JP2010209733A - Battery state estimating method and battery control method - Google Patents

Battery state estimating method and battery control method Download PDF

Info

Publication number
JP2010209733A
JP2010209733A JP2009054811A JP2009054811A JP2010209733A JP 2010209733 A JP2010209733 A JP 2010209733A JP 2009054811 A JP2009054811 A JP 2009054811A JP 2009054811 A JP2009054811 A JP 2009054811A JP 2010209733 A JP2010209733 A JP 2010209733A
Authority
JP
Japan
Prior art keywords
battery
engine
lead battery
generator
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009054811A
Other languages
Japanese (ja)
Inventor
Eri Watanabe
絵理 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009054811A priority Critical patent/JP2010209733A/en
Publication of JP2010209733A publication Critical patent/JP2010209733A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the accuracy of estimating a battery state. <P>SOLUTION: This state estimating method is provided for the battery to be mounted on a vehicle which has an engine, a starting motor for starting the engine, the battery for storing electric power to be supplied to the starting motor, and a generator to be driven by the engine to generate electric power to be charged into the battery. The state estimating method includes detecting the voltage of and a current in the battery at starting the engine, calculating the internal resistance of the battery from the detected voltage of and current in the battery (S302), holding the voltage generated by the generator constant after starting the engine (S303), integrating a charging current in the battery to be charged by the voltage generated by the generator for a fixed time to find a charging current integrated value (S304), calculating the availability of the battery from the charging current integrated value and the temperature of the battery (S305), and estimating the remaining capacity and deteriorating degree of the battery from the calculated availability and internal resistance of the battery (S306). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、車両に搭載されるバッテリの状態推定方法及びこれを用いたバッテリの制御方法に関する。   The present invention relates to a state estimation method for a battery mounted on a vehicle and a battery control method using the same.

車両には、クランキングを行うためのスタータ及びその他の電気部品の電源装置としてバッテリが搭載されている。このバッテリは、充電及び放電が可能であり、その充電状態は、バッテリの実際の充電状態やエンジンの運転状態に応じて発電機の発電電力を制御することで、所定のレベルに制御する。   A vehicle is equipped with a battery as a power supply device for a starter and other electrical components for cranking. The battery can be charged and discharged, and the state of charge is controlled to a predetermined level by controlling the power generated by the generator in accordance with the actual state of charge of the battery and the operating state of the engine.

近年、バッテリの残存容量や劣化度などを含むバッテリの状態に応じて、発電機の発電電圧をコントロールしたり、アイドルストップさせることで、燃費を改善させる制御が導入されている。このとき、バッテリの状態を推定する精度が高いほど、制御領域が増えるため、燃費効果が高くなる。   In recent years, control for improving fuel consumption has been introduced by controlling the power generation voltage of a generator or performing an idle stop in accordance with the state of the battery including the remaining capacity and the degree of deterioration of the battery. At this time, the higher the accuracy of estimating the state of the battery, the greater the control region, and the higher the fuel efficiency effect.

そこで、特許文献1において、クランキング時のバッテリ瞬低電圧と、クランキング後のバッテリ充電最大電流を測定し、バッテリ瞬低電圧がしきい値以下であり、且つバッテリ充電電流が低ければバッテリが劣化していると判断し、制御を制限する。逆に、バッテリ充電電流が高ければ低SOC(ステート・オブ・チャージ)と判断し、SOCを上げてから、制御を継続している。   Therefore, in Patent Document 1, the battery instantaneous drop voltage at the time of cranking and the battery charging maximum current after cranking are measured. If the battery instantaneous drop voltage is equal to or lower than the threshold value and the battery charging current is low, the battery is Judge that it has deteriorated and restrict control. Conversely, if the battery charging current is high, it is determined that the SOC is low (state of charge), and the control is continued after raising the SOC.

特開2005−127202号公報JP 2005-127202 A

しかし、クランキング時のバッテリ瞬低電圧と、クランキング後のバッテリ充電最大電流を用いた推定方法では、バッテリの劣化や低SOCを推定する精度が低いため、制御しき
い値にマージンを多く必要とする。よって、その分制御を継続出来る期間が減り、燃費効果が減る。
However, the estimation method using the instantaneous battery voltage drop at the time of cranking and the maximum battery charge current after cranking has a low accuracy in estimating battery deterioration and low SOC, so a large margin is required for the control threshold. And Accordingly, the period during which the control can be continued is reduced, and the fuel efficiency effect is reduced.

また、制御しきい値は、車両やバッテリ種類が変わるごとに、適合させる必要があるため、適合評価工数がかかる。   In addition, the control threshold value needs to be adapted each time the vehicle or the battery type is changed, so that it takes a man-hour for conformity evaluation.

本発明は、このような従来の課題に鑑みてなされたものであり、その目的は、バッテリの状態を推定する精度が高いバッテリの状態推定方法及び燃費効率が高いバッテリの制御方法を提供することである。   The present invention has been made in view of such a conventional problem, and an object thereof is to provide a battery state estimation method with high accuracy for estimating a battery state and a battery control method with high fuel efficiency. It is.

本発明の第1の特徴は、エンジンと、当該エンジンを始動させる始動モータと、当該始動モータに供給される電力を貯蔵するバッテリと、前記エンジンにより駆動され、前記バッテリに充電される電力を発生させる発電機とを有する車両に搭載される前記バッテリの状態推定方法であって、前記エンジンの始動時に前記バッテリの電圧及び電流を検出し、検出した前記バッテリの電圧及び電流から前記バッテリの内部抵抗を算出し、前記エンジンの始動後に前記発電機による発電電圧を一定に保ち、前記発電機の発電電圧により充電される前記バッテリの充電電流を一定時間積算して充電電流積算値を求め、前記充電電流
積算値及び前記バッテリの温度から前記バッテリの空き容量を算出し、算出した前記バッテリの空き容量及び内部抵抗から前記バッテリの残存容量及び劣化度を推定することである。
A first feature of the present invention is an engine, a starter motor that starts the engine, a battery that stores electric power supplied to the starter motor, and an electric power driven by the engine and charged to the battery. A method for estimating a state of a battery mounted on a vehicle having a generator to be detected, wherein the battery voltage and current are detected when the engine is started, and the internal resistance of the battery is detected from the detected battery voltage and current. And calculating a charging current integrated value by maintaining a constant voltage generated by the generator after the engine is started, integrating a charging current of the battery charged by the power generation voltage of the generator for a certain period of time, and Calculate the free capacity of the battery from the integrated current value and the temperature of the battery, and calculate the free capacity and internal resistance of the battery. It is to estimate the remaining capacity and deterioration degree of the battery.

本発明の第1の特徴によれば、バッテリの空き容量及び内部抵抗からバッテリの状態(残存容量及び劣化度)を推定することにより、バッテリの状態を推定する精度が向上するため、バッテリの寿命後期において、安全側として制御禁止にしていた領域を無くすことができる。これにより、バッテリライフにおいて、燃費効果を出せる期間が増える。   According to the first feature of the present invention, since the accuracy of estimating the state of the battery is improved by estimating the state of the battery (remaining capacity and the degree of deterioration) from the free capacity of the battery and the internal resistance, the life of the battery In the latter period, it is possible to eliminate the area that has been prohibited from being controlled on the safety side. Thereby, in the battery life, the period during which the fuel consumption effect can be obtained increases.

また、バッテリの空き容量及び内部抵抗に基づいてバッテリの制御しきい値を設定することができるため、車両側の条件やバッテリの種類に因らない。よって、適用評価を行う必要がなく、工数を削減することができる。   Further, since the control threshold value of the battery can be set based on the free capacity of the battery and the internal resistance, it does not depend on the conditions on the vehicle side or the type of the battery. Therefore, it is not necessary to perform application evaluation, and man-hours can be reduced.

本発明の第2の特徴は、本発明の第1の特徴に係わるバッテリの状態推定方法を用いたバッテリの制御方法であって、前記バッテリの空き容量が所定値以下であり、且つ前記バッテリの劣化度が所定値未満である場合、前記バッテリを放電させて空き容量を増加させることである。   According to a second aspect of the present invention, there is provided a battery control method using the battery state estimation method according to the first aspect of the present invention, wherein the free capacity of the battery is equal to or less than a predetermined value, and When the degree of deterioration is less than a predetermined value, the battery is discharged to increase the free capacity.

本発明の第2の特徴によれば、バッテリの充電能力が高いほど、発電機を発電停止できる時間が長くなり、燃費効果が上がる。この時、バッテリの空き容量が多いほどバッテリの充電能力が高い。よって、バッテリが劣化していなければバッテリの空き容量を確保して燃費効果を上げることができる。   According to the second feature of the present invention, the higher the charging capacity of the battery, the longer the time during which the generator can stop generating power, and the fuel efficiency increases. At this time, the charge capacity of the battery is higher as the available capacity of the battery is larger. Therefore, if the battery is not deteriorated, the free capacity of the battery can be secured and the fuel efficiency can be improved.

以上説明したように、本発明によれば、バッテリの状態を推定する精度が高いバッテリの状態推定方法及び燃費効率が高いバッテリの制御方法を提供することができる。   As described above, according to the present invention, it is possible to provide a battery state estimation method with high accuracy for estimating a battery state and a battery control method with high fuel efficiency.

本発明の実施の形態に係わるバッテリの状態推定方法及びバッテリの制御方法が適用される車両のシステム構成の一例を示すブロック図である。1 is a block diagram illustrating an example of a system configuration of a vehicle to which a battery state estimation method and a battery control method according to an embodiment of the present invention are applied. 本発明の実施の形態における用語の定義を説明するための鉛バッテリ1の模式図である。It is a schematic diagram of the lead battery 1 for demonstrating the definition of the term in embodiment of this invention. 本発明の実施の形態に係わるバッテリの状態推定方法及びバッテリの制御方法を示すフローチャートである。It is a flowchart which shows the battery state estimation method and battery control method concerning embodiment of this invention. 図3のS307に示した燃費制御F/Bの詳細な手順(サブルーチン)の一例を示すフローチャートである。It is a flowchart which shows an example of the detailed procedure (subroutine) of the fuel consumption control F / B shown to S307 of FIG. 図3のS307に示した燃費制御F/Bの詳細な手順(サブルーチン)の変形例を示すフローチャートである。It is a flowchart which shows the modification of the detailed procedure (subroutine) of the fuel consumption control F / B shown to S307 of FIG. 充電電流積算値及び鉛バッテリ1の温度と鉛バッテリ1の空き容量との関係を示すデータの一例を示すグラフである。It is a graph which shows an example of the data which show the relationship between the charging current integrated value, the temperature of the lead battery, and the free capacity of the lead battery. 鉛バッテリ1の空き容量及び内部抵抗Rと残存容量(C1、C2、C3)との関係を示すデータ、及び鉛バッテリ1の空き容量及び内部抵抗Rと劣化度(R1、R2、R3)との関係を示すデータの一例をそれぞれ示すグラフである。Data indicating the relationship between the free capacity and internal resistance R of the lead battery 1 and the remaining capacity (C1, C2, C3), and the free capacity and internal resistance R of the lead battery 1 and the degree of deterioration (R1, R2, R3) It is a graph which shows an example of the data which respectively show a relationship.

以下図面を参照して、本発明の実施の形態を説明する。図面の記載において同一部分には同一符号を付している。   Embodiments of the present invention will be described below with reference to the drawings. In the description of the drawings, the same parts are denoted by the same reference numerals.

図1を参照して、本発明の実施の形態に係わるバッテリの状態推定方法及びバッテリの制御方法が適用される車両のシステム構成の一例を説明する。   An example of a system configuration of a vehicle to which a battery state estimation method and a battery control method according to an embodiment of the present invention are applied will be described with reference to FIG.

車両は、エンジン7と、エンジン7を始動させるスタータ4(始動モータ)と、スタータ4に供給される電力を貯蔵する鉛バッテリ1(バッテリ)と、エンジン7により駆動され、鉛バッテリ1に充電される電力を発生させる発電機6と、鉛バッテリ1の電圧、電流及び温度を検出するバッテリセンサ2と、エンジン運転における電気的な制御を総合的に行うためのマイクロコンピュータからなるECU5(エンジンコントロールユニット)と、鉛バッテリ1に貯蔵されている電力を用いて動作する他の負荷3とを有する。他の負荷3には、ヘッドライト、空調装置のブロア及びデフォッガなどの車載電気部品が含まれる。   The vehicle is driven by the engine 7, the starter 4 (starting motor) that starts the engine 7, the lead battery 1 (battery) that stores electric power supplied to the starter 4, and the lead battery 1 is charged. ECU 5 (engine control unit) comprising a generator 6 for generating electric power, a battery sensor 2 for detecting the voltage, current and temperature of the lead battery 1, and a microcomputer for comprehensively performing electrical control in engine operation ) And another load 3 that operates using the electric power stored in the lead battery 1. Other loads 3 include in-vehicle electrical components such as headlights, air conditioner blowers, and defoggers.

車両は、始動時に、鉛バッテリ1から電力が供給されてスタータ4が回転し、エンジン7を始動させる。エンジン7が始動すると、発電機6が回転し、発電を開始するため、鉛バッテリ1が充電される。ECU5は、バッテリセンサ2が検出した鉛バッテリ1の電圧、電流及び温度を読み込み、鉛バッテリ1の状態(残存容量及び劣化度)を推定する。   When the vehicle is started, electric power is supplied from the lead battery 1, the starter 4 rotates, and the engine 7 is started. When the engine 7 is started, the generator 6 is rotated to start power generation, so that the lead battery 1 is charged. The ECU 5 reads the voltage, current, and temperature of the lead battery 1 detected by the battery sensor 2 and estimates the state (remaining capacity and degree of deterioration) of the lead battery 1.

具体的に、ECU5は、先ず、検出した鉛バッテリ1の電圧V及び電流Iから鉛バッテリ1の内部抵抗Rを(1)式に従って算出する。ただし、「E0」は、鉛バッテリ1とスタータ4や負荷3との電気的接続を遮断した状態での鉛バッテリ1の端子電圧(起電力)である。   Specifically, the ECU 5 first calculates the internal resistance R of the lead battery 1 from the detected voltage V and current I of the lead battery 1 according to the equation (1). However, “E0” is the terminal voltage (electromotive force) of the lead battery 1 in a state where the electrical connection between the lead battery 1 and the starter 4 or the load 3 is cut off.

R=(E0−V)/I ・・・(1)
そして、ECU5は、発電機6を制御して、エンジン7の始動後に発電機6による発電電圧を一定に保ち、この時の発電機6の発電電圧により充電される鉛バッテリ1の充電電流を一定時間積算して充電電流積算値を求める。求めた充電電流積算値及び鉛バッテリ1の温度から鉛バッテリ1の空き容量を算出する。ECU5は、その内部メモリに、例えば図6に示すような、充電電流積算値及び鉛バッテリ1の温度と鉛バッテリ1の空き容量との関係を示すデータを予め記憶させて用意しておけばよい。充電電流積算値と鉛バッテリ1の空き容量とは比例関係を有し、この比例関係、即ち図6における傾き係数は、鉛バッテリ1の温度(T、T、T)に応じて変化する。
R = (E0−V) / I (1)
Then, the ECU 5 controls the generator 6 to keep the generated voltage by the generator 6 constant after the engine 7 is started, and the charging current of the lead battery 1 charged by the generated voltage of the generator 6 at this time is constant. Accumulate charging current by time integration. The free capacity of the lead battery 1 is calculated from the obtained charging current integrated value and the temperature of the lead battery 1. The ECU 5 may be prepared by storing in advance the data indicating the charge current integrated value and the relationship between the temperature of the lead battery 1 and the free capacity of the lead battery 1 as shown in FIG. . The charge current integrated value and the free capacity of the lead battery 1 have a proportional relationship, and this proportional relationship, that is, the slope coefficient in FIG. 6 changes according to the temperature (T 1 , T 2 , T 3 ) of the lead battery 1. To do.

その後、ECU5は、算出した鉛バッテリ1の空き容量及び内部抵抗Rから鉛バッテリ1の残存容量及び劣化度を推定する。ECU5は、その内部メモリに、例えば、図7に示すような、鉛バッテリ1の空き容量及び内部抵抗Rと残存容量(C1、C2、C3)との関係を示すデータ、及び鉛バッテリ1の空き容量及び内部抵抗Rと劣化度(R1、R2、R3)との関係を示すデータを、予め記憶させて用意しておけばよい。図7に示すデータは、鉛バッテリ1の温度がTである時のデータであり、鉛バッテリ1の温度に応じて図7に示すデータは変化する。よって、図6の各温度データに対応させて、図7に示すデータを用意しておくことが望ましい。 Thereafter, the ECU 5 estimates the remaining capacity and the degree of deterioration of the lead battery 1 from the calculated free capacity of the lead battery 1 and the internal resistance R. The ECU 5 stores, in its internal memory, data indicating the free capacity of the lead battery 1 and the relationship between the internal resistance R and the remaining capacity (C1, C2, C3), as shown in FIG. Data indicating the relationship between the capacity and internal resistance R and the degree of deterioration (R1, R2, R3) may be stored and prepared in advance. The data shown in FIG. 7 is data when the temperature of the lead battery 1 is T 1 , and the data shown in FIG. 7 changes according to the temperature of the lead battery 1. Therefore, it is desirable to prepare the data shown in FIG. 7 corresponding to each temperature data of FIG.

例えば、電力マネージメントのうち、発電電圧制御においては、ECU5が推定した鉛バッテリ1の状態が、しきい値以上であれば、ECU5が発電機6の発電電圧を下げ、エンジン7の負荷を減らすことにより、鉛バッテリ1の寿命を悪化させずに燃費を向上させる。   For example, in power generation control in power management, if the state of the lead battery 1 estimated by the ECU 5 is equal to or greater than a threshold value, the ECU 5 reduces the power generation voltage of the generator 6 and reduces the load on the engine 7. Thus, the fuel efficiency is improved without deteriorating the life of the lead battery 1.

また、アイドルストップにおいては、ECU5が推定した鉛バッテリ1の状態が、しきい値以上であれば、アイドルストップを許可し、しきい値以下であれば、アイドルストップを禁止することにより、鉛バッテリ1の寿命を悪化させずに燃費を向上させる。   Further, in idling stop, if the state of the lead battery 1 estimated by the ECU 5 is equal to or greater than the threshold value, the idling stop is permitted, and if it is equal to or less than the threshold value, the idling stop is prohibited. The fuel consumption is improved without deteriorating the life of 1.

このとき、鉛バッテリ1の寿命を悪化させないことが優先されるので、鉛バッテリ1の状態を推定する精度が悪いほど、燃費効果が下がる。   At this time, since priority is given to not deteriorating the life of the lead battery 1, the fuel efficiency decreases as the accuracy of estimating the state of the lead battery 1 becomes worse.

図2を参照して、本発明の実施の形態における用語の定義を説明する。鉛バッテリ1の充電量を残存容量[Ah]と呼ぶ。鉛バッテリ1が満充電であるとき、残存容量[Ah]は5時間率容量[Ah]となる。また、満充電容量(5時間率容量)[Ah]から残存容量[Ah]を減じた量を、空き容量[Ah]と定義する。この定義により、容量を絶対値で表せるため、バッテリの種類によらずに同じ値を使うことが出来る。なお、一般的に用いられるSOC(State of Charge)は、5時間率容量に対する残存容量の割合を百分率で表したものである。   With reference to FIG. 2, the definition of the term in embodiment of this invention is demonstrated. The amount of charge of the lead battery 1 is called the remaining capacity [Ah]. When the lead battery 1 is fully charged, the remaining capacity [Ah] becomes the 5-hour rate capacity [Ah]. Further, an amount obtained by subtracting the remaining capacity [Ah] from the full charge capacity (5-hour rate capacity) [Ah] is defined as the free capacity [Ah]. This definition allows the capacity to be expressed as an absolute value, so the same value can be used regardless of the type of battery. Generally used SOC (State of Charge) is a percentage of the remaining capacity with respect to the 5-hour rate capacity.

図3を参照して、本発明の実施の形態に係わるバッテリの状態推定方法及びバッテリの制御方法を説明する。ここではエンジン7の始動時におけるECU5の動作について説明する。   With reference to FIG. 3, a battery state estimation method and a battery control method according to an embodiment of the present invention will be described. Here, the operation of the ECU 5 when the engine 7 is started will be described.

(イ)S301段階において鉛バッテリ1から電力供給を受けてスタータ4を始動させる。スタータ4の始動を検出すると(S301でYES)、S302段階へ進み、バッテリセンサ2に鉛バッテリ1の電圧、電流及び温度を読取らせ、鉛バッテリ1の電圧、電流及び温度の読み込み値に基づいて、(1)式に従って、鉛バッテリ1の内部抵抗Rを算出する。   (A) In step S301, the starter 4 is started by receiving power supply from the lead battery 1. When start of the starter 4 is detected (YES in S301), the process proceeds to step S302, where the battery sensor 2 is caused to read the voltage, current and temperature of the lead battery 1, and based on the read values of the voltage, current and temperature of the lead battery 1. Then, the internal resistance R of the lead battery 1 is calculated according to the equation (1).

(ロ)S303段階に進み、発電機6の発電電圧を一定にコントロールする。これにより、鉛バッテリ1に対して定電圧充電が実施される。S304段階に進み、定電圧充電中の鉛バッテリ1の充電電流を一定時間積算して充電電流積算値を求める。次にS305段階に進み、充電電流積算値及びS302で読取った鉛バッテリ1の温度の読み込み値から、図6に示すグラフに従って鉛バッテリ1の空き容量を算出する。なお、鉛バッテリ1に対して定電圧充電を実施しない場合、充電電流と空き容量に相関が無いため、空き容量を導くことは出来ない。   (B) Proceeding to step S303, the generated voltage of the generator 6 is controlled to be constant. As a result, constant voltage charging is performed on the lead battery 1. In step S304, the charging current of the lead battery 1 being charged at a constant voltage is integrated for a predetermined time to obtain an integrated charging current value. Next, proceeding to step S305, the free capacity of the lead battery 1 is calculated according to the graph shown in FIG. 6 from the charge current integrated value and the read value of the temperature of the lead battery 1 read in S302. In addition, when constant voltage charge is not performed with respect to the lead battery 1, since there is no correlation between the charging current and the free capacity, the free capacity cannot be derived.

(ハ)S306段階に進み、S302段階で算出した鉛バッテリ1の内部抵抗Rと、S305段階で算出した鉛バッテリ1の空き容量から、図7に示すグラフにしたがって、鉛バッテリ1の残存容量及び劣化度を導く。S307段階に進み、導出された鉛バッテリ1の残存容量及び劣化度に基づいて、鉛バッテリ1の寿命悪化を抑制し、且つ燃費を向上させるための燃費制御F/Bを実施する。燃費制御F/Bの詳細については、図4を参照して説明する。S307段階実施した後、図3のフローチャートは終了して再びスタートへ戻る。   (C) Proceeding to step S306, from the internal resistance R of the lead battery 1 calculated in step S302 and the free capacity of the lead battery 1 calculated in step S305, according to the graph shown in FIG. Guide the degree of degradation. Proceeding to step S307, based on the derived remaining capacity and degree of deterioration of the lead battery 1, the fuel efficiency control F / B for suppressing the deterioration of the life of the lead battery 1 and improving the fuel efficiency is performed. Details of the fuel efficiency control F / B will be described with reference to FIG. After performing step S307, the flowchart of FIG. 3 ends and returns to the start.

図4を参照して、図3のS307に示した燃費制御F/Bの詳細な手順の一例を説明する。   With reference to FIG. 4, an example of a detailed procedure of the fuel efficiency control F / B shown in S307 of FIG. 3 will be described.

(A)燃費制御F/Bのサブルーチンに移行すると、S401段階において、S306段階で導いた鉛バッテリ1の残存容量がしきい値Cz未満であるか否かを判断する。鉛バッテリ1の残存容量がしきい値Cz未満である場合(S401でYES)、S402段階に進み、鉛バッテリ1からの放電を禁止して、鉛バッテリ1の残存容量がしきい値Cz以上となるまで鉛バッテリ1を充電する。S402を実施して図4のサブルーチンは終了する。
(B)一方、鉛バッテリ1の残存容量がしきい値Cz以上である場合(S401でNO)、S403段階に進み、S306段階で導いた鉛バッテリ1の劣化度がしきい値Ra未満であるか否かを判断する。鉛バッテリ1の劣化度がしきい値Ra未満である場合(S403でYES)、図4のサブルーチンは終了する。鉛バッテリ1の劣化度がしきい値Ra以上である場合(S403でNO)、S404段階に進み、鉛バッテリ1の劣化度がしきい値Rb未満であるか否かを判断する。なお、しきい値Rbはしきい値Raよりも大きい値である。
(A) When the process proceeds to the fuel efficiency control F / B subroutine, in step S401, it is determined whether or not the remaining capacity of the lead battery 1 introduced in step S306 is less than a threshold value Cz. When the remaining capacity of lead battery 1 is less than threshold value Cz (YES in S401), the process proceeds to step S402, discharge from lead battery 1 is prohibited, and the remaining capacity of lead battery 1 is equal to or greater than threshold value Cz. The lead battery 1 is charged until it becomes. S402 is implemented and the subroutine of FIG. 4 is complete | finished.
(B) On the other hand, when the remaining capacity of the lead battery 1 is greater than or equal to the threshold value Cz (NO in S401), the process proceeds to step S403, and the deterioration degree of the lead battery 1 introduced in step S306 is less than the threshold value Ra. Determine whether or not. If the deterioration level of lead battery 1 is less than threshold value Ra (YES in S403), the subroutine of FIG. 4 ends. When the deterioration level of lead battery 1 is equal to or higher than threshold value Ra (NO in S403), the process proceeds to step S404, and it is determined whether or not the deterioration level of lead battery 1 is lower than threshold value Rb. The threshold value Rb is larger than the threshold value Ra.

(C)鉛バッテリ1の劣化度がしきい値Rb未満である場合(S404でYES)、S405段階に進み、鉛バッテリ1の放電許可量を削減する。例えば、アイドルストップ時において、鉛バッテリ1からの放電量がしきい値D1以上となった場合、車両が停止している時であっても、強制的にエンジン7を再始動させ、鉛バッテリ1を充電させる制御を行なったとき、しきい値をD2(<D1)に書き換える。S405を実施して図4のサブルーチンは終了する。   (C) When the deterioration degree of the lead battery 1 is less than the threshold value Rb (YES in S404), the process proceeds to step S405, and the discharge permission amount of the lead battery 1 is reduced. For example, when the amount of discharge from the lead battery 1 is equal to or greater than the threshold value D1 during idle stop, the engine 7 is forcibly restarted even when the vehicle is stopped, and the lead battery 1 When the control for charging is performed, the threshold value is rewritten to D2 (<D1). S405 is implemented and the subroutine of FIG. 4 is completed.

(D)一方、鉛バッテリ1の劣化度がしきい値Rb以上である場合(S404でNO)、S406段階に進み、燃費制御を禁止する。S406を実施して図4のサブルーチンは終了する。   (D) On the other hand, when the deterioration degree of the lead battery 1 is equal to or greater than the threshold value Rb (NO in S404), the process proceeds to step S406, and fuel consumption control is prohibited. S406 is implemented and the subroutine of FIG. 4 is complete | finished.

以上説明したように、本発明の実施の形態によれば、以下の作用効果が得られる。   As described above, according to the embodiment of the present invention, the following effects can be obtained.

鉛バッテリ1の空き容量及び内部抵抗Rから鉛バッテリ1の状態(残存容量及び劣化度)を推定することにより、鉛バッテリ1の状態を推定する精度が向上するため、鉛バッテリ1の寿命後期において、安全側として制御禁止にしていた領域を無くすことができる。これにより、バッテリライフにおいて、燃費効果を出せる期間が増える。   Since the accuracy of estimating the state of the lead battery 1 is improved by estimating the state (remaining capacity and the degree of deterioration) of the lead battery 1 from the free capacity of the lead battery 1 and the internal resistance R, in the later stage of the life of the lead battery 1 Therefore, it is possible to eliminate the area that has been prohibited from being controlled on the safe side. Thereby, in the battery life, the period during which the fuel consumption effect can be obtained increases.

また、鉛バッテリ1の空き容量及び内部抵抗Rに基づいて鉛バッテリ1の制御しきい値(Cz、Ra、Rb)を設定することができるため、車両側の条件やバッテリの種類に因らない。よって、適用評価を行う必要がなく、工数を削減することができる。   Moreover, since the control threshold value (Cz, Ra, Rb) of the lead battery 1 can be set based on the free capacity of the lead battery 1 and the internal resistance R, it does not depend on the conditions on the vehicle side or the type of the battery. . Therefore, it is not necessary to perform application evaluation, and man-hours can be reduced.

更に、鉛バッテリ1の劣化度がしきい値Ra以上であり、しきい値Rb未満である場合(S404でYES)、鉛バッテリ1の放電許可量を削減する(S405)ことにより、鉛バッテリ1の劣化が進行した段階で、鉛バッテリ1の放電量を減らし、鉛バッテリ1の劣化の進行を遅くすることが出来る。   Furthermore, when the deterioration degree of the lead battery 1 is equal to or higher than the threshold value Ra and less than the threshold value Rb (YES in S404), the lead battery 1 is reduced by reducing the discharge permission amount of the lead battery 1 (S405). When the deterioration of the lead battery 1 progresses, the discharge amount of the lead battery 1 can be reduced, and the progress of the deterioration of the lead battery 1 can be delayed.

更に、鉛バッテリ1の劣化度がしきい値Rb以上である場合(S404でNO)、燃費制御を禁止する(S406)。これにより、劣化度の高い、すなわち劣化が進んだ鉛バッテリ1を燃費制御により深く充放電させることが無くなるので、鉛バッテリ1の交換までの期間を燃費制御しない場合と同等に保つことが出来る。
(変形例)
変形例においては、図4に示した燃費制御F/Bの詳細な手順が実施の形態と相違するが、その他の点については実施の形態と同じであり、図示及び説明を省略する。変形例では、図4のサブルーチンの代りに、図5に示す燃費制御F/Bの詳細な手順(サブルーチン)をS307段階において実施する。
Further, when the deterioration degree of the lead battery 1 is equal to or higher than the threshold value Rb (NO in S404), fuel consumption control is prohibited (S406). Thereby, the lead battery 1 having a high degree of deterioration, that is, the deteriorated lead battery 1 is not charged or discharged deeply by the fuel efficiency control, so that the period until the replacement of the lead battery 1 can be kept equal to the case where the fuel efficiency control is not performed.
(Modification)
In the modification, the detailed procedure of the fuel efficiency control F / B shown in FIG. 4 is different from that of the embodiment, but the other points are the same as those of the embodiment, and illustration and description thereof are omitted. In the modified example, the detailed procedure (subroutine) of the fuel efficiency control F / B shown in FIG. 5 is performed in step S307 instead of the subroutine of FIG.

(い)S501段階において、鉛バッテリ1の空き容量がしきい値Caよりも大きいか否かを判断する。鉛バッテリ1の空き容量がしきい値Caよりも大きい場合(S501でYES)、図5のサブルーチンは終了する。一方、鉛バッテリ1の空き容量がしきい値Ca以下である場合(S501でNO)、鉛バッテリ1の空き容量が不足していると判断して、S502段階に進む。   (Ii) In step S501, it is determined whether or not the free capacity of the lead battery 1 is larger than the threshold value Ca. If the free capacity of lead battery 1 is greater than threshold value Ca (YES in S501), the subroutine of FIG. 5 ends. On the other hand, if the free capacity of the lead battery 1 is equal to or less than the threshold value Ca (NO in S501), it is determined that the free capacity of the lead battery 1 is insufficient, and the process proceeds to step S502.

(ろ)S502段階において、鉛バッテリ1の劣化度がしきい値Ra未満であるか否かを判断する。鉛バッテリ1の劣化度がしきい値Ra未満である場合(S502でYES)、S503段階に進み、鉛バッテリ1から規定量を放電させ、空き容量を増加させる。S503を実施して図5のサブルーチンは終了する。一方、鉛バッテリ1の劣化度がしきい値Ra以上である場合(S502でNO)、そのまま図5のサブルーチンは終了する。   (B) In step S502, it is determined whether or not the deterioration degree of the lead battery 1 is less than the threshold value Ra. When the deterioration degree of the lead battery 1 is less than the threshold value Ra (YES in S502), the process proceeds to step S503, the specified amount is discharged from the lead battery 1 and the free capacity is increased. S503 is implemented and the subroutine of FIG. 5 is complete | finished. On the other hand, when the deterioration level of lead battery 1 is equal to or higher than threshold value Ra (NO in S502), the subroutine of FIG.

上記した変形例によれば、実施の形態による作用効果の他に、以下の作用効果が更に得られる。   According to the above-described modification, the following operational effects can be further obtained in addition to the operational effects of the embodiment.

鉛バッテリ1の空き容量が所定値(しきい値Ca)以下であり、且つ鉛バッテリ1の劣化度が所定値(しきい値Ra)未満である場合(S502でYES)、鉛バッテリ1を放電させて空き容量を増加させる(S503)。鉛バッテリ1の充電能力が高いほど、発電機6を発電停止できる時間が長くなり、燃費効果が上がる。この時、鉛バッテリ1の空き容量が多いほど鉛バッテリ1の充電能力が高い。よって、鉛バッテリ1が劣化していなければ鉛バッテリ1の空き容量を確保して燃費効果を上げることができる。   When the free capacity of lead battery 1 is equal to or less than a predetermined value (threshold value Ca) and the degree of deterioration of lead battery 1 is less than the predetermined value (threshold value Ra) (YES in S502), lead battery 1 is discharged. Thus, the free space is increased (S503). The higher the charging capacity of the lead battery 1, the longer the time during which the generator 6 can stop generating power, and the fuel efficiency effect increases. At this time, the charge capacity of the lead battery 1 is higher as the free capacity of the lead battery 1 is larger. Therefore, if the lead battery 1 is not deteriorated, the free capacity of the lead battery 1 can be secured and the fuel efficiency effect can be improved.

例えば、発電機6の発電電圧制御のうちの回生制御において、回生時のバッテリ充電量と発電機の発電停止時のバッテリ放電量が等しいとする制御を行なった場合、バッテリ充電能力が高いほど、発電機6を発電停止できる時間が長くなり、燃費効果が上がる。よって、バッテリが未劣化であれば、S503を実施してバッテリ空き容量を確保することで、燃費効果を確保することが出来る。   For example, in the regenerative control of the power generation voltage control of the generator 6, when performing the control that the battery charge amount at the time of regeneration and the battery discharge amount at the time of power generation stop of the generator are equal, the higher the battery charge capacity, The time during which the generator 6 can stop generating power is lengthened, and the fuel efficiency is improved. Therefore, if the battery is not deteriorated, the fuel efficiency can be ensured by performing S503 to secure the battery free capacity.

上記のように、本発明は、1つの実施形態及びその変形例によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。すなわち、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲に係る発明特定事項によってのみ限定されるものである。   As mentioned above, although this invention was described by one embodiment and its modification, it should not be understood that the statement and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. That is, it should be understood that the present invention includes various embodiments and the like not described herein. Therefore, the present invention is limited only by the invention specifying matters according to the scope of claims reasonable from this disclosure.

1 鉛バッテリ(バッテリ)
2 バッテリセンサ
3 負荷
4 スタータ(始動モータ)
5 ECU
6 発電機
7 エンジン
1 Lead battery (battery)
2 Battery sensor 3 Load 4 Starter (starting motor)
5 ECU
6 Generator 7 Engine

Claims (2)

エンジンと、当該エンジンを始動させる始動モータと、当該始動モータに供給される電力を貯蔵するバッテリと、前記エンジンにより駆動され、前記バッテリに充電される電力を発生させる発電機とを有する車両に搭載される前記バッテリの状態推定方法であって、
前記エンジンの始動時に前記バッテリの電圧及び電流を検出し、
検出した前記バッテリの電圧及び電流から前記バッテリの内部抵抗を算出し、
前記エンジンの始動後に前記発電機による発電電圧を一定に保ち、
前記発電機の発電電圧により充電される前記バッテリの充電電流を一定時間積算して充電電流積算値を求め、
前記充電電流積算値及び前記バッテリの温度から前記バッテリの空き容量を算出し、
算出した前記バッテリの空き容量及び内部抵抗から前記バッテリの残存容量及び劣化度を推定する
ことを特徴とするバッテリの状態推定方法。
Installed in a vehicle having an engine, a starter motor for starting the engine, a battery for storing electric power supplied to the starter motor, and a generator that is driven by the engine and generates electric power charged in the battery A method for estimating the state of the battery, comprising:
Detecting the voltage and current of the battery at the start of the engine;
Calculate the internal resistance of the battery from the detected voltage and current of the battery,
Keeping the voltage generated by the generator constant after starting the engine,
Accumulating the charging current of the battery charged by the power generation voltage of the generator for a certain time to obtain a charging current integrated value,
Calculate the free capacity of the battery from the charging current integrated value and the temperature of the battery,
A remaining battery capacity and a degree of deterioration of the battery are estimated from the calculated available battery capacity and internal resistance.
請求項1に記載のバッテリの状態推定方法を用いたバッテリの制御方法であって、
前記バッテリの空き容量が所定値以下であり、且つ前記バッテリの劣化度が所定値未満である場合、前記バッテリを放電させて空き容量を増加させる
ことを特徴とするバッテリの制御方法。
A battery control method using the battery state estimation method according to claim 1,
A battery control method, comprising: discharging the battery to increase the free capacity when the free capacity of the battery is equal to or less than a predetermined value and the degree of deterioration of the battery is less than a predetermined value.
JP2009054811A 2009-03-09 2009-03-09 Battery state estimating method and battery control method Pending JP2010209733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054811A JP2010209733A (en) 2009-03-09 2009-03-09 Battery state estimating method and battery control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054811A JP2010209733A (en) 2009-03-09 2009-03-09 Battery state estimating method and battery control method

Publications (1)

Publication Number Publication Date
JP2010209733A true JP2010209733A (en) 2010-09-24

Family

ID=42970159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054811A Pending JP2010209733A (en) 2009-03-09 2009-03-09 Battery state estimating method and battery control method

Country Status (1)

Country Link
JP (1) JP2010209733A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164947A1 (en) 2011-06-01 2012-12-06 Kabushiki Kaisha Toyota Jidoshokki Rechargeable battery degradation level estimation device and method
JP2016077133A (en) * 2014-10-09 2016-05-12 古河電気工業株式会社 Secondary battery charging control device and method of controlling charging of secondary battery
JP2017040218A (en) * 2015-08-20 2017-02-23 三菱自動車工業株式会社 Internal combustion engine starter
CN107765183A (en) * 2016-08-19 2018-03-06 上海源悦汽车电子股份有限公司 A kind of battery supervisory systems and its method of work
KR102666657B1 (en) 2019-08-16 2024-05-20 현대자동차주식회사 Vehicle, and controlling method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164947A1 (en) 2011-06-01 2012-12-06 Kabushiki Kaisha Toyota Jidoshokki Rechargeable battery degradation level estimation device and method
JP2016077133A (en) * 2014-10-09 2016-05-12 古河電気工業株式会社 Secondary battery charging control device and method of controlling charging of secondary battery
JP2017040218A (en) * 2015-08-20 2017-02-23 三菱自動車工業株式会社 Internal combustion engine starter
CN107765183A (en) * 2016-08-19 2018-03-06 上海源悦汽车电子股份有限公司 A kind of battery supervisory systems and its method of work
KR102666657B1 (en) 2019-08-16 2024-05-20 현대자동차주식회사 Vehicle, and controlling method thereof

Similar Documents

Publication Publication Date Title
JP4866187B2 (en) Battery control device, electric vehicle, and program for causing computer to execute processing for estimating charge state of secondary battery
JP6164168B2 (en) Vehicle control device
KR100554241B1 (en) Apparatus for battery capacity measurement and for remaining capacity calculation
JP4959511B2 (en) Charge control device for storage battery
KR20150130922A (en) Power supply control device
JP2007098977A (en) Controller for secondary battery and output control method for secondary battery
JP2009286215A (en) State estimation device for on-vehicle battery
JP2007064209A (en) Engine control device, control method, and control system
KR101641847B1 (en) Charging control device, charging control method and recording medium recording computer program
CN109387790B (en) Power supply system
JP2005127202A (en) Battery degradation diagnostic device and control device for on-vehicle electric power unit
KR20200075929A (en) Periodic supplementary charging method for battery of vehicle
US11411426B2 (en) Charging control for improving efficiency of charging auxiliary device battery
RU2674754C2 (en) Method for management of electrical current supply in motor vehicle
JP4703271B2 (en) Engine automatic stop / start control device and control method
JP2010209733A (en) Battery state estimating method and battery control method
JP2004003460A (en) Controlling equipment and control method of vehicle
JP2016116255A (en) Electric power supply unit
JP2008255913A (en) Power generation control device for vehicle
KR100901594B1 (en) Method for calculating battery SOC of electronic vehicle
US8258742B2 (en) Charging control unit of electric power generation control device for motor vehicle
CN113346572B (en) Vehicle-mounted air conditioner and control method thereof
JP2016028198A (en) Vehicle control device, vehicle, and vehicle control method
JP2003331929A (en) Control device and control method of battery
JP6011716B2 (en) Vehicle power generation control device and power generation control method