JP2010209682A - Engine control device - Google Patents

Engine control device Download PDF

Info

Publication number
JP2010209682A
JP2010209682A JP2009053327A JP2009053327A JP2010209682A JP 2010209682 A JP2010209682 A JP 2010209682A JP 2009053327 A JP2009053327 A JP 2009053327A JP 2009053327 A JP2009053327 A JP 2009053327A JP 2010209682 A JP2010209682 A JP 2010209682A
Authority
JP
Japan
Prior art keywords
cylinder
engine
cylinders
data
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009053327A
Other languages
Japanese (ja)
Other versions
JP5278053B2 (en
Inventor
Satoshi Sekine
聡史 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009053327A priority Critical patent/JP5278053B2/en
Publication of JP2010209682A publication Critical patent/JP2010209682A/en
Application granted granted Critical
Publication of JP5278053B2 publication Critical patent/JP5278053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an engine control device capable of enhancing the accuracy in sensing the inter-cylinder dispersion of the air-fuel ratio. <P>SOLUTION: The control device is for an engine having a plurality of cylinders in which the fuel is injected cylinder for cylinder, and includes an air-fuel ratio sensor to emit the sensed air-fuel ratio of the exhaust gas in the gathering part where the exhaust gases from the plurality of cylinders gather, a judging parameter extracting means (S1) to extract the time series data of the judging parameter from the time series data of the sensing signal, the judging parameter being the signal of the frequency range different from the rotation frequency of the engine, and an inter-cylinder dispersion judging means (S2) to judge that a dispersion in the air-fuel ratio exists between different cylinders when the time series data of the judging parameter contains a piece of data larger than the prescribed value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数の気筒を有するエンジンの気筒間における空燃比のばらつきを検出する制御装置に関する。   The present invention relates to a control device that detects variation in air-fuel ratio among cylinders of an engine having a plurality of cylinders.

複数の気筒を有するエンジンにおいて、燃料系の異常などによって気筒間の空燃比にばらつきが生じることが知られている。そこで特許文献1にはクランク角センサの検出値に基づいて気筒間のトルク変動を判別し、当該トルク変動に基づいて空燃比の気筒間ばらつきを検出することが記載されている。   In an engine having a plurality of cylinders, it is known that the air-fuel ratio between cylinders varies due to an abnormality in the fuel system. Therefore, Patent Document 1 describes that torque fluctuation between cylinders is discriminated based on a detection value of a crank angle sensor, and variation in air-fuel ratio between cylinders is detected based on the torque fluctuation.

特開2006−515911公報JP 2006-515911 A

しかし、上記従来の技術では、クランク角センサの検出値に基づいてクランク軸の回転変動を解析しているので外部振動の影響を受けやすく、また気筒数が多いエンジンではクランク軸の回転変動が小さくなるので気筒間ばらつきの検出精度が低下する。   However, in the above conventional technique, the crankshaft rotational fluctuation is analyzed based on the detected value of the crank angle sensor, so that it is easily affected by external vibrations. In an engine with a large number of cylinders, the crankshaft rotational fluctuation is small. As a result, the detection accuracy of the variation between cylinders decreases.

本発明は、空燃比の気筒間ばらつきの検出精度を向上させることを目的とする。   An object of the present invention is to improve the detection accuracy of variation in air-fuel ratio between cylinders.

本発明は、複数の気筒を有し、複数の気筒ごとに燃料が噴射されるエンジンにおいて、複数の気筒からの排気が集合する集合部において排気の空燃比を検出して検出信号として出力する空燃比センサと、検出信号の時系列データからエンジンの回転周波数とは異なる周波数域の信号である判定パラメータの時系列データを抽出する判定パラメータ抽出手段と、判定パラメータの時系列データの中に所定値より大きいデータがあるとき、複数の気筒間に空燃比のばらつきがあると判定する気筒間ばらつき判定手段とを備えることを特徴とする。   In an engine having a plurality of cylinders and injecting fuel for each of the plurality of cylinders, an air-fuel ratio of the exhaust gas is detected at a collecting portion where exhaust gas from the plurality of cylinders collects and is output as a detection signal. A determination parameter extracting means for extracting time series data of a determination parameter that is a signal in a frequency region different from the engine rotation frequency from the time series data of the detection signal, and a predetermined value in the time series data of the determination parameter; And an inter-cylinder variation determining unit that determines that there is variation in the air-fuel ratio among the plurality of cylinders when there is larger data.

本発明によれば、空燃比センサの検出信号の時系列データからエンジンの回転周波数とは異なる周波数域の判定パラメータを抽出し、抽出された判定パラメータの時系列データの中に所定値より大きいデータがあるとき、気筒間ばらつきがあると判定するので、エンジンの回転周波数より低い周波数としてあらわれる気筒間ばらつきを、外部振動や気筒数にかかわらず精度よく検出することができる。   According to the present invention, the determination parameter in a frequency region different from the engine rotation frequency is extracted from the time-series data of the detection signal of the air-fuel ratio sensor, and data larger than a predetermined value is extracted from the time-series data of the extracted determination parameter. When there is, it is determined that there is a variation between cylinders, and therefore the variation between cylinders that appears as a frequency lower than the engine rotation frequency can be accurately detected regardless of the external vibration or the number of cylinders.

本実施形態におけるエンジンの制御装置の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the control apparatus of the engine in this embodiment. 本実施形態におけるエンジンの制御装置の制御を示す概略構成図である。It is a schematic block diagram which shows control of the control apparatus of the engine in this embodiment. 判定パラメータの演算方法を示すブロック図である。It is a block diagram which shows the calculation method of a determination parameter. バンドパスフィルタの振幅特性を示すテーブルである。It is a table which shows the amplitude characteristic of a band pass filter. A/Fセンサ値の時系列データを示すテーブルである。It is a table which shows the time series data of an A / F sensor value. 判定パラメータの時系列データを示すテーブルである。It is a table which shows the time series data of a determination parameter.

以下では図面を参照して本発明の実施の形態について詳しく説明する。図1は本実施形態におけるエンジンの制御装置の構成を示す概略構成図である。本実施形態におけるエンジンの制御装置は、エンジン1と、クランク角センサ2と、燃料噴射弁3と、A/Fセンサ4と、コントローラ5とから構成される。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a configuration of an engine control device in the present embodiment. The engine control device according to the present embodiment includes an engine 1, a crank angle sensor 2, a fuel injection valve 3, an A / F sensor 4, and a controller 5.

エンジン1は、図1では4つの気筒を有する直列4気筒エンジンとして示されるが、V型6気筒、V型8気筒など、多気筒エンジンであれば気筒数や気筒配列が異なるエンジンであってもよい。   Although the engine 1 is shown as an in-line four-cylinder engine having four cylinders in FIG. 1, a multi-cylinder engine such as a V-type six cylinder or a V-type eight cylinder may be an engine having a different number of cylinders or different cylinder arrangements. Good.

クランク角センサ2は、エンジン1のクランク角を検出してコントローラ5へ送信する。コントローラ5では受信したクランク角に基づいてエンジン1の回転速度を演算する。   The crank angle sensor 2 detects the crank angle of the engine 1 and transmits it to the controller 5. The controller 5 calculates the rotational speed of the engine 1 based on the received crank angle.

燃料噴射弁3は、エンジン1の吸気ポート7に気筒ごとにそれぞれ設けられ、コントローラ5からの信号に応じて吸気ポート7に燃料を噴射する。   The fuel injection valve 3 is provided for each cylinder in the intake port 7 of the engine 1, and injects fuel into the intake port 7 in accordance with a signal from the controller 5.

A/Fセンサ4は、排気マニホールド8の排気が集合する集合部9の近傍に設けられ、集合部9を通過する排気の空燃比を検出してコントローラ5へ送信する。   The A / F sensor 4 is provided in the vicinity of the collecting portion 9 where the exhaust from the exhaust manifold 8 collects, detects the air-fuel ratio of the exhaust gas passing through the collecting portion 9, and transmits it to the controller 5.

コントローラ5は、クランク角センサ2及びA/Fセンサ4から信号を受信して各気筒の燃料噴射弁3をそれぞれ制御する。   The controller 5 receives signals from the crank angle sensor 2 and the A / F sensor 4 and controls the fuel injection valves 3 of the respective cylinders.

以下、図2を参照しながらコントローラ5で行う制御について説明する。図2は本実施形態におけるエンジンの制御装置の制御を示すフローチャートである。   Hereinafter, the control performed by the controller 5 will be described with reference to FIG. FIG. 2 is a flowchart showing the control of the engine control apparatus in the present embodiment.

ステップS1では、判定パラメータを演算する。判定パラメータは、空燃比の気筒間ばらつきを判定するために用いるパラメータであり、図3のブロック図に従って演算される。   In step S1, a determination parameter is calculated. The determination parameter is a parameter used to determine the air-fuel ratio variation between cylinders, and is calculated according to the block diagram of FIG.

ここで、判定パラメータの演算方法について図3を参照しながら説明する。   Here, a determination parameter calculation method will be described with reference to FIG.

周波数演算部51では、エンジン1の回転速度が入力され、(1)式に従ってバンドパス周波数ωが演算される。   In the frequency calculation unit 51, the rotation speed of the engine 1 is input, and the bandpass frequency ω is calculated according to the equation (1).

Figure 2010209682
Figure 2010209682

フィルタ処理部52では、A/Fセンサ4の検出値が入力され、(2)式に従ってバンドパスフィルタをかけ、バンドパス後センサ値を出力する。   In the filter processing unit 52, the detection value of the A / F sensor 4 is input, a band pass filter is applied according to the equation (2), and a post-band pass sensor value is output.

Figure 2010209682
Figure 2010209682

差分演算部53では、A/Fセンサの検出値とフィルタ処理部52から出力されるバンドパス後センサ値との差分が演算され、この差分が判定パラメータとして出力される。   The difference calculation unit 53 calculates the difference between the detection value of the A / F sensor and the post-bandpass sensor value output from the filter processing unit 52, and outputs this difference as a determination parameter.

上記のようにA/Fセンサ値をバンドパスすることで、A/Fセンサ値のうちエンジン1の回転速度に依存する周波数成分のみが抽出される。これについて図4及び図5を用いて説明する。   By band-passing the A / F sensor value as described above, only the frequency component depending on the rotational speed of the engine 1 is extracted from the A / F sensor value. This will be described with reference to FIGS.

図4はバンドパスフィルタの振幅特性を示すテーブルであり、(a)はA/Fセンサから送信される信号の振幅特性を示し、(b)はバンドパス後センサ値の振幅特性を示す。図4(a)に示すように、A/Fセンサ値にはあらゆる周波数成分が含まれているが、バンドパスフィルタをかけることでバンドパス周波数ωと同一の周波数成分が抽出され、バンドパス周波数ωより低周波及び高周波の成分は除去される。なおこのとき、バンドパス周波数ωは所定の幅(例えばエンジン回転速度にして100rpm)を有するように設定され、所定の周波数域のセンサ値のみが抽出される。   FIG. 4 is a table showing the amplitude characteristics of the band-pass filter. (A) shows the amplitude characteristics of the signal transmitted from the A / F sensor, and (b) shows the amplitude characteristics of the post-band-pass sensor value. As shown in FIG. 4A, the A / F sensor value includes all frequency components. By applying a bandpass filter, the same frequency component as the bandpass frequency ω is extracted, and the bandpass frequency is obtained. Low frequency and high frequency components are removed from ω. At this time, the bandpass frequency ω is set to have a predetermined width (for example, 100 rpm as the engine rotation speed), and only sensor values in a predetermined frequency range are extracted.

図5はA/Fセンサ値の時系列データであり、(a)はA/Fセンサのセンサ値、(b)はバンドパス後センサ値、(c)は判定パラメータを示す。なお横軸は時間、縦軸はセンサ値を示し、センサ値が大きいほど排ガスがリーン側に偏っていることを示す。   FIG. 5 shows time-series data of A / F sensor values, where (a) shows sensor values of the A / F sensor, (b) shows post-bandpass sensor values, and (c) shows determination parameters. The horizontal axis indicates time, and the vertical axis indicates the sensor value. The larger the sensor value, the more the exhaust gas is biased toward the lean side.

図5(a)に示すように、センサ値は各気筒の燃焼サイクルに従って上下に変動する。これに加えてセンサノイズなどによって生じる燃焼サイクルより高周波の成分と、気筒ごとのばらつきによって生じる燃焼サイクルより低周波の成分とが含まれる。   As shown in FIG. 5A, the sensor value fluctuates up and down according to the combustion cycle of each cylinder. In addition, a component having a higher frequency than the combustion cycle caused by sensor noise and a component having a lower frequency than the combustion cycle caused by variations among cylinders are included.

図5(b)に示すように、センサ値をバンドパスすることでエンジン1の回転速度、すなわち燃焼サイクルに依存する成分のみが抽出され、低周波成分と高周波成分とは除去される。   As shown in FIG. 5B, only the component depending on the rotational speed of the engine 1, that is, the combustion cycle, is extracted by band-passing the sensor value, and the low frequency component and the high frequency component are removed.

図5(c)に示すように、図5(a)と図5(b)との差分をとると、エンジン1の燃焼サイクルに依存する成分は相殺され、高周波成分と低周波成分とが抽出される。このようにして抽出された信号がステップS1において演算される判定パラメータであり、時系列データとして抽出される。   As shown in FIG. 5 (c), when the difference between FIG. 5 (a) and FIG. 5 (b) is taken, the component depending on the combustion cycle of the engine 1 is canceled out, and the high frequency component and the low frequency component are extracted. Is done. The signal extracted in this way is a determination parameter calculated in step S1, and is extracted as time series data.

図2に戻ってステップS2では、判定パラメータの絶対値の時系列データの中に所定値以上となるデータがあるか否かを判定する。所定値以上のデータがあると判定されるとステップS3へ進み、所定値以上のデータがないと判定されると処理を終了する。   Returning to FIG. 2, in step S <b> 2, it is determined whether or not there is data that exceeds a predetermined value in the time-series data of the absolute value of the determination parameter. If it is determined that there is data exceeding the predetermined value, the process proceeds to step S3, and if it is determined that there is no data exceeding the predetermined value, the process is terminated.

図5(c)に示すように、判定パラメータの絶対値の時系列データの中に所定値以上となるデータがあると判定されると燃焼サイクルに依存する成分より低周波の成分が発生していると判定でき、これにより気筒間ばらつきが生じていると判断することができる。したがって、所定値は空燃比の気筒間ばらつきが生じていると判断できる程度の値に設定され、予め実験などによって求めておく。   As shown in FIG. 5 (c), when it is determined that there is data that exceeds the predetermined value in the time-series data of the absolute value of the determination parameter, a lower frequency component is generated than the component that depends on the combustion cycle. It can be determined that there is a variation between cylinders. Accordingly, the predetermined value is set to such a value that it can be determined that the variation in the air-fuel ratio between the cylinders has occurred, and is obtained in advance by experiments or the like.

図2に戻ってステップS3では、気筒判別制御を行う。気筒判別制御は気筒間ばらつきの原因となる気筒が第n気筒であるかを判別するための制御である。気筒判別制御では、初めに第1気筒の燃料噴射量を一度だけ変更させる。以下では、一度だけ燃料噴射量を増大させる制御について説明する(以下、これを「マーカー噴射」という)。これにより、第1気筒の空燃比が変化するので判定パラメータが変化する。なお、マーカー噴射時の噴射量はエミッションが悪化しない程度に設定される。   Returning to FIG. 2, in step S3, cylinder discrimination control is performed. The cylinder discrimination control is a control for discriminating whether the cylinder that causes the variation among cylinders is the nth cylinder. In the cylinder discrimination control, first, the fuel injection amount of the first cylinder is changed only once. Hereinafter, control for increasing the fuel injection amount only once (hereinafter referred to as “marker injection”) will be described. As a result, the determination parameter changes because the air-fuel ratio of the first cylinder changes. The injection amount at the time of marker injection is set to such an extent that the emission does not deteriorate.

次に、マーカー噴射による判定パラメータの変化するデータ点を第1の基点とし、さらに判定パラメータが所定値以上となるデータ点を第2の基点とする。そして、第1の基点から第2の基点までの時間(クランク角の変化量)に基づいて空燃比が偏っている第n気筒を判別する。   Next, a data point at which a determination parameter changes due to marker injection is set as a first base point, and a data point at which the determination parameter is equal to or greater than a predetermined value is set as a second base point. Then, the nth cylinder in which the air-fuel ratio is biased is determined based on the time from the first base point to the second base point (change amount of the crank angle).

気筒判別制御について図6を参照しながらさらに詳細に説明する。図6は判定パラメータの時系列データであり、例として第3気筒が異常である場合を示している。マーカー噴射を行うと、第1気筒の空燃比がリッチになるので判定パラメータが変動し、第1気筒の上死点(TDC)付近で判定パラメータの絶対値が増大する。また、第3気筒は空燃比が異常であるので、第3気筒のTDC付近で判定パラメータの絶対値が所定値以上となる。   The cylinder discrimination control will be described in more detail with reference to FIG. FIG. 6 shows time series data of determination parameters, and shows a case where the third cylinder is abnormal as an example. When marker injection is performed, the air-fuel ratio of the first cylinder becomes rich so that the determination parameter fluctuates, and the absolute value of the determination parameter increases near the top dead center (TDC) of the first cylinder. Further, since the air-fuel ratio of the third cylinder is abnormal, the absolute value of the determination parameter becomes equal to or greater than a predetermined value near the TDC of the third cylinder.

これにより、第1の基点から、第2の基点までの時間(第1気筒TDC〜第3気筒TDC)を検出することで、空燃比が異常である第n気筒を判別することができる。   Thus, by detecting the time from the first base point to the second base point (the first cylinder TDC to the third cylinder TDC), it is possible to determine the nth cylinder in which the air-fuel ratio is abnormal.

図2に戻ってステップS4では、異常であると判別された第n気筒のλ制御を行う。λ制御は燃料噴射弁3の開弁時間を調整することで燃料噴射量を増大又は低減させる制御であり、A/Fセンサ値がリーン側に振れている場合は噴射量を増大させ、リッチ側に振れている場合は噴射量を低減させるように制御される。ここで、λ制御の補正量は判定パラメータの第2の基点におけるデータが所定値以内となるように設定される。   Returning to FIG. 2, in step S4, λ control of the nth cylinder determined to be abnormal is performed. The λ control is a control to increase or decrease the fuel injection amount by adjusting the valve opening time of the fuel injection valve 3, and when the A / F sensor value fluctuates to the lean side, the injection amount is increased and the rich side When it is swung, the injection amount is controlled to be reduced. Here, the correction amount of the λ control is set so that the data at the second base point of the determination parameter is within a predetermined value.

ステップS5では、第n気筒のλ補正量の絶対値が所定量以上であるか否かを判定する。所定量以上であると判定されるとステップS6へ進んで第n気筒の異常を確定し、所定量より小さいと判定されるとステップS7へ進む。所定量は第n気筒の燃料噴射量の補正幅が大きく、第n気筒の燃料系が異常であると判断できる程度の値であり、予め実験などによって求めておく。   In step S5, it is determined whether or not the absolute value of the λ correction amount of the nth cylinder is greater than or equal to a predetermined amount. If it is determined that the amount is greater than or equal to the predetermined amount, the process proceeds to step S6 to determine abnormality of the nth cylinder, and if it is determined that the amount is smaller than the predetermined amount, the process proceeds to step S7. The predetermined amount is a value with which the correction range of the fuel injection amount of the nth cylinder is large and it can be determined that the fuel system of the nth cylinder is abnormal, and is obtained in advance by an experiment or the like.

ステップS7では、判定パラメータの絶対値の時系列データの中に所定値以上となるデータがあるか否かを判定する。所定値以上のデータがあると判定されるとステップS4へ進み、所定値以上のデータがないと判定されると処理を終了する。所定値はステップS2の所定値と同一の値である。   In step S7, it is determined whether or not there is data that exceeds a predetermined value in the time-series data of the absolute value of the determination parameter. If it is determined that there is data exceeding the predetermined value, the process proceeds to step S4, and if it is determined that there is no data exceeding the predetermined value, the process is terminated. The predetermined value is the same value as the predetermined value in step S2.

ここで、ステップS4においてλ制御が行われることで空燃比がある程度改善されるので、第n気筒に対応する判定パラメータの値(図5(c)の山)は小さくなる。しかし、第n気筒以外の気筒にも異常がある場合には当該気筒に対応する判定パラメータの値が大きくなるので、ステップS7によって判定パラメータの絶対値が所定値以上であるか否かを判定することで、既に燃料系異常であると確定した第n気筒以外の他の気筒にも異常があるか否かを判定することができる。   Here, since the air-fuel ratio is improved to some extent by performing the λ control in step S4, the value of the determination parameter corresponding to the nth cylinder (the peak in FIG. 5C) becomes small. However, if there is an abnormality in any cylinder other than the nth cylinder, the value of the determination parameter corresponding to the cylinder becomes large. Therefore, in step S7, it is determined whether or not the absolute value of the determination parameter is greater than or equal to a predetermined value. Thus, it is possible to determine whether or not there is an abnormality in other cylinders other than the nth cylinder that has already been determined to have an abnormality in the fuel system.

以上のように本実施形態では、A/Fセンサ4の検出値の時系列データからエンジン1の回転周波数とは異なる周波数域の値である判定パラメータを演算し、判定パラメータの時系列データの中に所定値以上のデータがあるとき気筒間ばらつきがあると判定するので、エンジン1の回転周波数より低い周波数としてあらわれる気筒間ばらつきを、外部振動や気筒数にかかわらず精度よく検出することができる。   As described above, in the present embodiment, a determination parameter that is a value in a frequency region different from the rotation frequency of the engine 1 is calculated from the time-series data of the detection value of the A / F sensor 4, and When there is data greater than or equal to a predetermined value, it is determined that there is a variation between cylinders. Therefore, a variation between cylinders that appears as a frequency lower than the rotational frequency of the engine 1 can be accurately detected regardless of external vibration or the number of cylinders.

また、A/Fセンサ4の検出値にバンドパスフィルタをかけた後のバンドパス後センサ値と検出値との差分の絶対値を判定パラメータとするので、エンジン1の回転周波数を含む周波数域の周波数成分を除去して気筒間ばらつきをより精度よく検出することができる。   Moreover, since the absolute value of the difference between the sensor value after the band pass after the band pass filter is applied to the detection value of the A / F sensor 4 and the detection value is used as the determination parameter, the frequency range including the rotation frequency of the engine 1 is used. It is possible to detect the variation between cylinders with higher accuracy by removing the frequency component.

さらに、気筒間にばらつきがあると判定されたとき第1気筒にマーカー噴射を行い、マーカー噴射による判定パラメータの変化から、判定パラメータが所定値以上となるときまでの時間に基づいて空燃比が偏っている気筒を判別するので、空燃比が異常である気筒をエンジンの回転速度に応じて精度よく判別することができる。   Further, when it is determined that there is variation among the cylinders, marker injection is performed on the first cylinder, and the air-fuel ratio is biased based on the time from when the determination parameter changes due to marker injection until the determination parameter becomes equal to or greater than a predetermined value. Therefore, it is possible to accurately determine a cylinder having an abnormal air-fuel ratio in accordance with the rotational speed of the engine.

さらに、空燃比が異常であると判別された気筒に対してλ制御を行って燃料噴射量を増大補正又は低減補正し、補正量が所定量以上であるとき補正を行った気筒が異常であると確定するので、一時的な要因でA/Fのセンサ値が変動したような場合には当該気筒の異常を確定せず、異常判定の判定精度を向上させることができる。   Further, λ control is performed on the cylinder determined to have an abnormal air-fuel ratio to increase or decrease the fuel injection amount. When the correction amount is a predetermined amount or more, the corrected cylinder is abnormal. Therefore, when the A / F sensor value fluctuates due to a temporary factor, the abnormality of the cylinder is not determined, and the determination accuracy of the abnormality determination can be improved.

さらに、気筒の異常を確定した後に、判定パラメータの絶対値の時系列データの中に所定値以上であるデータがあるか否かを再度判定し、所定値以上のデータがあるときはステップS4〜S6を再度実行するので、気筒間ばらつきの原因となる気筒が複数ある場合でも各気筒の空燃比異常をそれぞれ判別することができる。   Further, after determining the cylinder abnormality, it is determined again whether or not there is data that is greater than or equal to the predetermined value in the time-series data of the absolute value of the determination parameter. Since S6 is executed again, the air-fuel ratio abnormality of each cylinder can be determined even when there are a plurality of cylinders that cause variations among cylinders.

以上説明した実施形態に限定されることなく、その技術的思想の範囲内において種々の変形や変更が可能である。   The present invention is not limited to the embodiment described above, and various modifications and changes can be made within the scope of the technical idea.

例えば、本実施形態ではポート噴射式のエンジン1を用いて説明したが、直噴エンジンであっても適用可能である。   For example, although the port injection type engine 1 has been described in the present embodiment, the present invention can also be applied to a direct injection engine.

1 エンジン
3 燃料噴射弁
4 A/Fセンサ(空燃比センサ)
5 コントローラ
9 集合部
52 バンドパスフィルタ
S1 判定パラメータ抽出手段
S2 気筒間ばらつき判定手段
S3 マーカー噴射手段、気筒判別手段
S4 噴射量補正手段
S6 異常確定手段
1 engine 3 fuel injection valve 4 A / F sensor (air-fuel ratio sensor)
5 Controller 9 Aggregation part 52 Bandpass filter S1 Determination parameter extraction means S2 Inter-cylinder variation determination means S3 Marker injection means, cylinder discrimination means S4 Injection amount correction means S6 Abnormality determination means

Claims (5)

複数の気筒を有し、前記複数の気筒ごとに燃料が噴射されるエンジンにおいて、
前記複数の気筒からの排気が集合する集合部において前記排気の空燃比を検出して検出信号として出力する空燃比センサと、
前記検出信号の時系列データから前記エンジンの回転周波数とは異なる周波数域の信号である判定パラメータの時系列データを抽出する判定パラメータ抽出手段と、
前記判定パラメータの時系列データの中に所定値より大きいデータがあるとき、前記複数の気筒間に空燃比のばらつきがあると判定する気筒間ばらつき判定手段と、
を備えることを特徴とするエンジンの制御装置。
In an engine having a plurality of cylinders and injecting fuel for each of the plurality of cylinders,
An air-fuel ratio sensor that detects an air-fuel ratio of the exhaust at a gathering portion where exhaust from the plurality of cylinders gathers and outputs a detection signal;
Determination parameter extraction means for extracting time-series data of determination parameters that are signals in a frequency range different from the engine rotation frequency from the time-series data of the detection signal;
When there is data larger than a predetermined value in the time-series data of the determination parameter, a cylinder-to-cylinder variation determination unit that determines that there is a variation in air-fuel ratio among the plurality of cylinders;
An engine control device comprising:
前記判定パラメータ抽出手段は、前記検出信号の時系列データのうち前記エンジンの回転周波数を含む周波数域の信号のみを通過させるバンドパスフィルタを備え、前記バンドパスフィルタを通過後の信号と前記検出信号との差分の絶対値を前記判定パラメータとして抽出することを特徴とする請求項1に記載のエンジンの制御装置。   The determination parameter extraction unit includes a bandpass filter that passes only a signal in a frequency range including a rotation frequency of the engine among time-series data of the detection signal, and a signal after passing through the bandpass filter and the detection signal The engine control apparatus according to claim 1, wherein an absolute value of a difference between the two and the like is extracted as the determination parameter. 前記エンジンの回転角を検出する回転角センサと、
前記気筒間ばらつき判定手段によって前記複数の気筒間に空燃比のばらつきがあると判定されたとき、所定の一気筒に対する燃料噴射量を変更する燃料噴射量変更手段と、
前記判定パラメータの時系列データのうち、前記燃料噴射量の変更によって変化するデータ点を第1の基点とし、前記所定値より大きいデータ点を第2の基点とし、前記第1の基点から前記第2の基点までの前記エンジンの回転角の変化量に基づいて前記ばらつきの原因となる気筒を判別する気筒判別手段と、
を備えることを特徴とする請求項1又は2に記載のエンジンの制御装置。
A rotation angle sensor for detecting the rotation angle of the engine;
A fuel injection amount changing means for changing the fuel injection amount for a predetermined cylinder when it is determined by the inter-cylinder variation determining means that the air-fuel ratio varies among the plurality of cylinders;
Of the time series data of the determination parameter, a data point that changes due to the change in the fuel injection amount is set as a first base point, a data point that is larger than the predetermined value is set as a second base point, and the data point from the first base point to the first base point Cylinder discriminating means for discriminating a cylinder that causes the variation based on an amount of change in the rotation angle of the engine up to a base point of 2;
The engine control device according to claim 1, further comprising:
前記判定パラメータの前記第2の基点におけるデータが小さくなるように前記ばらつきの原因となる気筒に対する燃料噴射量を補正する噴射量補正手段と、
前記噴射量補正手段による燃料噴射量の補正量が所定量より大きいとき、前記ばらつきの原因となる気筒が異常であると確定する異常確定手段と、
を備えることを特徴とする請求項3に記載のエンジンの制御装置。
Injection amount correction means for correcting the fuel injection amount for the cylinder that causes the variation so that the data at the second base point of the determination parameter becomes small;
Abnormality determining means for determining that the cylinder causing the variation is abnormal when the correction amount of the fuel injection amount by the injection amount correcting means is larger than a predetermined amount;
The engine control apparatus according to claim 3, further comprising:
前記気筒間ばらつき判定手段は、前記噴射量補正手段によって前記燃料噴射量が補正された後、前記判定パラメータの時系列データの中に前記所定値より大きいデータがさらにあるか否かを判定し、
前記所定値より大きいデータがさらにあると判定されたとき、当該データ点を新たに第2の基点とし、前記第1の基点から前記第2の基点までの前記エンジンの回転角の変化量に基づいて前記ばらつきの原因となる気筒を判別することを特徴とする請求項4に記載のエンジンの制御装置。
The inter-cylinder variation determination means determines whether or not there is further data larger than the predetermined value in the time series data of the determination parameter after the fuel injection amount is corrected by the injection amount correction means.
When it is determined that there is further data larger than the predetermined value, the data point is newly set as a second base point, and based on the amount of change in the rotation angle of the engine from the first base point to the second base point. The engine control apparatus according to claim 4, wherein a cylinder that causes the variation is determined.
JP2009053327A 2009-03-06 2009-03-06 Engine control device Active JP5278053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053327A JP5278053B2 (en) 2009-03-06 2009-03-06 Engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053327A JP5278053B2 (en) 2009-03-06 2009-03-06 Engine control device

Publications (2)

Publication Number Publication Date
JP2010209682A true JP2010209682A (en) 2010-09-24
JP5278053B2 JP5278053B2 (en) 2013-09-04

Family

ID=42970112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053327A Active JP5278053B2 (en) 2009-03-06 2009-03-06 Engine control device

Country Status (1)

Country Link
JP (1) JP5278053B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145014A (en) * 2011-01-11 2012-08-02 Toyota Motor Corp Failure determination system for multi-cylinder internal combustion engine
JP2013002395A (en) * 2011-06-17 2013-01-07 Toyota Motor Corp Device for detecting abnormal air-fuel ratio variation between cylinders of multi-cylinder internal combustion engine
JP5720700B2 (en) * 2011-01-18 2015-05-20 トヨタ自動車株式会社 Internal combustion engine with a supercharger
US9194316B2 (en) 2011-09-21 2015-11-24 Toyota Jidosha Kabushiki Kaisha Inter-cylinder air-fuel ratio imbalance determining apparatus for internal combustion engine
JP6531222B1 (en) * 2017-12-27 2019-06-12 三菱重工エンジン&ターボチャージャ株式会社 Engine abnormality detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047995A (en) * 2000-08-03 2002-02-15 Hitachi Ltd Air-fuel ratio controller for internal combustion engine
JP2006052684A (en) * 2004-08-12 2006-02-23 Hitachi Ltd Control device of engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047995A (en) * 2000-08-03 2002-02-15 Hitachi Ltd Air-fuel ratio controller for internal combustion engine
JP2006052684A (en) * 2004-08-12 2006-02-23 Hitachi Ltd Control device of engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145014A (en) * 2011-01-11 2012-08-02 Toyota Motor Corp Failure determination system for multi-cylinder internal combustion engine
JP5720700B2 (en) * 2011-01-18 2015-05-20 トヨタ自動車株式会社 Internal combustion engine with a supercharger
US9228522B2 (en) 2011-01-18 2016-01-05 Toyota Jidosha Kabushiki Kaisha Supercharger-equipped internal combustion engine
JP2013002395A (en) * 2011-06-17 2013-01-07 Toyota Motor Corp Device for detecting abnormal air-fuel ratio variation between cylinders of multi-cylinder internal combustion engine
US9194316B2 (en) 2011-09-21 2015-11-24 Toyota Jidosha Kabushiki Kaisha Inter-cylinder air-fuel ratio imbalance determining apparatus for internal combustion engine
JP6531222B1 (en) * 2017-12-27 2019-06-12 三菱重工エンジン&ターボチャージャ株式会社 Engine abnormality detection device
WO2019130525A1 (en) * 2017-12-27 2019-07-04 三菱重工エンジン&ターボチャージャ株式会社 Engine anomaly detection device

Also Published As

Publication number Publication date
JP5278053B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP4311657B2 (en) Knock detection device for internal combustion engine
US10281359B2 (en) Misfire determination device
CN105571774B (en) The knock determination of internal combustion engine
JP6312618B2 (en) Internal combustion engine control device and abnormal combustion detection method
JP6362713B2 (en) Knock detection device
JP5278053B2 (en) Engine control device
JP2013122192A5 (en)
JP4532348B2 (en) Knocking control device for internal combustion engine
US20090229354A1 (en) Method for detecting a misfire and corresponding device
JP6531222B1 (en) Engine abnormality detection device
JP5502176B2 (en) Control device for internal combustion engine
JP2007231903A (en) Knocking determining device for internal combustion engine
US10871113B2 (en) Method for managing pinking in a controlled-ignition internal combustion engine
JP2005054630A (en) Combustion abnormality determination device of internal combustion engine
JP6608794B2 (en) Control device for internal combustion engine
US10094316B2 (en) Control apparatus for internal combustion engine
JP6407828B2 (en) Control device for internal combustion engine
JP2020063710A (en) Accident fire determination device of internal combustion engine
JP2015190409A (en) Accidental fire detector and accidental fire detection method
JP6714526B2 (en) Misfire determination means and control device
JP6872162B2 (en) Internal combustion engine control device
JP2024000106A (en) Misfire determination device for internal combustion engine
JP6212953B2 (en) Engine misfire detection device
JP2005180256A (en) Cylinder internal pressure measuring device and cylinder internal pressure measuring method
JPH0542658U (en) Knotting detection device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5278053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150