JP2010209634A - Multistory earthquake-resistant wall structure - Google Patents

Multistory earthquake-resistant wall structure Download PDF

Info

Publication number
JP2010209634A
JP2010209634A JP2009059255A JP2009059255A JP2010209634A JP 2010209634 A JP2010209634 A JP 2010209634A JP 2009059255 A JP2009059255 A JP 2009059255A JP 2009059255 A JP2009059255 A JP 2009059255A JP 2010209634 A JP2010209634 A JP 2010209634A
Authority
JP
Japan
Prior art keywords
layer
multistory
earthquake
story
layer structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009059255A
Other languages
Japanese (ja)
Other versions
JP5336891B2 (en
Inventor
Takayuki Hirayama
貴之 平山
Kazumi Yamane
一三 山根
Takeshi Katayama
丈士 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2009059255A priority Critical patent/JP5336891B2/en
Publication of JP2010209634A publication Critical patent/JP2010209634A/en
Application granted granted Critical
Publication of JP5336891B2 publication Critical patent/JP5336891B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve easy design of a multistory earthquake-resistant wall when adopting it. <P>SOLUTION: The multistory earthquake-resistant wall structure is constituted by erecting multistory structure parts 2 side by side at lateral spacings, and the multistory structure parts 2 are formed by integrally and continuously molding each of the earthquake-resistant walls 1 on a plurality of upper-and-lower floor levels. Then the lower floor level parts of the adjacent multistory structure parts 2 are integrally connected to each other rigidly, and the floor level side which is upper than the connected floor level is constituted so that shearing force cannot be transferred between each of the multistory structure parts 2. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、複数の上下階層にそれぞれ耐震壁を連続させて一体に形成した連層構造部を、横間隔をあけて並立してある連層耐震壁構造に関する。   The present invention relates to a multi-story earthquake-resistant wall structure in which a multi-story structure part in which seismic walls are continuously formed on a plurality of upper and lower layers and formed integrally is arranged with a lateral interval.

従来、この種の連層耐震壁構造としては、図6に示すように、横間隔をあけて並立した連層構造部2どうしを、夫々の階層において梁(境界梁)20で剛に一体に連結してあるものがあった(例えば、特許文献1参照)。   Conventionally, as this type of multi-story earthquake-resistant wall structure, as shown in FIG. 6, multi-story structure parts 2 arranged side by side at a horizontal interval are rigidly integrated with beams (boundary beams) 20 at each level. There was what was connected (for example, refer to patent documents 1).

特開平11−350776号公報(図2)Japanese Patent Laid-Open No. 11-350776 (FIG. 2)

耐震壁を有する架構の崩壊形は、全体崩壊形となるため、建物の設計に当たっては、耐震壁に剛に一体連結された他部材の連係をとりながら設計を実施する必要がある。
上述した従来の連層耐震壁構造によれば、並立した連層構造部にわたって夫々の階層において梁を剛に一体連結してあるから、連層構造部と梁とのせん断設計の連係をとる必要がある。しかしながら、耐震壁の壁厚を増加させると、それに連結する梁の耐力を増加させる必要が生じ、それに伴って梁主筋を増やすと、鉄筋を納めるために梁断面が増大して剛性が上昇するため、架構が負担するせん断力が増加し、更に耐震壁の壁厚を増加させなければならなくなり、以下、その繰り返しルーチンに陥り、設計が収束しないことがある。
従って、設計として手間が掛かるという問題点がある。
Since the collapsed form of a frame having a seismic wall is an overall collapsed type, it is necessary to design the building while linking other members rigidly and integrally connected to the seismic wall.
According to the conventional multi-story shear wall structure described above, the beams are rigidly integrally connected at each level over the parallel multi-story structure, so it is necessary to coordinate the shear design between the multi-story structure and the beam. There is. However, increasing the wall thickness of the seismic wall necessitates an increase in the proof stress of the beam connected to it, and as a result, increasing the beam main reinforcement increases the beam cross section and increases the rigidity to accommodate the reinforcing bars. The shearing force that the frame bears increases, and the wall thickness of the seismic wall must be increased, and the design may not converge because of the repeated routine.
Therefore, there is a problem that it takes time and effort as a design.

従って、本発明の目的は、上記問題点を解消し、連層耐震壁を採用するに当たり、簡便に設計を実施できる連層耐震壁構造を提供するところにある。   Accordingly, an object of the present invention is to provide a multi-story shear wall structure that can be easily designed to solve the above-described problems and adopt multi-story shear walls.

本発明の第1の特徴構成は、複数の上下階層にそれぞれ耐震壁を連続させて一体に形成した連層構造部を、横間隔をあけて並立してある連層耐震壁構造であって、隣接する前記連層構造部の下層部どうしを剛に一体連結すると共に、その連結層より上層側は、互いの連層構造部間にせん断力が伝達しない状態に構成してあるところにある。   A first characteristic configuration of the present invention is a multi-story earthquake-resistant wall structure in which a multi-story structure part in which a plurality of upper and lower layers are integrally formed by continuously connecting seismic walls is arranged side by side with a lateral interval, The lower layer portions of the adjacent multi-layer structure portions are rigidly integrally connected, and the upper layer side from the connection layer is in a state where no shear force is transmitted between the multi-layer structure portions.

本発明の第1の特徴構成によれば、前記連層構造部を、横間隔をあけて並立するにあたり、隣接する前記連層構造部の下層部どうしを剛に一体連結すると共に、その連結層より上層側は、互いの連層構造部間にせん断力が伝達しない状態に構成してあるから、前記連結層より上層側の連層構造部の設計においては、耐震壁架構を単独とした設計を行うことができ、従来のように、境界梁との連係をとって設計する必要がなくなる。
従って、前述したような、設計上での繰り返しルーチン(耐震壁の壁厚増加→梁主筋の増加→耐震壁の壁厚増加→)に陥ってしまうことがなく、簡便に設計を進めることが可能となる。
また、並立した連層構造部どうしを下層部の連結層のみで一体連結してあるから、連結層より上層側は、地震や風圧による水平力を受けた際、個別に水平変位する。従って、連結層より上層側が振動方向に沿って水平変位するに伴って、その下方部分には、振動方向での一端部(又は他端部)に引抜力が、振動方向での他端部(又は一端部)に押圧力が作用する。
本特徴構成によれば、隣接する連層構造部の下層部どうしを連結層で剛に一体連結してあるから、両連層構造部の対向する端部には、引抜力と押圧力とが作用することになり、前記連結層を通じて引抜力と押圧力とがバランスし、引き抜き防止効果を期待することができる。
また、前記連結層において隣接する連層構造部どうしを連結する連結部の設計強度によって、両連層構造部の耐力を制御することも可能となり、建物全体とした耐力や崩壊形を、設計者の意図通り叶えやすくなる。
According to the first characteristic configuration of the present invention, when the multi-layer structure portions are juxtaposed at a lateral interval, the lower layer portions of the adjacent multi-layer structure portions are rigidly integrally connected, and the connection layer Since the upper layer side is configured so that shear force is not transmitted between the continuous layer structure portions, the design of the multi-layer structure portion above the connection layer is a design that uses the seismic wall frame as a single unit. This eliminates the need for designing with a boundary beam as in the prior art.
Therefore, it is possible to easily carry out the design without falling into the design repetitive routine (increased seismic wall thickness → increased beam main reinforcement → increased seismic wall thickness →) as described above. It becomes.
Further, since the juxtaposed multi-layered structure portions are integrally connected only by the lower connecting layer, the upper layer side from the connecting layer is horizontally displaced individually when receiving a horizontal force due to an earthquake or wind pressure. Therefore, as the upper layer side from the coupling layer is horizontally displaced along the vibration direction, the lower portion has a pulling force at one end (or the other end) in the vibration direction and the other end (in the vibration direction). Alternatively, a pressing force acts on one end part).
According to this characteristic configuration, the lower layer portions of the adjacent multi-layer structure portions are rigidly integrally connected to each other by the connection layer, so that the pulling force and the pressing force are applied to the opposing ends of both multi-layer structure portions. Thus, the pulling force and the pressing force are balanced through the connecting layer, and a pulling preventing effect can be expected.
In addition, the strength of the two-storied layer structure can be controlled by the design strength of the connecting part that connects adjacent multi-story structures in the joint layer. It will be easier to achieve as intended.

連層耐震壁構造の建物を示す正面視断面図Front sectional view showing a building with multi-story shear walls 連層耐震壁構造の建物を示す模式図Schematic diagram showing a building with multi-story shear walls 別実施形態の建物の模式図Schematic diagram of the building of another embodiment 別実施形態の建物の模式図Schematic diagram of the building of another embodiment 別実施形態の建物の模式図Schematic diagram of the building of another embodiment 従来の建物の正面視断面図Cross-sectional front view of a conventional building

以下に本発明の実施の形態を図面に基づいて説明する。尚、図面において従来例と同一の符号で表示した部分は、同一又は相当の部分を示している。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the parts denoted by the same reference numerals as those in the conventional example indicate the same or corresponding parts.

図1は、本発明の連層耐震壁構造の一実施形態を採用した建物Bを示すもので、建物Bは、鉄筋コンクリート造で構成されている。また、建物Bは、それぞれ複数階層を備えた三つの棟を設けて構成されている。   FIG. 1 shows a building B in which an embodiment of the multistory earthquake-resistant wall structure of the present invention is adopted, and the building B is made of reinforced concrete. The building B is configured by providing three buildings each having a plurality of hierarchies.

各棟は、複数の上下階層にそれぞれ耐震壁1を連続させて一体に形成した連層構造部2を設けて構成してある。
各連層構造部2は、横間隔をあけて並立してあり、一階部分で、連結部3を介して剛に一体連結してある。この一階部分が、連結層Jとなる。
従って、前記連結層Jより上層側は、隣接する連層構造部2相互における力学的な干渉は見られず、それぞれの連層構造部2単独としての設計が可能となっている。
Each ridge is configured by providing a multi-story structure portion 2 in which a seismic wall 1 is formed continuously in a plurality of upper and lower layers.
The multi-layer structure portions 2 are arranged side by side at a lateral interval, and are rigidly and integrally connected via a connecting portion 3 at the first floor portion. This first floor portion becomes the connection layer J.
Therefore, on the upper layer side from the coupling layer J, no mechanical interference is observed between the adjacent multi-layer structure portions 2, and each multi-layer structure portion 2 can be designed as a single unit.

前記耐震壁1は、柱4と梁5とを備えた枠の中に一体に形成してあり、地震力や風圧の作用に対する連層構造部2の変形の抑制を図っている。
また、耐震壁1の配筋は、耐震壁1自らが浮き上がりを生じるまでせん断破壊を生じない範囲内で設計されている。
The seismic wall 1 is integrally formed in a frame provided with columns 4 and beams 5 to suppress deformation of the multi-story structure 2 against the action of seismic force and wind pressure.
In addition, the reinforcement of the earthquake-resistant wall 1 is designed within a range in which shear failure does not occur until the earthquake-resistant wall 1 itself is lifted.

前記連結層Jは、各連層構造部2の一階部分と、隣接する連層構造部2どうしを一体連結する前記連結部3とを設けて構成してある。   The connection layer J includes a first floor portion of each continuous layer structure portion 2 and the connection portion 3 that integrally connects adjacent continuous layer structure portions 2.

前記連結部3は、連層構造部2の基礎梁2aの延長線上に一体に設けられた連結基礎梁3aと、連層構造部2の一階の梁2bの延長線上に一体に設けられた連結梁3bとを備えて構成してある。
当該建物Bに地震による水平力が作用した場合、各連層構造部2は、図2に示すように、個別に水平に変位する。
この変位に伴って、連結層Jには、矢印方向の引抜力(又は押圧力)が作用するが、前記連結部3の部分においては、両端部に作用する引抜力と押圧力とがバランスし、各連層構造部2の浮上がりを小さくすることが可能となる。
前記連結部3は、連層構造部2自らが浮上がりを生じるまでヒンジを生じないように設計してあり、且つ、連結部3の配筋は、連層構造部2自らが浮上がるまでせん断破壊を生じない範囲内で設計されている。
The connecting portion 3 is integrally provided on the connecting foundation beam 3a provided integrally on the extension line of the foundation beam 2a of the multi-layer structure portion 2, and on the extension line of the beam 2b on the first floor of the multi-layer structure portion 2. The connecting beam 3b is provided.
When a horizontal force due to an earthquake acts on the building B, each multi-story structure 2 is horizontally displaced individually as shown in FIG.
Along with this displacement, a pulling force (or pressing force) in the direction of the arrow acts on the connecting layer J, but in the portion of the connecting portion 3, the pulling force and pressing force acting on both ends are balanced. It is possible to reduce the floating of each multi-layer structure 2.
The connecting portion 3 is designed so that a hinge is not generated until the multi-layer structure portion 2 itself is lifted, and the reinforcement of the connecting portion 3 is sheared until the multi-layer structure portion 2 itself is lifted. Designed within a range that does not cause destruction.

本実施形態の建物Bによれば、前記連結層Jより上層側の連層構造部2の設計においては、耐震壁架構を単独とした設計を行うことができ、従来のように、境界梁との連係をとるが故に設計上での繰り返しルーチン(耐震壁の壁厚増加→梁主筋の増加→耐震壁の壁厚増加→)に陥ってしまうことがなく、簡便に設計を進めることが可能となる。
また、並立した連層構造部どうしを下層部の連結層のみで一体連結してあることで、連層構造部の引き抜き防止効果を期待することができる。
また、前記連結層において隣接する連層構造部どうしを連結する連結部の設計強度によって、両連層構造部の耐力を制御することも可能となり、建物全体とした耐力や崩壊形を、設計者の意図通り叶えやすくなる。
従って、耐震壁の部材ランクをより高くすることが容易となり、全体架構のDs値を低くでき、建物の経済性の向上や、設計の合理性の向上を叶えることができる。
According to the building B of the present embodiment, in the design of the multi-story structure portion 2 on the upper layer side of the connection layer J, the design can be performed with the seismic wall frame alone. Therefore, it is possible to proceed with the design easily without falling into the design repetitive routine (increased seismic wall thickness → increased beam main reinforcement → increased seismic wall thickness →). Become.
Further, since the juxtaposed multi-layer structure portions are integrally connected only by the lower layer connection layer, the effect of preventing the multi-layer structure portion from being pulled out can be expected.
In addition, the strength of the two-storied layer structure can be controlled by the design strength of the connecting part that connects adjacent multi-story structures in the joint layer. It will be easier to achieve as intended.
Therefore, it becomes easy to raise the member rank of the earthquake resistant wall, the Ds value of the whole frame can be lowered, and the improvement of the economics of the building and the improvement of the rationality of the design can be realized.

〔別実施形態〕
以下に他の実施の形態を説明する。
[Another embodiment]
Other embodiments will be described below.

〈1〉 前記連層構造部2は、先の実施形態で説明した設計仕様に限るものではなく、それぞれ自由に設定することができる。
例えば、各連層構造部2の階層の数は、図4に示すように、2以上の複数の階層が対象となり、すべての連層構造部2において同一の階層数でなくてもよい。
また、建物全体とした連層構造部2の棟数は、3棟に限るものではなく、図3、図5に示すように、2以上の複数の棟であればよい。
各連層構造部2の幅寸法は、図3〜5に示すように、それぞれが同一であったり、一部又は全部が異なった幅寸法であってもよい。
〈2〉 前記連結層Jより上層側の各連層構造部2どうしの間は、先の実施形態で説明したように、介在部材を全く設けないことに限らず、例えば、図5に示すように、スラブ10等の部材を架け渡して設けてあってもよい。要するに、連結層より上層側は、互いの連層構造部2間にせん断力が伝達しない状態に構成してあればよい。
〈3〉 前記連結層Jは、先の実施形態で説明したように地上1階部分に設けることに限るものではなく、例えば、地上1階を含む複数階層にわたるものであったり、図5に示すように、地下部分に配置してあってもよく、それらを総称して連結層Jという。
要するに、連結層Jは、隣接する前記連層構造部2の下層部どうしを剛に一体連結するものであればよい。
〈4〉 前記連結部3は、先の実施形態で説明した連結基礎梁3aと連結梁3bとで構成してあるものに限るものではなく、例えば、別の耐震壁や、別のラーメン架構で構成してあってもよい。
<1> The multi-layer structure portion 2 is not limited to the design specification described in the previous embodiment, and can be set freely.
For example, as shown in FIG. 4, the number of layers in each multi-layer structure unit 2 is not limited to the same number of layers in all multi-layer structure units 2.
Moreover, the number of buildings of the multi-story structure portion 2 as a whole building is not limited to three, but may be two or more buildings as shown in FIGS.
As shown in FIGS. 3 to 5, the width dimension of each multi-layer structure portion 2 may be the same, or may be partially or entirely different in width dimension.
<2> As described in the previous embodiment, the interlaminar structure portions 2 on the upper layer side of the coupling layer J are not limited to the provision of any intervening member. For example, as shown in FIG. In addition, a member such as the slab 10 may be bridged. In short, what is necessary is just to comprise the upper layer side from a connection layer in the state in which a shearing force is not transmitted between each continuous layer structure part 2. FIG.
<3> The connection layer J is not limited to being provided in the first floor portion as described in the previous embodiment, and may be, for example, a plurality of layers including the first floor, as shown in FIG. Thus, they may be arranged in the underground part, and they are collectively referred to as a connection layer J.
In short, the connecting layer J may be any layer that rigidly and integrally connects the lower layer portions of the adjacent multi-layer structure portions 2.
<4> The connecting portion 3 is not limited to the connecting base beam 3a and the connecting beam 3b described in the previous embodiment. For example, the connecting portion 3 may be another seismic wall or another ramen frame. It may be configured.

尚、上述のように、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。また、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   In addition, as mentioned above, although the code | symbol was written in order to make contrast with drawing convenient, this invention is not limited to the structure of an accompanying drawing by this entry. In addition, it goes without saying that the present invention can be carried out in various modes without departing from the gist of the present invention.

1 耐震壁
2 連層構造部
1 Seismic wall 2 Multi-story structure

Claims (1)

複数の上下階層にそれぞれ耐震壁を連続させて一体に形成した連層構造部を、横間隔をあけて並立してある連層耐震壁構造であって、
隣接する前記連層構造部の下層部どうしを剛に一体連結すると共に、その連結層より上層側は、互いの連層構造部間にせん断力が伝達しない状態に構成してある連層耐震壁構造。
A multi-story seismic wall structure in which a multi-story structure part is formed by connecting a plurality of seismic walls continuously to a plurality of upper and lower layers, and arranged side by side,
The multi-layer seismic wall is constructed such that the lower layer portions of the adjacent multi-layer structure portions are rigidly integrally connected, and the upper layer side from the connection layer is configured so that no shear force is transmitted between the multi-layer structure portions. Construction.
JP2009059255A 2009-03-12 2009-03-12 Multi-story shear wall structure Expired - Fee Related JP5336891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009059255A JP5336891B2 (en) 2009-03-12 2009-03-12 Multi-story shear wall structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009059255A JP5336891B2 (en) 2009-03-12 2009-03-12 Multi-story shear wall structure

Publications (2)

Publication Number Publication Date
JP2010209634A true JP2010209634A (en) 2010-09-24
JP5336891B2 JP5336891B2 (en) 2013-11-06

Family

ID=42970071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009059255A Expired - Fee Related JP5336891B2 (en) 2009-03-12 2009-03-12 Multi-story shear wall structure

Country Status (1)

Country Link
JP (1) JP5336891B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001132251A (en) * 1999-11-04 2001-05-15 Takenaka Komuten Co Ltd Apartment house
JP2009013696A (en) * 2007-07-06 2009-01-22 Takenaka Komuten Co Ltd Seismic strengthening method for existing apartment house

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001132251A (en) * 1999-11-04 2001-05-15 Takenaka Komuten Co Ltd Apartment house
JP2009013696A (en) * 2007-07-06 2009-01-22 Takenaka Komuten Co Ltd Seismic strengthening method for existing apartment house

Also Published As

Publication number Publication date
JP5336891B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP6166560B2 (en) Extension structure of seismic isolation building
JP2006274613A (en) Earthquake resistant reinforcing structure
JP2014055517A (en) Precast beam-column joint structure
JP6122740B2 (en) Seismic reinforcement structure
JP6535704B2 (en) Column-beam frame
JP5336891B2 (en) Multi-story shear wall structure
JP6508866B2 (en) Column-beam frame
JP2013189802A (en) Seismic strengthening structure of existing building
JP2009121051A (en) Method of re-constructing building
JP2009068182A (en) Aseismatic reinforcing structure and method for existing building
JP6261964B2 (en) Seismic reinforcement structure
JP5696879B2 (en) Concrete joint structure and concrete joint method
JP6019710B2 (en) Seismic reinforcement structure and method for existing buildings
JP2009002079A (en) Aseismatic reinforcing construction method for existing building
JP4759301B2 (en) Seismic reinforcement method for buildings
JP5200962B2 (en) Underground wall structure, underground structure
JP7379800B2 (en) building
JP6184338B2 (en) Buildings with different top floor frames and lower floor frames
KR102632253B1 (en) An Extended Structure
JP6535481B2 (en) Seismic reinforcement structure of existing building and seismic reinforcement method of existing building
JP4220938B2 (en) Reinforcement structure of existing building
JP2010174513A (en) Seismic control structure
JP4352947B2 (en) Joint structure of precast concrete column beam
JP5660854B2 (en) building
JP2020159035A (en) Underground skeleton structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees