CS1 which is the heat medium C, Comprising: The 1st to-be-cooled heat medium pipe | tube which has the 1st on-off valve 12 which can interrupt | block a flow path And a second cooled heat medium pipe 21 through which the second cooled heat medium CS2, which is the heat medium C cooled by the second refrigerator 102, flows, and is capable of blocking the flow path. 2nd to-be-cooled heat medium pipe | tube 21 which has on-off valve 22, 1st to-be-cooled heat medium CS1, and 2nd to-be-cooled heat medium CS2 and the forward gathering unit 60 for gathering before sending to the load system 99 where the cold energy held by the heat medium CS is used; the heat medium CR that is used in the load system 99 and whose temperature has increased is the refrigerator group A return gathering portion 68 that gathers before being introduced into 100; a communication pipe 55 that connects the forward gathering portion 60 and the return gathering portion 68 without passing through the load system 99; and a first upstream side of the first on-off valve 12; A first extraction pipe 13 for extracting the first cooling target heat medium CS1 from the first cooling target heat medium pipe 11; a second extraction from the second cooling target heat medium pipe 21 upstream of the second on-off valve 22; A second extraction pipe 23 for extracting the cooled heat medium CS2 and a second extraction pipe 23 connected to the first extraction pipe 13; a first extraction pipe 13 and a second extraction pipe 13; A connection part P3 with the extraction pipe 23 and a bypass pipe 53 connected to the communication pipe 55 are provided.

このように構成すると、第1の冷凍機及び第2の冷凍機のうち任意の冷凍機から導出された熱媒体を流す被冷却熱媒体管が有する開閉弁を閉じて該熱媒体の全部又は一部をバイパス管に流入させることができる。例えば、負荷系統が要求する温度になっていない熱媒体を導出する冷凍機に接続された方の被冷却熱媒体管が有する開閉弁を閉じて該熱媒体をバイパス管、連通管及び還集合部を介して該冷凍機に導入することができ、該熱媒体が負荷系統が要求する温度になった後は該開閉弁を開けて負荷系統に送ることが可能になり、ショートサーキットに起因する冷凍機の停止を回避しつつ負荷系統が求める温度の熱媒体を負荷系統に安定して供給することが可能になる。また、バイパス管を複数の冷凍機で共用でき、弁の数を削減できるので、システムを簡略化できて信頼性を向上させることができる。   If comprised in this way, the on-off valve which the to-be-cooled heat-medium pipe | tube through which the heat carrier led out from arbitrary refrigerators among the 1st freezer and the 2nd freezer will flow will be closed, and all or one of the heat carriers The portion can flow into the bypass pipe. For example, the open / close valve of the cooled heat medium pipe connected to the refrigerator that draws out the heat medium that is not at the temperature required by the load system is closed, and the heat medium is bypassed, the communication pipe, and the return assembly section. After the heat medium reaches the temperature required by the load system, it is possible to open the on-off valve and send it to the load system, and the refrigeration caused by the short circuit It is possible to stably supply the heat medium having the temperature required by the load system to the load system while avoiding the stoppage of the machine. Further, since the bypass pipe can be shared by a plurality of refrigerators and the number of valves can be reduced, the system can be simplified and the reliability can be improved.

また、本発明の第2の態様に係る熱源システムは、例えば図1に示すように、上記本発明の第1の態様に係る熱源システム1において、第1の被冷却熱媒体管11と第2の被冷却熱媒体管21とが接続されて構成され;第1の被冷却熱媒体管11と第2の被冷却熱媒体管21との接続部P1と、往集合部60とに接続された合流管51をさらに備え;バイパス管53が、第1の冷凍機101の下限流量及び第2の冷凍機102の下限流量のうち大きい方の流量に応じて決定された口径で構成され;合流管51が、冷凍機群100を構成する冷凍機のすべての定格流量を合計した合計流量から、バイパス管53を流れる熱媒体CSの設計流量を差し引いた流量に応じて決定された口径で構成されている。   In addition, the heat source system according to the second aspect of the present invention includes, as shown in FIG. 1, for example, the first heat-receiving medium pipe 11 and the second cooled heat medium pipe 11 in the heat source system 1 according to the first aspect of the present invention. And connected to the connection part P1 between the first cooled heat medium pipe 11 and the second cooled heat medium pipe 21 and the forward gathering part 60. The bypass pipe 53 is configured with a diameter determined according to the larger one of the lower limit flow rate of the first refrigerator 101 and the lower limit flow rate of the second refrigerator 102; 51 is configured with a diameter determined according to the flow rate obtained by subtracting the design flow rate of the heat medium CS flowing through the bypass pipe 53 from the total flow rate of all the rated flow rates of the refrigerators constituting the refrigerator group 100. Yes.

このように構成すると、バイパス管及び合流管の総重量を必要最小限にすることができ、システム構築の省力化を図ることができる。   If comprised in this way, the total weight of a bypass pipe and a confluence | merging pipe | tube can be made into a required minimum, and the labor saving of system construction can be achieved.

また、本発明の第3の態様に係る熱源システムは、例えば図2に示すように、上記本発明の第1の態様又は第2の態様に係る熱源システム2において、熱媒体Cを外気との直接又は間接の熱交換により冷却する熱交換器83と;熱交換器83で冷却された熱媒体CSである第3の被冷却熱媒体CS3を流す第3の被冷却熱媒体管31であって、流路を遮断可能な第3の開閉弁32を有する第3の被冷却熱媒体管31と;第3の開閉弁32の上流側で第3の被冷却熱媒体管31から第3の被冷却熱媒体CS3を抜き出す第3の抜出管33とを備え;第3の抜出管33が、バイパス管53、53aと連通して構成されている。   Moreover, as shown in FIG. 2, for example, the heat source system according to the third aspect of the present invention is the heat source system 2 according to the first aspect or the second aspect of the present invention. A heat exchanger 83 that cools by direct or indirect heat exchange; and a third cooled heat medium pipe 31 through which a third cooled heat medium CS3 that is the heat medium CS cooled by the heat exchanger 83 flows. A third cooled heat medium pipe 31 having a third on-off valve 32 capable of blocking the flow path; and a third covered heat medium pipe 31 from the third cooled heat medium pipe 31 upstream of the third on-off valve 32. A third extraction pipe 33 for extracting the cooling heat medium CS3; and the third extraction pipe 33 is configured to communicate with the bypass pipes 53 and 53a.

このように構成すると、外気の冷熱を有効利用することができ、冷凍機群の負荷を軽減することができる。例えば、外気で冷却された熱媒体が負荷系統の要求する温度である場合は該熱媒体を負荷系統に送ることができ、負荷系統の要求する温度でない場合は負荷系統に送らずに連通管を介して冷凍機群に導入することによって被冷却熱媒体の予冷に利用することができる。   If comprised in this way, the cold of external air can be used effectively and the load of a refrigerator group can be reduced. For example, when the heat medium cooled by the outside air is at a temperature required by the load system, the heat medium can be sent to the load system. When the temperature is not required by the load system, the communication pipe is not sent to the load system. It can be used for pre-cooling the cooled heat medium by introducing it into the refrigerator group.

本発明によれば、第1の冷凍機及び第2の冷凍機のうち任意の冷凍機から導出された熱媒体を流す被冷却熱媒体管が有する開閉弁を閉じて該熱媒体の全部又は一部をバイパス管に流入させることができる。例えば、負荷系統が要求する温度になっていない熱媒体を導出する冷凍機に接続された方の被冷却熱媒体管が有する開閉弁を閉じて該熱媒体をバイパス管、連通管及び還集合部を介して該冷凍機に導入することができ、該熱媒体が負荷系統が要求する温度になった後は該開閉弁を開けて負荷系統に送ることが可能になり、ショートサーキットに起因する冷凍機の停止を回避しつつ負荷系統が求める温度の熱媒体を負荷系統に安定して供給することが可能になる。また、バイパス管を複数の冷凍機で共用でき、弁の数を削減できるので、システムを簡略化できて信頼性を向上させることができる。   According to the present invention, the on-off valve of the cooled heat medium pipe through which the heat medium derived from any one of the first refrigerator and the second refrigerator is closed to close all or one of the heat medium. The portion can flow into the bypass pipe. For example, the open / close valve of the cooled heat medium pipe connected to the refrigerator that draws out the heat medium that is not at the temperature required by the load system is closed, and the heat medium is bypassed, the communication pipe, and the return assembly section. After the heat medium reaches the temperature required by the load system, it is possible to open the on-off valve and send it to the load system, and the refrigeration caused by the short circuit It is possible to stably supply the heat medium having the temperature required by the load system to the load system while avoiding the stoppage of the machine. Further, since the bypass pipe can be shared by a plurality of refrigerators and the number of valves can be reduced, the system can be simplified and the reliability can be improved.

本発明の第1の実施の形態に係る熱源システムの模式的系統図である。1 is a schematic system diagram of a heat source system according to a first embodiment of the present invention. 本発明の第2の実施の形態に係る熱源システムの模式的系統図である。It is a typical systematic diagram of the heat source system which concerns on the 2nd Embodiment of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or similar members are denoted by the same or similar reference numerals, and redundant description is omitted.

まず図1を参照して、本発明の第1の実施の形態に係る熱源システム1を説明する。図1は、熱源システム1の模式的系統図である。熱源システム1は、第1の冷凍機(以下「第1冷凍機101」ともいう)及び第2の冷凍機(以下「第2冷凍機102」ともいう)が並列に配置されて構成された冷凍機群100と、各冷凍機101、102で製造された熱媒体としての冷水Cを集める往集合部60と、負荷系統99で熱が利用された後の冷水Cを集める還集合部68と、往集合部60と還集合部68とを接続する連通管55と、各冷凍機101、102で製造された冷水の一部を抜き出して連通管55に合流させるバイパス管53と、冷水Cを効果的に流動させる配管類(後に詳述する)とを備えている。   First, a heat source system 1 according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram of the heat source system 1. The heat source system 1 includes a first refrigerator (hereinafter also referred to as “first refrigerator 101”) and a second refrigerator (hereinafter also referred to as “second refrigerator 102”) arranged in parallel. A collecting unit 60 for collecting cold water C as a heat medium produced by the machine group 100, each of the refrigerators 101 and 102, a return collecting unit 68 for collecting cold water C after heat is used in the load system 99, The communication pipe 55 that connects the forward collecting section 60 and the return collecting section 68, the bypass pipe 53 that extracts a part of the cold water produced by each of the refrigerators 101 and 102 and merges it with the communication pipe 55, and the cold water C are effective. Piping (which will be described in detail later).

以下の説明においては、冷水Cに関し、便宜上次のように区別する場合がある。第1冷凍機101で製造された冷水Cを「第1往冷水CS1」と、第2冷凍機102で製造された冷水Cを「第2往冷水CS2」と、冷凍機を特定せずにいずれかの冷凍機で製造された冷水Cを単に「往冷水CS」という。負荷系統99で冷熱が利用されて温度が上昇した冷水Cを「還冷水CR」といい、そのうち第1冷凍機101に導入される還冷水CRを「第1還冷水CR1」と、第2冷凍機102に導入される還冷水CRを「第2還冷水CR2」という。上記のような区別をせず単に冷熱を搬送するための熱媒体の意味を表す際は「冷水C」と総称する。   In the following description, the cold water C may be distinguished as follows for convenience. The cold water C produced by the first refrigerator 101 is “first outgoing cold water CS1” and the cold water C produced by the second refrigerator 102 is “second outgoing cold water CS2” without specifying the refrigerator. Cold water C produced by such a refrigerator is simply referred to as “cool water CS”. The chilled water C whose temperature has risen due to the use of cold heat in the load system 99 is referred to as “returned chilled water CR”, of which the returned chilled water CR introduced into the first refrigerator 101 is referred to as “first returned chilled water CR1” and second refrigeration. The return cold water CR introduced into the machine 102 is referred to as “second return cold water CR2”. When the meaning of the heat medium for simply conveying cold heat is expressed without making the above-mentioned distinction, it is collectively referred to as “cold water C”.

第1冷凍機101は、例えば空調用として用いられる水冷式の熱源装置であり、典型的には、ターボ冷凍機又は吸収式冷凍機が用いられる。第1冷凍機101は、不図示の冷媒が冷凍サイクルを行い(蒸発と凝縮を交互に行う)、冷媒が蒸発する際に第1の被冷却熱媒体としての第1還冷水CR1から熱を奪う(冷却する)ことで第1往冷水CS1を製造する機器である。第1冷凍機101には、凍結防止の観点から、あらかじめ定められた温度(例えば7℃)以下の温度の第1還冷水CR1が導入されたときに運転を停止する保護装置が設けられている。また、第1冷凍機101には、冷水Cと熱交換をして蒸発した冷媒(不図示)を冷却して凝縮させるために、冷却水CDが導入される。第1冷凍機101には、温度が低い冷却水CDである往冷却水CDSを導入する、冷却水ポンプ43が配設された冷却水往管45と、冷水Cと熱交換して温度が上昇した冷却水CDである還冷却水CDRを導出する冷却水還管47とが接続されている。冷却水往管45及び冷却水還管47の他端には冷却塔41が接続されており、冷却塔41は、冷却水還管47から導入した還冷却水CDRを大気と熱交換させて冷却して往冷却水CDSとして冷却水往管45に流入させることができるように構成されている。   The first refrigerator 101 is, for example, a water-cooled heat source device used for air conditioning, and typically a turbo refrigerator or an absorption refrigerator is used. In the first refrigerator 101, a refrigerant (not shown) performs a refrigeration cycle (evaporation and condensation are alternately performed), and when the refrigerant evaporates, heat is taken from the first return chilled water CR1 as the first cooling heat medium. It is a device that produces the first outgoing cold water CS1 by (cooling). The first refrigerator 101 is provided with a protection device that stops the operation when the first return cold water CR1 having a temperature equal to or lower than a predetermined temperature (for example, 7 ° C.) is introduced from the viewpoint of preventing freezing. . Further, the cooling water CD is introduced into the first refrigerator 101 in order to cool and condense the refrigerant (not shown) evaporated by exchanging heat with the cold water C. The first refrigerator 101 is introduced with cooling water CDS, which is cooling water CD having a low temperature, and the cooling water going pipe 45 provided with the cooling water pump 43 and heat exchange with the cooling water C increase the temperature. The cooling water return pipe 47 for deriving the return cooling water CDR which is the cooling water CD is connected. A cooling tower 41 is connected to the other ends of the cooling water return pipe 45 and the cooling water return pipe 47, and the cooling tower 41 cools the return cooling water CDR introduced from the cooling water return pipe 47 by exchanging heat with the atmosphere. Thus, the cooling water can be introduced into the cooling water outgoing pipe 45 as the outgoing cooling water CDS.

第1冷凍機101には、製造した第1往冷水CS1を導出する第1の被冷却熱媒体管としての第1冷水往管11と、第1還冷水CR1を導入する第1冷水還管18とが接続されている。第1冷水往管11には、第1の開閉弁としての第1制御弁12が挿入配置されている。また、第1冷凍機101と第1制御弁12との間の第1冷水往管11には、第1往冷水CS1の温度を検出する第1温度センサ15が設けられている。第1制御弁12は、アクチュエーターを有する電動弁であり、第1温度センサ15で検出された温度に応じた電気信号を入力することにより弁の開度が調節されて第1冷水往管11を流れる第1往冷水CS1の流量を調節することができるように構成されている。第1冷凍機101と第1制御弁12との間の第1冷水往管11には、第1往冷水CS1の一部又は全部を抜き出す第1抜出管13が接続されている。第1抜出管13には、抜き出した第1往冷水CS1の第1冷水往管11への逆流を防ぐ第1逆止弁14が挿入配置されている。第1冷水還管18には、冷水Cを圧送する第1冷水ポンプ19が挿入配置されている。第1冷水ポンプ19は、第1冷凍機101が冷水Cの通過流量を変えることできる変流量型の場合は、インバータを有し、吐出流量を可変にすることができるように構成されている。なお、第1冷凍機101が変流量型の場合、第1冷凍機101にはあらかじめ設定された当該冷凍機固有の下限流量が存在することとなる。この下限流量は、凍結防止の観点から、運転中の冷凍機内に通過させる冷水Cの最小流量であり、通常は安全のための余裕分が見込まれている。運転中の冷凍機内を通過する冷水Cの流量が下限流量未満になると、例えば保護装置が作動して冷凍機の運転が停止する。   In the first refrigerator 101, a first cold water outlet pipe 11 as a first cooled heat medium pipe for leading out the produced first outgoing cold water CS1, and a first cold water return pipe 18 for introducing the first return cold water CR1. And are connected. A first control valve 12 as a first on-off valve is inserted and disposed in the first cold water outgoing pipe 11. A first temperature sensor 15 that detects the temperature of the first outgoing cold water CS1 is provided in the first cold water outgoing pipe 11 between the first refrigerator 101 and the first control valve 12. The first control valve 12 is an electric valve having an actuator, and the opening degree of the valve is adjusted by inputting an electric signal corresponding to the temperature detected by the first temperature sensor 15 so that the first cold water outlet pipe 11 is connected. It is comprised so that the flow volume of the flowing 1st cooling water CS1 can be adjusted. A first extraction pipe 13 for extracting a part or all of the first outgoing cold water CS1 is connected to the first cold water outgoing pipe 11 between the first refrigerator 101 and the first control valve 12. A first check valve 14 that prevents backflow of the extracted first outgoing cold water CS <b> 1 to the first cold water outgoing pipe 11 is inserted into the first extraction pipe 13. A first cold water pump 19 for pumping cold water C is inserted into the first cold water return pipe 18. In the case where the first refrigerator 101 is a variable flow rate type in which the first refrigerator 101 can change the flow rate of the cold water C, the first cold water pump 19 includes an inverter and is configured to be able to vary the discharge flow rate. When the first refrigerator 101 is a variable flow type, the first refrigerator 101 has a preset lower limit flow rate specific to the refrigerator. This lower limit flow rate is the minimum flow rate of the cold water C that is allowed to pass through the refrigerator during operation from the viewpoint of prevention of freezing, and usually a margin for safety is expected. When the flow rate of the cold water C passing through the operating refrigerator is below the lower limit flow rate, for example, the protection device is activated and the operation of the refrigerator is stopped.

第2冷凍機102は、構造、機能、作用において、第1冷凍機101と同様に構成されている。本実施の形態では、第2冷凍機102の冷凍容量は、第1冷凍機101と同様に構成されている。また、第2冷凍機102まわりの配管及び冷却塔も第1冷凍機101と同様に設けられている。つまり、第2冷凍機102まわりには、第1冷凍機101における第1冷水往管11、第1制御弁12、第1抜出管13、第1逆止弁14、第1温度センサ15、第1冷水還管18、第1冷水ポンプ19に対応する構成として、第2冷水往管21、第2制御弁22、第2抜出管23、第2逆止弁24、第2温度センサ25、第2冷水還管28、第2冷水ポンプ29がそれぞれ設けられている。また、第2冷凍機102まわりには、第1冷凍機101における冷却塔41、冷却水ポンプ43、冷却水往管45、冷却水還管47に対応する構成として、冷却塔42、冷却水ポンプ44、冷却水往管46、冷却水還管48がそれぞれ設けられている。   The second refrigerator 102 is configured in the same manner as the first refrigerator 101 in terms of structure, function, and action. In the present embodiment, the refrigerating capacity of the second refrigerator 102 is configured similarly to the first refrigerator 101. Also, the piping around the second refrigerator 102 and the cooling tower are provided in the same manner as the first refrigerator 101. That is, around the second refrigerator 102, the first cold water outgoing pipe 11, the first control valve 12, the first extraction pipe 13, the first check valve 14, the first temperature sensor 15 in the first refrigerator 101, As a configuration corresponding to the first cold water return pipe 18 and the first cold water pump 19, the second cold water forward pipe 21, the second control valve 22, the second extraction pipe 23, the second check valve 24, and the second temperature sensor 25 are provided. A second cold water return pipe 28 and a second cold water pump 29 are provided. Further, around the second refrigerator 102, the cooling tower 42, the cooling water pump, and the cooling tower 41, the cooling water pump 43, the cooling water forward pipe 45, and the cooling water return pipe 47 in the first refrigerator 101 are provided. 44, a cooling water forward pipe 46, and a cooling water return pipe 48 are provided.

第1冷水往管11と第2冷水往管21とは、供給接続部P1で接続されている。供給接続部P1は合流管51の一端と接続されており、合流管51の他端は、往集合部60の構成要素の1つである1次往ヘッダ61と接続されている。これにより、冷凍機群100で製造された往冷水CSを1次往ヘッダ61に導入することができるようになっている。往集合部60は、1次往ヘッダ61と、2次往ヘッダ62と、往ヘッダ接続管63と、2次冷水ポンプ64とを含んで構成されている。1次往ヘッダ61よりも負荷系統99側には、2次往ヘッダ62が配設されている。2次往ヘッダ62は、負荷系統99を構成する複数の負荷機器99mに往冷水CSを分配するための管寄せである。1次往ヘッダ61及び/又は2次往ヘッダ62は、いわゆるヘッダの外観を呈しない、配管ヘッダとして構成されていてもよい。2次往ヘッダ62には、複数の負荷機器99mに往冷水CSをそれぞれ供給する負荷配管99pが複数接続されている。1次往ヘッダ61と2次往ヘッダ62とは、往ヘッダ接続管63で接続されている。往ヘッダ接続管63には、往冷水CSを負荷系統99に圧送する2次冷水ポンプ64が挿入配置されている。図では1組の2次冷水ポンプ64が配設された往ヘッダ接続管63が示されているが、所望の台数制御が実現可能なように、典型的には2次冷水ポンプ64が配設された往ヘッダ接続管63の複数組が設けられている。また、1次往ヘッダ61と2次往ヘッダ62とは差圧調節管65で接続されており、差圧調節管65には開度を調節することにより1次往ヘッダ61と2次往ヘッダ62との間の差圧を所定の差圧にする差圧調節弁66が挿入配置されている。1次往ヘッダ61及び2次往ヘッダ62が往ヘッダ接続管63で接続されて、冷凍機群100から供給される往冷水CSが各冷水ポンプ19、29により供給され、負荷系統99側へ送水される往冷水CSが2次冷水ポンプ64により流量調節されることにより、負荷系統99の負荷変動に応じて往冷水CSの供給流量を増減する制御が簡便になる。   The 1st cold water outgoing pipe 11 and the 2nd cold water outgoing pipe 21 are connected by supply connection part P1. The supply connection portion P1 is connected to one end of the joining pipe 51, and the other end of the joining pipe 51 is connected to a primary forward header 61 that is one of the components of the forward gathering section 60. Thereby, the cold water CS manufactured by the refrigerator group 100 can be introduced into the primary forward header 61. The forward assembly 60 includes a primary forward header 61, a secondary forward header 62, a forward header connection pipe 63, and a secondary chilled water pump 64. A secondary forward header 62 is disposed closer to the load system 99 than the primary forward header 61. The secondary outgoing header 62 is a header for distributing the outgoing cold water CS to a plurality of load devices 99m constituting the load system 99. The first forward header 61 and / or the second forward header 62 may be configured as a pipe header that does not exhibit a so-called header appearance. A plurality of load pipes 99p for supplying the outgoing cold water CS to the plurality of load devices 99m are connected to the secondary outgoing header 62, respectively. The primary forward header 61 and secondary secondary header 62 are connected by a forward header connection pipe 63. A secondary chilled water pump 64 for pressure-feeding the chilled water CS to the load system 99 is inserted into the forward header connecting pipe 63. In the figure, the forward header connection pipe 63 in which a pair of secondary chilled water pumps 64 is arranged is shown, but typically the secondary chilled water pumps 64 are arranged so that a desired number of units can be controlled. A plurality of sets of forward header connecting pipes 63 are provided. Further, the primary forward header 61 and the secondary forward header 62 are connected by a differential pressure adjusting pipe 65, and the primary pressure header 61 and the secondary secondary header 61 are adjusted in the differential pressure adjusting pipe 65 by adjusting the opening degree. A differential pressure regulating valve 66 is inserted and arranged to make the differential pressure between the first and second pressures 62 a predetermined differential pressure. The primary outgoing header 61 and the secondary outgoing header 62 are connected by the outgoing header connecting pipe 63, and the outgoing cold water CS supplied from the refrigerator group 100 is supplied by each of the cold water pumps 19, 29 to supply water to the load system 99 side. Control of increasing or decreasing the supply flow rate of the forward cooling water CS according to the load fluctuation of the load system 99 is simplified by adjusting the flow rate of the forward cooling water CS by the secondary chilled water pump 64.

還集合部68は、各負荷機器99mから導出された還冷水CRを流す負荷配管99pが接続された管寄せ68aと、管寄せ68aに導入された還冷水CRを混合された状態で取り出す混合管68bと、混合管68bを流れた還冷水CRを一旦蓄えるクッション管68cとを有している。混合管68bには流量計68vが挿入配置されている。クッション管68cには共通還管58の一端が接続されており、共通還管58の他端は第1冷水還管18及び第2冷水還管28に接続されている。これにより、還集合部68から導出された還冷水CRを、共通還管58を介して第1冷水還管18及び第2冷水還管28に分配し、第1冷凍機101及び第2冷凍機102に導入させることができるように構成されている。   The return collecting unit 68 is connected to a header 68a connected to a load pipe 99p through which the returned cold water CR derived from each load device 99m is connected, and a mixed pipe for taking out the returned cold water CR introduced into the header 68a in a mixed state. 68b and a cushion pipe 68c that temporarily stores the return cold water CR that has flowed through the mixing pipe 68b. A flow meter 68v is inserted into the mixing tube 68b. One end of a common return pipe 58 is connected to the cushion pipe 68c, and the other end of the common return pipe 58 is connected to the first cold water return pipe 18 and the second cold water return pipe 28. As a result, the return cold water CR derived from the return collecting portion 68 is distributed to the first cold water return pipe 18 and the second cold water return pipe 28 via the common return pipe 58, and the first refrigerator 101 and the second refrigerator. It is comprised so that it can be made to introduce in 102.

1次往ヘッダ61と還集合部68とは連通管55で接続されており、1次往ヘッダ61に導入された往冷水CSを、負荷系統99を通過させずに還集合部68に流入させることが可能に構成されている。還集合部68に接続されている連通管55は、典型的には流量計68vよりも冷凍機群100側の混合管68bに接続されている。このように構成されていることで、連通管55を介して還集合部68に流入した往冷水CSが共通還管58に流入される前に、負荷系統99から還された還冷水CRと十分に混合されることとなる。第1抜出管13と第2抜出管23とは、抜出接続部P3で接続されている。抜出接続部P3はバイパス管53の一端と接続されており、バイパス管53の他端は連通管55に接続されている。これにより、第1抜出管13及び/又は第2抜出管23から抜き出された往冷水CSを連通管55に流入させることができるようになっている。   The primary outgoing header 61 and the return collecting unit 68 are connected by a communication pipe 55, and the cold water CS introduced into the primary outgoing header 61 is allowed to flow into the return collecting unit 68 without passing through the load system 99. It is configured to be possible. The communication pipe 55 connected to the return collecting unit 68 is typically connected to the mixing pipe 68b on the refrigerator group 100 side with respect to the flow meter 68v. By being configured in this way, before the cold water CS flowing into the return collecting portion 68 through the communication pipe 55 flows into the common return pipe 58, the return cold water CR sufficiently returned from the load system 99 is sufficient. Will be mixed. The 1st extraction pipe 13 and the 2nd extraction pipe 23 are connected by the extraction connection part P3. The extraction connection part P3 is connected to one end of the bypass pipe 53, and the other end of the bypass pipe 53 is connected to the communication pipe 55. Thereby, the cold water CS extracted from the first extraction pipe 13 and / or the second extraction pipe 23 can be caused to flow into the communication pipe 55.

バイパス管53のサイズ(口径)は、冷凍機群100を構成する各冷凍機の下限流量のうち、最も大きい流量に応じて決定された口径となっている。このように構成することで、冷凍機起動直後に下限流量で導出された冷水Cを、合流管51を介さずにバイパス管53を通して連通管55に導くことが可能となる。本実施の形態では、第1冷凍機101及び第2冷凍機102が同じ構成(したがって下限流量も同じ)の冷凍機であるので、いずれかの下限流量に応じて決定される。「流量に応じて決定された口径」とは、典型的にはその流量の冷水Cを所定の設計条件(例えば単位摩擦損失30mmAq/m以下かつ管内流速2.0m/s以下)で流す場合に適した口径である。例えば、第1冷凍機101及び第2冷凍機102が変流量型で、下限流量が定格流量(これを100%の流量とする)の50%の場合は、この50%の流量が所定の設計条件で流れる場合に適した口径に決定される。第1冷凍機101及び第2冷凍機102が定流量型の場合は、100%の流量が所定の設計条件で流れる場合に適した口径に決定される。   The size (caliber) of the bypass pipe 53 is a diameter determined according to the largest flow rate among the lower limit flow rates of the respective refrigerators constituting the refrigerator group 100. With this configuration, it is possible to guide the cold water C derived at the lower limit flow rate immediately after the start of the refrigerator to the communication pipe 55 through the bypass pipe 53 without passing through the merging pipe 51. In the present embodiment, since the first refrigerator 101 and the second refrigerator 102 are refrigerators having the same configuration (and therefore the lower limit flow rate is the same), it is determined according to any lower limit flow rate. The “diameter determined according to the flow rate” typically means that the cold water C at the flow rate is flown under predetermined design conditions (for example, a unit friction loss of 30 mmAq / m or less and a pipe flow velocity of 2.0 m / s or less). Suitable caliber. For example, when the first refrigerator 101 and the second refrigerator 102 are variable flow types and the lower limit flow rate is 50% of the rated flow rate (this is assumed to be 100% flow rate), this 50% flow rate is a predetermined design. The aperture is determined to be suitable for flowing under conditions. In the case where the first refrigerator 101 and the second refrigerator 102 are constant flow types, the diameter is determined to be suitable when a flow rate of 100% flows under a predetermined design condition.

合流管51のサイズ(口径)は、冷凍機群100を構成する各冷凍機の冷水Cの定格流量を合計した流量(合計流量)からバイパス管53を流れる冷水Cの設計流量を差し引いた流量に応じて決定された口径となっている。「流量に応じて決定された口径」の意味は、バイパス管53のサイズを決定する場合と同様である。本実施の形態では、冷凍機群100が第1冷凍機101及び第2冷凍機102で構成されているので、合流管51のサイズは、第1冷凍機101から導出される冷水Cの定格流量及び第2冷凍機102から導出される冷水Cの定格流量の合計から、バイパス管53を流れる冷水Cの設計流量を差し引いた流量に応じて決定された口径となっている。例えば、本実施の形態において第1冷凍機101及び第2冷凍機102が変流量型で、下限流量が定格流量の50%の場合は、150%(100%+100%−50%)の流量が所定の設計条件で流れる場合に適した口径に決定される。第1冷凍機101及び第2冷凍機102が定流量型の場合は、100%の流量が所定の設計条件で流れる場合に適した口径に決定され、本実施の形態ではバイパス管53と同じ口径となる。   The size (diameter) of the merging pipe 51 is a flow rate obtained by subtracting the design flow rate of the cold water C flowing through the bypass pipe 53 from the flow rate (total flow rate) obtained by adding the rated flow rates of the chilled water C of each refrigerator constituting the refrigerator group 100. The caliber is determined accordingly. The meaning of “the diameter determined according to the flow rate” is the same as that for determining the size of the bypass pipe 53. In the present embodiment, since the refrigerator group 100 includes the first refrigerator 101 and the second refrigerator 102, the size of the merge pipe 51 is the rated flow rate of the cold water C derived from the first refrigerator 101. The diameter is determined according to the flow rate obtained by subtracting the design flow rate of the cold water C flowing through the bypass pipe 53 from the total rated flow rate of the cold water C derived from the second refrigerator 102. For example, in the present embodiment, when the first refrigerator 101 and the second refrigerator 102 are variable flow types and the lower limit flow rate is 50% of the rated flow rate, the flow rate is 150% (100% + 100% -50%). The aperture is determined to be suitable for flowing under a predetermined design condition. When the first refrigerator 101 and the second refrigerator 102 are constant flow types, the diameter is determined to be suitable when 100% flow rate flows under a predetermined design condition, and the same diameter as the bypass pipe 53 in the present embodiment. It becomes.

上述のようにバイパス管53及び合流管51の口径を選定することにより、バイパス管53及び合流管51の設計水量通水時の各々の全配管抵抗(流動抵抗)はほぼ同等となるが、配管経路の差異(例えば曲部の数の差異等)や配管口径の規格による制約で、合流管51の全配管抵抗がバイパス管53の全配管抵抗よりも大きくなる場合は、設計条件(例えば単位摩擦損失)の変更あるいは開度調節が可能な弁を設ける等の措置を施して、合流管51の全配管抵抗がバイパス管53の全配管抵抗よりも大きくならないようにすることが好ましい。   By selecting the diameters of the bypass pipe 53 and the merging pipe 51 as described above, the total pipe resistance (flow resistance) of each of the bypass pipe 53 and the merging pipe 51 at the time of passing the design water flow is substantially equal. If the total pipe resistance of the merging pipe 51 is larger than the total pipe resistance of the bypass pipe 53 due to restrictions on the path (for example, the number of curved portions, etc.) and restrictions on the pipe diameter, design conditions (for example, unit friction) It is preferable to take measures such as changing a loss) or providing a valve capable of adjusting the opening so that the total pipe resistance of the merging pipe 51 does not become larger than the total pipe resistance of the bypass pipe 53.

引き続き図1を参照して、熱源システム1の作用を説明する。負荷系統99の熱負荷が冷凍機1台分である場合、第1冷凍機101が運転している一方で第2冷凍機102は停止している。第1冷凍機101が運転しているときは、第1冷水ポンプ19も連動して運転している。第1冷凍機101で製造された第1往冷水CS1が負荷系統99側で要求される温度まで冷却されていると、第1制御弁12は開となる。すると、第1冷凍機101から導出された第1往冷水CS1は、合流管51及びバイパス管53を、両者の流動抵抗が等しくなる流量配分で流れて1次往ヘッダ61に流入する。   With continued reference to FIG. 1, the operation of the heat source system 1 will be described. When the heat load of the load system 99 is for one refrigerator, the first refrigerator 101 is operating while the second refrigerator 102 is stopped. When the first refrigerator 101 is operating, the first cold water pump 19 is also operating in conjunction. When the first cooling water CS1 produced by the first refrigerator 101 is cooled to a temperature required on the load system 99 side, the first control valve 12 is opened. Then, the 1st going cold water CS1 derived | led-out from the 1st refrigerator 101 flows into the primary going header 61 through the confluence | merging pipe | tube 51 and the bypass pipe 53 by the flow volume distribution from which both flow resistance becomes equal.

負荷系統99側への往冷水CSの供給は、2次冷水ポンプ64の起動により行われる。2次冷水ポンプ64が起動すると、1次往ヘッダ61内の往冷水CSが、往ヘッダ接続管63及び2次往ヘッダ62を介して負荷配管99pに流入し、負荷機器99mに向かって流れる。負荷機器99mに供給された往冷水CSは、冷熱が利用され温度が上昇して還冷水CRとなり、負荷配管99pを流れて還集合部68に流入する。なお、1次往ヘッダ61に流入する往冷水CSの流量よりも負荷系統99に供給される往冷水CSの流量が少ない場合は、余剰分の往冷水CSが連通管55を流れて還集合部68に流入して負荷系統99から還ってきた還冷水CRに合流する。還集合部68内の還冷水CRは、共通還管58及び第1冷水還管18を介して第1冷凍機101に流入し、負荷系統99側で要求される温度まで冷却されて第1往冷水CS1となり、再び第1冷水往管11及び合流管51を流れて1次往ヘッダ61に流入し、以降上述の作用を繰り返す。   Supply of the forward cold water CS to the load system 99 side is performed by starting the secondary cold water pump 64. When the secondary chilled water pump 64 is activated, the forward chilled water CS in the primary forward header 61 flows into the load pipe 99p via the forward header connection pipe 63 and the secondary forward header 62, and flows toward the load device 99m. The cold water CS supplied to the load device 99m rises in temperature due to the use of cold heat and becomes return cold water CR, flows through the load pipe 99p, and flows into the return collecting portion 68. When the flow rate of the forward cooling water CS supplied to the load system 99 is smaller than the flow rate of the forward cooling water CS flowing into the primary outgoing header 61, the surplus forward cooling water CS flows through the communication pipe 55 and returns to the return collecting portion. It flows into 68 and merges with the return cold water CR returned from the load system 99. The return chilled water CR in the return collecting unit 68 flows into the first refrigerator 101 through the common return pipe 58 and the first chilled water return pipe 18 and is cooled to the temperature required on the load system 99 side to be first sent. It becomes the cold water CS1, flows again through the first cold water outgoing pipe 11 and the junction pipe 51, flows into the primary outgoing header 61, and thereafter repeats the above-described operation.

上述のような、第1冷凍機101が運転し、第2冷凍機102が停止している状態で、負荷系統99の熱負荷が増大した場合、第2冷凍機102が追従して起動される。第2冷凍機102が起動される際は、第2冷水ポンプ29も連動して起動される。ところが冷凍機は、一般に、起動直後には所定温度(典型的には負荷系統99側で要求される温度)の冷水Cが製造されず、一旦冷水Cの温度が下がり始めると急激に所定温度まで低下するという特性を有する。第2冷凍機102が起動直後の負荷系統99側で要求される温度まで冷却されていない往冷水CSが負荷系統99に供給されると、適切な負荷処理ができず、特に負荷系統99にクリーンルームの冷房のような精密空調がある場合は、不都合が大きい。そのため、第2冷凍機102が起動される際は、第2制御弁22が閉にされる。第2制御弁22が閉にされると、第2冷凍機102から導出された第2往冷水CS2は、第2冷水往管21から第2抜出管23に流入し、バイパス管53を通って連通管55に至る。他方、第1冷凍機101から導出された第1往冷水CS1は、合流管51及びバイパス管53の配管抵抗のバランスと、バイパス管53内にはすべての第2往冷水CS2が流れることとが相俟って、特に第1抜出管13を閉鎖しなくても、より合流管51に流れやすくなっている。このようにして、負荷系統99側で要求される温度まで冷却されている第1往冷水CS1は1次往ヘッダ61に流入し、負荷系統99側で要求される温度まで冷却されていない第2往冷水CS2は連通管55に流入する。   When the heat load of the load system 99 increases in the state where the first refrigerator 101 is operating and the second refrigerator 102 is stopped as described above, the second refrigerator 102 is started to follow up. . When the second refrigerator 102 is activated, the second cold water pump 29 is also activated in conjunction. However, the refrigerator generally does not produce cold water C at a predetermined temperature (typically a temperature required on the load system 99 side) immediately after start-up, and once the temperature of the cold water C starts to drop, the cold water C suddenly reaches a predetermined temperature. It has the characteristic that it falls. When the cold water CS that has not been cooled to the temperature required by the load system 99 immediately after the second refrigerator 102 is started is supplied to the load system 99, appropriate load processing cannot be performed. When there is precision air conditioning such as air conditioning, there is a great disadvantage. Therefore, the second control valve 22 is closed when the second refrigerator 102 is started. When the second control valve 22 is closed, the second outgoing cold water CS2 led out from the second refrigerator 102 flows into the second extraction pipe 23 from the second cold water outgoing pipe 21 and passes through the bypass pipe 53. To the communication pipe 55. On the other hand, in the first outgoing cold water CS1 derived from the first refrigerator 101, the balance of the piping resistance of the merging pipe 51 and the bypass pipe 53 and all the second outgoing cold water CS2 may flow in the bypass pipe 53. Together, it is easier to flow to the merge pipe 51 without particularly closing the first extraction pipe 13. Thus, the 1st going-chilled water CS1 cooled to the temperature requested | required by the load system 99 side flows into the primary going header 61, and is not cooled to the temperature requested | required by the load system 99 side. The cooling water CS2 flows into the communication pipe 55.

1次往ヘッダ61に流入した第1往冷水CS1は、負荷に応じて回転速度が調節される2次冷水ポンプ64によって、適切な流量が負荷系統99に送水される。1次往ヘッダ61に流入した第1往冷水CS1が余剰となった場合は、余剰分が連通管55を介して還集合部68に送水される。負荷系統99に供給された第1往冷水CS1は、上述のように、負荷機器99mで冷熱が利用され温度が上昇して還冷水CRとなった後に還集合部68に流入する。他方、連通管55に流入した第2往冷水CS2は、2次冷水ポンプ64の吐出流量が1次往ヘッダ61に流入する第1往冷水CS1の流量以下であることから、連通管55を介して還集合部68に流入する。   The first outgoing chilled water CS1 that has flowed into the primary outgoing header 61 is supplied with an appropriate flow rate to the load system 99 by the secondary chilled water pump 64 whose rotational speed is adjusted according to the load. When the first outgoing cold water CS1 flowing into the primary outgoing header 61 becomes surplus, the surplus is sent to the return collecting unit 68 through the communication pipe 55. The first outgoing cold water CS1 supplied to the load system 99 flows into the return collecting unit 68 after the cold energy is used by the load device 99m and the temperature rises to become the return cold water CR as described above. On the other hand, the second outgoing chilled water CS2 that has flowed into the communication pipe 55 passes through the communication pipe 55 because the discharge flow rate of the secondary chilled water pump 64 is less than or equal to the flow rate of the first outgoing chilled water CS1 that flows into the primary forward header 61. And flows into the return gathering section 68.

還集合部68に流入した第2往冷水CS2は、負荷系統99側から還ってきた還冷水CRと混合する。その後還冷水CRは、共通還管58を流れた後に第1冷水還管18と第2冷水還管28とに分配され、第1還冷水CR1として第1冷凍機101に、及び第2還冷水CR2として第2冷凍機102に、それぞれ導入される。   The 2nd cold water CS2 which flowed into the return gathering part 68 is mixed with the return cold water CR which returned from the load system | strain 99 side. After that, the return cold water CR flows through the common return pipe 58 and then is distributed to the first cold water return pipe 18 and the second cold water return pipe 28, and is supplied to the first refrigerator 101 as the first return cold water CR1 and the second return cold water. CR2 is introduced into the second refrigerator 102, respectively.

本実施の形態では、第2冷凍機102が立ち上がって第2往冷水CS2の温度が急激に低下するようになった場合でも、負荷系統99に供給されない第2往冷水CS2は、還集合部68において還冷水CRと混合されたうえで第1冷凍機101及び第2冷凍機102に流入するので、負荷系統99側で要求される温度に近い低温の冷水Cが各冷凍機101、102に導入されることを防ぐことができ、各冷凍機101、102が保護装置の作動で停止してしまうことを回避することができる。なお、温度が低い第2往冷水CS2が連通管55を介して還集合部68に流入することにより還冷水CRの温度が低下した場合は、各冷凍機101、102における冷凍負荷が小さくなる。   In the present embodiment, even when the second refrigerator 102 starts up and the temperature of the second outgoing chilled water CS2 suddenly decreases, the second outgoing chilled water CS2 that is not supplied to the load system 99 is returned to the return collecting unit 68. Is mixed with the return cold water CR and then flows into the first refrigerator 101 and the second refrigerator 102, so that low-temperature cold water C close to the temperature required on the load system 99 side is introduced into each refrigerator 101, 102. It can prevent that each refrigerator 101,102 stops by the action | operation of a protective device. In addition, when the temperature of return cold water CR falls because the 2nd cold water CS2 with low temperature flows in into the return collection part 68 via the communicating pipe 55, the refrigerating load in each refrigerator 101,102 becomes small.

第2冷凍機102から導出された第2往冷水CS2が負荷系統99側で要求される温度まで下がるようになると、第2制御弁22は開となる。第2制御弁22が開になると、第2冷水往管21を流れる第2往冷水CS2は、第2抜出管23に流入する流れと合流管51に向かう流れとに分配される。他方、第1冷水往管11を流れる第1往冷水CS1は、第2往冷水CS2の一部が合流管51に流入することに伴い、一部が第1抜出管13を介してバイパス管53に流入することとなる。このとき、第1往冷水CS1及び第2往冷水CS2の、合流管51とバイパス管53との分配比率は、特別な弁操作が行われることなく、1次往ヘッダ61に至るまでの配管抵抗のバランスによって決まる。そして、2次冷水ポンプ64の回転速度が負荷系統99の冷熱負荷の増大に伴い増加されると、合流管51を介して1次往ヘッダ61に流入した往冷水CSに加えて、バイパス管53を流れる往冷水CSの一部又は全部も1次往ヘッダ61に流入して負荷系統99に供給されるようになる。このように、バイパス管53は、冷凍機の起動時はバイパス用の管として機能すると共に、定常運転時は冷水往管として機能することとなる。バイパス管53がバイパス用と負荷系統99側供給用との2つの機能を兼用することができると共に、定常運転時は合流管51とバイパス管53とを合わせて負荷系統99に往冷水CSを供給することができるように合流管51及びバイパス管53の口径を決定しているため、従来のように起動時用のバイパス管を専用に設ける場合に比べて、配管の重量及び切換弁の数を少なくすることができ、システム構築の簡略化(施工の省力化)及びイニシャルコストの低減を図ることができる。   When the second outgoing cold water CS2 derived from the second refrigerator 102 is lowered to the temperature required on the load system 99 side, the second control valve 22 is opened. When the second control valve 22 is opened, the second outgoing cold water CS2 flowing through the second cold water outgoing pipe 21 is distributed into a flow flowing into the second extraction pipe 23 and a flow toward the merge pipe 51. On the other hand, the first outgoing cold water CS1 flowing through the first outgoing cold water pipe 11 is partially bypassed via the first outlet pipe 13 as part of the second outgoing cold water CS2 flows into the merge pipe 51. 53 will flow in. At this time, the distribution ratio of the first outgoing cold water CS1 and the second outgoing cold water CS2 between the merging pipe 51 and the bypass pipe 53 is the pipe resistance up to the primary outgoing header 61 without any special valve operation. It depends on the balance. When the rotational speed of the secondary chilled water pump 64 is increased as the cooling load of the load system 99 increases, the bypass pipe 53 is added to the forward chilled water CS flowing into the primary forward header 61 through the merging pipe 51. A part or all of the cooling water CS flowing through the pipe flows into the primary header 61 and is supplied to the load system 99. As described above, the bypass pipe 53 functions as a bypass pipe when the refrigerator is started, and also functions as a cold water outgoing pipe during steady operation. The bypass pipe 53 can be used for both functions of bypass and supply to the load system 99 side, and in the normal operation, the merge pipe 51 and the bypass pipe 53 are combined to supply the forward cooling water CS to the load system 99. Since the diameters of the merging pipe 51 and the bypass pipe 53 are determined so as to be able to do so, the weight of the pipe and the number of switching valves are reduced as compared with the case where a bypass pipe for starting is provided exclusively as in the prior art. It is possible to reduce the number of systems, simplify the system construction (labor saving work), and reduce the initial cost.

上述のような、第1冷凍機101及び第2冷凍機102が運転している状態で、負荷系統99の熱負荷が減少して1台の冷凍機を停止させる場合は、2次冷水ポンプ64の回転速度を減少させると共に停止させる冷凍機の系統の制御弁を閉にする。ここでは、第2冷凍機102を追いかけ起動させる前に運転されていた第1冷凍機101を停止させることとして説明する。つまり、第1制御弁12が閉となる。すると、第2往冷水CS2が合流管51及び1次往ヘッダ61を介して負荷系統99に供給される一方、第1往冷水CS1はバイパス管53及び連通管55を介して還集合部68に導入されるようになる。第1制御弁12を閉にしたら、第1冷凍機101内の冷凍サイクル(冷媒(不図示)の循環)を停止させる。このとき、第1冷水ポンプ19は運転したままである。第1冷水ポンプ19を運転させ、第1冷凍機101内の冷凍サイクルを停止(冷却水CDを介した大気との熱交換の停止を含む)させると、第1冷凍機101から導出される第1往冷水CS1の温度が徐々に上昇する。しかしながら、第1往冷水CS1は負荷系統99側に供給されることなくバイパス管53及び連通管55を介して冷凍機に循環されるため、負荷系統99が要求するよりも温度が高い往冷水CSが負荷系統99に供給されることを回避することができる。第1冷凍機101から導出される第1往冷水CS1の温度が、第1冷凍機101内を循環する冷媒(不図示)の放熱が完了したと判断できる程度に上昇したら、第1冷水ポンプ19を停止させ、第2冷凍機102の1台が運転している状態とする。   When the first refrigerator 101 and the second refrigerator 102 are in operation as described above and the thermal load of the load system 99 decreases and one refrigerator is stopped, the secondary chilled water pump 64 is used. The control valve of the refrigerator system that reduces and stops the rotation speed of the compressor is closed. Here, it demonstrates as stopping the 1st refrigerator 101 which was driving | operating before chasing and starting the 2nd refrigerator 102. That is, the first control valve 12 is closed. Then, the second outgoing cold water CS2 is supplied to the load system 99 via the junction pipe 51 and the primary outgoing header 61, while the first outgoing cold water CS1 is supplied to the return collecting unit 68 via the bypass pipe 53 and the communication pipe 55. Will be introduced. When the first control valve 12 is closed, the refrigeration cycle (circulation of refrigerant (not shown)) in the first refrigerator 101 is stopped. At this time, the first cold water pump 19 remains in operation. When the first chilled water pump 19 is operated and the refrigeration cycle in the first refrigerator 101 is stopped (including the stop of heat exchange with the atmosphere via the cooling water CD), the first refrigeration cycle is derived from the first refrigerator 101. 1 The temperature of the cold water CS1 gradually rises. However, since the first cooling water CS1 is circulated to the refrigerator via the bypass pipe 53 and the communication pipe 55 without being supplied to the load system 99, the cooling water CS having a temperature higher than that required by the load system 99. Can be prevented from being supplied to the load system 99. When the temperature of the first cooling water CS1 derived from the first refrigerator 101 rises to such an extent that it can be determined that the heat radiation of the refrigerant (not shown) circulating in the first refrigerator 101 has been completed, the first cold water pump 19 Is set to a state in which one of the second refrigerators 102 is operating.

以上で説明したように、熱源システム1では、冷凍機の起動過程で急激に温度が低下した冷水が冷凍機に導入されること(ショートサーキット)に起因する冷凍機の意図しない停止を回避することができ、配管重量及び制御弁の数を削減できるためにシステム構築の省力化及びイニシャルコストの低減を図ることができる。さらに、熱源システム1では、制御弁が故障して開かなくなった場合であっても、バイパス管53を介して負荷系統99に往冷水CSを供給することができ、バイパス管53を制御弁故障時のバックアップルートとすることができるので、負荷系統99への冷熱の供給という本来の目的を達成することが可能となる。   As described above, in the heat source system 1, avoiding an unintended stop of the refrigerator due to the introduction of cold water whose temperature is suddenly reduced during the startup process of the refrigerator (short circuit). Since the weight of the pipe and the number of control valves can be reduced, it is possible to save the system construction and reduce the initial cost. Furthermore, in the heat source system 1, even when the control valve fails and cannot be opened, the cold water CS can be supplied to the load system 99 via the bypass pipe 53, and the bypass pipe 53 is provided when the control valve fails. Therefore, the original purpose of supplying cold heat to the load system 99 can be achieved.

次に図2を参照して、本発明の第2の実施の形態に係る熱源システム2を説明する。図2は、熱源システム2の模式的系統図である。熱源システム2の、熱源システム1(図1参照)と異なる点は、フリークーリング(外気の冷熱を冷水Cの冷却に利用する方式)を可能にする構成を備えている点である。すなわち、熱源システム2の構成は、熱源システム1(図1参照)の構成に加えてさらに、冷凍機群100に対して並列に配置された熱交換器83と、冷却塔42において外気と熱交換する熱媒体としての外気熱媒水CFを熱交換器83に導出入させる外気熱媒水往管86及び外気熱媒水還管88と、熱媒体としての冷水Cを効果的に流動させる配管類(後に詳述する)とを備えている。   Next, with reference to FIG. 2, the heat source system 2 which concerns on the 2nd Embodiment of this invention is demonstrated. FIG. 2 is a schematic system diagram of the heat source system 2. The heat source system 2 is different from the heat source system 1 (see FIG. 1) in that the heat source system 2 has a configuration that enables free cooling (a method in which cold air from outside air is used for cooling the cold water C). That is, the configuration of the heat source system 2 includes heat exchanger 83 arranged in parallel to the refrigerator group 100 in addition to the configuration of the heat source system 1 (see FIG. 1), and heat exchange with outside air in the cooling tower 42. The outside air heat medium water outlet pipe 86 and the outside air heat medium water return pipe 88 for bringing the outside air heat medium water CF as the heat medium into and out of the heat exchanger 83, and piping for effectively flowing the cold water C as the heat medium (Which will be described in detail later).

熱交換器83は、外気熱媒水CFを介して間接に外気と冷水Cとで熱交換させる機器であり、プレート型熱交換器が好適に用いられる。熱交換器83には、外気と熱交換して温度が低下した外気熱媒水CFである往外気熱媒水CFSを導入する外気熱媒水往管86の一端が接続されていると共に、熱交換器83で冷水と熱交換して温度が上昇した外気熱媒水CFである還外気熱媒水CFRを導出する外気熱媒水還管88の一端が接続されている。外気熱媒水往管86の他端は冷却水往管46に接続され、外気熱媒水還管88の他端は冷却水還管48に接続されている。これにより、冷却水ポンプ44を運転することで外気熱媒水CFを熱交換器83と冷却塔42との間で循環させることができるように構成されている。なお、外気熱媒水CFは、第2冷凍機102が運転される際は第2冷凍機102と冷却塔42とを循環する冷却水CDとして用いられる熱媒体であり、この冷却塔42まわりの配管46、48、86、88には、第2冷凍機102の運転時は冷却水CDが熱交換器83に導入されず、フリークーリング運転時は外気熱媒水CFが第2冷凍機102に導入されないように、開閉弁(不図示)が適切な場所に設けられている。   The heat exchanger 83 is a device that indirectly exchanges heat between the outside air and the cold water C via the outside air heat transfer water CF, and a plate heat exchanger is preferably used. The heat exchanger 83 is connected to one end of an outside air heat transfer water pipe 86 that introduces the outside air heat transfer medium CFS that is an outside air heat transfer medium CF whose temperature is reduced by exchanging heat with the outside air. One end of an outside air heat medium water return pipe 88 for connecting the outside air heat medium water CFR, which is the outside air heat medium water CF whose temperature has been increased by exchanging heat with cold water in the exchanger 83, is connected. The other end of the outside air heat transfer water pipe 86 is connected to the cooling water return pipe 46, and the other end of the outside air heat transfer medium water return pipe 88 is connected to the cooling water return pipe 48. Accordingly, the outside air heat transfer water CF can be circulated between the heat exchanger 83 and the cooling tower 42 by operating the cooling water pump 44. The outside air heat transfer water CF is a heat medium used as the cooling water CD that circulates between the second refrigerator 102 and the cooling tower 42 when the second refrigerator 102 is operated. In the pipes 46, 48, 86, 88, the cooling water CD is not introduced into the heat exchanger 83 during the operation of the second refrigerator 102, and the outside heat transfer water CF is supplied to the second refrigerator 102 during the free cooling operation. An on-off valve (not shown) is provided at an appropriate place so as not to be introduced.

熱交換器83は、冷水Cを導入し、冷却して導出するという作用及び機能において各冷凍機101、102と共通している。熱交換器83まわりには、冷水Cの系統の配管類として、熱交換器83が第1冷凍機101と同等の冷凍機であると仮定した場合において有するべき冷凍機まわりの配管類を有している。つまり、熱交換器83まわりには、第1冷凍機101における第1冷水往管11、第1制御弁12、第1抜出管13、第1逆止弁14、第1温度センサ15、第1冷水還管18、第1冷水ポンプ19に対応する構成として、第3冷水往管31、第3制御弁32、第3抜出管33、第3逆止弁34、第3温度センサ35、第3冷水還管38、第3冷水ポンプ39がそれぞれ設けられている。   The heat exchanger 83 is in common with each of the refrigerators 101 and 102 in the function and function of introducing the cold water C, cooling it, and deriving it. Around the heat exchanger 83, as the piping of the cold water C system, there are piping around the refrigerator that the heat exchanger 83 should have when assuming that the heat exchanger 83 is a refrigerator equivalent to the first refrigerator 101. ing. That is, around the heat exchanger 83, the first cold water outgoing pipe 11, the first control valve 12, the first extraction pipe 13, the first check valve 14, the first temperature sensor 15, As a structure corresponding to the 1 cold water return pipe 18 and the 1st cold water pump 19, the 3rd cold water outgoing pipe 31, the 3rd control valve 32, the 3rd extraction pipe 33, the 3rd check valve 34, the 3rd temperature sensor 35, A third cold water return pipe 38 and a third cold water pump 39 are provided.

第3冷水往管31は、供給接続部P2で第2冷水往管21に接続されており、この場合は供給接続部P1と供給接続部P2とが第3冷水往管31よりも太く合流管51よりも細い準合流管51aで接続される。合流管51の口径は、熱源システム1(図1参照)と同様、冷凍機群100を構成する各冷凍機の冷水Cの定格流量を合計した流量(合計流量)からバイパス管53を流れる冷水Cの設計流量を差し引いた流量に応じて決定された口径となっている。なお、第3冷水往管31は、供給接続部P1に直接接続されていてもよい。第3抜出管33は、抜出接続部P4で第2抜出管23に接続されおり、この場合は抜出接続部P3と抜出接続部P4とが準バイパス管53aで接続される。このとき、バイパス管53、準バイパス管53a、第3抜出管33は、同一口径となっている。なお、第3抜出管33は、抜出接続部P3に直接接続されていてもよい。第3冷水還管38は、第2冷水還管28に接続されており、この場合は、共通還管58と第1冷水還管18との接続部と、第2冷水還管28と第3冷水還管38との接続部とが、共通還管58よりも細く第3冷水還管38よりも太い準共通還管58aで接続される。なお、第3冷水還管38は、共通還管58と第1冷水還管18との接続部に接続されていてもよい。   The third chilled water outgoing pipe 31 is connected to the second chilled water outgoing pipe 21 at the supply connecting portion P2. In this case, the supply connecting portion P1 and the supply connecting portion P2 are thicker than the third cold water outgoing pipe 31. They are connected by a quasi-merging pipe 51a thinner than 51. As with the heat source system 1 (see FIG. 1), the diameter of the merging pipe 51 is chilled water C flowing through the bypass pipe 53 from the total flow rate (total flow rate) of the chilled water C of the chillers constituting the chiller group 100. The diameter is determined according to the flow rate obtained by subtracting the design flow rate. In addition, the 3rd cold water outgoing pipe 31 may be directly connected to the supply connection part P1. The third extraction pipe 33 is connected to the second extraction pipe 23 at the extraction connection part P4. In this case, the extraction connection part P3 and the extraction connection part P4 are connected by the semi-bypass pipe 53a. At this time, the bypass pipe 53, the semi-bypass pipe 53a, and the third extraction pipe 33 have the same diameter. Note that the third extraction pipe 33 may be directly connected to the extraction connection part P3. The third cold water return pipe 38 is connected to the second cold water return pipe 28. In this case, the connection portion between the common return pipe 58 and the first cold water return pipe 18, the second cold water return pipe 28, and the third cold water return pipe 28 are connected. The connecting portion with the cold water return pipe 38 is connected with a semi-common return pipe 58 a that is thinner than the common return pipe 58 and thicker than the third cold water return pipe 38. The third cold water return pipe 38 may be connected to a connection portion between the common return pipe 58 and the first cold water return pipe 18.

引き続き図2を参照して、熱源システム2の作用を説明する。熱源システム2では、通常、第3制御弁32が閉となっている。冷却塔42まわりの外気湿球温度が、外気熱媒水CF及び冷水Cの熱交換効率を考慮しても還冷水CRより低い温度となる場合(熱交換器83における外気熱媒水CFと冷水Cとの熱交換により冷水Cを冷却できる場合)であって、かつ第2冷凍機102を停止させていることができる場合は、冷却水ポンプ44を起動して外気熱媒水CFを冷却塔42と熱交換器83との間で循環させる。外気熱媒水CFが、冷却塔42において外気と熱交換することにより温度が低下し、熱交換器83内に導入される第3還冷水CR3を冷却できる温度になったら、第3冷水ポンプ39を起動して第3還冷水CR3を熱交換器83に導入する。   With continued reference to FIG. 2, the operation of the heat source system 2 will be described. In the heat source system 2, the third control valve 32 is normally closed. When the outside air wet bulb temperature around the cooling tower 42 is lower than the return cold water CR even when the heat exchange efficiency of the outside air heat transfer water CF and the cold water C is taken into consideration (the outside air heat transfer water CF and the cold water in the heat exchanger 83) In the case where the chilled water C can be cooled by heat exchange with the C) and the second refrigerator 102 can be stopped, the cooling water pump 44 is started and the outside heat transfer water CF is cooled by the cooling tower. 42 and the heat exchanger 83 are circulated. When the temperature of the outside heat transfer water CF is reduced by exchanging heat with the outside air in the cooling tower 42 and reaches a temperature at which the third return cold water CR3 introduced into the heat exchanger 83 can be cooled, the third cold water pump 39 And the third return cold water CR3 is introduced into the heat exchanger 83.

熱交換器83では往外気熱媒水CFSと第3還冷水CR3とで熱交換が行われ、往外気熱媒水CFSは温度が上昇して還外気熱媒水CFRとなり、第3還冷水CR3は温度が低下して第3往冷水CS3となる。還外気熱媒水CFRは、熱交換器83から導出されると冷却塔42に導かれ、外気と熱交換して冷却されて再び往外気熱媒水CFSとなり、熱交換器83に導入される。他方、第3往冷水CS3は、熱交換器83から導出されると、通常の第3制御弁32が閉になっている場合は第3抜出管33に流入し、第3温度センサ35で検出された温度が負荷系統99の要求する温度まで低下している場合は第3制御弁32が開にされたうえで第3抜出管33に流入するほか準合流管51aに向かって第3冷水往管31を流れる。   In the heat exchanger 83, heat exchange is performed between the outside air heat medium water CFS and the third return cold water CR3, and the temperature of the outside air heat medium water CFS rises to become the return outside air heat medium water CFR, and the third return cold water CR3. Decreases in temperature and becomes third outgoing cold water CS3. When the returned outside air heat transfer water CFR is led out from the heat exchanger 83, it is led to the cooling tower 42, is cooled by exchanging heat with the outside air, and becomes the outside air heat transfer water CFS again, and is introduced into the heat exchanger 83. . On the other hand, when the third outgoing cold water CS3 is led out from the heat exchanger 83, it flows into the third extraction pipe 33 when the normal third control valve 32 is closed, and the third temperature sensor 35 When the detected temperature is lowered to the temperature required by the load system 99, the third control valve 32 is opened and then flows into the third extraction pipe 33 and the third toward the quasi-merging pipe 51a. It flows through the cold water outgoing pipe 31.

第3温度センサ35で検出された温度が負荷系統99の要求する温度まで低下して第3制御弁32が開になった場合、第3往冷水CS3は、準合流管51a及び合流管51並びに準バイパス管53a及びバイパス管53を、両者の流動抵抗が等しくなる流量配分で流れて往冷水CSとして1次往ヘッダ61に流入する。1次往ヘッダ61に流入した往冷水CSは、2次冷水ポンプ64により負荷系統99に供給され、負荷機器99mにおいて冷熱負荷が処理されて温度が上昇して還冷水CRとなった後に、還集合部68を介して熱交換器83に(第1冷凍機101が運転していない場合)又は第1冷凍機101と熱交換器83とに導入され、再び冷却されて往冷水CSとして導出される。他方、第3温度センサ35で検出された温度が負荷系統99の要求する温度まで低下せずに第3制御弁32が閉の場合、第3抜出管33に流入した第3往冷水CS3は、準バイパス管53a及びバイパス管53を介して連通管55に流入し、負荷系統99を経由せずに還集合部68に導入され、負荷系統99から還ってきた還冷水CRに合流する。これにより、負荷系統99から還ってきた還冷水CRの温度が低下する。温度が低下した還冷水CRは、第1冷凍機101及び熱交換器83に流入する。このとき、第1冷凍機101に導入される還冷水CRは、フリークーリング運転をしていない場合に比べて低温となるので、第1冷凍機101で処理する熱量が少なくなり、第1冷凍機101の効率を向上させることができる。なお、熱源システム2では、フリークーリング運転が行われていないときは、熱源システム1(図1参照)と同様の運転が行われる。   When the temperature detected by the third temperature sensor 35 is lowered to the temperature required by the load system 99 and the third control valve 32 is opened, the third outgoing chilled water CS3 includes the quasi-merging pipe 51a, the merging pipe 51, and The quasi-bypass pipe 53a and the bypass pipe 53 flow at a flow rate distribution in which both flow resistances are equal, and flow into the primary forward header 61 as the forward cold water CS. The cold water CS that has flowed into the primary forward header 61 is supplied to the load system 99 by the secondary cold water pump 64, the cold load is processed in the load device 99m, and the temperature rises to become the return cold water CR. It is introduced into the heat exchanger 83 (when the first refrigerator 101 is not in operation) or the first refrigerator 101 and the heat exchanger 83 through the collecting unit 68, and is cooled again and led out as the cooling water CS. The On the other hand, when the temperature detected by the third temperature sensor 35 does not decrease to the temperature required by the load system 99 and the third control valve 32 is closed, the third outgoing cold water CS3 flowing into the third extraction pipe 33 is Then, it flows into the communication pipe 55 via the semi-bypass pipe 53 a and the bypass pipe 53, is introduced into the return collecting unit 68 without passing through the load system 99, and merges with the return cold water CR returned from the load system 99. Thereby, the temperature of the return cold water CR which returned from the load system | strain 99 falls. The return cold water CR whose temperature has decreased flows into the first refrigerator 101 and the heat exchanger 83. At this time, since the return cold water CR introduced into the first refrigerator 101 is at a lower temperature than when the free cooling operation is not performed, the amount of heat to be processed by the first refrigerator 101 is reduced, and the first refrigerator 101 efficiency can be improved. In the heat source system 2, when the free cooling operation is not performed, the same operation as that of the heat source system 1 (see FIG. 1) is performed.

以上で説明したように、熱源システム2では、外気湿球温度が第3還冷水CR3を冷却可能な程度に低下したときに少なくとも1台の冷凍機を停止させて負荷系統99の冷熱処理をすることができるので省エネルギーとなる。また、第3往冷水CS3が負荷系統99の要求する温度まで低下し、負荷系統99の冷熱負荷を処理するのに足りる流量となる場合は、冷凍機群100を停止することができるのでさらなる省エネルギーとなる。他方、第3往冷水CS3が負荷系統99の要求する温度まで低下しない場合であっても、冷凍機群100に導入される還冷水CRの予冷を行うことが可能となるため、フリークーリングを実施可能な時期が従来よりも拡大することとなり、より省エネルギーに資することとなる。   As described above, in the heat source system 2, when the outdoor wet bulb temperature is lowered to the extent that the third return cold water CR <b> 3 can be cooled, at least one refrigerator is stopped to perform the heat treatment of the load system 99. Can save energy. Further, when the third outgoing chilled water CS3 falls to a temperature required by the load system 99 and the flow rate is sufficient to handle the cooling load of the load system 99, the refrigerator group 100 can be stopped, and thus further energy saving. It becomes. On the other hand, even when the third outgoing chilled water CS3 does not decrease to the temperature required by the load system 99, the return chilled water CR introduced into the refrigerator group 100 can be pre-cooled, so free cooling is performed. The possible time will be expanded more than before, which will contribute to energy saving.

以上の熱源システム2の説明では、冷水Cが外気熱媒水CFを介して間接に外気と熱交換されることとしたが、熱交換器83を省略して第3還冷水CR3を直接冷却塔42に導入して外気と直接熱交換させ、第3還冷水CR3を温度が低い第3往冷水として第3冷水往管31に導出することとしてもよい。この場合は、冷水Cの配管経路内へのゴミやスケールの侵入防止及び水質管理の観点から、冷却塔42を密閉式とすることが好ましい。   In the description of the heat source system 2 described above, the cold water C is indirectly heat-exchanged with the outside air via the outside air heat transfer water CF, but the heat exchanger 83 is omitted and the third return cold water CR3 is directly cooled by the cooling tower. It is good also as introducing into 42 and carrying out direct heat exchange with external air, and leading out the 3rd return cold water CR3 to the 3rd cold water outgoing pipe 31 as the 3rd cold water having a low temperature. In this case, it is preferable to make the cooling tower 42 hermetically sealed from the viewpoint of preventing intrusion of dust and scale into the piping path of the cold water C and managing water quality.

以上の説明では、説明を簡単にするために、冷凍機群100が第1冷凍機101及び第2冷凍機102の2台の冷凍機で構成されていることとして説明したが、3台以上の冷凍機が並列に配列されて冷凍機群100が構成されていてもよい。この場合、典型的には、並列に接続された冷凍機まわりのそれぞれに、開閉弁が設けられた冷水往管、逆止弁が設けられた抜出管、及び冷水ポンプが配設された冷水還管が設置されることとなる。そして、各抜出管を流れた往冷水CSがバイパス管53を介して連通管55に流入するような配管の接続関係が構築される。なお、冷凍機は複数に分割されていてもよい。これを換言すれば、冷凍機が直列に配置されている場合は、直列に配置された冷凍機全体を、冷凍機群100における1台の冷凍機と考えることとなる。   In the above description, in order to simplify the description, the refrigerator group 100 has been described as being configured by two refrigerators, the first refrigerator 101 and the second refrigerator 102, but three or more The refrigerator group 100 may be configured by arranging the refrigerators in parallel. In this case, typically, chilled water in which a chilled water outgoing pipe provided with an on-off valve, an extraction pipe provided with a check valve, and a chilled water pump are arranged around each of the refrigerators connected in parallel. A return pipe will be installed. And the connection relation of piping is constructed so that the cold water CS flowing through each extraction pipe flows into the communication pipe 55 via the bypass pipe 53. In addition, the refrigerator may be divided into a plurality. In other words, when the refrigerators are arranged in series, the whole refrigerator arranged in series is considered as one refrigerator in the refrigerator group 100.

以上の説明では、第1往冷水CS1と第2往冷水CS2と(熱源システム2の場合は第3往冷水CS3も)が合流して合流管51を介して1次往ヘッダ61に流入することとしたが、合流させずに個別に1次往ヘッダ61に流入するように構成されていてもよい。冷凍機群100が3台以上の並列に配列された冷凍機を有する場合は、各冷凍機から導出された往冷水CSのそれぞれを別個に又はいくつかのグループごとに、1次往ヘッダ61に流入することとしてもよい。別個に流入させることとすると、配管抵抗が変わらない構成とすることができる。しかしながら、各往冷水CSを合流させて流す合流管51とすると、合流管51の口径を、冷凍機群100を構成する各冷凍機の冷水Cの定格流量を合計した流量(合計流量)からバイパス管53を流れる冷水Cの設計流量を差し引いた流量に応じて決定された口径とすることができ、配管重量を小さくすることができる。   In the above description, the first outgoing cold water CS1 and the second outgoing cold water CS2 (and the third outgoing cold water CS3 in the case of the heat source system 2) merge and flow into the primary outgoing header 61 via the merge pipe 51. However, it may be configured to individually flow into the first forward header 61 without being merged. When the refrigerator group 100 has three or more refrigerators arranged in parallel, each of the cooling water CS derived from each refrigerator is separately or in several groups in the primary outgoing header 61. It may be inflow. If it is made to flow separately, it can be set as the structure which piping resistance does not change. However, when the combined pipe 51 is configured to flow the combined cold water CS, the diameter of the combined pipe 51 is bypassed from the total flow rate (total flow rate) of the cold water C of each refrigerator constituting the refrigerator group 100. The diameter determined according to the flow rate obtained by subtracting the design flow rate of the cold water C flowing through the pipe 53 can reduce the pipe weight.

以上の説明において、各制御弁12、22、32の開閉制御は、典型的には各温度センサ15、25、35で検出された値に基づいて行われるが、冷凍機特性をあらかじめ把握して、起動から冷水Cが負荷系統99側で要求される温度になるまでの時間に基づいて制御することとしてもよい。   In the above description, the opening / closing control of the control valves 12, 22, and 32 is typically performed based on the values detected by the temperature sensors 15, 25, and 35. Control may be performed based on the time from the start to the time when the cold water C reaches the temperature required on the load system 99 side.

1、2 熱源システム
11 第1冷水往管
12 第1制御弁
13 第1抜出管
21 第2冷水往管
22 第2制御弁
23 第2抜出管
31 第3冷水往管
32 第3制御弁
33 第3抜出管
51 合流管
53 バイパス管
55 連通管
60 往集合部
68 還集合部
83 熱交換器
99 負荷系統
100 冷凍機群
101 第1冷凍機
102 第2冷凍機
C 冷水
CS1 第1往冷水
CS2 第2往冷水
CS3 第3往冷水
CR 還冷水
P1 供給接続部
P3 抜出接続部
1, 2 Heat source system 11 First cold water outgoing pipe 12 First control valve 13 First extraction pipe 21 Second cold water outgoing pipe 22 Second control valve 23 Second extraction pipe 31 Third cold water outgoing pipe 32 Third control valve 33 Third extraction pipe 51 Junction pipe 53 Bypass pipe 55 Communication pipe 60 Outbound section 68 Returning section 83 Heat exchanger 99 Load system 100 Refrigerator group 101 First refrigerator 102 Second refrigerator C Cold water CS1 First outbound Cold water CS2 Second outgoing cold water CS3 Third outgoing cold water CR Return cold water P1 Supply connection P3 Extraction connection

Claims (3)

熱媒体を冷却する冷凍機が複数並列に配置された冷凍機群であって、第1の冷凍機と、前記第1の冷凍機に対して並列に配置された第2の冷凍機と、を有する冷凍機群と;
前記第1の冷凍機で冷却された熱媒体である第1の被冷却熱媒体を流す第1の被冷却熱媒体管であって、流路を遮断可能な第1の開閉弁を有する第1の被冷却熱媒体管と;
前記第2の冷凍機で冷却された熱媒体である第2の被冷却熱媒体を流す第2の被冷却熱媒体管であって、流路を遮断可能な第2の開閉弁を有する第2の被冷却熱媒体管と;
前記第1の被冷却熱媒体と前記第2の被冷却熱媒体とを、前記熱媒体が保有する冷熱が利用される負荷系統に向けて送る前に集合させる往集合部と;
前記負荷系統で利用されて温度が上昇した前記熱媒体を前記冷凍機群に導入する前に集合させる還集合部と;
前記往集合部と前記還集合部とを前記負荷系統を介さずに連通する連通管と;
前記第1の開閉弁の上流側で前記第1の被冷却熱媒体管から前記第1の被冷却熱媒体を抜き出す第1の抜出管と;
前記第2の開閉弁の上流側で前記第2の被冷却熱媒体管から前記第2の被冷却熱媒体を抜き出す第2の抜出管であって、前記第1の抜出管に接続された第2の抜出管と;
前記第1の抜出管と前記第2の抜出管との接続部と、前記連通管とに接続されたバイパス管とを備える;
熱源システム。
A refrigerator group in which a plurality of refrigerators for cooling the heat medium are arranged in parallel, the first refrigerator, and a second refrigerator arranged in parallel to the first refrigerator. A refrigerator group having;
A first cooled heat medium pipe for flowing a first cooled heat medium, which is a heat medium cooled by the first refrigerator, and having a first on-off valve capable of blocking a flow path. A cooled heat transfer medium tube;
A second cooled heat medium pipe for flowing a second cooled heat medium, which is a heat medium cooled by the second refrigerator, and has a second on-off valve capable of blocking the flow path. A cooled heat transfer medium tube;
An assembling unit that aggregates the first cooled heat medium and the second cooled heat medium before sending the first cooled heat medium and the second cooled heat medium toward a load system in which the cold heat held by the heat medium is used;
A return collecting unit that collects the heat medium that has been used in the load system and whose temperature has risen before being introduced into the refrigerator group;
A communication pipe that communicates the forward collecting portion and the return collecting portion without passing through the load system;
A first extraction pipe for extracting the first cooled heat medium from the first cooled heat medium pipe on the upstream side of the first on-off valve;
A second extraction pipe for extracting the second cooling target heat medium pipe from the second cooling target heat medium pipe on the upstream side of the second on-off valve, and connected to the first extraction pipe. A second extraction tube;
A connection portion between the first extraction pipe and the second extraction pipe, and a bypass pipe connected to the communication pipe;
Heat source system.
前記第1の被冷却熱媒体管と前記第2の被冷却熱媒体管とが接続されて構成され;
前記第1の被冷却熱媒体管と前記第2の被冷却熱媒体管との接続部と、前記往集合部とに接続された合流管をさらに備え;
前記バイパス管が、前記第1の冷凍機の下限流量及び前記第2の冷凍機の下限流量のうち大きい方の流量に応じて決定された口径で構成され;
前記合流管が、前記冷凍機群を構成する冷凍機のすべての定格流量を合計した合計流量から、前記バイパス管を流れる熱媒体の設計流量を差し引いた流量に応じて決定された口径で構成された;
請求項1に記載の熱源システム。
The first cooled heat medium pipe and the second cooled heat medium pipe are connected to each other;
A joint pipe connected to the connecting portion between the first cooled heat medium pipe and the second cooled heat medium pipe and the forward collecting section;
The bypass pipe is configured with a diameter determined according to a larger one of the lower limit flow rate of the first refrigerator and the lower limit flow rate of the second refrigerator;
The junction pipe is configured with a diameter determined according to a flow rate obtained by subtracting a design flow rate of the heat medium flowing through the bypass pipe from a total flow rate of all the rated flow rates of the refrigerators constituting the refrigerator group. Was;
The heat source system according to claim 1.
熱媒体を外気との直接又は間接の熱交換により冷却する熱交換器と;
前記熱交換器で冷却された熱媒体である第3の被冷却熱媒体を流す第3の被冷却熱媒体管であって、流路を遮断可能な第3の開閉弁を有する第3の被冷却熱媒体管と;
前記第3の開閉弁の上流側で前記第3の被冷却熱媒体管から前記第3の被冷却熱媒体を抜き出す第3の抜出管とを備え;
前記第3の抜出管が、前記バイパス管と連通して構成された;
請求項1又は請求項2に記載の熱源システム。
A heat exchanger that cools the heat medium by direct or indirect heat exchange with the outside air;
A third cooled heat medium pipe for flowing a third cooled heat medium, which is a heat medium cooled by the heat exchanger, and having a third on-off valve capable of blocking the flow path. A cooling heat medium tube;
A third extraction pipe for extracting the third cooled heat medium from the third cooled heat medium pipe on the upstream side of the third on-off valve;
The third extraction pipe is configured to communicate with the bypass pipe;
The heat source system according to claim 1 or 2.
JP2009055369A 2009-03-09 2009-03-09 Heat source system Active JP5386199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009055369A JP5386199B2 (en) 2009-03-09 2009-03-09 Heat source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009055369A JP5386199B2 (en) 2009-03-09 2009-03-09 Heat source system

Publications (2)

Publication Number Publication Date
JP2010210124A true JP2010210124A (en) 2010-09-24
JP5386199B2 JP5386199B2 (en) 2014-01-15

Family

ID=42970494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009055369A Active JP5386199B2 (en) 2009-03-09 2009-03-09 Heat source system

Country Status (1)

Country Link
JP (1) JP5386199B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021685A (en) * 2013-07-22 2015-02-02 東洋熱工業株式会社 Free cooling system and free cooling method using the same
EP2869666A1 (en) 2012-06-29 2015-05-06 Kyocera Corporation Heater and glow plug equipped with same
JP7079122B2 (en) 2018-03-14 2022-06-01 東京瓦斯株式会社 Cooling system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119935A (en) * 1984-11-15 1986-06-07 Matsushita Electric Ind Co Ltd Immediate hot water supplying device
JPH04313629A (en) * 1991-04-11 1992-11-05 Takasago Thermal Eng Co Ltd Controlling device for water temperature of heat source water for air conditioning
JP2004037030A (en) * 2002-07-05 2004-02-05 Taisei Corp Air conditioning equipment
JP2004353986A (en) * 2003-05-30 2004-12-16 Sanken Setsubi Kogyo Co Ltd Air-conditioning system
JP2005265261A (en) * 2004-03-18 2005-09-29 Fuji Electric Holdings Co Ltd Pulse pipe refrigerator
JP2008215680A (en) * 2007-03-01 2008-09-18 Sanki Eng Co Ltd Cold medium refrigerating/freezing equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119935A (en) * 1984-11-15 1986-06-07 Matsushita Electric Ind Co Ltd Immediate hot water supplying device
JPH04313629A (en) * 1991-04-11 1992-11-05 Takasago Thermal Eng Co Ltd Controlling device for water temperature of heat source water for air conditioning
JP2004037030A (en) * 2002-07-05 2004-02-05 Taisei Corp Air conditioning equipment
JP2004353986A (en) * 2003-05-30 2004-12-16 Sanken Setsubi Kogyo Co Ltd Air-conditioning system
JP2005265261A (en) * 2004-03-18 2005-09-29 Fuji Electric Holdings Co Ltd Pulse pipe refrigerator
JP2008215680A (en) * 2007-03-01 2008-09-18 Sanki Eng Co Ltd Cold medium refrigerating/freezing equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2869666A1 (en) 2012-06-29 2015-05-06 Kyocera Corporation Heater and glow plug equipped with same
JP2015021685A (en) * 2013-07-22 2015-02-02 東洋熱工業株式会社 Free cooling system and free cooling method using the same
JP7079122B2 (en) 2018-03-14 2022-06-01 東京瓦斯株式会社 Cooling system

Also Published As

Publication number Publication date
JP5386199B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5501179B2 (en) Medium temperature source system with free cooling
AU2005268223B2 (en) Refrigerating apparatus
JP2014119161A (en) Refrigeration cycle and air conditioner with the same
JP2005069554A (en) Water heat source air conditioning system
CN111365896A (en) Oilless bearing external cooling system with secondary supercooling function
JP6123289B2 (en) Air conditioning system
CN106152840A (en) Hot-pipe system, refrigeration system and control method thereof
JP5386199B2 (en) Heat source system
KR100761285B1 (en) Air conditioner
KR101270606B1 (en) An air conditioner
JP2012180970A (en) Refrigerating cycle device
JP5362311B2 (en) Heat source system
JP2014126291A (en) Air conditioning system
CN104654666A (en) Outdoor unit module of multi-split system and multi-split system with outdoor unit module
CN104344595B (en) Air conditioning system
JP2014119150A (en) Air conditioner
JP2011127785A (en) Refrigerating device
JP6048168B2 (en) Secondary refrigerant air conditioning system
WO2019026234A1 (en) Refrigeration cycle device
CN100562695C (en) Refrigerating plant
TWI557385B (en) Heat pump for heating and cooling
JP2017150496A (en) Heat recovery system
JP2016080179A (en) Air conditioner
CN203586613U (en) Outdoor unit module of multi-split system and multi-split system with outdoor unit module
CN104676961B (en) Combined type cold and hot cogeneration heat pump equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Ref document number: 5386199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250